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A B S T R A C T

Hydrological forecasts contain biases that need to be addressed for their effective use in operational decision- 
making in water resources management. Performing post-processing allows reducing the overall systematic 
bias while improving the distribution and accuracy of hydrological forecasts. In this study, a Quantile Mapping 
(QM) post-processing method was applied on weather forecasts following three temporal configurations 
(monthly, seasonal, and annual) of the quantile mapping scheme. The evaluation encompasses 20 catchments in 
southern Canada, employing a leave-one-out approach with the QM method on ECMWF ensemble weather 
forecasts spanning 2015–2020 inclusively. These processed forecasts are subsequently utilized as forcings for 
eight hydrological models, generating ensemble streamflow forecasts over a 6-year period with a lead time of 10 
days and a sub-daily timestep of 6 h. The performance of the QM method is mainly assessed using the Continuous 
Ranked Probability Score (CRPS) metric, in complement with a forecast reliability score (ABDU) and a forecast 
sharpness metric (NMIQR). Significant improvements are discerned in precipitation forecasts upon the appli
cation of QM. Notably, these improvements are translated into enhanced hydrological forecasts for over half of 
the catchments studied (55 %). Surprisingly, no discernible differences in performance are observed among the 
three QM configurations in most catchments. Interestingly, there are watersheds where the implementation of 
QM exhibit either poorer or no change in performance and sharpness compared to raw forecasts.

1. Introduction

Hydrological forecasts play a crucial role in the operational water 
resources sector. For hydropower and water resource management, 
skillful and reliable streamflow forecasts constitute a critical input for 
the operation and management of infrastructures (Pagano et al., 2014). 
The hydrological cycle of many regions worldwide, including Canada, is 
dominated by snow accumulation and ablation processes. Most floods in 
these regions result from a combination of factors, including saturated or 
frozen soils, heavy rainfall, and rapid melting of snow within a 24-hour 
period, facilitated by high winds and strong thermal and moisture 
advection (Graybeal and Leathers, 2006; Pomeroy et al., 2016). Also 
flooding events often result from intense sub-daily rainfall (Dale, 2021), 
with convective rainfall becoming more frequent and intense due to 
climate change (Berg and Haerter, 2013). In a study by Guerreiro et al. 
(2018) it was found that extreme sub-daily precipitation exhibited a 
stronger response to climate warming compared to extreme daily 

precipitation. Therefore, it is essential to conduct sub-daily hydrological 
forecasts as they play a crucial role in operational forecasting, particu
larly in predicting floods.

Ensemble forecasting systems based on numerical weather predic
tion (NWP)-forced hydrological models are one suitable approach to 
simulate and predict river flow (Troin et al., 2021). NWP models use 
estimates and assumptions to predict future weather. However, they 
have some limitations related their structure and parametrization. Such 
limitations in NWP models can result in less accurate weather forecasts 
(Rayner et al., 2005; Wu et al., 2011; Robertson et al., 2013; Tao et al., 
2014) which can propagate errors into the forecasting system and affect 
the accuracy of streamflow forecasts (Leutbecher & Palmer, 2008). 
Uncertainty in ensemble streamflow forecasting systems can be reduced 
by post-processing. Statistical ensemble post-processing methods are 
used to compensate for errors in model structure, and to correct sys
tematic biases that may be present in the raw ensemble forecasts 
(Madadgar et al., 2014; Hopson et al., 2018). Many studies have shown 

* Corresponding author.
E-mail address: freya-saima.aguilar-andrade.1@ens.etsmtl.ca (F.S. Aguilar Andrade). 

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

https://doi.org/10.1016/j.jhydrol.2024.131861
Received 8 September 2023; Received in revised form 4 July 2024; Accepted 11 August 2024  

mailto:freya-saima.aguilar-andrade.1@ens.etsmtl.ca
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2024.131861
https://doi.org/10.1016/j.jhydrol.2024.131861
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2024.131861&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Hydrology 642 (2024) 131861

2

that statistical post-processing is able to improve weather forecast ac
curacy. Weather post-processing methods are applied to adjust the mean 
and variance of the forecasts to better match the distribution of the 
observed data (Verkade et al., 2013). As the hydrological response is 
sensitive to climate variability, an accurate post-processing is needed to 
represent and preserve the space–time covariance of the weather pat
terns over a given catchment (Hopson et al., 2018).

Quantile mapping (QM) is the most common approach for post- 
processing weather forecasts (e.g., Fang et al., 2015; Ghimire et al., 
2019; Niranjan et al., 2022; Verkade et al., 2013). It involves adjusting 
the raw weather forecast to match the distribution of the observations. 
QM improves the accuracy of the forecast by making it more consistent 
to historical observations. It is among the more flexible bias correction 
methods that attempt to adjust the variance of the model distribution to 
better match the observed variance (Maraun, 2016). An example is done 
by Baker et al. (2019), where QM successfully removes the systematic 
bias in the CFSv2 reforecasts. In another study, Themeßl et al. (2011) 
compared various downscaling and error correction methods and 
showed that QM method performs best for daily precipitation. Wilcke 
et al. (2013) evaluated the QM post-processing technique for bias 
correction in four weather variables: temperature, precipitation, relative 
humidity, and wind speed. They showed that annual and monthly biases 
are reduced to close to zero by QM for all variables, with the daily 
precipitation as the variable that was strongly improved. Precipitation is 
largely considered as the input data with the largest source of uncer
tainty (Biemans, et al., 2009; McMillan et al., 2011; McMillan et al., 
2012).

Errors in initial model conditions at the time of forecast can lead to 
biases between the observed and simulated streamflow, rendering 
forecasts unrealistic for the first lead time. These errors can be reduced 
by data assimilation methods which aim at updating the model state 
variables or parameters through assimilation of observations. Data 
assimilation is used in hydrological modelling and forecasting with a 
variety of methods and assimilated data types, such as streamflow, snow 
water equivalent, and soil moisture (Liu et al., 2012; Zhang, 2015). 
Bourgin et al. (2014) investigated the role of data assimilation and post- 
processing of streamflow to enhance the skill of a hydrological ensemble 
forecasting system. They found that data assimilation significantly 
improved the quality of the ensemble mean, while post-processing 
markedly enhanced the reliability of streamflow forecasts. Using both 
methods together led to more reliable and sharp streamflow forecasts, 
although the impact on forecast reliability is stronger from post- 
processing. However, the study was limited by the use of a single data 
assimilation technique, one post-processing method, and one lumped 
conceptual model to generate streamflow forecasts. The authors 
recommend comparing different post-processing methods and alterna
tive hydrological models across multiple catchments to reach more 
general conclusions. Following this recommendation, our intention is to 
utilize an ensemble of hydrological models and investigate the uncer
tainty arising specifically from forecasted precipitation.

The objective of this study is to improve the accuracy and reliability 
of short-term (hourly and sub-daily) streamflow forecasts from small to 
medium-sized catchments in Canada. For this, the Quantile Mapping 
post-processing method is applied to the European Centre for Medium- 
Range Weather Forecasts (ECMWF). We assess this technique in using 
multi-year hindcasts and eight different hydrological models with data 
assimilation in a large sample of catchments. Through this study, at
tempts are made to understand the limitations of post-processed pre
cipitation based on catchment attributes and hydrological model 
structure. The next section describes the study area and methods 
implemented to investigate this issue. Section 3 presents the obtained 
results, which are discussed in Section 4. Concluding remarks are pro
vided in Section 5.

2. Materials and methods

2.1. Study area

Twenty catchments were selected with different surface areas from 
30 km2 to up to 35 000 km2 (Table 1). This selection was based on the 
availability of observed streamflow data over at least a period of 10 to 
15 years at a 6-hourly time-step to meet the objective of this study. More 
catchments were initially considered in this study, however, since 
streamflow data at the sub daily scale is not readily available in Canada 
and must be requested manually (except in the province of Quebec), the 
datasets that were made available were limited in spatial distribution. 
Among other things, most hydrometric gauges with data at the hourly or 
sub-daily scales were regulated rivers, which made modelling and 
forecasting problematic. The final selected catchments are mainly 
located in eastern Canada (Fig. 1). A comprehensive description of the 
catchments’ characteristics can be found in Table 1.

2.2. Hydrometeorological observation and weather forecast data

The meteorological input data necessary for the eight hydrological 
models include the minimum and maximum air temperatures, as well as 
the total precipitation, captured at 6-hour intervals. The historical data 
come from the ERA5 reanalysis database (Hersbach et al., 2020). ERA5 
is the fifth generation of global atmospheric reanalysis published by the 
European Centre for Medium-Range Weather Forecasts (ECMWF) that 
employs the assimilation of four-dimensional variable data (4DVar) 
from satellite and in-situ observations (Copernicus Products, 2018). The 
ERA5 dataset offers a spatial resolution of 0.25 degrees (~31 km at the 
study site) covering the entire globe, providing hourly data for a 
comprehensive range of variables encompassing oceanic, terrestrial, and 
atmospheric domains. It has been shown to be a reliable proxy for 
observed weather data, especially in regions with low weather station 
density such as in Canada (Tarek et al., 2020). This reanalysis data 
covered the 1981–2022 period, inclusively.

