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Background Precise estimation of current and future comorbidities of patients with cardiovascular disease is an 

important factor in prioritizing continuous physiological monitoring and new therapies. Machine learning (ML) 

models have shown satisfactory performance in short-term mortality prediction in patients with heart disease, 

whereas their utility in long-term predictions is limited. This study aimed to investigate the performance of 

tree-based ML models on long-term mortality prediction and effect of two recently introduced biomarkers on 

long-term mortality. 

Methods This study used publicly available data from the Collaboration Center of Health Information Appli- 

cation at the Ministry of Health and Welfare, Taiwan, China. The collected data were from patients admitted 

to the cardiac care unit for acute myocardial infarction (AMI) between November 2003 and September 2004. 

We collected and analyzed mortality data up to December 2018. Medical records were used to gather demo- 

graphic and clinical data, including age, gender, body mass index, percutaneous coronary intervention status, 

and comorbidities such as hypertension, dyslipidemia, ST-segment elevation myocardial infarction, and non-ST- 

segment elevation myocardial infarction. Using the data, collected from 139 patients with AMI, from medical 

and demographic records as well as two recently introduced biomarkers, brachial pre-ejection period (bPEP) and 

brachial ejection time (bET), we investigated the performance of advanced ensemble tree-based ML algorithms 

(random forest, AdaBoost, and XGBoost) to predict all-cause mortality within 14 years. A nested cross-validation 

was performed to evaluate and compare the performance of our developed models precisely with that of the 

conventional logistic regression (LR) as the baseline method. 

Results The developed ML models achieved significantly better performance compared to the baseline LR (C- 

Statistic, 0.80 for random forest, 0.79 for AdaBoost, and 0.78 for XGBoost, vs . 0.77 for LR) ( PRF < 0.001, PAdaBoost 

< 0.001, and PXGBoost < 0.05). Adding bPEP and bET to our feature set significantly improved the performance 

of the algorithm, leading to an absolute increase in C-statistic of up to 0.03 (C-statistic, 0.83 for random forest, 

0.82 for AdaBoost, and 0.80 for XGBoost, vs . 0.74 for LR) ( PRF < 0.001, PAdaBoost < 0.001, PXGBoost < 0.05). 

Conclusion The study indicates that incorporating new biomarkers into advanced ML models may significantly 

improve long-term mortality prediction in patients with cardiovascular diseases. This advancement may enable 

better treatment prioritization for high-risk individuals. 
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. Introduction 

Cardiovascular diseases are the leading cause of death globally, with

n estimated 17.9 million deaths per year [ 1 ]. Approximately every

0 seconds, a person in the United States experiences myocardial in-

arction (MI) [ 2 ]. In Canada, patients with acute myocardial infarc-

ion (AMI) are 4 times more likely to die of all causes in a given
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ear compared to individuals without AMI [ 3 ]. In Europe, approxi-

ately half of the major coronary events occur in those with a previ-

us hospital discharge of AMI, and 1 out of every 5 patients with AMI

uffers a second cardiovascular event in the first year [ 4 ]. Given the

igh risk of cardiovascular events following an MI, patients with MI

hould be carefully monitored and managed with effective prevention

rograms. 
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Table 1 Statistics of input data 

Variables Death P -values 

Yes ( n = 87) No ( n = 52) 

Age (years, mean ± SD) 69.00 ± 12.0 55.30 ± 11.5 < 0.001 

Male ( n (%)) 60.00 (69.0) 43.00 (83.0) 0.112 

Diabetes mellitus ( n (%)) 21.00 (24.0 ) 13.00 (25.0) 0.929 

Hypertension ( n (%)) 45.00 (27.0) 15.00 (29.0) 0.014 

Dyslipidemia ( n (%)) 30.00 (34.0) 14.00 (27.0) 0.460 

PCI ( n (%)) 33.00 (38.0) 17.00 (33.0) 0.660 

STEMI ( n (%)) 18.00 (21.0) 12.00 (23.0) 0.906 

bPEP ( 𝜇s, mean ± SD) 96.60 ± 21.00 94.80 ± 18.80 0.615 

bET ( 𝜇s, mean ± SD) 250.00 ± 34.90 262.40 ± 24.10 0.025 

ABI (mean ± SD) 0.94 ± 0.20 1.04 ± 0.10 0.001 

BMI (kg/m2 , mean ± SD) 23.60 ± 3.90 25.70 ± 3.10 0.002 

t -test and Chi-square test are performed on numerical and categorical variables, 

respectively, to examine the dependency between each variable in mortal and 

nonmortal cases. 

