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Abstract: This paper addresses the problem of joint production and preventive maintenance (PM)
planning of a deteriorating manufacturing system generating greenhouse gas (GHG) emissions. The
system is composed of a deteriorating machine, subject to random failures and repairs evolving in a
dynamic and stochastic context. The main objective is to develop control policies that minimize the
sum of backlog, inventory, maintenance, and emission costs. The stochastic optimal control theory
based on the dynamic programming approach is used to obtain the optimality conditions and the
optimal control policies, which are determined using numerical methods. Sensitivity analyses are
provided to depict and validate the obtained structure of the production and PM policies characterized
by multiple thresholds that jointly regulate the production and PM rates with the age, emissions, and
inventory levels. Furthermore, we compared the performance of the obtained control policies with
that of the most relevant policies found in the literature and showed their superiority by considerable
cost savings. Finally, the proposal’s implementation is provided to equip managers of the considered
manufacturing system with an effective and robust decision-support tool.

Keywords: manufacturing system; greenhouse gas; stochastic optimal control; dynamic program-
ming; numerical methods; production planning; preventive maintenance

1. Introduction

Over the years, investments by governmental and non-governmental organizations
have been heavily focused on addressing the threats posed by global climate change. In
the example of North American countries, the emission trading model of the Western
Climate Initiative (WCI) program allows action to reduce GHG emissions. Emissions gen-
erated by manufacturing systems, including pollutants such as dust and slags from ageing
equipment, are crucial performance indicators for evaluating sustainable manufacturing
under the regulations and rules established by governments within each industry [1,2].
Fundamentally, to preserve our environment, as well as its natural resources, it is essential
to control harmful emissions to stem the damage of pollution from industrial activities.
Therefore, industries characterized by high emissions, such as pulp and paper, mining
operations, automobile manufacturing, steel, and concrete, will enhance their operational
strategies for production and preventive maintenance (PM) planning problems within a
stochastic context by integrating environmental considerations. Existing literature on the
environmental dimension, in conjunction with control policies, predominantly discusses
various approaches for emission control, often categorized into two main types: voluntary
and regulatory [3]. Approaches governed by regulations involve the government and
authorities setting specific limits for GHG emissions across various industries to mitigate
their adverse impacts. Meanwhile, voluntary strategies, such as the implementation of
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environmental management systems and participation in various voluntary programs,
have gained increasing attention for their potential to complement and enhance existing
regulatory frameworks [4]. It is noteworthy that voluntary initiatives are appealing because
they can accomplish environmental objectives more innovatively and with greater speed,
as well as cost-effectiveness, compared to regulatory methods [5].

In the manufacturing environment, the availability of machines often decreases over
time, while pollution increases due to ageing and imperfect maintenance activities. Gener-
ally, corrective maintenance is minimal and restores the machine to a state as bad as old
(ABAO). Consequently, it may struggle to meet the demand rate for the produced commod-
ity. We examine a machine prone to random breakdowns and experiencing deterioration
during operation, where both the failure and emission rates escalate with its age. The
machine’s ageing is directly influenced by the production rate. Hence, PM activities, such
as major overhauls, aim to restore the machine to an ‘as-good-as-new’ (AGAN) condition,
resetting its age to zero.

The primary research problem focuses on production planning over an infinite plan-
ning horizon, accounting for the deterioration and the randomness of machine failures
and repairs, and the dynamics of finished product inventory fluctuations. It addresses
significant implications for unreliable manufacturing systems, with potential applications
for both regulatory and voluntary approaches to reduce GHG emissions. Hence, the re-
search questions addressed in this study are: (i) How can the production and PM rates be
regulated jointly according to the machine age, emissions, and inventory levels? (ii) How
does the machine’s age, and therefore its emissions, affect the number and level of optimal
stock products? (iii) Is it necessary to apply both voluntary and regulatory environmental
approaches to effectively reduce GHG emissions? To answer these questions, the paper
develops an optimal joint control policy tailored to unreliable and deteriorating manufac-
turing systems of businesses committed to mitigating GHG emissions, thereby minimizing
the total incurred cost linked to backlogs, inventory, corrective and preventive maintenance,
and emissions penalty.

This paper integrates environmental and economic considerations into an optimiza-
tion model for planning and controlling unreliable manufacturing systems that emit GHG
during production. Our research addresses not only the operational efficiency of manu-
facturing systems but also their environmental impact, aligning with the global emphasis
on sustainable development. The integration of stochastic control theory and dynamic
programming is pivotal in handling the complexities of real-world manufacturing environ-
ments, where uncertainties and dynamic changes are prevalent. This study is crucial for
industries aiming to optimize their production processes while adhering to stringent envi-
ronmental regulations. The insights derived from this research provide a robust framework
for decision-makers, enhancing the applicability of our findings across various industrial
sectors concerned with both operational efficiency and environmental sustainability. To
minimize their environmental impact and meet environmental regulations, it becomes
economically imperative for these manufacturing systems to identify the optimal timing for
conducting PM and adjusting the production rate based on the machine’s age, generated
GHG emissions, and inventory levels.

The rest of the sections are structured as follows. A comprehensive review of pertinent
literature is presented in Section 2. The manufacturing system and the problem statement
are presented in Section 3. The obtained numerical results characterizing the structure of
the joint optimal control policy is presented in Section 4. Section 5 provides sensitivity
analyses to validate the obtained control policy’s structure, while Section 6, compares the
performance of the obtained policies with those of the policies adapted from the literature.
Section 7 addresses the managerial implementation of the obtained results. Section 8 serves
as the paper’s conclusion.



Sustainability 2024, 16, 6146 3 of 23

2. Literature Review

In today’s landscape, manufacturing systems confront the imperative and challenges
of decision-making, considering the complicated and constantly evolving economic, eco-
logical, and technological environment [6,7]. In this regard, Cheng and Srai [8] presented
insights into sustainable manufacturing and the pivotal technologies that drive it. They
discussed developments in approaches, techniques, and tools related to the design and
operations of manufacturing. These include areas such as the performance assessment
of manufacturing processes and low-carbon manufacturing systems. Similarly, within
this context, Setchi and Maropoulos [9] presented and reviewed state-of-the-art aspects
of sustainable design and manufacturing. These encompassed practical, methodological,
and theoretical dimensions, including sustainable business practices, quality, life-cycle
assessment, waste reduction, and energy efficiency. The authors also discussed strategies
for achieving a balance between environmental preservation and economic viability.

In this work, our focus lies on an unreliable manufacturing system, taking into account
environmental aspects. Contributions to production planning issues in manufacturing
systems, as discussed in the literature, can broadly be categorized into two main classes
according to the environmental aspect of the harmful emissions. The first class consists
of the production and/or maintenance planning of manufacturing systems without GHG
emission control, while the second class aims for the production and/or maintenance plan-
ning of manufacturing systems with GHG emission control. Table 1 provides a summary
and overview of the contributions of this paper, derived from the literature review.