In this study, the decision to utilize ERA5 reanalysis data instead of 
observations for precipitation forecasts stems from several consider
ations. Firstly, the inherent limitations of using observations, including 
missing data at sub-daily time scales and spatial–temporal heterogene
ity, pose significant challenges for post-processing. Moreover, many 
catchments lack sufficient high-quality observational records, further 
complicating the analysis. By leveraging ERA5 data, these issues are 
circumvented, allowing for a more focused approach to post-processing. 
Furthermore, although ERA5 reanalysis may contain biases inherent to 
its assimilation and modelling processes, using it as the reference for 
comparing precipitation forecasts minimizes the impact of these biases 
on post-processing.

Ensemble weather forecasting data was provided by the ECMWF’s 
operational Integrated Forecasting System (IFS) which provided mini
mum and maximum air temperature as well as precipitation forecasts on 
a 6-hourly timestep over the entire domain. The ensemble forecasts are 
composed of 50 members at a lead-time of 10 days with a horizontal 
resolution of around 18 km. These forecasts were available for 
2016–2020, inclusively. It is important to note that also ERA5 reanalysis 
data is derived directly from the ECMWF integrated forecasting system 
cycle 41r2, which has been operational since 2016. This integration 
ensures that the biases between forecasts and reference observations are 
not affected by the forecasting system initialization.

A minimum of a 10 to 15-year period of streamflow observations is 
required to perform a reliable model calibration (Yapo et al., 1996). The 
period of 10 to 15 years needs to include the forecasting 2015–2020 
period to train the QM post-processing methods and to test it on an in
dependent period. The observed daily hydrometric data was obtained 
from the Water Survey of Canada website and covers the period 
1997–2022. To align with the project requirements of a 6-hour time- 
step, a request was made to Environment and Climate Change Canada 
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to acquire the data in their native 5-minute time-steps, after which the 
data were processed at the 6-hour intervals.

While acknowledging potential biases between precipitation and 
streamflow datasets, our study adopts a comprehensive approach to 
address these challenges. This includes detailed hydrological model 
calibration and streamflow post-processing, which will be elaborated on 
in the subsequent sections.

2.3. Hydrological models

This study was conducted with eight lumped hydrological models, 
CEQUEAU (Girard et al., 1972), a sub-daily version of GR4J (we coined 
GR5dt) (Perrin et al., 2003; Mathevet, 2005), HBV (Bergström & Fors
man, 1973), HYMOD (Wagener et al., 2001), IHACRES (Jakeman et al., 
1990), MOHYSE (Fortin & Turcotte, 2007), SIMHYD (Chiew et al., 
2002), and TOPMODEL (Beven et al., 1984), which are briefly described 
below and summarized in Table 2. All of these hydrological models are 
widely accessible; however, certain modifications have been imple
mented in their configurations to enable their utilization within a 
consistent lumped conceptual framework. All hydrological models are 
applied in the exact same framework: 6-hour time-step computations 
with the same input data: precipitation and mean temperature. 
Furthermore, all models share the same snow accumulation and melt 
model and the same potential evapotranspiration (PET) model. In this 
case, the snow module used is the CemaNeige module (Valéry, 2010) 
and the PET formulation is that of Oudin et al. (2005a, 2005b). Cema
Neige is a degree-day snow module which simulates the snowpack dy
namics by using two parameters: the snow cover condition coefficient 
and the amount of snow melting related to the air temperature (mm/oC). 
CemaNeige was adapted to Canada by simplifying it to a single altitude 
band and modified to run at the sub-daily time step. Oudin’s PET 
formulation is expressed by equation (1): 

PET = 1000
Re

λρ
Tm + 5

100
(1) 

In this equation, Tm is the mean daily air temperature (◦C); λ is the slope 
of the vapor pressure curve (kPa/◦C), calculated using Tm; ρ is the 
density of water (kg/L) and Re is the extraterrestrial solar radiation in 
MJ/(m2 ⋅ day), which is determined based on the date and latitude. The 

PET model is executed at the sub-daily time step. This finer temporal 
resolution is employed to capture specific hydrological processes more 
accurately, notably snowmelt and evapotranspiration, both of which are 
significantly influenced by the diurnal cycle. An overview of each model 
is given below, and a summary is presented in Table 2.

CEQUEAU is a semi-distributed hydrological model that divides the 
catchment into predetermined grid cells of equal area. It consists of two 
components: a rainfall-runoff conceptual module that simulates the 
hydrological states of the catchment based on precipitation, air tem
perature, and physiographic inputs, and a transfer function that routes 
water downstream to simulate discharge. The model incorporates 
various reservoirs representing snowpack, evapotranspiration, unsatu
rated and saturated zone water, and storage in lakes and marshes. The 
model enables the vertical distribution of water and updates the state of 
these reservoirs, allowing for the simulation of the hydrological pro
cesses in the catchment. Some changes have been made in the CEQUEAU 
structure in order to use it in a homogeneous lumped conceptual 
framework.

GR5dt is a rainfall-streamflow model adapted for multiple time steps 
(hourly to daily time steps) (Ficchi, 2017; Ficchi et al., 2019). The model 
is divided into two stores: a production store and a routing store. GR5dt 
is based on the combination of the lumped GR4J and GR4H models 
(Génie Rural à 4 paramètres Journalier; Perrin et al. 2003, Mathevet 
2005) with five free parameters to calibrate: GR5dt uses the four GR4J 
parameters and the GR4H parameter that describes the time base in 
hours at the unit hydrograph.

HBV (Hydrologiska Byrans Vattenavdelning) is a hydrological model 
that simulates streamflow using rainfall, temperature, and estimated 
evaporation as input data. It includes modules for soil water, evapora
tion, and groundwater, which is described by three linear reservoirs. 
Channel routing is done using a triangular weighting function.

HYMOD (HYdrological MODel; Wagener et al., 2001) is a rainfall 
excess model based on a nonlinear water storage capacity distribution 
function. The water stemming from rainfall and snowmelt is first infil
trated to the unsaturated zone, where evaporation is determined based 
on soil moisture. Streamflow is generated based on the spatial distri
bution of the catchment’s maximum storage capacities. The streamflow 
is divided into “quick” (surface) and “slow” (baseflow) flows, which 
eventually determine the final streamflow.

IHACRES (Identification of unit Hydrographs And Component flows 

Table 1 
Main characteristics of the 20 catchments used in this study. The ordering of the catchments follows their location in the provinces of Canada from west to east.

ID Station Name/ Catchment Province* Drainage area 
(km2)

Lat. Lon. Average total annual prec. 
(mm)

Average annual runoff 
(mm)

1 07JD002 Wabasca River At Highway No. 88 AB 35,800 57.87 − 115.39 512 65
2 02GA010 Nith River Near Canning ON 1030 43.19 − 80.46 1003 388
3 40,406 Petite Nation QC 1331 46.13 − 75.13 1074 577
4 40,624 Du Lièvre QC 4560 47.25 − 74.86 1064 673
5 40,204 Rouge QC 5479 46.40 − 74.67 1121 719
6 40,110 Du Nord QC 1163 46.01 − 74.22 1165 796
7 52,219 L’assomption QC 1286 46.35 − 73.79 1058 712
8 24,014 Bécancour QC 2163 46.19 − 71.56 1254 801
9 23,401 Beaurivage QC 708 46.47 − 71.29 1239 721
10 23,402 Chaudière QC 5820 45.98 − 70.74 1177 735
11 23,303 Etchemin QC 1152 46.53 − 70.68 1275 862
12 23,106 Du Sud QC 821 46.74 − 70.51 1235 896
13 23,422 Famine QC 696 46.26 − 70.45 1147 798
14 01EF001 Lahave River At West Northfield NS 1250 44.45 − 64.59 1236 972
15 01CA003 Carruthers Brook Near St. Anthony PE 46.8 46.74 − 64.19 1161 754
16 01EO001 St. Marys River At Stillwater NS 1350 45.17 − 61.98 1262 1104
17 03OE011 Pinus River NL 780 53.15 − 61.56 1000 771
18 02XA003 Little Mecatina River Above Lac 

Fourmont
NL 4540 52.23 − 61.32 1040 725

19 03QC002 Alexis River Near Port Hope Simpson NL 2310 52.65 − 56.87 1055 819
20 02YA002 Bartletts River Near St. Anthony NL 33.6 51.45 − 55.64 1170 712

*Provinces internationally approved alpha code: AB (Alberta), ON (Ontario), QC (Quebec), NS (Nova Scotia), PE (Prince Edward Island) and NL (Newfoundland and 
Labrador). All hydrometric stations can be found in the site of Environment and Climate Change Canada and the Direction de l’Expertise Hydrique of the province of 
Quebec.
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from Rainfall, Evapotranspiration and Streamflow) is a conceptual 
rainfall-streamflow model. The model characterizes catchment-scale 
hydrological behaviour with six parameters. The rainfall-streamflow 
processes are represented by two modules: a non-linear loss module 

and a linear routing module.
MOHYSE (Modèle Hydrologique Simplifié à l’Extrême) is a lumped 

and conceptual model that operates at the daily and sub-daily time step 
(Fortin and Turcotte, 2007). MOHYSE comprises two compartments: a 

Fig. 1. Location of the 20 catchments used in this study, including their elevation profiles. Numbers alongside each catchment represent their number in Table 1
for reference.
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vadose zone production store and an aquifer routing store and encom
passes a set of 10 calibration parameters. The input climate variables are 
precipitation and mean temperature. In MOHYSE, precipitation and 
melt water are added before computing the evaporation, infiltration and 
routing towards the stream A unit hydrograph is employed to aggregate 
and rout the distinct water fluxes generated through surface, vadose 
zone, and aquifer interactions to the outlet.