PCI: percutaneous coronary intervention; STEMI: ST-segment myocardial infarc- 

tion; bPEP: brachial pre-ejection period; bET: brachial ejection time; ABI: ankle 

brachial index; BMI: body mass index. 
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Implantable sensors and smart wearables have provided in-home so-

utions for continuous monitoring of patients diagnosed with AMI [ 5 , 6 ].

iven the fact that continuous monitoring of patients with AMI is expen-

ive, requires a lot of resources, and is not available to every patient, it is

ise to focus on patients with more serious health conditions and those

t a higher risk of mortality. A precise estimation of the patient’s current

nd future health situation is important to prioritize them for continu-

us physiological monitoring and provide them with specific therapies

t the earliest possible time [ 7 ]. 

Risk assessment in clinics, particularly for patients with heart dis-

ase, often relies on methods such as the global registry of acute coro-

ary events (GRACE) [ 8 ] score for patients with acute coronary syn-

rome (ACS), including patients with AMI, and the thrombolysis in MI

TIMI) [ 9 ] score for patients with MI. These scores, based on clinical

nformation and factors such as age and blood pressure, are validated

or predicting short-term mortality but may not fully address long-term

ortality risks in patients with AMI. 

Recently, machine learning (ML) has been employed as a data-driven

pproach to design accurate classifiers for the risk estimation of patients

ith cardiovascular diseases [ 10-19 ]. ML algorithms can reveal com-

lex hidden patterns in data that cannot be extracted using traditional

ools. Artificial neural networks (ANN) and tree-based methods have

uccessfully been used to diagnose heart diseases [ 20-25 ] and predict

V outcomes [ 10-19 ]. Hernesniemi et al. [ 13 ] used XGBoost and lo-

istic regression (LR) to predict the 6-month mortality of patients with

CS. They found that ML models outperformed the GRACE risk score

ystem, with XGBoost achieving the best accuracy. Hadanny et al. [ 12 ]

howed that the random forest (RF) algorithm performs drastically bet-

er than the GRACE score in post-ST-segment elevation MI (post-STEMI)

0-day mortality prediction. Cho et al. [ 11 ] reviewed several articles to

ompare the ability of ML and conventional statistical models to pre-

ict readmission and mortality in patients with AMI. Among 19 articles,

3 demonstrated a higher performance for ML models compared to tra-

itional techniques. Lee et al. [ 16 ] showed the outperformance of ML

odels over conventional methods, including GRACE and TIMI scores,

n short- and long-term mortality prediction of patients with a history

f non-ST-segment elevation MI (NSTEMI). Li et al. [ 17 ] developed LR,

NN, and tree-based ML models to predict 1-year post-discharge mortal-

ty status of approximately 220,000 patients diagnosed with AMI. The

onstructed models reached average accuracies of 0.8-0.85, higher than

he previously reported in-hospital mortality prediction models. Man-

oor et al. [ 18 ] studied 10,000 women with STEMI to predict their in-

ospital mortality using LR and RF. Their results revealed a comparable

erformance between the models and confirmed RF as a practical ML

ool in clinical settings. Vomlel et al. [ 19 ] aimed to predict the 30-day

ortality of 603 patients with STEMI using different classifiers, includ-

ng LR, Bayesian methods, ANN, and tree-based algorithms. Comparing

heir prediction power, LR and simple Bayesian methods were shown

o be the most promising models. Other studies [ 10 , 15 ] with different

ohort sizes (5,000 and 22,000 patients) attempted to predict 1-year

ortality after the diagnosis of AMI and reported similar risk factors

uch as age and sex as the most important features. 

Most existing studies have focused on short-time mortality predic-

ion and building computational models without recognizing the most

mportant risk factors. Prediction of long-term mortality is essential to

rioritize patients who are at higher risk as earlier receivers of medi-

ations, preventive interventions, and healthcare plans. In this study,

e investigated the application of state-of-the-art tree-based ML models

sing a set of easy-to-access clinical measures to predict long-term (14

ears) mortality in 139 patients (52 survivors and 87 deaths) with AMI.

n addition to routinely the collected clinical measures, we considered

he recently introduced noninvasively measured systolic time intervals,

rachial pre-ejection period (bPEP), and brachial ejection time (bET)

 26-28 ] as novel biomarkers for early prediction of all-cause mortality.

he bPEP/bET ratio has proved to be a useful variable for the risk assess-

ent of patients with AMI [ 29 ]. In this study, we aimed to investigate its
171
ffectiveness on the performance of ML models. We studied the corre-

ation strength between different risk factors and the models’ predictive

ower to find the most important mortality biomarkers in individuals

uffering from AMI. 

