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Abstract: The modern energy landscape is undergoing a significant transformation towards cleaner,
decentralized energy sources. This change is driven by environmental and sustainability needs,
causing traditional centralized electric grids, which rely heavily on fossil fuels, to be replaced
by a diverse range of decentralized distributed energy resources. Virtual power plants (VPPs)
have surfaced as a flexible solution in this transition. A VPP’s primary role is to optimize energy
production, storage, and distribution by coordinating output from various connected sources. Relying
on advanced communication and control systems, a VPP can balance supply and demand in real
time, offer ancillary services, and support grid stability. However, aligning VPPs’ economic and
operational practices with broader environmental goals and policies is a challenging yet crucial aspect.
This article introduces a new VPP management and optimization algorithm designed for quick and
intelligent decision-making, aiming for the lowest levelized cost of energy (LCOE), minimum grid
technical losses, and greenhouse gas (GHG) emissions. The algorithm’s effectiveness is confirmed
using the IEEE 33-bus grid with 10 different distributed power generators. Simulation results show
the algorithm’s responsiveness to complex variables found in practical scenarios, finding the optimal
combination of available energy resources. This minimizes the LCOE, technical losses, and GHG
emissions in less than 0.08 s, achieving a total LCOE reduction of 16% from the baseline. This work
contributes to the development of intelligent energy management systems, aiding the transition
towards a more resilient and sustainable energy infrastructure.

Keywords: virtual power plant (VPP); MILP; optimization; LCOE minimization; distributed energy
resources; energy management

1. Introduction

Virtual power plants (VPPs) represent a groundbreaking approach in the management
and optimization of distributed energy resources (DERs) [1], enabling a more flexible,
resilient, and sustainable energy system [2]. VPPs aggregate various DERs, such as solar
panels, wind turbines, battery storage systems, and demand response assets, to operate
as a single power plant. This integration allows for the coordinated management of
these resources, optimizing their collective output and providing a range of grid services.
The concept of VPPs leverages advanced software and communication technologies to
monitor, control, and dispatch DERs in real time [3], thereby enhancing the efficiency and
reliability of the energy grid. The growing adoption of VPPs is driven by several factors,
such as the increasing use of renewable energy sources, advancements in energy storage
technology, and the need for greater grid flexibility to accommodate variable demand
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loads [4]. Traditional power plants, which depend on large, centralized generation units,
often struggle to respond quickly to changes in demand or supply. In contrast, VPPs
can rapidly adjust their output by aggregating and dispatching energy from multiple,
smaller sources. This capability is especially valuable in mitigating the intermittency of
renewable energy, like solar and wind, subject to weather-induced fluctuations. One of the
main benefits of VPPs is their ability to provide ancillary services to the grid [5]. These
services include frequency regulation, voltage support [6], and spinning reserve, which are
crucial for maintaining grid stability and reliability. VPPs can respond to grid imbalances
faster than traditional power plants by coordinating the output of diverse DERs. For
example, during high-demand periods or when there is a sudden drop in generation, VPPs
can quickly dispatch stored energy from batteries or reduce demand through demand
response mechanisms [7]. This rapid response helps prevent blackouts and ensures a
stable electricity supply. Moreover, VPPs improve the economic efficiency of the energy
system [8,9]. By optimizing the dispatch of DERs based on real-time market signals and
grid conditions, VPPs can reduce the overall cost of electricity. They enable small-scale
generators and consumers to participate in energy markets, allowing them to sell excess
energy or provide grid services, creating new revenue streams. This democratization of the
energy market can result in more competitive pricing and increased adoption of renewable
energy technologies. VPPs also contribute to reducing greenhouse gas emissions [10].
By maximizing the use of renewable energy sources and improving energy storage and
consumption efficiency, VPPs can significantly lower the energy sector’s carbon footprint.
Additionally, VPPs facilitate the integration of electric vehicles (EVs) into the grid [11],
using them as mobile storage units that provide additional grid flexibility and support.
This symbiotic relationship between EVs and VPPs can accelerate the transition to a low-
carbon energy system. Additionally, VPPs’ role in enhancing grid resilience is especially
relevant in the context of climate change, which is increasing the frequency and severity of
extreme weather events. VPPs can improve the grid’s ability to withstand and recover from
disruptions by providing decentralized and distributed power sources [12]. During natural
disasters, when centralized power plants and transmission lines may be compromised,
VPPs can continue to supply electricity from local sources, supporting critical infrastructure
and community resilience [13].