SIMHYD is a conceptual rainfall-streamflow model that estimates 
daily and sub-daily streamflow from precipitation and areal potential 
evapotranspiration data. The model accounts for several key processes 
including infiltration, evapotranspiration, soil moisture, and ground
water for generating streamflow (Chiew et al., 2002). It uses a one-layer 
evaporation model and considers both infiltration-excess and saturation- 
excess streamflows by using an interception store and a soil moisture 
store.

TOPMODEL (TOPographic MODEL) is a semi-distributed conceptual 
model (Beven et al., 1984). Total streamflow is calculated as the sum of 
two components: saturation excess overland flow from variable 
contributing areas, and subsurface flow from the saturated zone of the 
soil. The model is based on three assumptions: (1) a sequence of steady 
state representations can approximate the behavior of the saturated 
zone, (2) the slope of the ground surface is a reasonable estimate of the 
hydraulic gradient, and (3) the transmissivity of the downslope area can 
be expressed as an exponential function of the storage deficit or water 
table depth. These assumptions result in a simple relationship between 
the catchment storage (or storage deficit) and the local water table level 
(or drainage-caused storage deficit).

The hydrological models were chosen because of their successful 
implementation and efficient performance in Canadian catchments 
(Dion et al., 2021).

2.4. Model calibration

The eight hydrological models were calibrated with the Covariance 
Matrix Adaptation Evolution Strategy (CMAES) optimization algorithm 
with 5,000 evaluations per model (Hansen and Ostermeier, 1997; 2001). 
CMAES is an effective algorithm for optimizing hydrological model 
parameters (Arsenault et al., 2014). The calibration of the hydrological 
models was performed on the 1997–2022 period, corresponding to the 
intersection of available meteorological and hydrometric data. Model 
calibration was performed using the using the Nash-Sutcliffe Efficiency 
(NSE; Nash and Sutcliffe, 1970) as the objective function. The NSE 
ranges betwen − ∞ and 1 with NSE=1 being the optimal value. It is 
expressed as follows: 

NSE = 1 −

[ ∑n
t=1

(
Qobs

t − Qsim
t
)2

∑n
t=1

(
Qobs

t − Qmean
)2

]

(2) 

where Qt
obs and Qt

sim are the observed and simulated streamflow at the 6- 
hour time-step, respectively; Qmean is the mean of observed streamflows; 

and n is the number of observed or simulated streamflow values. The 
evaluation criteria are interpreted according to Moriasi et al. (2015) for 
a daily, monthly or annual hydrological analysis (flow), i.e. 0.50 <
NSE<=0.70 is satisfactory, 0.70 < NSE<=0.80 is considered good and 
anything above is considered very good. Values below 0.50 are 
considered unsatisfactory.

No validation was performed, and all available data was used for 
calibration following best practices to maximize parameter information 
content as recommended by Arsenault et al. (2018), Shen et al. (2022), 
and Mai (2023). Instead, performance in forecasting is used to assess the 
calibrated model performance.

2.5. Data assimilation of initial hydrological model states

Data assimilation was performed with the Ensemble Kalman Filter 
(EnKF) which uses perturbed meteorological forcings to generate a set of 
probable states that are updated based on the model similarity to 
observed flows for nonlinear filtering issues (Evensen, 2003). The EnKF 
is extensively used in hydrological sciences and forecasting applications 
(Piazzi et al., 2021; Bergeron et al., 2021). EnKF generates an ensemble 
of probable initial states, allowing to quantify their uncertainty. The 
adjustment in initial model states is performed so that the distribution of 
state values matches the actual observations. Forecasts are then per
formed from each initial state, including the initial condition uncer
tainty in the forecasting process, which is another key advantage of 
EnKF. In this study, three hydrologic states were modified (i.e., water 
content in groundwater storage, vadose zone storage and snowpack 
water equivalent) to give maximum flexibility to the models. Further
more, instead of using the full ensemble of probable initial states as 
generated by the EnKF, the mean ensemble is considered as the best 
estimator of the actual initial state. This was done to avoid combining 
the 50 weather forecasts to the 25 members of initial states and thus 
generating ensemble of 1250 forecast members, as was done in Dion 
et al. (2021). More details on EnKF can be found in Evensen (2003).

The use of both data assimilation and post-processing of precipita
tion in hydrological forecasting is highly recommended since data 
assimilation has a strong impact on forecast accuracy while post- 
processing affects forecast reliability (Bourgin et al., 2014; Dion et al., 
2021).

2.6. Post-processing

In this study, weather forecasts, and specifically precipitation fore
casts, were post-processed by using the QM method (Eq. (3). QM em
ploys a quantile-based transformation of distributions: a quantile of the 
present day simulated distribution is replaced by the same quantile of 
the present-day observed distribution (Maraun, 2016). 

xf
i,corr = qDp

y

(
pDp

x

(
xf

i,raw

))
(3) 

Where the given time series is denoted as x i, and future simulations 
and derived measures are indicated with a superscript f. The quantile for 
a probability α of a distribution D is represented as qD(α) and is defined 
as the value which is exceeded with a probability 1 − α when sampling 
from the distribution. The probabilities corresponding to a given 
quantile qD(α) (i.e. the cumulative distribution function CDF) are 
written as pD(q) = α.

For instance, considering a watershed with 1817 days of calibration 
data (5 years) and 365 days of validation data, each day includes a 10- 
day precipitation forecast with a 6-hour time step, comprising 50 
ensemble members. Consequently, each day’s data can be represented as 
a [40x50] matrix. For each ensemble of members at each time-step for 
the entire calibration period, (which is a [1817x50] matrix reshaped to a 
vector of length 90850), 100 quantiles are calculated, for both observed 
and forecasted precipitation. This results in two [100x1] matrices: one 
for observed quantiles (qDobs) and one for simulated quantiles (qDcal), for 

Table 2 
Main characteristics of the eight lumped hydrological models used in this study.

Name Number of calibrated 
parameters

Number of 
storages

Derived from

CEQUEAU 9 2 Girard et al. (1972)
GR5dt 5 2 Perrin et al. (2003) & 

Mathevet (2005)
HBV 9 3 Bergström and Forsman 

(1973)
HYMOD 6 5 Wagener et al. (2001)
IHACRES 7 3 Jakeman et al. (1990)
MOHYSE 10 2 Fortin and Turcotte 

(2007)
SIMHYD 8 3 Chiew et al. (2002)
TOPMODEL 7 3 Beven et al. (1984)
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each of the 40 lead-times. The correction factor (quantilecorr) for each 
quantile is then determined using the following equation: 

quantilecorr =
qDobs

qDcal 

This process is repeated for all 40 time-steps, resulting in a [100x40] 
matrix of correction factors. Thus, there are 4000 correction factors. 
Given the probabilistic nature of precipitation forecasts—comprising 50 
members—the correction factors are systematically applied across the 
ensemble. The member-quantile assignation is performed as: (i) if the 
member’s precipitation is greater than the last quantile, it is assigned to 
the 100th quantile, (ii) if the member’s precipitation matches an existing 
quantile, it is assigned accordingly and (iii) if the member’s precipita
tion does not exactly match a quantile, it is assigned to the next higher 
quantile. This collective correction mechanism preserves the inherent 
variability within the forecast ensemble, contributing to a more realistic 
representation of precipitation scenarios.

The quantile mapping correction is performed by multiplying the 
member’s raw precipitation value by the corresponding correction 
factor: 

x valcorr = xval × quantilecorr 

where x valcorr is the corrected forecast member value, xval is the raw 
forecast member in the validation period, and quantilecorr is the quantile 
function probability of the observed distribution and simulated cali
bration period.

The QM methodology employed for the postprocessing of precipi
tation forecasts, involves a quantile-wise correction factor to the fore
casted precipitation distribution, aligning it with the actual observed 
distribution. The correction factor is calculated independently for each 
quantile forecast, thereby ensuring an accurate adjustment of the entire 
forecast distribution.