. Methods 

.1. Study population 

This analysis was based on publicly available data from the Collab-

ration Center of Health Information Application (CCHIA), Ministry of

ealth and Welfare, Taiwan, China [ 29 ]. The data set comprised pa-

ients admitted to the cardiac care unit due to AMI between November

003 and September 2004. Inclusion criteria were patients older than

0 years diagnosed with type 1 AMI. Exclusion criteria included absence

f data on brachial pre-ejection period (bPEP), brachial ejection time

bET), presence of atrial fibrillation, or amputation of extremities. This

esulted in a data set of 139 patients (36 women) with AMI aged between

4-91 years. The study tracked and analyzed the mortality of these pa-

ients until December 2018, during which 87 patients died. In compli-

nce with the Declaration of Helsinki , all patients provided informed con-

ent for their data to be used in the study. Medical records were em-

loyed to gather demographic and medical data, including age, gender,

ody mass index (BMI), percutaneous coronary intervention (PCI) sta-

us, and comorbidities such as hypertension, dyslipidemia, STEMI, and

STEMI. The data from CCHIA were initially collected to assess the po-

ential of the bPEP to bET ratio as a novel biomarker for predicting long-

erm cardiovascular and overall mortality in patients with AMI [ 29 ]. For

he purpose of our study, we dichotomized the cohort based on mortal-

ty status at the end of the study into 2 groups: those who survived and

hose who died within the 14-year period post-AMI diagnosis. 

.2. Predictor features 

The data set had 11 predictor variables, including clinical and demo-

raphic measurements acquired from each participant at baseline, con-

aining 5 numeric and 6 binary features. The numeric variables were

PEP, bET, BMI, ankle-brachial index (ABI), and age. The binary fea-

ures included PCI received or not received, sex, and medical status of

he patients on comorbidities such as dyslipidemia, diabetes, hyperten-

ion, and STEMI. ABI, bPEP, and bET were obtained using an ankle-

rachial index ABI-form device recorded within 24 h of each partici-

ant’s admission [ 29 ]. Table 1 provides summary statistics of the data

easurements at baseline comparing the mortal group to those who sur-

ived (nonmortals). 
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Figure 1. Receiving operating characteristics curves for different acute myocar- 

dial infarction mortality prediction models. RF: random forest, AdaBoost: adap- 

tive boosting, XGBoost: extreme gradient boosting, SVM: support vector ma- 

chine, LR: logistic regression. 
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.3. Machine learning 

We selected 3 advanced tree-based ML algorithms to perform our

rediction task by finding an optimal decision boundary between the

wo groups of survivors and mortals. After building our models, they

ere tested to predict the mortality status of new individuals in the

ollowing 14 years. 

Tree-based ML methods have proved their strength in modeling

omplex nonlinear input-output patterns in a nonparametric fashion,

specially for structured data [ 30 ]. These algorithms achieve the best

erformance when used in an ensemble learning framework [ 31 ].

nsemble-based ML algorithms work by running multiple base learners

nd aggregating the decisions made by each to achieve a more reliable

utcome. These methods can usually handle noisy data and outliers well

ith little effect on the overall performance. They are also robust against

verfitting and have lower variance than each of their weak learners

 32 ]. Bagging and boosting methods form the two main categories of

nsemble learning approaches that are particularly favored over more

omplex deep learning models in learning tasks where limited data are

vailable. 

.4. Random forest 

Random forest (RF) is an ensemble of decision trees that makes pre-

ictions by averaging the decisions obtained from all its base learners

 33 ]. RF benefits from 2 sources of randomization: first, the adoption

f a random bootstrap of the data for each tree building, and second,

estricting the candidate features to a random subset at each node split-

ing level of the trees. Averaging the results of multiple models along

ith the randomization helps the forest to maintain a low generaliza-

ion error while growing deeper trees. 