The first class includes contributions to the literature relying on production and/or
maintenance planning of manufacturing systems without GHG emission control. A review
of the literature shows that several authors have considered the production and/or mainte-
nance optimization problem. Among the most effective strategies for managing systems in
dynamic stochastic environments are feedback control policies [10]. An important branch
of research has formulated the problem using stochastic optimal control models, as in [11].
In such work, a stochastic dynamic programming approach based on the infinite horizon
control problem is adopted to develop the optimality conditions related to the production
planning problem. The resulting policies are defined by a distinctive structure, known
as the hedging point policy (HPP), which aims to control the production rate by consid-
ering a stock threshold and the system’s current state. Numerous extensions have been
then formulated, considering various aspects of production planning management from
diverse perspectives. For instance, Yang et al. [12] extended HPP by developing a feedback
production and setup control policy. They utilized the surplus/backlog space of stocks to
determine production rates, as well as the times of setup changes, minimizing the total cost.
In systems featuring multiple states, Ouaret et al. [13] developed a multiple HPP (MHPP)
as a solution to the production and replacement control problem within a deteriorating
manufacturing system. Diop et al. [14] investigated the impact of human errors during
maintenance on production planning to enhance the safety of a flexible manufacturing
system (FMS) with a failure-prone machine and Markovian demand patterns. An MHPP
was also investigated in [15], which formulated a stochastic optimal production control
problem for a single-machine multi-product manufacturing system with deteriorating
items. The model aims to minimize the expected discounted costs of inventory holdings
and shortages, with optimal conditions derived through Hamilton–Jacobi–Bellman equa-
tions. In the same vein, Aghdam et al. [16] proposed a joint optimization strategy for
maintenance and inventory management in production systems, employing a numerical
approach to handle uncertain demand and shortages.
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Table 1. Overview of literature contributions.

Authors Stochastic
Context

Preventive
Maintenance

Age-Related
Emissions

Adapted
Control
Policy

Optimal
Control
Policy

Regulatory
Environmen-
tal Approach

Voluntary
Environmen-
tal Approach

Class I. Production and/or maintenance planning of manufacturing system without GHG emission control
Akella and Kumar [11] ✔ ✔

Yang et al. [12] ✔ ✔

Ouaret et al. [13] ✔ ✔ ✔

Diop et al. [14] ✔ ✔

Ouaret [15] ✔ ✔ ✔

Aghdam et al. [16] ✔ ✔

Class II. Production and/or maintenance planning of manufacturing system with GHG emission control
Category 1. Models without considering the unreliability of the machines
Gong and Zhou [17] ✔

He et al. [18] ✔

Zhou et al. [19] ✔

Xu et al. [20] ✔

Pan and Li [21] ✔

Kumari et al. [22] ✔

Category 2. Models considering the unreliability of the machines
Hajej et al. [23] ✔ ✔ ✔ ✔

Turki and Rezg [24] ✔ ✔

Turki et al. [25] ✔ ✔

Ben-Salem et al. [26] ✔ ✔ ✔ ✔

Ben-Salem et al. [27] ✔ ✔ ✔ ✔ ✔ ✔

Afshar-B. et al. [28] ✔ ✔ ✔ ✔

Behnamfar et al. [29] ✔ ✔ ✔

This paper ✔ ✔ ✔ ✔ ✔ ✔ ✔

The second class comprises contributions based on production and/or maintenance
planning of manufacturing systems with GHG emission control by following regulations
imposed by competent authorities and/or voluntary approaches. Indeed, many method-
ologies and studies have been addressed to include environmental impacts [30–33]. The
first category of this class addresses the research works integrating the environmental
dimension without considering the dynamic of machines in manufacturing system man-
agement. Among the first works, Gong and Zhou [17] introduced policies for optimal
production and greenhouse gas emission trading designed to minimize the total cost in a
single-product manufacturing system. A target interval policy that incorporates two thresh-
olds was proposed as the optimal allowance trading policy. This approach, which addresses
the Economic Order Quantity (EOQ), was explored in [18] for firms subject to carbon tax
and cap-and-trade regulations. In [19], a sequentially structured dynamic optimization
framework was developed to determine operational choices for managing manufacturing
systems under cap-and-trade regulations. This framework focuses on choices regarding
the acquisition of carbon credits and the management of excess emissions. Xu et al. [20]
addressed multi-product manufacturing systems operating under the same regulations
while focusing on the dual challenges of production and pricing. Meanwhile, Pan and
Li [21] developed a production and inventory optimization model that considers pollution
abatement constraints, an emission tax under carbon tax regulations, and failing items. The
model aims to identify optimal pollution abatement investment levels and production rates
to maximize the value of the objective function. More recently, Kumari et al. [22] introduced
a comprehensive model for sustainable supply chains that focuses on reducing total costs.
This model determines the optimal production and shipment policy while incorporating
considerations of carbon emissions and trade credit policies.

In the second category, we address studies that tackle optimization problems related
to production and/or maintenance within stochastic and dynamic contexts, considering
machine dynamics such as random failures, deterioration, and maintenance. For instance,
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Hajej et al. [23] addressed the problem of production and maintenance planning regulated
by a carbon tax, considering the effects of system deterioration and subcontracting to sup-
port both remanufacturing and manufacturing systems. Their approach aims to minimize
the total costs of maintenance, production, inventory, and emissions over a finite horizon.
Turki and Rezg [24] developed an optimal inventory-production policy for a system that
segregates new and remanufactured products and sorts used products based on quality,
aiming to maximize profit while accounting for carbon emissions in the decision-making
process. Building on this, Turki et al. [25] focused on optimizing manufacturing and re-
manufacturing planning under the carbon cap and trade policy. They highlighted how
setup costs, return rates, and carbon policies significantly affect production and storage
decisions, influencing system performance and emissions. Ben-Salem et al. [26] were the
first to incorporate GHG emissions during production based on a balance between emis-
sion tax, backlog, and inventory costs. They thus proposed an extended HPP, called the
environmental hedging point policy (EHPP), under carbon tax regulation. After surpass-
ing an emission voluntary cap, they reduced the stock threshold to reduce the machine
usage and consequently, the GHG emission level, to minimize the expected overall cost.
They showed that the resulting control policies have economic advantages over the con-
ventional HPP. An extension of such policy is addressed by Ben-Salem et al. [27], who
studied manufacturing systems with increasing emission rates due to the deterioration of
the production machine. They established an EHPP to control emissions, maintenance, and
production rates, taking into account the system’s deterioration phenomena. We note that
these works were the first to propose the extension of HPP with two critical thresholds in
the context of optimization with curbing emissions. Among the extensions of these works,
Afshar-Bakeshloo et al. [28] introduced an EHPP under carbon tax regulation to control
simultaneously the production rate of a low-emission facility (LEF) and a high-emission
facility (HEF). If the total emissions surpass a predefined threshold, the manufacturing
system halts HEF operations and switches to LEF production. More recently, Behnamfar
et al. [29] examined the effect of carbon emission control policies on production planning
and inventory management. They compared cap-and-trade and command-and-control
policies using a simulation-based optimization approach to determine their impact on costs,
resource utilization, and environmental performance.