Several studies applying quantile-based post-processing methods 
(including QM) have observed a general improvement in precipitation 
forecasts, particularly in correcting extreme rainfall events (Shastri 
et al., 2017; Tani and Gobiet, 2019; Niranjan Kumar et al., 2022). 
Although there is a wide variety of methods that can be used to correct 
bias in meteorological and hydrological forecasts (Li et al., 2017; Troin 
et al., 2021), in this study, we decided to use the Quantile Mapping (QM) 
correction method. This decision was based on its frequent mention in 
the scientific community as the most popular technique for precipitation 
forecast bias correction (e.g., Katiraie-Boroujerdy et al., 2020; Li et al., 
2023; Maurer and Pierce, 2014; Miao et al., 2016; Trinh-Tuan et al., 
2019; etc.).

To extend the evaluation period beyond the available 2015–2020 
precipitation forecast data, a leave-one-out approach is adopted. This 
technique involves resampling one year for evaluation purposes and five 
years for training, thus creating an augmented dataset that spans a more 
comprehensive six-year timeframe. This prolonged evaluation period 
enhances the robustness of the methodology, allowing for a nuanced 
examination of its efficacy over an extended temporal domain.

The QM method was used in three different temporal configurations 
which are briefly described below:

1. Monthly QM: this configuration involves applying the QM method to 
precipitation forecasts pooled by month. The monthly distribution of 
the raw precipitation forecasts for each lead time is adjusted to 
match the monthly distribution of the observed precipitation.

2. Seasonal QM: this configuration involves applying the QM method to 
precipitation forecasts pooled by season. The seasonal distribution of 
raw precipitation forecasts for each lead time is adjusted to match 
the seasonal distribution of the observed precipitation (winter: DJF, 
spring: MAM, summer: JJA, and fall: SON).

3. Annual QM: this configuration involves applying the QM method to 
all precipitation forecasts at once. The annual distribution of the raw 

precipitation forecasts for each lead time is adjusted to match the 
annual distribution of the observed precipitation.

By applying the QM for different temporal configurations (i.e., 
monthly, seasonal, and annual) it is possible to evaluate the performance 
of the post-processing method at different temporal scales and to 
determine which configuration is the most appropriate for hydrological 
forecasting. Indeed, pooling forecasted and observed precipitation data 
on short periods (e.g., by months or seasons) means that their distri
butions will be more consistent with the underlying hydrological pro
cesses. However, pooling data in more (but smaller) pools also has the 
side effect of reducing the number of training points for the QM appli
cation, impacting thus the quality of the distributions. Therefore, by 
using multiple pooling configurations, we investigate how the temporal 
scale of the pooling data affects the quality of the forecasted 
precipitation.

Temperatures were not corrected as this study attempts to isolate the 
effects of post-processing precipitation, and correcting temperatures 
would then make the effects intertwined and difficult to evaluate 
separately. It was also shown previously that post-processing precipi
tation has a greater impact than post-processing temperatures (Verkade 
et al., 2013). The second case (forecasting with post-processed precipi
tation) was repeated three times: once for the Monthly QM, once for the 
Seasonal QM and once for the Annual QM.

2.7. Hydrological forecasting

The eight hydrological models were run for each day of the years 
2015–2020 by using the ERA5 reanalysis data as the observed weather. 
For each day, optimal states of the eight hydrological models were 
identified, including the CemaNeige model states. The implementation 
of the EnKF over the period 2015–2020 leads to a distribution of 25 
possible initial model states. Instead of preserving all 25 initial states, 
the mean value of the initial states was selected as the best estimate of 
actual initial states. This was done to remove the effects of the uncer
tainty related to the data assimilation and isolate the impacts of the 
ensemble weather forecasts on the hydrological forecast distribution. 
This representative state becomes the basis for applying post-processing 
techniques consistently, allowing for a more controlled and consistent 
analysis of the impact of post-processing on precipitation. The daily 
ECMWF weather forecasts were then used as inputs into the hydrological 
models, initializing the models with the assimilated initial states. The 
forecasted data included two scenarios: (1) the raw precipitation and 
temperature forecasts (i.e., as a control prior to the QM post-processing) 
and (2) the post-processed precipitation forecasts combined with the 
raw temperature forecasts. Using this methodology, a 50-member 
ensemble of streamflow forecasts is generated for a period of 10 days 
at the 6-hour time-step.

2.8. Performance evaluation

As suggested in multiple studies (e.g. McInerney et al. 2022), mul
tiple metrics should be used to evaluate ensemble forecast performance. 
The Continuous Ranked Probability Score (CRPS) is one of the most 
well-known probabilistic scoring metrics (Matheson and Winkler, 1976) 
widely used in weather and hydrologic sciences. CRPS is used to assess 
the overall accuracy of competing forecasting systems by evaluating the 
distance between two distributions as: 

CRPS =

∫ ∞

− ∞
[P(x) − P0(x) ]2dx (4) 

P0(x) =
{

0, x < x0
1, x ≥ x0

(5) 

P(x) = pi ≡
i
K, for xi < x < xi+1 (6)

where {x1, ⋯, xK} are the ordered members of the ensemble of size K 
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and x0 is the observation.
In this study, we utilize the Talagrand diagram (rank histogram) as a 

valuable tool to visually depict the dispersion between forecasted runoff 
and observed data (Hamill, 2001). The Talagrand diagram helps 
assessing the dispersion of simulated runoff. A U-shaped diagram in
dicates under-dispersed simulated runoff, suggesting insufficient width 
to encompass observations. Consequently, observations tend to cluster 
at extreme percentiles, either the first or last, resulting in the charac
teristic U-shape. Conversely, a ∩ -shaped diagram indicates over- 
dispersion, implying excessive width. The presence of an “L” shape in 
the diagram signifies a systematic bias. These shapes, positioned mostly 
in the leftmost or rightmost bins of the histogram, occur when the 
forecast fails to adequately represent observations. The optimal diagram 
shape is flat, indicating a uniform distribution of observations within the 
forecasts. This configuration ensures an accurate representation of 
variability without introducing biases (Hamill, 2001).

The Average Bin Distance to Uniformity (ABDU) score was also 
added to quantitatively measure the deviation from uniformity, which is 
used in Arsenault et al. (2016) as the following Eq. (7): 

ABDU =
1
N

∑N

k=1

⃒
⃒
⃒
⃒sk −

M
N

⃒
⃒
⃒
⃒ (7) 

where sk is the number of occurrences in bin k, M is the number of y 
values, and N is the number of histogram bins. The term M/N is the 
expected value if the histogram is uniform and its value is fixed at 218.2 
in this study (2182 data points in 10 bins). A larger ABDU reflects a 
larger deviation from uniformity. The ABDU is an empirical measure
ment to quantify the evaluation of the rank histogram and does not 
follow any particular distribution.

The last metric that was incorporated is the Normalized Mean 
Interquartile Range (NMIQR) index, defined in Bourgin et al. (2014). 
This metric helps to evaluate the sharpness of probabilistic forecasts. 
The interquartile range, defined as the range between the upper quartile 
(75th percentile) and the lower quartile (25th percentile) of a distribu
tion, is a robust measure of the spread of a distribution. The Mean 
Interquartile Range (MIQR) is computed as: 

Fig. 2. Methodological overview, featuring visual representations of the QM and Leave-one-out techniques.
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MIQR =
1
N

∑N

k=1

(
Q75

fct(k) − Q25
fct(k)

)

where (Q25
fct(k),Q

75
fct(k)) is the kth of N pairs of quartiles of the fore

casts. The MIQR is then divided by the mean runoff to obtain a non- 
dimensional score, becoming NMIQR. The closer the NMIQR index is 
to 0, the sharper the forecast. This metric was used to evaluate the 
sharpness performance of the forecasts and to understand the varying 
impact of the post-processing method on the ensembles.

All these steps are summarized in Fig. 2 to provide an overview of the 
methodological steps used in this study.

3. Results

In the following section, we present a selection of results that 
represent performance of the hydrological models used, the variability 
of the hydrological forecasting according to the post- processing 
method, lead-time and the ensemble of catchments.

3.1. Hydrological model performance on the sub-daily time-step

Firstly, Table 3 shows the Nash-Sutcliffe efficiency (NSE) metric of 
the performance of eight hydrological models with the twenty catch
ments over the calibration period.

Table 3 presents the NSE values obtained during the 1997–2022 
period by hydrological model and per catchment. Most hydrological 
models provide good NSE values over the catchments (NSE>0.70). The 
best NSE values are obtained for Catchment 18. Low NSE values are 
obtained for catchment 4, where two models, GR5dt and TOPMODEL, 
displays poor performance at simulating streamflow, even after multiple 
calibration runs to ensure proper convergence was attained.