.5. Boosting machines 

In the realm of advanced boosting techniques, adaptive boosting (Ad-

Boost) [ 34 ] and extreme gradient boosting (XGBoost) [ 35 ] stand out

s notable extensions of the traditional boosting methods. AdaBoost is

haracterized by its sequential ensemble model structure and minimal

yperparameter configuration, which lends it robustness against over-

tting, particularly in scenarios involving low-noise and smaller data

ets. However, XGBoost represents an efficient iteration of the gradient

ree boosting methodology. Its primary strengths lie in its rapid pro-

essing speed, surpassing other similar algorithms, and its regulariza-

ion feature, which significantly reduces variance and enhances model

erformance. 

.6. Data analysis 

The data set we used did not contain any missing values. One-hot en-

oding was applied to convert the categorical features into binary vari-

bles [ 36 ]. To enhance the numerical stability of the models, standard

caling (z-score normalization) was applied by subtracting the mean

rom the feature values and then dividing them by the standard devia-

ion [ 37 ]. 

Model selection, hyperparameter optimization, and performance

valuation were performed using nested cross-validation to verify the

eneralization ability of the ML models. This data division technique

elps to estimate an unbiased generalization performance of a model

nd is specifically useful when dealing with smaller data sizes. The cross-

alidation method was implemented as follows: A 10-fold outer loop was

rst formed by dividing the whole data randomly into ten equal parts.

or each fold, 90% of the samples entered a 5-fold inner loop for model

election and hyperparameter tuning, while the remaining 10% was set

side for final testing. This procedure was repeated 10 times to reduce

he inherent randomness of ML models, and the average results were
172
eported. Notably, all the reported results are on the test set, which was

ot seen during training and validation. 

Table 2 lists the hyperparameters, their search ranges, and their opti-

al values for each ML model. They include the general learning hyper-

arameters of the models (e.g., learning rate, input sampling method,

nd node splitting criteria) as well as those that determine model com-

lexity and control underfitting/overfitting (e.g., number of estimators,

aximum depth of the trees, pruning thresholds, and feature sampling

ate at each node). 

.7. Statistical analysis 

Our designed ML models were evaluated based on the receiving op-

rating characteristics (ROC) metric. The models were compared with

ach other using the area under ROC curve (AUC) index, also known as

-statistic, accuracy, sensitivity (true positive rate, recall), specificity,

nd precision. 

Paired t -tests were performed on the cross-validation results to inves-

igate whether the performances of different ML methods are superior

o those of the baseline LR. A one-way repeated measure, analysis of

ariance (ANOVA) was performed to compare the performances of the

hree ML models, followed by Tukey post hoc multiple comparisons. 

The Gini feature importance method [ 38 ] was used to rank the most

mportant predictive features. To investigate the effect of bPEP and bET

n the prediction performance, the same experiments were repeated by

xcluding the two parameters from the analysis. 

. Results 

.1. Cohort characteristics 

The study longitudinally followed 139 patients initially diagnosed

ith AMI. Among these, 87 participants succumbed to death, and 52

urvived until the final follow-up. 

.2. Model performance 

As depicted in Figure 1 , the average ROC curves demonstrated the

erformance of the developed models. Table 3 details their predic-

ive capabilities. Notably, the RF model exhibited the highest AUC of

.83. AdaBoost excelled in accuracy (82%), sensitivity (90%), specificity

69%), and precision (79%), surpassing other models in these metrics.
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Table 2 Hyperparameter tuning for ML algorithms 

Models Hyperparameters Search interval Optimum values 

RF Number of estimators (20, 50, 150, 200, 250, 300, 350, 

400, 500, 1000) 

250 

Max number of features ( “auto ”, “sqrt ”) “sqrt ”

Max depth (1, 3, 5, 6, 7, 12, 14, 16, 18) 3 

Min samples split (2, 4, 6, 8, 10, 12, 14) 10 

Min samples leaf (2, 3, 4, 5, 6, 7, 9, 12) 6 

Bootstrap (True, False) False 

Criterion ( “entropy ”, “gini ”) “entropy ”