The development and deployment of VPPs are supported by advancements in digital
technologies like the Internet of Things (IoT), artificial intelligence (AI), and blockchain. IoT
devices enable real-time monitoring and control of DERs, ensuring optimal performance
and coordination. AI algorithms can analyze vast amounts of grid and DER data to predict
demand patterns, optimize energy dispatch, and identify potential issues before they esca-
late. Blockchain technology enhances the security and transparency of transactions within
the VPP ecosystem, facilitating trust and cooperation among participants [14]. Nevertheless,
despite VPPs’ numerous benefits, several challenges must be addressed to fully realize their
potential. One key challenge is the integration of diverse DERs with varying characteristics
and capabilities. Ensuring seamless communication and interoperability among these
resources requires standardized protocols and robust communication infrastructure. Also,
regulatory and market frameworks must evolve to accommodate VPPs’ unique features.
This includes creating fair compensation mechanisms for the services provided by VPPs
and removing barriers to market entry for small-scale participants [15]. Another significant
challenge is the cybersecurity of VPPs. The energy system’s increasing digitalization and
interconnectedness make it more vulnerable to cyberattacks [16]. Protecting VPPs from
potential threats requires stringent cybersecurity measures and continuous monitoring for
suspicious activities. Ensuring data privacy and securing communication channels are also
crucial for a resilient VPP infrastructure. VPPs’ role in enhancing grid resilience is especially
relevant in the context of climate change, which is increasing the frequency and severity of
extreme weather events. VPPs can improve the grid’s ability to withstand and recover from
disruptions by providing decentralized and distributed power sources. During natural
disasters, when centralized power plants and transmission lines may be compromised,
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VPPs can continue to supply electricity from local sources, supporting critical infrastructure
and community resilience.

Still, efficiently dispatching DERs to match supply with demand while minimizing
operational costs and losses remains one of the most crucial points in the VPP’s framework.
This requires advanced algorithms capable of real-time optimization based on market prices
and grid conditions. VPPs must prioritize the integration and optimal use of renewable
energy sources (RESs) like solar and wind. This involves balancing intermittency and
ensuring that renewables are utilized to their fullest potential, which requires advanced
forecasting and energy management systems. Optimizing the selection of energy sources
in the context of VPPs is imperative to achieving multiple objectives: minimizing costs,
enhancing the grid’s efficiency, and addressing environmental concerns. By strategically
integrating diverse and RESs, VPPs can reduce reliance on expensive and polluting fossil
fuels. This optimization allows for a more flexible and responsive energy system, capable
of dynamically adjusting to demand fluctuations and resource availability, thereby maxi-
mizing operational efficiency. Moreover, the prioritization of cleaner energy sources within
VPPs significantly mitigates GHG emissions, contributing to climate change mitigation
efforts and promoting sustainable development. Thus, careful selection and management
of energy sources in VPPs not only ensure economic benefits and energy security but also
align with broader environmental and social responsibilities.

This article introduces a novel optimization algorithm designed to enhance the se-
lection of energy sources within VPPs, effectively balancing supply and demand while
minimizing the LCOE. The proposed algorithm not only aims to reduce energy losses
but also focuses on decreasing GHG emissions, addressing critical environmental con-
cerns. By leveraging advanced computational techniques and real-time data analytics,
this optimization framework ensures efficient and sustainable energy distribution. The
implementation of this algorithm promises to bolster the economic viability of VPPs and
contribute significantly to the global transition towards cleaner and more resilient energy
systems. The algorithm’s most significant feature is its adaptability when the power de-
mand is lower than the available power generation capacity. It can intelligently disconnect
specific energy sources or shift energy storage systems to charging mode, while ensuring
the balance between the supply and demand, reducing energy costs, decreasing energy
losses, and minimizing GHG emissions, thus enhancing the overall grid’s efficiency and
sustainability. The presented optimization algorithm uses the MILP optimization technique,
a methodology used to solve problems that involve both continuous and discrete decision
variables. It combines linear programming (LP) and mixed integer (MI) programming to
handle a wide range of optimization problems.