3.2. Evaluation of the post-processing methods

The performance of the three post-processing QM methods is eval
uated by their ability to improve raw ECMWF precipitation forecasts 
over the 20 catchments for the 2015–2020 period. The Continuous 
Ranked Probability Score (CRPS) values were generated by (a) 
comparing the observed precipitation data with the forecasted precipi
tation data at each specific time step, and (b) comparing the observed 
cumulated precipitation data with the forecasted cumulated precipita
tion data at each specific time step, considering all forecast members for 
each time step individually. For the case (a), the precipitation forecasts 

were analysed at each 6-hour interval independently, without cumu
lating precipitation amounts over the forecast period. For example, a 24- 
hour lead time refers to forecasts made for the period from 18 to 24 h 
ahead. For the case (b) the precipitation forecasts were analysed at the 
accumulated precipitation over the forecast period. For example, a 24- 
hour lead time refers to forecasts made for the period from 0 to 24 h 
ahead. Figs. 3 to 5 present the precipitation CRPS values of 24 h, 4 days 
and 8 days of lead time over 2182 forecasts for each catchment (365 
days per year, 366 days for 2016, and excluding the final 9 days of 2020 
where no observed data is available in the following year to compare the 
forecasts).

We can see that the initial CRPS values of raw precipitations (see 
Fig. 3) are already low, below 0.2 mm per 6 h period on average. As the 
lead time increases, the median CRPS of raw precipitation values in
creases (see Fig. 5). In case (a) for all catchments, the three QM methods 
accomplish a substantial improvement compared to the raw ECMWF 
precipitation with a reduction of the median of the distribution of the 
mean CRPS values. In case (b), only a certain number of catchments are 
observed to accomplish a substantial improvement with the QM 
methods compared to the raw ECMWF precipitation with a reduction of 
the median of the distribution of the mean CRPS values.

From Supplementary Materials S1 – S4, a decrease in the inter
quartile range is obtained between the raw and post-processed precipi
tation forecasts for most catchments when looking at longer lead-times. 
The median of the distribution of the raw precipitation increases with 
the lead-time. The median of the distribution of the post-processed 
precipitation in Quebec watersheds (3 to 13) is higher than the me
dian of raw precipitation from the first day of the lead time (24 h) and 
even the first 6 h. But for some watersheds, the median of the distri
bution of the post-processed precipitation is lower than the median of 
raw precipitation or it shows the same median values. Cumulative pre
cipitation, however, shows that the impact of QM is less clear in some 
catchments and at longer lead-times. This points to the limits of QM for 
correcting precipitation amounts and to the ability to improve forecasts 
for shorter lead-times, on a timestep-by-timestep basis.

3.3. Effects of the post-processing on streamflow simulations

The three configurations of post-processed precipitations in addition 
to the raw forecasts were used as inputs to the hydrological models. The 
best performing hydrological model, based on the lowest median CRPS 
assessed by catchment, is presented in Table 4 and Figures S5 and S6
from Supplementary Materials.

Table 3 
Nash-Sutcliffe efficiency (NSE) results during model calibration.

Drainage area (km2) CEQUEAU GR5dt HBV HYMOD IHACRES MOHYSE SIMHYD TOP-MODEL Mean NSE

1 35,800 0.40 0.51 0.66 0.62 0.51 0.44 0.60 0.66 0.55
2 1030 0.71 0.74 0.71 0.69 0.70 0.65 0.63 0.67 0.69
3 1331 0.75 0.80 0.83 0.79 0.76 0.81 0.80 0.38 0.74
4 4560 0.66 0.19 0.63 0.67 0.63 0.59 0.72 0.02 0.51
5 5479 0.85 0.82 0.85 0.85 0.78 0.84 0.87 0.83 0.84
6 1163 0.82 0.80 0.82 0.83 0.80 0.84 0.84 0.81 0.82
7 1286 0.82 0.83 0.83 0.84 0.81 0.84 0.84 0.83 0.83
8 2163 0.80 0.81 0.83 0.82 0.79 0.80 0.82 0.80 0.81
9 708 0.73 0.77 0.78 0.78 0.74 0.76 0.76 0.76 0.76
10 5820 0.78 0.79 0.81 0.81 0.78 0.80 0.80 0.79 0.80
11 1152 0.78 0.76 0.78 0.78 0.75 0.78 0.78 0.77 0.77
12 821 0.73 0.42 0.75 0.76 0.73 0.76 0.76 0.77 0.71
13 696 0.69 0.70 0.72 0.72 0.69 0.71 0.72 0.71 0.71
14 1250 0.78 0.83 0.80 0.80 0.76 0.78 0.78 0.78 0.79
15 46.8 0.68 0.68 0.65 0.66 0.68 0.66 0.66 0.66 0.67
16 1350 0.74 0.78 0.75 0.73 0.74 0.63 0.74 0.61 0.71
17 780 0.86 0.81 0.84 0.87 0.84 0.80 0.87 0.80 0.84
18 4540 0.87 0.93 0.91 0.92 0.91 0.94 0.92 0.89 0.91
19 2310 0.73 0.82 0.76 0.76 0.84 0.84 0.81 0.79 0.79
20 33.6 0.61 0.66 0.62 0.61 0.64 0.61 0.60 0.56 0.62
Mean NSE 0.74 0.72 0.77 0.76 0.74 0.74 0.76 0.70

F.S. Aguilar Andrade et al.                                                                                                                                                                                                                   



Journal of Hydrology 642 (2024) 131861

9

GR5dt and TOPMODEL seem to provide best performance for the 
southeastern Canadian catchments (Figure S5). In contrast, the rest of 
hydrological models (CEQUEAU, HBV, HYMOD, IHACRES, MOHYSE, 
SIMHYD) seem not to have specific abilities for a particular Canadian 
region. The choice of the hydrological model also seems to not depend 
on precipitation input (raw ECMWF, annual QM, monthly QM or sea
sonal QM) for most catchments. Table 4 shows the most effective hy
drological model at each catchment by post-processing implementation.

In Table 4, the best hydrological model for each watershed is indi
cated based on its median CRPS value. The hydrological model with the 
lowest median CRPS value is listed in the table. Below each hydrological 
model name, a percentage is provided, indicating how much lower the 
median CRPS value is compared to the other hydrological models. For 
instance, in catchment 20, the TOPMODEL is identified as the optimal 
choice for raw precipitation, exhibiting a median CRPS value that was 
approximately 24.4 % lower, on average, than the median CRPS values 
of the other hydrological models. For some catchments, the optimal 
hydrological model for a given catchment is typically narrowed down to 

two models (see catchments 11, 14, 15, 17 and 19 from Table 4), based 
on their performance when subjected to the varying precipitation 
inputs.

The pie graph in Figure S6) shows the fraction of all cases for which 
each hydrological model performs best. From these results, Table 4 and 
S5 and S6, it is clear that the hydrological model GR5dt is the preferred 
choice for most catchments (>50 %). In contrast, the hydrological model 
TOPMODEL exhibits an intermediate preference, with an average 
favourability rating of approximately 30 %. Intriguingly, HYMOD and 
IHACRES fail to secure the top position for any watershed or precipi
tation configuration.

From the CRPS results, three distinct groups of results among the 20 
watersheds analysed are identified. From each of these groups, one 
watershed is aleatory selected. Therefore, a further analysis of the mean 
CRPS values per lead-time is provided for three representative catch
ments: 40,624 – Quebec (Fig. 6); 03OE011 – Newfoundland and Lab
rador (Fig. 7), and 01EF001 − Nova Scotia (Fig. 8). The results for the 
remaining catchments can be found in Supplementary Materials S7-S23.

Fig. 3. Boxplots of the (a) precipitation and (b) cumulated precipitation CRPS of the 20 catchments used in this study at the 24 h lead time for the four precipitation 
sets used in this study: Raw ECMWF precipitation (blue), Annual QM (orange), Monthly QM (yellow) and Seasonal QM (purple). Each boxplot (using the 5th, 25th, 
50th, 75th, and 95th percentiles) summarizes the variety of CRPS scores over all 2182 forecasts at a 24-hour lead time.
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From Fig. 6 it is possible to observe that the application of the annual 
QM post-processing method leads to improvements in terms of bias and 
skill in the forecasted streamflow ensembles, particularly at longer lead 
times and for a selected group hydrological models in catchment 4. This 
behaviour is observed for 11 out of the 20 stations (55 %) (refer to 
Supplementary Materials for similar figures for all catchments). It is also 
observable that the performance of the QM implementation (annual, 
seasonal or monthly) varies according to the hydrological model used. 
These catchments can be identified with a green colour in Table 4.

Fig. 7 shows that the application of the post-processing techniques 
shows no effect on most of the CRPS median values at the catchment 17 – 
station 03OE011. Some increases and some decreases in the CRPS scores 
are seen for the three QM configurations at longer lead-times on some 
hydrological models. This behaviour is observed for 7 out of the 20 
stations (35 %), as seen in the supplementary materials. These catch
ments can be identified with a yellow colour in Table 4.