Although some previous studies have investigated the integration of environmental
considerations into production and maintenance planning [32], to the best of our knowl-
edge, none have developed optimal control policies within the context of production and
PM planning that integrate machine-related phenomena affecting emissions, such as deteri-
oration. In this work, we address this gap by employing stochastic optimal control theory,
specifically utilizing the dynamic programming approach, to develop a new control policy
that addresses key aspects identified in the literature. Indeed, the production control prob-
lem is studied in a dynamic and stochastic context due to the manufacturing environment
under consideration. The production system degrades over time and is subject to random
breakdowns and repairs. Its dynamics can be modelled by stochastic processes coupled
with dynamic programming. Therefore, the stochastic optimal control theory based on
dynamic programming is suitable for developing the optimality conditions for determining
the structure of optimal policies in such a production context [13]. This approach contrasts
with others which, in the absence of optimal control policies, rely on heuristics based on
imposed control policy structures related to common sense or existing literature [23,27].

The modelling process, along with the findings regarding the novel structure of
optimal production and PM policies, constitute the primary contribution and originality of
this paper. Our research is an extension of the work of Ben-Salem et al. [27], who addressed
the same problem of joint production and PM planning. However, they formulated the
joint control policies (i.e., EHPP) relying on literature-based insights and common sense.
Additionally, their proposed control parameters are limited to fixed thresholds, overlooking
the dynamic nature of the production machine’s ageing, which continuously influences
emission rates and, consequently, the production process. Our results show that the novel
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structure of optimal control policies extends the EHPP for production while relying on
both the emission level and the production machine’s age. The managerial implementation
of our proposal is discussed, to equip managers with an effective and robust decision-
support tool.

3. Notations and Problem Statement

This section introduces the notations utilized throughout this paper and presents the
problem statement.

Problem Statement

This study considers the case of a failure-prone manufacturing system (see Figure 1)
producing one type of products at a rate u(.). The finished products are stored in order
to build a stock x(.) to meet the customer demand d. The supply of raw material to the
machine is controlled and effective at all times. In terms of environmental considerations,
we define the machine as producing environmentally detrimental greenhouse gas (GHG)
emissions, denoted as e(.), during production. The manufacturing system is outfitted with
a mechanism for quantifying GHG emissions. According to environmental regulations’
carbon tax policy, emissions exceeding the prescribed standard limit L mandated by reg-
ulatory bodies incur penalties as an environmental tax. We consider that the machine
pollution is characterized by an emission index θ(a). We note that the machine degrades
progressively with age, denoted by a(.), leading to decreased availability and an increased
emission index. Consequently, degradation impacts the emission rate, as in [27].
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Figure 1. Overview of the studied manufacturing system.

The manufacturing system studied is subject to random events (failures, repairs). Its
behaviour can be mathematically represented by a stochastic control system operating in
continuous time, featuring a hybrid state, composed of continuous state variables (e.g., the
stock level of the finished products, x(.), and the emission level of the machine, e(.)) and
one discrete state variable, ξ(t), at time t. In this analysis, our mathematical model is based
on the following assumptions:

1. The mean time to failure decreases, and the emission index increases with the age of
the machine.

2. The PM completely restores the machine (its reliability, emission index, and emission
level) to the initial conditions (as good as new (AGAN)).

3. The corrective maintenance makes the machine return to production after the failure
but without any effect on its degradation (as bad as old (ABAO)).

The dynamics of the stock level are described by the following differential equation:

.
x(t) = u(t)− d, x(0) = x0 (1)

where x0 is the given initial stock level, and x(t) ≥ 0 represents the system having inventory;
otherwise, it indicates a backlog.
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Let the machine age a(t) be the number of produced parts since its last restoration.
There could be several ways to express the relationship between the age a(t) and the produc-
tion rate u(t). Referring to [13], the machine age a(t) is described by the following equation:

.
a(t) = ku(t) (2)

where a(0) = a0, a(T+) = a(T−), a(T) = 0. Here, k is a given positive constant used to
define the age of the machine and its increasing rate, a0 is the initial age, T+ and T− stand
for the last repair and operation times, respectively, and T is the last restart time of the
machine after the preventive maintenance activity. These values (T+, T−, T) mean that the
repair is ABAO, and the PM is AGAN.

Regarding the evaluation of emissions, referring to [27], we can describe the relation-
ship between the emission rate of the machine

.
e(t) and its production rate u(t) by the

following equation:
.
e(t) = u(t)θ(a) (3)

with e(0) = e0, e(T+) = e(T−), e(T) = 0; e0 stands for the initial emission, and θ(a) is the
emission index, which is defined as a function of the machine’s age a(t). On the other hand,
the emission index θ(a) is characterized as an increasing function of the machine age given
by the following equation:

θ(a) = θ0ek3λa(t) (4)

Note that θ0 is the value of θ at the initial conditions, λ an adjustment parameter of
the emission index (0 ≤ λ ≤ 1), and k3 a positive given constant.

The system considered can be defined by the stochastic process ξ(t) taking values in
M = {1, 2, 3} such that

ξ(t) =


1 i f the machine is operational
2 i f the machine is under repair
3 i f the machine is under PM

The following equation defines the transition probabilities:

P[ξ(t + δt) = β|ξ(t) = α] =

{
qαβ(.)δt + 0(t) i f α ̸= β

1 + qαβ(.)δt + 0(t) i f α = β

}
,α, βϵM (5)

where qαβ is the transition rate from mode α to mode β, with qαβ ≥ 0(α ̸= β),

qαα = −∑α ̸=β qαβ, and lim
δt→0

o(t)
δt = 0.

The machine can randomly operate in any of the three modes over an infinite horizon,
as depicted in Figure 2, which also provides the transition diagram.
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Figure 2. State transition diagram.

We introduce a control variable, ω(t)ϵ{ωmin, ωmax}, which is set to the value ωmax
if the machine’s PM is conducted and to a value ωmin, describing the situation when the
delay to switch from operational mode to PM mode is very large. In this case, PM is not
performed; machine repairs can occur at any failure event. We consider the transition rate
q13 equal to ω(t) (i.e., (q13(.) = ω(t))).