The proposed algorithm was tested using the IEEE 33-bus grid model, integrating
multiple DERs at various nodes. Notably, the simulations considered several scenarios tak-
ing several factors into consideration such as the LCOE of the different power sources, the
cost of GHG emissions, the spinning reserve, and the demand load. Given the intermittent
nature of most DERs, rapidly changing electrical load demands, and the fluctuating electric
rates in modern dynamic markets, it is essential that our algorithm can adapt quickly to
these changes. It should provide the most up-to-date optimal DER combination for the
VPP as swiftly as possible. Therefore, a sensitivity analysis is performed to evaluate the al-
gorithm’s response time to rapid changes in load or market prices. Simulation results have
demonstrated that the proposed algorithm is capable of providing the optimal combination
of DERs every time the input values change within an average time of 0.07 s.

This article is structured to provide a comprehensive examination of the proposed
optimization algorithm for VPP management. Following this introduction, the Related
Works Section outlines existing research on VPP optimization and highlights the gaps
that this study addresses. The MILP Optimization Algorithm Section then details the
development and implementation of the optimization algorithm, including its mathematical
foundations and computational techniques. Finally, in the Results Analysis Section, the
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performance of the algorithm is evaluated through various simulations, with a focus on
balancing supply and demand, minimizing costs, and reducing greenhouse gas emissions.

2. Related Works

VPPs have emerged as a significant innovation in modern energy management, offer-
ing an advanced approach to aggregating and optimizing DERs. The latest advancements
in VPP management and optimization aim to tackle various challenges and barriers as-
sociated with their deployment, such as lowering the LCOE, minimizing technical losses,
reducing GHG emissions, providing the highest grid stability, and achieving the grid’s
resilience and security.

However, VPPs are data-driven systems. Data play a pivotal role in the effective
operation and optimization of VPPs. The integration and analysis of vast amounts of data
from various sources, such as smart meters, weather forecasts, market prices, and DERs,
are essential for making informed decisions. Accurate and real-time data enable precise
forecasting of energy production and consumption, which is critical for balancing supply
and demand. The work conducted in article [17] provides a unique perspective on the
importance in the context of VPPs, as well as recent real-world projects from around the
world, highlighting the most recent VPP practices. Additionally, data analytics help in
identifying patterns and trends, optimizing energy dispatch, and improving the overall
efficiency and reliability of the power system. Data also facilitate advanced predictive
maintenance of equipment, reducing downtime and operational costs. Furthermore, in
the context of regulatory compliance and sustainability, comprehensive data collection
and analysis are vital for monitoring and reporting greenhouse gas emissions and other
environmental impacts. Therefore, robust data management and analytics are fundamental
to the success and sustainability of VPPs, enabling them to operate more efficiently, cost-
effectively, and environmentally responsibly. Hence, the core of VPP management lies in
the optimization algorithms that coordinate the dispatch of DERs. Recent advancements
have seen the development of sophisticated algorithms utilizing artificial intelligence (AI)
and machine learning (ML). These algorithms can analyze vast amounts of data in real
time, enhancing the efficiency and responsiveness of VPPs. AI and ML algorithms can
forecast energy demand and supply more accurately by analyzing historical data, weather
patterns, and market signals. This predictive capability enables VPPs to balance supply and
demand more effectively. Additionally, advanced optimization techniques, like MILP and
dynamic programming, are used to solve complex scheduling problems in VPPs. These
techniques consider multiple objectives to provide optimal solutions. Article [18] explores
the effects of renewable production sources and storage devices on an electrical grid using
an MILP optimization model to enhance the economic profitability of a VPP. Similarly,
the work conducted in [19] uses an MILP-based algorithm that optimizes the daily profit
of a VPP. On the other side, other researchers have adopted non-linear methodologies to
deal with the intermittent and dynamic nature of VPPs. The authors in article [20] have
adopted the information gap decision theory (IGDT) methodology to deal with the high
level of uncertainties associated with VPPs. The IGDT is a powerful framework for making
decisions under severe uncertainty, where the probability distributions of uncertainties
are not well defined or are completely unknown. In the context of VPPs, IGDT can be
particularly beneficial given the inherent uncertainties in renewable energy generation,
market prices, and load demands. IGDT and MILP can be synergistically integrated
to optimize the management of VPPs by addressing both uncertainty and operational
efficiency. IGDT provides a robust framework for decision-making under uncertainty,
allowing for the consideration of various scenarios and the management of risks associated
with unpredictable factors such as fluctuating energy demands or supply disruptions.
On the other hand, MILP offers a structured approach to optimize complex systems by
formulating the problem as a set of linear equations and inequalities, which can efficiently
handle operational constraints and objectives. By layering IGDT on top of MILP, VPP
management can be optimized to account for the uncertainty in input parameters, such
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as renewable energy availability or market prices, while still adhering to operational
constraints and maximizing performance metrics. This combined approach enables the
development of robust strategies that balance risk and efficiency, ensuring that VPPs can
effectively respond to dynamic conditions and optimize their performance across various
scenarios. However, the subject article does not address the issue of uncertainty in input
parameters but focuses solely on providing an optimization algorithm aimed at enhancing
operational efficiency. By concentrating on this aspect, the article presents a method for
optimizing the performance of VPPs based on fixed, predetermined inputs rather than
exploring how variations and uncertainties in these inputs might affect the optimization
process.