Finally, Fig. 8 shows an increase of the median and spread of CRPS 

values for the catchment 14 – 01EF001 as the lead time increase for the 
three QM configurations and all the hydrological models. This behav
iour is observed in 2 out of the 20 stations (10 %). These catchments can 
be identified with a red colour in Table 4.

These findings suggest that the QM configuration has a positive 
impact on the forecast accuracy and reliability in a half of the catch
ments (55 %). It is also observable that for 35 % of watersheds, 
depending on the hydrological model used, the QM (annual, monthly, or 
seasonal) can slightly decrease, increase or have no change on the CRPS 
of the forecasts. And finally, the use of QM provides an increase of the 
CRPS in 10 % of catchments used in this study (See Supplementary 
Materials S7-S23 and Table 4).

Subsequently, Figs. 9 and 10 display the Talagrand diagrams for 
watershed 40,624 (catchment 4). These diagrams exclusively feature the 
hydrological models GR5dt and SIMHYD, and encompass four distinct 
lead-times: 24 h, 2 days, 4 days, and 8 days. The U-shaped configuration 
of the diagrams denotes under-dispersion, and interestingly, as lead- 

Fig. 4. Boxplots of the (a) precipitation and (b) cumulated precipitation CRPS of the 20 catchments used in this study at the 4 days lead time for the four precipitation 
sets used in this study: Raw ECMWF precipitation (blue), Annual QM (orange), Monthly QM (yellow) and Seasonal QM (purple Each boxplot (using the 5th, 25th, 
50th, 75th, and 95th percentiles) summarizes the variety of CRPS scores over all 2182 forecasts at a 4 days lead time.
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time increases, there is a subtle improvement in shape when applying 
Quantile Mapping.

Recalling the ideal ABDU value for this study is 218.2, the results 
from GR5dt showcase an enhancement in the ABDU value with 
increasing lead-time. Notably, for this specific watershed, SIMHYD 
emerges as the most proficient hydrological model. It is noteworthy that 
the ABDU values associated with SIMHYD consistently exhibit lower 
values compared to those obtained using GR5dt, emphasizing the su
perior performance of SIMHYD in this particular watershed.

Finally, Fig. 11 display the distributions of the sharpness index, the 
normalized mean interquartile range (NMIQR), of the ensemble of 8 
hydrological models and the 20 catchments.

Recalling that the closer the NMIQR index is to 0, the sharper the 
forecast, it is easy to appreciate that the raw forecasts have a very low 
NMIQR value. As the lead time increases, the sharpness decreases. 
Forecasts that used a QM precipitation input tend to be less sharp than 
the raw forecasts, especially from the 4th day of the forecast.

4. Discussion

4.1. Hydrological model performance and sensitivity to uncertainty

The eight hydrological models were applied at a 6-hourly timestep to 
better simulate streamflow on the sub-daily timesteps. With few ex
ceptions, all the hydrological models were calibrated with at least 
satisfactory results, with NSE values ranging from 0.51 to 0.91 in cali
bration, and most models were able to perform relatively well (with NSE 
values > 0.7) on most catchments. Some exceptions exist for a subset of 
catchment-model combinations, but these are limited overall. Forecasts 
for up to 9 days ahead are provided at the 6-hourly time-step. A sub- 
daily timestep helps better represent certain hydrological processes 
such as snowmelt and evapotranspiration, which are highly impacted by 
the diurnal cycle. This allows capturing the physical processes more 
precisely than at the daily time step while improving the models’ ability 
to forecast streamflow on the study catchments. For example, snowmelt 

Fig. 5. Boxplots of the (a) precipitation and (b) cumulated precipitation CRPS of the 20 catchments used in this study at the 8 days lead time for the four precipitation 
sets used in this study: Raw ECMWF precipitation (blue), Annual QM (orange), Monthly QM (yellow) and Seasonal QM (purple). Each boxplot (using the 5th, 25th, 
50th, 75th, and 95th percentiles) summarizes the variety of CRPS scores over all 2182 forecasts at a 8 days lead time.
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was computed 4 times per day, leading to a more realistic snowmelt rate, 
with higher snowmelt values during the daytime than at night.

We showed that certain hydrological models might exhibit superior 
performance in simulating sub-daily streamflow compared to others. 
Specifically, the GR5dt hydrological model emerges as the top performer 
in approximately half of the catchments, accounting for approximately 
55 % of cases. However, it’s worth noting that while these models may 
exhibit the smallest median CRPS values, they typically demonstrate 
only a 10 to 30 % reduction compared to alternative hydrological 
models (see Table 4). This suggests that other models also perform 
commendably, a conclusion supported by the NSE values derived from 
calibration efforts.

The set of hydrological models used in this study has a similar model 
structure (i.e., lumped models with 5 to 9 parameters based on the same 
PET and snow module routines), however some differences can be 
observed between models for some catchments (Table 3 and Table 4). 
Notably, GR5dt and TOPMODEL, featuring 5 and 7 parameters respec
tively, generally emerge as the top two performing models, but with ~ 
10 to 30 % of smaller CRPS medians compared to the rest. On the other 

hand, other hydrological models utilizing 9 and 8 parameters (HBV and 
SIMHYD), when selected once each as best performers, exhibit >~ 
30––40 % of lower CRPS medians. Therefore, the apparent skill of the 
various hydrological models is not found to be related to their 
complexity, as simpler models (such as GR5dt with 5 parameters and 3 
reservoirs) often outperform models such as HBV (9 parameters and 3 
reservoirs), and vice-versa. For the model calibration, based on the NSE 
scores (Table 3), the most-likely best performing hydrological model is 
TOPMODEL for catchment number 12, however this model leads to 
unsatisfactory NSE results for catchment number 4. To ensure that this 
was not due to the calibration convergence, calibration was performed 
10 times for each model and the parameter set with the best NSE value 
was preserved. This suggests that the differences between models are 
mostly caused by their internal hydrological process representation, 
which agrees with Thiboult and Anctil (2015), who found that the model 
structure and conceptualization are the dominant sources of 
uncertainty.

When we look at S5 (Supplementary Materials), we can see that the 
distribution of best models shows a pattern of preference: GR5dt for the 

Table 4 
Most effective hydrological model at each catchment by post-processing method.

Province Drainage area (km2) CRPS Best Hydrological Model QM Performance
Raw ECMWF Annual QM Monthly QM Seasonal QM