AdaBoost Number of estimators (20, 50, 100, 300, 400, 500, 1000) 20 

Learning rate (0.001, 0.01, 0.05, 0.1, 0.5) 0.01 

XGBoost Number of estimators (20, 50, 100, 300, 400, 500, 1000) 100 

Max depth (1, 3, 5, 6, 7, 10) 1 

Eta (0.01, 0.03, 0.05, 0.1, 0.2) 0.1 

Min child weight (0.1, 0.3, 0.5) 0.3 

Max leaf nodes (4, 6, 9, 10) 9 

Subsample (0.1, 0.5, 0.8, 1) 0.5 

Gamma (0.01, 0.05, 0.1, 0.2, 0.5, 0.8) 0.1 

Alpha (0.001, 0.01, 0.1, 0.5) 0.5 

Max delta step (0, 1, 2, 5) 2 

Colsample by tree (0.5, 0.6, 0.8) 0.5 

Colsample by level (0.4, 0.6, 0.8) 0.6 

Colsample by node (0.2, 0.3, 0.5, 0.8) 0.3 

Lambda (0.01, 0.05, 0.1, 0.3, 0.5) 0.05 

RF: random forest, AdaBoost: adaptive boosting, XGBoost: extreme gradient boosting, ML: machine learning 

Table 3 MI mortality prediction performance of ensemble tree-based ML models 

Algorithms C-Statistic (AUC) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) 

RF 0.83 ± 0.10 ∗∗∗ 77 ± 9 ∗∗∗ 88 ± 11 ∗∗∗ 60 ± 20 ∗ 79 ± 9 ∗∗ 

AdaBoost 0.82 ± 0.11 ∗∗∗ 78 ± 10 ∗∗∗ 85 ± 13 ∗∗∗ 67 ± 20 ∗∗∗ 82 ± 9 ∗∗∗ 

XGBoost 0.80 ± 0.11 ∗ 76 ± 9 ∗∗∗ 82 ± 13 ∗ 67 ± 21 ∗∗∗ 81 ± 10 ∗∗∗ 

LR 0.77 ± 0.13 71 ± 10 81 ± 12 56 ± 23 76 ± 10 

P values were obtained using paired t -test in comparison to the baseline LR mode. 

RF: random forest, AdaBoost: adaptive boosting, XGBoost: extreme gradient boosting, LR: logistic regression, ML: machine learning. 
∗ Implies P values < 0.05. 
∗∗ Implies P values < 0.01. 
∗∗∗ Implies P values < 0.001. 

Table 4 Effect of bPEP and bET on the prediction performance of different ML models 

Experiments Algorithm C-statistic (AUC) Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) 

Experiment I 

(with all 

features) 

RF 0.83 ∗∗∗ 77 ∗∗∗ 88 ∗∗ 60 ∗∗∗ 79 ∗∗∗ 

AdaBoost 0.82 ∗∗∗ 78 ∗∗∗ 85 ∗∗∗ 67 82 

XGBoost 0.80 ∗ 76 82 67 81 

Experiment II 

(bET & bPEP 

excluded) 

RF 0.80 73 86 52 75 

AdaBoost 0.79 78 85 67 81 

XGBoost 0.78 77 83 67 81 

RF: random forest, AdaBoost: adaptive boosting, XGBoost: extreme gradient boosting, ML: machine learning. 
∗ Implies P values < 0.05. 
∗∗ Implies P values < 0.01. 
∗∗∗ Implies P values < 0.001. 
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ompared to the baseline LR, all ML models showed significant enhance-

ents across all classification metrics. 

.3. Variable importance 

Figure 2 presents the relative importance of the input variables in

F, AdaBoost, and XGBoost models. Age, BM, ABI, bET, and bPEP were

dentified as the most influential factors across all models. Conversely,

ariables such as diabetes, dyslipidemia, PCI, STEMI, and sex demon-

trated the least predictive power. 

.4. Effect of bPEP and bET 

Our analysis focused on assessing the impact of including bPEP and

ET in the predictive models. This involved retraining and testing the
173
lgorithms with and without these parameters, as detailed in Table 4

nd Supplementary Tables 1 and 2. 

In Experiment 1, which included all the features, the RF model ex-

ibited superior performance with an AUC of 0.83, an accuracy of 77%,

ensitivity of 88%, specificity of 60%, and precision of 79% (all with

 < 0.001). AdaBoost also performed well with an AUC of 0.82, accu-

acy of 78%, and precision of 82%, and XGBoost had an AUC of 0.80.

he training results for Experiment 1, as shown in Supplementary Table

, mirrored these findings, with RF and AdaBoost demonstrating high

UCs of (0.83 ± 0.11) and (0.82 ± 0.10), respectively, and XGBoost

howing a slightly lower AUC of (0.81 ± 0.12). 