As the field evolved, heuristic and metaheuristic algorithms, including genetic al-
gorithms (GAs) and particle swarm optimization (PSO), were introduced to tackle the
computational complexity and scalability issues inherent in large-scale VPP optimization
problems. In article [21], the authors use a GA to solve the operation issues resulting
from the interaction of the VPP and the distribution network. Also, article [22] uses a
genetic algorithm to manage the charge and discharge of EVs to enhance the economic
and technical performance of a VPP. The authors of article [23] propose an accelerated
particle swarm optimization (PSO) for optimal dispatch of renewable energy sources in a
VPP context.

Stochastic and robust optimization methods have also gained prominence, addressing
the fluctuations in renewable energy generation and market conditions by incorporating
probabilistic and worst-case scenario analyses. The work presented in article [24] offers
a multistage stochastic programming approach to model the trading of a VPP, and in
article [25] the authors use a bi-level stochastic scheduling optimization model that com-
bines day-ahead and real-time scheduling to mitigate the impact of uncertainty on VPP
operations and reduce system power shortfall costs. On the other hand, the authors in
article [26] apply a robust optimization method to maximize the profit of the VPP in the
energy market and similarly in article [27] also a robust optimization method is applied to
achieve an efficient VPP bidding technique in pool-based electricity markets. Additionally,
hybrid approaches that combine multiple optimization techniques have been explored to
leverage their respective strengths, resulting in more robust and efficient VPP management
strategies, as applied in article [28].

Furthermore, the application of big data analytics and digital twins (DTs) has facilitated
enhanced decision-making through detailed simulations and real-time data processing. The
efficient management and analysis of vast amounts of data generated by VPPs are crucial
for optimizing their performance. Leveraging big data analytics enables the processing
and analysis of large datasets to extract valuable insights. Cloud computing provides
scalable storage and processing capabilities, allowing VPPs to handle large volumes of data
efficiently. The work presented in [29] proposes the use of DTs to address VPPs’ restrictions
and barriers, as well as to improve their performance in a prosumer centric framework,
focusing on dynamic state estimation, real-time control, and optimization.