1 AB 35,800 HBV HBV HBV HBV
~ 48.1 % ~ 45.2 % ~ 45.2 % ~ 46.1 %

2 ON 1030 GR5dt GR5dt GR5dt GR5dt
~ 25.9 % ~ 25.6 % ~ 24.3 % ~ 23.5 %

3 QC 1331 GR5dt GR5dt GR5dt GR5dt
~ 30.0 % ~ 29.7 % ~ 29.3 % ~ 29.3 %

4 QC 4560 SIMHYD SIMHYD SIMHYD SIMHYD
~ 35.0 % ~ 30.3 % ~ 30.4 % ~ 30.7 %

5 QC 5479 GR5dt GR5dt GR5dt GR5dt
~ 17.1 % ~ 19.1 % ~ 19.2 % ~ 18.5 %

6 QC 1163 GR5dt GR5dt GR5dt GR5dt
~ 18.8 % ~ 15.5 % ~ 15.8 % ~ 15.8 %

7 QC 1286 GR5dt GR5dt GR5dt GR5dt
~ 25.3 % ~ 21.4 % ~ 21.7 % ~ 21.7 %

8 QC 2163 GR5dt GR5dt GR5dt GR5dt
~ 21.7 % ~ 16.7 % ~ 17.1 % ~ 17.4 %

9 QC 708 TOPMODEL TOPMODEL TOPMODEL TOPMODEL
~ 30.3 % ~ 14.3 % ~ 14.3 % ~ 15.4 %

10 QC 5820 GR5dt GR5dt GR5dt GR5dt
~ 28.7 % ~ 19.5 % ~ 19.4 % ~ 19.7 %

11 QC 1152 TOPMODEL GR5dt GR5dt GR5dt
~ 25.3 % ~ 12.8 % ~ 13.3 % ~ 12.1 %

12 QC 821 TOPMODEL TOPMODEL TOPMODEL TOPMODEL
~ 31.4 % ~ 19.5 % ~ 19.4 % ~ 19.9 %

13 QC 696 GR5dt GR5dt GR5dt GR5dt
~ 14.7 % ~ 6.7 % ~ 6.5 % ~ 6.4 %

14 NS 1250 TOPMODEL GR5dt TOPMODEL TOPMODEL
~ 14.9 % ~ 14.5 % ~ 12.4 % ~ 11.8 %

15 PE 46.8 TOPMODEL GR5dt TOPMODEL TOPMODEL
~ 16.6 % ~ 17.1 % ~ 16.4 % ~ 18.7 %

16 NS 1350 GR5dt GR5dt GR5dt GR5dt
~ 22.7 % ~ 29.8 % ~ 28.2 % ~ 26.3 %

17 NL 780 GR5dt GR5dt CEQUEAU CEQUEAU
~ 16.4 % ~ 18.7 % ~ 17.9 % ~ 15.4 %

18 NL 4540 TOPMODEL TOPMODEL TOPMODEL TOPMODEL
~ 36.8 % ~ 34.3 % ~ 34.8 % ~ 35.0 %

19 NL 2310 MOHYSE MOHYSE MOHYSE TOPMODEL
~ 17.4 % ~ 22.3 % ~ 14.6 % ~ 17.5 %

20 NL 33.6 TOPMODEL TOPMODEL TOPMODEL TOPMODEL
~ 24.4 % ~ 21.9 % ~ 27.3 % ~ 26.3 %

Model GR5dt (10/20) GR5dt (13/20) GR5dt (10/20) GR5dt (10/20)
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southern Canada catchments and TOPMODEL for the northeaster Can
ada. From the catchments that are located in the province of Quebec, all 
prefer GR5dt and TOPMODEL except for the 4th catchment that prefers 
SIMHYD. Interestingly, this catchment is the northernmost of that 
province. This could be explained by the sizes of the different catch
ments and the hydrologic regime. The catchments in eastern Canada, are 
small to medium-size catchments (33–––5820 km2) while the only large- 
scale catchment is located in the western part (35800 km2). It could also 
be explained by the region, topology or land use of the different catch
ments. The latter are complex to model in western catchments due to the 
flat lands that make the effective drainage areas variable according to 
the precipitation intensity (see Shaw et al., 2013; Muhammad et al., 
2019), leading to high CRPS values. In addition, flowrates in the prairie 
regions are very small, with most water being evaporated before 
reaching the water course.

The diverse performances observed among the hydrological models 
raise important questions regarding the underlying factors driving these 
differences and why certain models outperform others. Despite dedi
cated analysis, no specific model characteristics or attributes have been 
identified as consistently correlating with performance outcomes. This 
observation underscores the complexity of hydrological modeling and 
highlights the need for robust strategies to account for model uncer
tainty. As suggested by Troin et al. (2021), the use of model ensembles 
may offer a promising approach to address these challenges by capturing 
a broader range of model behaviors and improving the reliability of 
hydrological forecasts.

4.2. Post-processing of precipitation forecasts and process-conditioning

The post-processing of precipitation forecasts was implemented to 
attempt to improve streamflow forecasts. The three QM implementa
tions improve precipitation forecasts accuracy compared to the raw 
forecasts in most catchments, with a decrease in the CRPS score (Figs. 3 
to 5). While QM demonstrates a positive impact on precipitation fore
casts across all watersheds, the assessment of cumulative precipitation 
reveals a more nuanced picture, with QM showing a positive effect in 
only half of the watersheds. The consideration of CRPS in precipitation 
and cumulative precipitation enables us to not only evaluate the im
mediate impact of QM on individual precipitation events but also to 
observe the accumulated error over time. This distinction highlights that 
while QM may effectively correct certain aspects of precipitation fore
casts in some watersheds, its efficacy in improving cumulative precipi
tation and subsequent hydrological responses varies across different 
watershed contexts. By examining cumulative precipitation, we gain 
deeper insights into the overall performance and limitations of QM 
across diverse hydrological settings.

As the QM is an unconditional post-processing method, the 
improvement shown in half of the watersheds can be attributed to the 
correction of long-term precipitation biases. These improvements are 
low even in the raw forecast (CRPS usually below 1 mm) in large part 
because the forecasted precipitation is generated using the ECMWF 
forecast model that is also used to generate the ERA5 reanalysis, which is 
used as observations. Therefore, it is expected that the forecasted pre
cipitation should be of high quality for the first few lead-times, where 
the atmospheric assimilation is similar between both methods. This was 

Fig. 6. CRPS values of the 2015–2020 hydrological forecasting per lead-time for the 40,624 station (catchment 4) with the eight different hydrological models. Each 
boxplot (using the 5th, 25th, 50th, 75th, and 95th percentiles) summarizes the variety of CRPS scores over all 2182 forecasts.
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indeed the case, as shown in figures S1 to S4 in the Supplementary 
Materials. Results might differ in cases where the observation and 
forecast models are less similar, due to the time gap of data (±2h) be
tween the ECMWF forecasts (issued every 6 h UTC based) and the local 
observation times in certain basins.

In this study, we chose to use the precipitation as the conditioning 
variable (or proxy) for hydrological processes. In separating by season 
and by month, the QM parameters were computed on days within that 
same season / month, ensuring consistency in hydrometeorological 
conditions. We showed that conditioning on the sub-daily precipitation 
was able to reduce higher values of CRPS associated with raw precipi
tation, albeit at the expense of an increased median CRPS. This trend is 
particularly evident at longer lead times, emphasizing the trade-off be
tween mitigating extreme values and maintaining overall forecast ac
curacy. However, when comparing the three QM conditioning 
configurations for sub-seasonal precipitation (annual, monthly, or sea
sonal), no single configuration exhibits a clear advantage in forecasting 
results across most catchment basins. The optimal QM configuration 
varies among basins, emphasizing the need for basin-specific consider
ations in choosing the appropriate configuration. While there is a subtle 
indication that the annual configuration may perform marginally better 
at longer lead times, the contrast is not pronounced.

An open question remains regarding how to choose the variables to 
condition and the temporality of such conditioning. While it is theo
retically possible to include more variables to condition on (e.g., tem
perature as a proxy for snow processes), this becomes challenging due to 
the issue of dimensionality leading to estimated sparse and noisy PDFs 
(Bennett et al., 2022). In the specific case for Canada, the hydrology of 
catchments is heavily influenced by the accumulation and subsequent 
melting of snow during the winter and spring seasons. However, the 
current snow model, CemaNeige, is considered to be overly simplistic as 
it relies solely on temperature inputs (Troin et al., 2016). This simplicity 

limits its ability to capture the complexity and uncertainty associated 
with snow hydrology. To address this, there is a growing recognition of 
the need to explore more advanced snow models that can provide higher 
temporal and spatial resolution simulations of the snow water equiva
lent (SWE), combining the accuracy of physically-based energy-balance 
(EB) models with the simplicity of degree-day (DD) models, resulting in 
mixed EB/DD models (Troin et al., 2016). Therefore, future studies 
should investigate more complex conditional post-processing methods 
to attempt to improve more specific and conditional biases.

4.3. Impact on precipitation post-processing on streamflow simulations

In this study, we focused on the precipitation postprocessing and the 
associated impacts on streamflow forecasts; we did not apply QM 
directly on the streamflow forecasts as this would mask the effects of 
precipitation postprocessing (Lucatero et al., 2018). A similar study by 
Ghimire et al. (2019) used seven parametric and nonparametric QM 
techniques to improve hydrological simulations. The QM techniques 
were applied annually, monthly, and seasonally to precipitation as in the 
present study. Ghimire et al. (2019) showed that the non parametric 
empirical quantile mapping methods yielded a very good hydrological 
performance at all temporal scales when applied under the monthly 
approach. Based on the CRPS scores obtained in our study, we show that 
out of the three QM configurations used, none outperforms other con
figurations. This lack of significant differentiation among the configu
rations is also evident in the Talagrand diagrams of Figs. 9 and 10, where 
there is minimal variation in the distribution among the three QM 
configurations. However, the QM does show improvement of flow 
forecasts in the catchments located in Quebec with most hydrological 
models. The fact that the QM method improves results for most test- 
cases agrees with the results found in Ghimire et al. (2019). However, 
that application was made on a single catchment and a single 

Fig. 7. CRPS values of the 2015–2020 hydrological forecasts per lead-time for the 03OE011 station (catchment 17) with the eight different hydrological models. 
Each boxplot (using the 5th, 25th, 50th, 75th, and 95th percentiles) summarizes the variety of CRPS scores over all 2182 forecasts.
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hydrological model (GR4J), limiting the generalisation of the results.
Despite demonstrating satisfactory performance for half of the 

catchments, the hydrological models exhibit less favorable streamflow 
simulations for the remaining catchments when subjected to the three 
QM configurations. This disparity is particularly evident in Figs. 7 and 8, 
as well as Supplementary Materials S7, S8, and S19-S23. Surprisingly, 
there is no discernible difference on CRPS values, as it doesn’t make any 
effect on the forecasted streamflow, and even an increase of CRPS is seen 
at longer lead times with some hydrological models. Also, the reduction 
in sharpness is another dimension to consider alongside overall perfor
mance improvements. As seen in Fig. 11, forecasts with QM precipita
tion tend to be less sharp than the raw forecasts, especially from the 4th 
day of the forecast, as indicated by higher NMIQR values.