The machine degradation increases the failure rate q12, evolving with the machine’s
age, as described by Equation (6). This approach is commonly used in the literature to
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model deterioration processes in unreliable and deteriorating manufacturing systems, such
as in [13].

q12(a) = K0 + K∞
1

(
1 − e−K2a(t)3)

(6)

where K0, K∞
1 , and K2 are constants. The mean time to failure MTTF(a) as a function of age,

MTTF(a), is given by the inverse of the transition rate q12(a).
Historical maintenance service data can serve as a valuable source for determining

the appropriate values of the constants K0, K∞
1 , and K2, allowing for the adjustment of

Equation (6) to fit a specific production system. These constants can be derived from the
data, using estimation methods such as maximum likelihood and least squares. By using
the failure-rate model described in Equation (6), the trajectory based on the machine’s age
can be determined, as depicted in Figure 3a. This figure illustrates the machine’s failure rate
over its lifespan for different values of K2, showing how variations in this constant affect
the degradation curve. The model reflects real-world scenarios: when the system is new,
the failure rate is minimal (min level), whereas, as the system ages, the failure rate peaks
(peak level). This model is well-established and widely used in the literature [34]. It allows
for modelling various scenarios by adjusting the values of K2 and the exponent of a(t). For
instance, these adjustments can all achieve a three-stage “S”-shaped model, a two-stage
exponential and polynomial model, and a one-stage linear model. Additionally, the initial
and peak failure values can be modified by tuning K0 and K∞

1 . Similarly, the deterioration
of the machine significantly impacts the emission index, as illustrated in Figure 3b [27].
This figure depicts the trajectory of the emission index relative to the machine’s age, for
different values of the adjustment parameter λ (see Equation (4)).

Sustainability 2024, 16, x FOR PEER REVIEW 8 of 25 
 

We introduce a control variable, 𝜔𝜔(𝑡𝑡)𝛽𝛽{𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚,𝜔𝜔𝑚𝑚𝜆𝜆𝑚𝑚}, which is set to the value 𝜔𝜔𝑚𝑚𝜆𝜆𝑚𝑚 
if the machine’s PM is conducted and to a value 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚, describing the situation when the 
delay to switch from operational mode to PM mode is very large. In this case, PM is not 
performed; machine repairs can occur at any failure event. We consider the transition rate 
𝑞𝑞13 equal to 𝜔𝜔(t) (i.e., (𝑞𝑞13(. ) = 𝜔𝜔(𝑡𝑡))). 

The machine degradation increases the failure rate 𝑞𝑞12, evolving with the machine’s 
age, as described by Equation (6). This approach is commonly used in the literature to 
model deterioration processes in unreliable and deteriorating manufacturing systems, 
such as in [13]. 

𝑞𝑞12(𝑎𝑎) = 𝐾𝐾0 + 𝐾𝐾1∞�1 − 𝑒𝑒−𝐾𝐾2𝜆𝜆(𝑡𝑡)3�  (6) 

where 𝐾𝐾0, ,𝐾𝐾1∞, and 𝐾𝐾2 are constants. The mean time to failure MTTF(a) as a function of 
age, MTTF(a), is given by the inverse of the transition rate 𝑞𝑞12(𝑎𝑎). 

Historical maintenance service data can serve as a valuable source for determining 
the appropriate values of the constants 𝐾𝐾0, ,𝐾𝐾1∞, and 𝐾𝐾2, allowing for the adjustment of 
Equation (6) to fit a specific production system. These constants can be derived from the 
data, using estimation methods such as maximum likelihood and least squares. By using 
the failure-rate model described in Equation (6), the trajectory based on the machine’s age 
can be determined, as depicted in Figure 3a. This figure illustrates the machine’s failure 
rate over its lifespan for different values of 𝐾𝐾2, showing how variations in this constant 
affect the degradation curve. The model reflects real-world scenarios: when the system is 
new, the failure rate is minimal (min level), whereas, as the system ages, the failure rate 
peaks (peak level). This model is well-established and widely used in the literature [34]. It 
allows for modelling various scenarios by adjusting the values of 𝐾𝐾2 and the exponent of 
𝑎𝑎(𝑡𝑡). For instance, these adjustments can all achieve a three-stage “S”-shaped model, a 
two-stage exponential and polynomial model, and a one-stage linear model. Additionally, 
the initial and peak failure values can be modified by tuning 𝐾𝐾0 and 𝐾𝐾1∞. Similarly, the 
deterioration of the machine significantly impacts the emission index, as illustrated in Fig-
ure 3b [27]. This figure depicts the trajectory of the emission index relative to the machine’s 
age, for different values of the adjustment parameter 𝜆𝜆 (see Equation (4)). 

 
Figure 3. Evolution of the failure rate (a) and emission index (b) with age. 

The transition rates 𝑞𝑞21, representing the inverse of the mean time to repair the ma-
chine (MTTR) in mode 2, and 𝑞𝑞31, the inverse of the duration of the mean time to PM 
(MTTPM) in mode 3, are assumed to be known constants. Other transition rates of the 
manufacturing system are equal to 0. 

Hence, the manufacturing system is characterized by a 3 × 3  matrix of transition 
rates 𝑄𝑄 = �𝑞𝑞𝛼𝛼𝛼𝛼�: 

Figure 3. Evolution of the failure rate (a) and emission index (b) with age.

The transition rates q21, representing the inverse of the mean time to repair the machine
(MTTR) in mode 2, and q31, the inverse of the duration of the mean time to PM (MTTPM)
in mode 3, are assumed to be known constants. Other transition rates of the manufacturing
system are equal to 0.

Hence, the manufacturing system is characterized by a 3 × 3 matrix of transition rates
Q =

[
qαβ

]
:

Q(ω) =

−(q12(a) + ω(.)) q12(a) ω(t)
q21 −q21 0
q31 0 −q31

 (7)

The limiting probabilities of mode i, iϵ{1, 2, 3} are the steady-state solutions of the
forward Kolmogorov equations:

.
π = π Q (8)
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with the condition ∑2
i=0 πi = 1.

In order to meet the demand over an infinite horizon, the following feasibility condi-
tion must be verified:

π1 umax > d (9)

The instantaneous total cost, which includes inventory, backlog, maintenance, and
emission cost g(·) is given by

g(x, a, ξ) = c+x+ + c−x− + cα + ce(e) (10)

where x+ = max(0, x), x− = max(0,−x), and cα is defined as follows:

cα = c0 q31 Ind{ξ(t) = 3}+ cr Ind{ξ(t) = 2} (11)

where cr is the instantaneous repair cost, c0 the cost incurred per each PM activity, and
Ind{δ(·)} = 1 if the condition δ(·) is true, and 0 otherwise.