In contrast, Experiment 2, where bPEP and bET were excluded,

howed a noticeable decline in the performance metrics for all models.

he RF model’s AUC decreased to 0.80, with the corresponding drops in

ccuracy, sensitivity, specificity, and precision. AdaBoost and XGBoost

lso showed reduced performance, as reflected in their AUCs of 0.79
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Figure 2. Variable importance for AMI mortality prediction. AMI: acute myocardial infarction. 
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nd 0.78, respectively. The training results for Experiment 2, detailed in

upplementary Table 2, consistently revealed lower performance met-

ics across all models compared to Experiment 1. 

The inclusion of bPEP and bET significantly improved the RF model’s

erformance across all classification metrics ( P < (0.001-0.01)). Ad-

Boost showed marked improvements in AUC, accuracy, and sensitivity

 P < 0.001), and XGBoost demonstrated a significant increase in AUC ( P

 0.05) when these parameters were included. These results underscore

he importance of bPEP and bET as predictive features in the models,

ontributing substantially to their accuracy and reliability in predicting

ortality in patients with AMI. 

. Discussion 

In this study, tree-based ML algorithms were developed for the mor-

ality prediction of patients diagnosed with AMI over a period of 14

ears. Our models received clinical and demographic information as

ell as two noninvasively measured systolic time intervals, bPEP and

ET. Among the different ML algorithms, ensemble tree-based ML algo-

ithms were selected as they perform drastically better than other algo-

ithms in most applications with limited available data [ 31 ]. Bagging

RF) and two boosting (AdaBoost and XGBoost) ensemble algorithms

ere considered in this study. 

It was observed that all the ML models significantly outperformed

he baseline LR algorithm. The best results were achieved using RF and

daBoost, where RF achieved the highest C-statistic (0.83) and sensi-

ivity (88%), and AdaBoost achieved the highest accuracy (47%), speci-

city (67%), and precision (82%). The AdaBoost classifier correctly pre-

icted 78 mortal patients out of 87 mortal cases, indicating that with a

panning of 70% of the study population, approximately 90% of mortal

ases were distinguished. RF closely followed AdaBoost by correctly pre-

icting 77 mortal patients out of the 87 mortal cases. XGBoost slightly

nderperformed compared to RF and AdaBoost. 

Additionally, it is crucial to highlight the consistency in model per-

ormance across training and testing sets, as indicated in Supplementary

ables 1 and 2 for Experiments 1 and 2. The minor differences observed

etween these sets underscore the reliability and generalizability of the

odels, suggesting their robustness in practical applications. 
174
The one-way ANOVA test was performed to find differences in the

erformances of the ML classifier. A meaningful difference in sensitiv-

ty and specificity between ML models was observed ( P < 0.05). The

ukey multiple comparison test was performed to find the superior mod-

ls. It was observed that RF performed significantly better than XG-

oost in terms of sensitivity, whereas AdaBoost and XGBoost performed

ignificantly better than RF in terms of specificity. Although AdaBoost

chieved higher mean sensitivity compared to RF (88% vs . 85%), it at-

ained a higher standard deviation of sensitivity (13% vs . 10%). A higher

ensitivity indicates a lower false negative rate, which is extremely im-

ortant in the prediction of mortality in patients with AMI. Given that

here was no significant difference between RF and AdaBoost models in

erms of sensitivity, both algorithms can be considered equally suitable

or our application. In terms of model complexity, AdaBoost is superior

o RF as it only requires 20 estimators compared to 250 estimators for

F. 

One of the objectives of this study was to examine the usefulness of

he recently introduced features, bPEP and bET, by using ML models in

he prediction of long-term mortality of patients with AMI. Pre-ejection

reiod is the time taken from the electrical depolarization of the left ven-

ricle to the beginning of ventricular ejection, i.e., when the aortic valve

pens. It is an index of myocardial contractility and beta ‐adrenergic

ympathetic control of the heart. Ejection time is the time taken from

he opening of the aortic valve to its closure and is conventionally used

o evaluate the ventricle function and contractibility. Heart impairments

sually prolong pre-ejection period and shorten ejection time [ 39 , 40 ]. 