Perhaps this observed behavior can be attributed to the hydrological 
regime of the watersheds. Figures S24 - S26 in Supplementary Materials
illustrate the hydrological regimes of 6 different watersheds. S24 illus
trates two out of eleven watersheds, all from the province of Quebec, 
that demonstrated a positive improvement with the implementation of 
QM. In S25, hydrographs from two representative watersheds out of the 
seven watersheds where QM had no discernible effect on streamflow 
forecasts. Finally, S26 displays hydrographs from the two watersheds 
that experienced a negative impact with the application of QM.

The hydrographs in S24 depict a pronounced peak in runoff occur
ring around 120 days, roughly corresponding to the month of April, 
which corresponds to the ablation of snow. Similarly, the hydrographs in 
S25 exhibit a similar pattern, albeit with higher peaks exceeding 800 
m3/s and minimal runoff at the onset of the year. In contrast, the 
hydrographs in S26 display a distinct runoff regime, featuring two sig
nificant periods of elevated runoff—one at the beginning and another 
towards the end of the year, marked by multiple peaks around this 
period.

The substantial peaks in runoff may contribute to the limited efficacy 

of QM in improving forecasts. When applying QM, timing errors tend to 
be averaged out, especially at longer lead times. In the short term (i.e., 
up to 1–2 days of lead time at 6-hour increments), even minor errors in 
peak flow timing can result in an increase in the CRPS, whereas these 
errors tend to offset each other over an extended period.

The outcomes of this study suggest that, despite its simplicity for 
operational forecasting streamflow purposes (Boucher et al., 2015), the 
implemented QM method proves ineffective as a universal post- 
processing technique for any catchment in this study. A prior analysis 
of catchment characteristics, including hydrological regime, topology, 
location, among others, is imperative to ascertain its viability as a 
suitable alternative.

4.4. Limitations and implications for hydrological studies

The experimental design of this study has some limitations. First, 
only twenty catchments are used for the analysis and additional catch
ments in different locations with different hydroclimatic characteristics 
in Canada should be included. As mentioned in section 2.1, the initial 
datasets that were made available were limited in spatial distribution 
and most hydrometric gauges with data at the hourly or sub-daily scales 
were regulated rivers, reducing the number of catchments used for this 
study. Therefore, other regions with more readily accessible datasets 
could replicate this study with a more diverse set of catchments.

Also, we have addressed the assumption of applying the same 
methodology to a large watershed as to the rest of the watersheds. It’s 
important to recognize that hydrological processes in large watersheds, 
such as the one utilized in our study, may exhibit significantly slower 
responses compared to smaller catchments. The effect of different scales 
on inherent characteristics of the bigger catchment, such as residence 
times, drainage, soil depth and aquifer depth, etc., poses challenges 
when evaluating sub-daily forecasts, as the temporal resolution may not 

Fig. 8. CRPS values of the 2015–2020 hydrological forecasts per lead-time for the 01EF001 station (catchment 14) with the eight different hydrological models. Each 
boxplot (using the 5th, 25th, 50th, 75th, and 95th percentiles) summarizes the variety of CRPS scores over all 2182 forecasts.
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be adequate to capture subtle differences or responses.
Even though conceptual hydrological models are often used in 

streamflow forecasting studies (Arsenault et al., 2015; Dion et al., 2021; 
Velazquez et al., 2011; Andraos and Najem, 2020), the inclusion of one 
or more hydrological models in the ensemble with various representa
tions of key hydrological processes (i.e., snow, potential evapotranspi
ration) would likely influence the results while allowing to extend the 
analysis of hydrological uncertainty associated with the model structure 
(Troin et al., 2016; Seiller and Anctil, 2016). Using distributed or 
physical-based hydrological models would provide a more thorough 
assessment of the impacts of precipitation post-processing on stream
flow forecasts, especially for complex catchments such as in moun
tainous areas, for which the improvement of sub-daily precipitation 
forecasts is required.

As for the performance metric, using a single efficiency criterion, 
such as CRPS, may not be sufficient for evaluating the performance of 
hydrological models. Evaluating model performance involves subjective 

and objective assessments, and the choice of performance metrics can be 
challenging due to factors such as the variability of flows, hetero
scedastic errors, different benchmark models, and specific model ap
plications (Krause et al., 2005; Pushpalatha et al., 2012; Ferreira et al., 
2020). While visual inspection of the CRPS boxplots provides qualitative 
insights, only one metric criterion may overestimate or underestimate 
different types of errors. Therefore, a combination of multiple criteria, as 
the use of more metrics such as KGE (Gupta et al., 2009), could help to 
analyse better the actual performance of the proposed methodology. 
However, in the context of hydrological forecasting, the choice of an 
objective function is not as critical as in general streamflow simulation, 
as the relationship between forecast performance and most objective 
functions used in calibration is tenuous at best and varies according to 
catchment, model, and other factors (Jie et al., 2016). Despite this, we 
chose to use NSE in calibration as it is still commonly employed in hy
drological studies, facilitating comparisons with previous research, even 
though the metric itself is not used for direct evaluation purposes in this 

Fig. 9. Talagrands per lead-time of the GR5dt forecasts for the 40,624 station (catchment 4) with the 4 different QM configurations.
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study.
Also, while our study focused on the application of Quantile Mapping 

under stationary conditions (training period over the evaluation period), 
the potential impact of non-stationarity on the effectiveness of QM re
mains an important consideration. Addressing non-stationary condi
tions, such as those induced by climate change, represents a critical 
aspect that warrants further investigation (Chen et al., 2019). Future 
research could explore the robustness of QM techniques in accommo
dating changing climatic conditions and their implications for hydro
logical forecasting accuracy.

Finally, this study did not explore the application of statistical post- 
processing techniques on the forecasted streamflow to improve the ac
curacy of the hydrological forecast. Both weather and streamflow post- 
processing methods can potentially enhance the quality of streamflow 
forecasts. It would be valuable to assess the combined impact of these 
post-processing methods on the resulting hydrological forecasts. Previ
ous studies have explored similar analyses but on smaller scales and 

using daily models, which are less complex compared to sub-daily 
models that capture more intricate hydrological processes (Li et al., 
2018; Liu et al., 2022).

5. Conclusions and recommendations

This study aimed to assess the effectiveness of the application of 
Quantile Mapping (QM) as a post-processing method for precipitation 
forecasts to enhance hydrological forecasts. Three temporal configura
tions (monthly, seasonal, and annual) of the quantile mapping scheme 
were specifically employed. The investigation focused on 20 catchments 
located in Canada, and eight distinct lumped hydrological models were 
utilized. The evaluation of the method’s performance was based on the 
CRPS (Continuous Ranked Probability Score), ABDU (Average Bin Dis
tance to Uniformity) and NMIQR (Normalized Mean Interquartile 
Range) metrics.

The implementation of the three different configurations of Quantile 

Fig. 10. Talagrands per lead-time of the SIMHYD forecasts for the 40,624 station (catchment 4) with the 4 different QM configurations.
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Mapping as a post-processing technique effectively reduced the CRPS 
values in precipitation forecasts in half of watersheds, which then 
reduce the CRPS in hydrological forecasts for the same half of the wa
tersheds. However, a third of the catchments showed no effect and some 
specific hydrological models even displayed higher CRPS values at 
longer lead-times. In two cases, no improvement was observed, and the 
performance deteriorated. Despite these reductions in CRPS, it is 
important to note that the post-processing approach does not make the 
precipitation ensembles fully reliable, as indicated by poor improve
ments in the Talagrand diagrams and ABDU scores. Additionally, fore
casts with QM precipitation tend to be less sharp than the raw forecasts, 
as shown by their higher NMIQR values. The CRPS, ABDU, and NMIQR 
metrics together provided a more comprehensive assessment of the 
overall quality of ensemble forecasts, highlighting areas of improvement 
and remaining challenges.

Furthermore, even if the study revealed the hydrological model 
GR5dt superiority over the others but only with a 10 to 30 % lower 
median CRPS compared to the rest of hydrological models. The inves
tigation employed eight different hydrological models: CEQUEAU, 
GR5dt, HBV, HYMOD, IHACRES, MOHYSE, SIMHYD, and TOPMODEL. 
All these models exhibited acceptable performance relative to the 
catchments utilized in this study.

The study also identified several limitations and areas for future 
research. Firstly, the inclusion of more catchments in different locations 
with diverse hydroclimatic characteristics in Canada is necessary to 
obtain a comprehensive analysis. Moreover, employing model ensem
bles is crucial due to the varying performance of hydrological models 
across catchments in simulating sub-daily streamflow.

Additionally, the evaluation of hydrological models should involve 
the use of multiple performance metrics, considering factors such as flow 
variability, heteroscedastic errors, benchmark models, and specific 
model applications. Furthermore, the potential benefits of both weather 
and streamflow post-processing methods should be considered, there
fore, future research should assess the combined impact of these tech
niques on hydrological forecasting accuracy.

In summary, while the Quantile Mapping method showed improve
ments in hydrological forecasts in this study, addressing the identified 
limitations and exploring more advanced post-processing techniques 
and models would be crucial for enhancing the accuracy and reliability 

of hydrological forecasts in diverse catchment areas.
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