Referring to the carbon tax of environmental regulation, if the emission volume
exceeds the standard limit L set by the pertinent authorities, the excess volume incurs an
environmental penalty cost (adapted from [27]).

ce(e) = ce max{0, (e(t)− L)} (12)

where ce is the penalty cost for emissions exceeding L.
The objective of the current work is to find the two decision variables, namely, the

production and PM rates (u(·), ω(.)) that would minimize the expected discounted cost
J(·) given by Equation (13):

J(x, a, u, ω, ξ) = E
(∫ ∞

0
e−ρt[g(x, a, ξ)]dt/|x(0) = x, a(0) = a, ξ(0) = α

)
(13)

where ρ is the discount rate, and x0, a0, and α are the state variables’ initial values.
The admissible decision set Γ(ξ), which identifies the feasible solutions, relies on the

stochastic process ξ(.) and is determined by

Γ(.) =
{

(u, ω) ∈ R2
∣∣ 0 ≤ u(.) ≤ umax Ind{ξ(t) = 1}

ωmin ≤ ω(.) ≤ ωmax

}
(14)

Let us define the value function υ(·) as the minimum of the cost over Γ(.), given by

v(x, a, ξ) = min
u,ω∈Γ(.)

J(x, a, u, ξ) (15)

This value function satisfies specific properties, called optimality conditions. However,
the optimality conditions derived from stochastic dynamic programming are complex, as
they correspond to a set of coupled partial differential equations associated with the various
transitions described by the state transition diagram proposed in this paper. As an analytical
solution is impossible in the general case, a numerical method was used for resolving the
optimal conditions developed and for determining the optimal production policies.

4. Numerical Results

The value function v(x, a, ξ), given by Equation (15), meets a set of coupled par-
tial differential equations, called the Hamilton–Jacobi–Bellman (HJB) equations, from the
application of the dynamic programming approach, demonstrated in [13] without emis-
sions. Therefore, it is the viscosity solution to the Equation (16):

ρv(x, a, α) = min
u,ω∈Γ

{
J(x, a, u, α) +

∂v(.)
∂x

(u − d) +
∂v(.)

∂a
(ku) + ∑βϵA qαβv(x, φa(β), a, β)

}
(16)
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where αϵM and φa(ξ) describe the age discontinuity, defined as follows at the jump time τ
for the process ξ.

φa(ξ) =


a(τ−) i f ξ(τ+) = 1 and ξ(τ−) = 2
0 i f ξ(τ+) = 1 and ξ(τ−) = 3

a(τ−) otherwise
(17)

HJB Equation (16) is nearly impossible to solve analytically. Therefore, a numerical
method is presented to solve it (see Appendix A), addressing the significant challenge by
implementing Kushner’s method [35] within the production planning context, showing
its feasibility. The obtained discrete HJB equations can be solved using successive approx-
imation and policy improvement methods, as in [13]. The computational domain D is
defined by

D = Gh
x Gh

a

with Gh
x = {x : −5 ≤ x ≤ 120}; Gh

a = {a : 0 ≤ a ≤ 100}; hx = 0.5; ha = 1.
Table 2 summarizes the data required for the numerical example. The values consid-

ered are based on the literature concerning optimal control and inventory management.
The system data are chosen such that c+ < c−, cr < c0, etc., while ensuring compliance with
the feasibility condition stated in (8). Note that the appropriate values for the parameters of
the emission and machine degradation models (e.g., K0, K∞

1 , K2, k3, θ0, and λ), as described
by Equations (4) and (6), respectively, can be derived from historical data (see Figure 3).

Table 2. Data for the numerical example.

c+ c− cr c0 ce umax d L k K0
5 100 25 2500 40 2 1.5 250 0.8 0.005

K∞
1 K2 k3 θ0 λ ρ ω−1

min ω−1
max q−1

21 q−1
31

0.0075 5.10−6 0.02 2 0.6 0.01 106 15 6 12

The numerical results presented below allow for the characterization of the structure of
the obtained optimal control policies

(
u*(.), ω∗(.)

)
(see Figures 4–7). It is an improvement

of the one introduced in [27], which, as previously mentioned, was formulated based on
literature insights and common sense. Their proposed control parameters are also limited
to three fixed thresholds (see Section 6), overlooking the dynamic nature of the production
machine’s ageing and the cumulative volume of emissions, both of which are inherently
linked to the production process.
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In Figure 4, the production rate of the manufacturing system is illustrated as a function
of both the stock level x(.) and the age of the production machine a(.), directly influencing
emissions e(.) during the operational mode (see Equation (3)). To better understand the
interpretation of the production policy, we divide the plan into three zones: (1), (2), and (3),
as illustrated in Figure 5.

Due to the GHG emissions of the production system, we notice the critical production
threshold, which shows the number of products to hold in inventory to hedge against
machine breakdowns and emission penalties, exceeding the limit L. We define this criti-
cal production threshold by the age and emission-dependent threshold level, Z1(.) (see
Equations (18)–(20)).
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Thus, the optimal production policy of the machine is given by
i f e < V :

u(x, e, 1) =


umax i f x < Z1(.)
d i f x = Z1(.)
0 i f x > Z1(.)

(18)


i f V ≤ e < L :

u(x, e, 1) =


umax i f x < Z2(.)
d i f x = Z2(.)
0 i f x > Z2(.)

(19)


i f e ≥ L :

u(x, e, 1) =


umax i f x < Z3(.)
d i f x = Z3(.)
0 i f x > Z3(.)

(20)

The symbol V, called the voluntary emission limit, is highlighted in Figure 5 to
illustrate the emission level to switch from the critical threshold Z1(.) to the lower boundary
of the critical threshold Z2(.). L is the emission standard limit to switch from the upper
boundary of the critical threshold Z2(.) to the critical threshold Z3(.). Thus, the obtained
optimal production control policy follows distinct guidelines across three zones:

• The production must be halted (u(.) = 0) if the current inventory level exceeds the
critical threshold Zi;

• The production rate must be adjusted to the value of the demand rate when the current
inventory level matches the critical Zi;

• The production rate must be adjusted to its maximum value umax if the current inven-
tory is below the critical threshold Zi.

We observe that after the emission limit L, the threshold level Z(.) gradually decreases,
as the penalty for emissions exceeding L is relatively more costly than the shortage. It
therefore pays off for decision-makers to give priority to environmental requirements. The
repair activity of the machine after the occurrence of a failure, even if minimal, does not
prevent the deterioration of the machine. Therefore, after a certain age, it will be difficult to
satisfy the demand, or even more challenging. At the same time, we will observe a strong
growth in the emissions level e(t). The PM policy therefore defines when to apply the PM
action, considering the threshold level x(t) required to satisfy the demand d. Solving the
problem of optimizing the system under consideration will also involve determining the
threshold necessary to restore it in order to improve its reliability q12 and reset its emission
index θ.