The higher values of bPEP/bET are shown to have a high correlation

ith cardiovascular mortality [ 29 ]. bPEP and bET can be easily calcu-

ated from the morphology of noninvasively measured pulse waveform

nd electrogardiogram; therefore, they can be easily integrated into any

redictive model with minimum cost. According to Table 4 , adding bPEP

nd bET to our input feature set led to the highest prediction perfor-

ance, which implies their importance as new biomarkers of mortality

n patients with AMI. Moreover, by considering bPEP and bET, the RF

odel’s AUC, accuracy, sensitivity, specificity, and precision improved

y 3%, 4%, 2%, 8%, and 4%, respectively. For the AdaBoost model, AUC

nd precision improved by 3% and 1%, respectively, whereas other clas-

ification metrics remained unchanged. It can, therefore, be concluded

hat RF can better extract the additional predictive information from
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he new features owing to its more advanced architecture with a greater

umber of estimators. 

Analyzing the importance of features in an ML model is another way

f finding the most useful features for mortality prediction. Age, ABI,

MI, bET, bPEP, and hypertension were among the most important fac-

ors for mortality prediction. Most of these factors also had significant

ifferences between mortal and nonmortal cases ( Table 1 ). Our find-

ngs are in accordance with the results of previous studies that indicated

hat age was an important factor in predicting the overall mortality of

atients after AMI and heart failure [ 15 , 41 ]. 

This study was limited to the application of tree-based algorithms for

he prediction of long-term mortality of patients with AMI. ANN models,

specially those with deep architectures, have recently dominated the

omputational biology field. ANN-based algorithms can perform better

han other ML models when a large volume of training data are avail-

ble. This study was limited to the analysis of data collected from 139

ndividuals, and therefore, tree-based algorithms were selected to avoid

verfitting and achieve a more generalizable assessment. Future work

hould be directed toward the collection of a larger and more detailed

ata set where advanced deep learning models can be applied to predict

 more precise time of mortality in the future. Another limitation of this

tudy was the unbalanced sex distribution (36 women out of 139) while

eing a woman diagnosed with AMI is an important risk factor [ 42 ]. By

ollecting a balanced data set on all genders, the effect of sex on the

ortality of patients diagnosed with AMI can further be studied. 

In clinical practice, evidence-based risk assessment methods are inte-

ral to distinguishing heart disease patients requiring intensive care unit

evel attention. Prominent among these is the GRACE score, a widely

sed tool for stratifying risk in patients with ACS [ 8 ]. Given that AMI is

 subset of ACS, the GRACE score becomes pertinent for assessing the

ortality/MI risk post-AMI. This score is derived from various clinical

arameters, including age, heart rate, and systolic blood pressure. Its

fficacy in predicting short-term (6 months to 1 year) all-cause mor-

ality for AMI patients is well-established [ 43-47 ]. Another method, the

IMI score, is employed to estimate short-term mortality in patients with

I, incorporating factors such as age, coronary artery disease (CAD)

isk factors, and clinical history [ 9 ]. GRACE and TIMI scores are thus

ivotal in assessing short-term mortality risks. Although our study’s

ree-based algorithms offer insightful data, they are not directly com-

arable to traditional GRACE and TIMI scores due to the lack of cer-

ain factors in our data set necessary for these models. Nevertheless,

uture studies could explore a comparative analysis between these ad-

anced tree-based algorithms and traditional models such as GRACE and

IMI. 

Notably, the nested cross-validation method used in this study, al-

hough beneficial in reducing model overfitting, introduces minor de-

endencies between training and test sets. This interdependency slightly

ontravenes the paired t-test assumption of independence between folds,

resenting a methodological limitation [ 48 , 49 ]. Despite this, the impact

n our results is expected to be minimal, owing to the rigorous nature

f nested cross-validation [ 50 ]. 

. Conclusion 

This study investigated the all-cause long-term mortality prediction

ower of different ensemble tree-based ML algorithms using routinely

ollected clinical data as well as two new biomarkers, bPEP and bET.

t was found that ML models can accurately predict mortality with a

-statistic as high as 0.83, which is statistically superior to LR as the

aseline model. We also demonstrated that adding bPEP and bET to our

nput feature set improves the prediction results in most of the evalua-

ion metrics. Predicting the mortality status of patients diagnosed with

MI over a long period of 14 years after AMI was another critical feature

f this study. Our fast and easy-to-use ML models can assist medical staff

n prioritizing patients with AMI for intense monitoring and preventing

evere outcomes. Future research should be directed toward enhancing
175
he prediction performance by collecting a larger balanced data set and

sing more advanced ML algorithms such as ANNs. 
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