The optimal PM policy ω(·), illustrated by Figure 6, indicates the PM rate, based on the
inventory level x(t), age a(t) of the machine, and emission level e(t), with the maximum
value ωmax if the machine is scheduled for a PM action, and the minimum value ωmin if the
action is not recommended.

The optimal PM policy is characterized by a bang-bang control structure described
as follows:

ω∗(x, a, 3) =
{

ωmax i f x(t) > Y(.)
ωmin, otherwise

(21)

where Y(·) is the inventory and age (emissions)-dependent function that gives the threshold
level at which it is necessary to switch the PM rate from ωmin to ωmax. To gain a clearer
understanding of the policy and in comparison with the work of Ben-Salem et al. [27], who
proposed two perfectly rectangular decision zones due to the fixed nature of their critical
thresholds, we have divided the plan into three zones: A, B, and C (see Figure 7).

Zone A: The machine is at a low age with minimal deterioration; the PM activity is not
recommended. The machine is still in its youthful period in this zone, capable of meeting
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demand with infrequent failures and reduced pollution. Hence, the decision variable, ω(·),
is set to the minimum value, ωmin.

Zone B: Here, the deterioration effect of the machine is more pronounced on its
reliability and emission index. Due to the ageing of the machine, the emission limit imposed
by the legislation will be exceeded prematurely. The cost of exceeding the emission limit
is very penalizing, so the policy that recommends the machine be rushed for PM is well
justified. This explains why the PM rate ω(·) is set to the maximum value.

Zone C: For a more precise illustration of the optimal PM policy, we present the
threshold levels of production and PM policies defined by Z(.),Y(.). This zone is the
intersection between the production and the PM threshold. We refer to the feasible zone as
the area where the manufacturing system operates. This zone defines the machine’s age,
the emission level, and the necessary threshold level, which indicates when the machine
should be sent to the PM. Thus, the new optimal PM policy can be written as follows:

ω∗(x, a, 3) =
{

ωmax i f (x(t), a(t)) ∈ Zone C
ωmin, otherwise

(22)

with C = A ∩ B being defined by the state variables (x(t), a(t)).
The next section will validate the proposed model and the obtained joint optimal

policy structures through a sensitivity analysis.

5. Sensitivity Analysis

To validate the obtained control policy structure, as expressed by Equations (18)–(22),
an extensive sensitivity analysis is conducted. This involves varying several selected system
and cost parameters and analyzing the behaviour of the critical production thresholds
Zi(i = 1, 2, 3), as well as the replacement zone characterized by threshold A. Three case
levels are considered, representing the low, medium, and high values of the selected
parameters, which include shortage, inventory, emission, and PM costs, in addition to the
adjustment parameter of the emission index. Notably, the symbols A1, A2, and A3 denote
the intersection thresholds at which replacement is first recommended for the low, medium,
and high case levels, respectively. The analyses were performed utilizing the numerical
example presented in the previous section as a base for the study (basic case).

5.1. Shortage Cost

Figure 8 illustrates the results for three distinct values of backlog cost c− = (50, 100, 150).
It shows that when c− increases, the control policy recommends increasing the production
thresholds Z to reduce the risk of shortages during periods of machine breakdowns. With
larger values of Z, the system results in more emissions, and the machine will deteriorate
faster, leading to an increase in the feasible zone C. As a result, the PM of the machine is
recommended earlier, namely a(A3) < a(A2) < a(A1).
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This result indicates that higher backlog costs incentivize maintaining higher inventory
levels to buffer against potential disruptions, consequently accelerating machine wear and
increasing emissions. The practical implication is that companies with high backlog costs
might prioritize frequent maintenance to avoid downtime, balancing operational efficiency
with environmental impact.

5.2. Inventory Cost

Figure 9 illustrates the results for three distinct values of inventory cost c+ = (4, 5, 6).
It shows that when c+ increases, the policy recommends decreasing the optimal production
thresholds Z to limit additional storage costs. The machine must then produce fewer
parts at maximum capacity, a situation that leads to less emissions and less deterioration.
Consequently, the PM of the machine is less recommended, namely a(A1) < a(A2) <
a(A3), and the feasible zone C is decreased.
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This result suggests that higher inventory costs drive a strategy focused on minimizing
storage, thus reducing production rates and emissions. For companies with significant
inventory costs, this approach supports sustainable manufacturing practices by lowering
emissions and extending machine life.

5.3. Emission Cost

Figure 10 illustrates the results for three distinct values of emission cost ce = (20, 40, 60).
It shows that when ce increase, PM is more recommended (i.e., a(A3) < a(A2) < a(A1)),
as the emission index is delineated as a function of the machine’s age (see Equation (3)). In
addition, to avoid the excessive costs associated with significant emissions surpassing the
emission limit L, the policy recommends reducing the value of V. This explains the increase
in the critical production thresholds Z1 and Z2 and the decrease in Z3. These circumstances
result in reduced emissions and an increased feasible zone C.

This result highlights the impact of emission costs on maintenance and production
strategies. As the emission penalties rise, companies are more likely to perform PM and
adjust production rates to stay within environmental limits, thereby supporting regulatory
compliance and sustainability goals.
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5.4. PM Cost

Figure 11 illustrates the results for three distinct values of PM cost co = (1500, 2500, 3500).
It shows that when co increases, PM is less recommended (i.e., a(A1) < a(A2) < a(A3)),
decreasing the feasible zone C, while favouring the strategy of prolonging the machine’s
operational lifespan as much as possible. With respect to the production, as co increases, the
thresholds Z increase to deal with a higher risk of breakdowns.
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This result indicates that higher maintenance costs lead to a preference for less frequent
maintenance, extending machine life and reducing operational disruptions. Companies
with significant PM costs might prioritize strategic production planning to mitigate break-
down risks.

5.5. Adjustment Parameter of Emission Index

Figure 12 illustrates the results for three distinct values of the emission index
λ = (0.4, 0.6, 0.8). It shows that when λ increases, the PM of the machine is more rec-
ommended (i.e., a(A3) < a(A2) < a(A1)), preventing the standard emissions limit from
being reached quickly. In addition, to avoid the excessive costs associated with significant
emissions surpassing the emission limit L, the policy recommends increasing the critical
production thresholds Z1 and Z2 and decreasing Z3. This results in an increased feasible
zone C.
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This result demonstrates how the emission index influences maintenance and pro-
duction decisions. Higher emission indices prompt more frequent maintenance to avoid
exceeding emission limits, aligning with environmental sustainability objectives.

In the next section, we conduct a comparative study to highlight the economic advan-
tage of our optimal control policy over the one adapted from the literature.

6. Comparative Study

This section aims to assess the economic advantage of the developed optimal control
policy, referred to as policy-I, compared to that used in the most closely related work
found in the literature, which we refer to as policy-II. Unlike our optimal policy-I, policy-II,
introduced by [27], was formulated relying on literature-based insights and common sense,
while overlooking the dynamic nature of production machine ageing, which continuously
influences emission rates and, consequently, the production process. Adapted to our specific
context for comparison purposes, it is characterized by two fixed production thresholds
ZBS

1 and ZBS
2 , a constant recommended age for PM ABS, and a voluntary emission limit

VBS for adjusting the production threshold. Policy-II, given by Equations (23)–(25), can
be viewed as a simplified version of our proposed one, with approximate and fewer
control parameters.

We proceed to conduct a comparative analysis between policy-I and policy-II by
varying the parameter of backlog cost c−, inventory cost c+, emission cost ce, and PM cost
co, as well as the adjustment parameter of the emission index λ. As baseline data for the
comparison, we take c+ = 2, c− = 150, ce = 40, θ0 = 2, q1 = 0.005, q2 = 0.0075, q21 = 1/6,
q31 = 1/12, umax = 2, d = 1.5, cr = 25, c0 = 2500, ωmin = 10−6, and ωmax = 1/15. We
consider the economic performance (the total incurred cost given by the value function) of
our policy-I compared to that of policy-II.

i f e ≤ VBS :

u(x, e) =


umax i f x < Z1

BS

d i f x = Z1
BS

0 i f x > Z1
BS

(23)


i f e > VBS :

u(x, e) =


umax i f x < Z2

BS

d i f x = Z2
BS

0 i f x > Z2
BS

(24)

ω(·) =
{

1 i f a ≥ ABS and x ≥ ZBS
2

0 otherwise
(25)
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The comparison results, depicted in Figure 13, are indicative of the economic per-
formance of policy-I and policy-II across varying system configurations. Each subfigure
represents a scenario with different system parameters, providing insights into the robust-
ness of the proposed policy. The obtained results show that the total cost of policy-I remains
lower than that of policy-II, confirming the economic advantage of our proposal. Indeed,
since production activity directly affects machine ageing, deterioration over time, and
emissions released into the environment, it is crucial to consider all these indicators in the
production planning and control process. Policy-I derives an advantage from its inherently
flexible structure, characterized by a greater number of control parameters, using more
thresholds to monitor inventory levels, emission volumes, and machine age. This enables
policy-I to be more responsive to system state changes over time, ensuring multiple levels
of decision-making. With a better control of inventory, emissions, and machine age, policy-I
achieves superior production pace and preventive maintenance control, thus reducing costs
related to inventory, shortages, emissions, and preventive maintenance more effectively
than policy-II, which relies on fewer control parameters.

The effects of varying specific system parameters are examined to provide a comprehen-
sive analysis of the comparative results presented in Figure 13. The following details highlight
the performance differences between policy-I and policy-II under various conditions:

• Backlog cost (c−) (see Figure 13a): As c− increases, policy-I demonstrates a consistently
lower total cost compared to policy-II. Its flexibility and responsiveness allow the
adjustment of the security inventory level according to the state of the system and
better planning of preventive interventions, thus reducing costly failure stoppages
and delays.

• Inventory cost (c+) (see Figure 13b): With rising c+, policy-I shows a cost advantage,
underscoring its efficiency in inventory management. Policy-I’s flexible thresholds
allow for better adjustment of stock levels, thereby minimizing unnecessary inventory
holding costs more effectively than policy-II.

• Emission cost (ce) (see Figure 13c): The increasing ce highlights the environmental
efficiency of policy-I. It proactively adjusts production to minimize emissions, ef-
fectively reducing emission-related costs more significantly than policy-II. Policy-I’s
flexibility in adjusting thresholds related to emissions ensures better compliance with
environmental regulations.

• PM cost (co) (see Figure 13d): The sensitivity to co illustrates that policy-I maintains
lower operational costs despite higher maintenance expenses. This is due to its
capacity for effectively monitoring machine age based on failure rates and the finished
products’ inventory level, thereby generating optimal costs, including preventive
maintenance costs.

• Adjustment of emission index (λ) (see Figure 13e): As λ increases, indicating a more
stringent regulatory environment, policy-I adapts by further optimizing the trade-
off between production throughput and emissions control. This flexibility allows
policy-I to make more efficient decisions regarding finished product inventory size
and preventive maintenance based on the evolution of emission volumes.

Our comparative study confirms the economic advantage of using the developed
optimal control policy-I to manage deteriorating manufacturing systems that produce GHG
emissions and operate within dynamic and stochastic environments. This positions policy-I
as a superior choice for sustainable manufacturing operations.
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7. Managerial Implementation

Ensuring the effective implementation of the developed control policy in business
operations relies on maintaining comprehensive information about the state of the manufac-
turing system. This is made possible through integrating Industry 4.0 technologies, which
facilitate the automatic and instantaneous collection of critical data. These technologies
are essential for monitoring fundamental system elements, such as operational status,
equipment age, stock levels, and GHG emission levels. The process is further supported
by a logical implementation diagram, shown in Figure 14, which aids in decision-making.
Our approach includes a detailed, step-by-step guide that leverages real-time data to
trigger alerts when critical thresholds are reached, thus optimizing production rates and
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preventive maintenance schedules in response to the dynamically changing conditions of
the manufacturing environment.
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Figure 14. Implementation scheme of the control policy.

Our proposal establishes two controls: the production rate for safety stock building
and the dispatch rate for PM activities. Given the operational status of the machine and
its anticipation of the next breakdown with a stock level (x), an emission level (e), and
an age (a), the production rate can be easily defined in three stages. The first one is to
build the safety stock to avoid the unavailability of finished products due to breakdowns
and repairs. The second one is to decide when to decrease this stock according to the
voluntary limit of emissions, and the last one is to indicate when to decrease the safety
stock again when the excess cost of emissions becomes very penalizing. These stages
are represented in intervals and delimited into zones, as follows: e < V, V ≤ e < L,
and e ≥ L (see Equations (18)–(20)). They are designated as zone 1, zone 2, and zone 3,
respectively (see Figure 5). The PM dispatch rate can be easily defined as the threshold age
at which the manufacturer initiates PM on the machine, along with the buffer stock level
necessary to mitigate non-availability during this activity. This level, denoted by the interval
a ≥ A*, is delineated by the feasibility zone C (see Figure 7). However, from a practical
perspective, implementing the critical thresholds in an industrial context is challenging. The
obtained optimal structure of control policies shows that these critical thresholds, defined
by Zi(.), i = {1, 2, 3} (see Equations (18)–(20)) and Y(.) (see Equation (21)), are dependent
on the ageing of the production machine and the cumulative volume of emissions, both
of which are inherently linked to the production process. This complexity raises pertinent
questions, such as determining the appropriate number of levels for the control parameter
Y(.) and for each of the parameters Zi, which are constrained within zones 1, 2, and
3. Consequently, we determined a target value for these thresholds to obtain the best
approximation of the theoretical optimal control policy. To do so, we proceeded by splitting
the zones with varying critical thresholds into equal parts. We subdivided zones 1 and
3 (e < V et e ≥ L, respectively) of our policy defined by the critical threshold Z1(·) and
Z3(·), respectively. Concerning zone 2 (V ≤ e < L), we took the minimum of the critical
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threshold Z2(·). The control policy to be implemented, presented in Figure 14, is a good
approximation of the optimal policy. Offline experiments were conducted to determine
the most effective approximation, resulting in a 0.75% cost difference compared to the
optimal solution. The results obtained from the numerical values, which are to be used
in decision-making to facilitate the implementation of our policy, are summarized as
follows: E1 = 35, E2 = 70, E3 = 105, V = 220, L = 250, E4 = 365, A∗ = 34, A1 = 50,
A2 = 66, A3 = 82, Z11 = 9, Z12 = 25, Z13 = 35, Z14 = 52, Z2 = 51.5, Z31 = 30.5,
Z32 = 28, Y1 = 42, Y2 = 26, Y3 = 10, and Y4 = 0. This proposal empowers managers to
dynamically adjust production rates to build safety stock and scale back as needed, meeting
environmental standards and operational demands. Setting predefined thresholds ensures
timely adjustments in production and PM, reduces machine wear, and avoids penalties for
exceeding emission limits.

8. Conclusions

In this paper, we jointly determined the optimal production and preventive main-
tenance policies of a manufacturing system subject to deterioration, with control over
environmentally harmful greenhouse gas (GHG) emissions. For the modelling and devel-
opment of the optimal policy, the optimality conditions of the HJB-type equations were
determined using a stochastic dynamic programming approach. Such equations were
subsequently solved numerically to characterize the optimal production policy structure
that minimizes the total cost. The results showed that this combined policy relies on both
the emission level and the system’s age and is defined as an environmental hedging point
policy (EHPP). A sensitivity analysis was conducted, showing the impact of varying several
parameters on the obtained policies in order to validate the proposed model. We continued
with a comparative study to position our proposal in relation to the literature. With the lack
of an existing optimal control policy, the obtained results position our work as a significant
contribution to the research axis of controlling manufacturing systems under the control of
GHG emissions. Finally, we outlined a managerial implementation of the proposed policy
to facilitate the manufacturing system control by decision-makers.

Possible extensions of this work could integrate other environmental aspects into
the model, such as reverse logistics for manufacturing/remanufacturing systems. They
could expand the model to include other pollutants, such as dust and slags, providing
a more comprehensive approach to managing environmental sustainability in industrial
operations. Furthermore, future research could better reflect the reality of deteriorating
manufacturing systems by integrating product quality as a performance metric while
leveraging predictive maintenance strategies to enhance operational optimization and
overall system performance [36–38].
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Abbreviations

Notations
x(·) inventory level of products (product);
Z(·) critical finished products stock level (product);
a(·) age of the machine according to its production rate (product);
e(·) emission level of the manufacturing system (emission volume);
θ(.) emission index (emission volume per product);
u(·) production rate of the manufacturing system (product per time unit);
umax maximal production rate of the manufacturing system (product per time unit);

d customer demand rate (product per time unit);
qαβ transition rate from mode α to mode β;
ξ(t) stochastic process;

ρ discount rate;
c+ inventory unit cost of finished products ($ per product per time unit);
c− backlog unit cost ($ per product per time unit);
cr instantaneous repair cost ($ per action);
c0 preventive maintenance cost ($ per action);
L standard emission limit (emission volume);
ce penalty unit cost for emissions exceeding L (USD per emission unit per time unit);
π vector of limiting probabilities;

g(·) instantaneous cost function (USD per time unit);
J(·) total cost function;
v(·) value function.

Appendix A

While HJB equations typically lead to solutions that are difficult to attain, Boukas and
Haurie [39] successfully approximated a solution using numerical methods inspired by the
approach of Kushner and Dupuis [35]. This approach allows solving the HJB equations
numerically by approximating v(x, a, ξ) by a function vh(x, a, ξ) and first-order partial
derivatives of the value function by finite differences involving discretization steps. It has
also been used in several works, such as [13]. For our problem, we discretized on the stock
of finished products x and the age of the machine a in order to obtain Nx and Na points as
in the following equation:

Nx =
xmax − xmin

hx
+ 1 ; Na =

amax − amin
ha

+ 1 (A1)

The partial derivative approximation of the finite difference value function v(x, a, ξ) is
given as follows:

∂v(x, a, ξ)

∂x
=

{ vh(x+hx ,a,ξ)−vh(x,a,ξ)
hx

i f
.
x ≥ 0

vh(x,a, ξ)−vh(x−hx ,a, ξ)
hx

i f
.
x < 0

(A2)

∂v(x, a, ξ)

∂a
=

vh(x, a + ha, ξ)− vh(x, a, ξ)

ha
(A3)

Substituting Equations (A2) and (A3) into Equation (16) and after simplification, we
obtain the numerical version of the Hamilton–Jacobi–Bellman (HJB) Equations (A4)–(A6).

vh(x, a, 1) = min
u,ω∈Γ



1
ρ+ |u−d|

hx
+ ku

ha
−q11

. c+x+ + c−x− + cemax{0, (e − L)}
+ |u−d|

hx
(vh(x + hx, a, 1)I+ + vh(x − hx, a, 1)I−)

+ ku
ha

vh(x, a + ha, 1) + q12vh(x, φa(2), 2) + ωvh(x, φa(3), 3)




(A4)
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vh(x, a, 2) =
1

ρ + d
hx

− q22

[
c+x+ + c−x− + cr +

d
hx

(vh(x − hx, a, 2)) + q21vh(x, φa(1), 1)
]

(A5)

vh(x, a, 3) =
1

ρ + d
hx

− q33

[
c+x+ + c−x− + coq31 +

d
hx

(vh(x − hx, a, 3)) + q31vh(x, φa(1), 1)
]

(A6)

with I+ = Ind{u − d ≥ 0}, I− = Ind{u − d < 0}, q11 = −q12 − ω, and q22 = −q21.
Equations (A4)–(A6) represent the dynamic programming formulation for a continuous-

time decision process characterized by discrete states persisting over an indefinite time horizon.
To numerically solve HJB Equations (A4)–(A6), certain boundary conditions, denoted by the
computational domain D, are needed.
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