In contrast to conventional AI techniques, recent research explores the potential of
quantum computing for optimizing the operational management of VPPs, offering new
avenues for addressing complex optimization problems with enhanced computational
power and efficiency. The work conducted in [30] introduces a novel stochastic framework
using the quantum teaching–learning-based optimization (QTLBO) algorithm for optimiz-
ing energy flow in microgrids, demonstrating its superior performance over traditional
metaheuristic algorithms by addressing seasonal variations and uncertainties in distributed
energy resources with improved accuracy and convergence. Similarly, article [31] presents
a hybrid policy-based reinforcement learning (HPRL) approach for adaptive energy man-
agement in island energy systems with transmission constraints, using an island energy
hub (IEH) model to optimize energy utilization and ensure supply, and demonstrates the
effectiveness of this approach through numerical simulations.
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Improving the accuracy of demand and supply forecasts enhances the efficiency and
reliability of VPPs. AI algorithms, including neural networks and deep learning, can
analyze historical data and external factors to provide highly accurate forecasts. Advanced
weather prediction models improve the accuracy of renewable energy forecasts, particularly
for solar and wind power. Therefore, artificial neural networks (ANNs) have become an
integral part of optimization models for VPPs due to their ability to handle complex, non-
linear relationships and process large volumes of data efficiently. ANNs are particularly
effective in forecasting, optimization, and real-time management within VPP frameworks.
In article [32], the authors present an ANN model for optimal scheduling and improving the
cost effectiveness of a VPP. Moreover, real-time monitoring and control of DERs is also vital
for the efficient operation of VPPs. Recent advancements in the Internet of Things (IoT) and
communication technologies have significantly enhanced the real-time capabilities of VPPs.
IoT devices and sensor networks provide real-time data on the performance and status of
DERs. These data are essential for making informed decisions about resource allocation
and dispatch. Edge computing allows data processing to occur closer to the source of data
generation, enabling faster decision-making and enhancing the responsiveness of VPPs.
The importance of IoT-based real-time management for VPPs is highlighted in article [33].

The future of VPPs is shaped by ongoing innovations and emerging trends that
promise to enhance their capabilities and address existing challenges. Energy storage
systems play a critical role in the functionality of VPPs [34] by storing excess energy dur-
ing periods of low demand and releasing it during peak demand. Recent advancements
in battery technology and energy management systems have significantly improved the
efficiency and cost-effectiveness of ESS. Innovations in battery technology, like solid-state
batteries and advanced lithium-ion batteries, offer higher energy density, longer lifespan,
and improved safety compared to traditional batteries. Advanced energy management
systems (EMSs) optimize the charge and discharge cycles of batteries, ensuring that en-
ergy storage is used efficiently. In article [35], the authors propose a GA-based smart
energy resources allocation algorithm to account for depreciation of batteries resulting from
discharges in the context of a VPP. Likewise, EVs are increasingly being integrated into
VPPs, providing additional flexibility and storage capacity. V2G technology allows EVs
to act as mobile energy storage units, providing power to the grid during peak demand
and charging during low demand as highlighted in article [36]. Smart charging systems
optimize the charging and discharging of EVs based on grid conditions and market sig-
nals [37]. Blockchain technology offers a decentralized and transparent platform for energy
trading, enhancing the efficiency and security of VPP operations. Blockchain enables P2P
energy trading, allowing consumers to buy and sell energy directly with each other. Smart
contracts automate and enforce agreements between participants, ensuring transparency
and reducing administrative overhead [38].

The latest advancements in VPP management and optimization are transforming the
energy landscape, offering innovative solutions to mitigate the challenges and barriers as-
sociated with their deployment. By leveraging advanced algorithms, real-time monitoring,
enhanced energy storage, supportive policies, and emerging technologies, VPPs are poised
to lower the levelized cost of energy, minimize technical losses, and reduce greenhouse
gas emissions. These advancements not only enhance the economic viability of VPPs but
also contribute to a more sustainable and resilient energy future. As the energy sector
continues to evolve, VPPs will play an increasingly critical role in integrating renewable
energy, improving grid stability, and empowering consumers to participate actively in the
energy market. Ongoing innovation and collaboration among stakeholders will ensure that
VPPs remain at the forefront of the transition to a cleaner and more efficient energy system.
Building on this perspective, the MILP-based VPP optimization algorithm, presented in
this article, makes a significant contribution by effectively minimizing the LCOE while
simultaneously accounting for carbon costs and grid technical losses. By integrating carbon
pricing into the optimization model, the algorithm ensures that the economic implications
of greenhouse gas emissions are considered, promoting environmentally sustainable energy
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production. Hence, the proposed MILP algorithm developed for minimizing the LCOE of a
VPP incorporates several critical technical indicators to achieve its objective. Firstly, the
algorithm meticulously accounts for the technical losses associated with the integration of
DERs, ensuring that these losses are minimized to enhance overall system efficiency. This
is achieved by optimizing the scheduling and dispatch of DERs to reduce energy waste
and improve the reliability of energy delivery. Therefore, the cost of the total technical
losses of the grid are included in the calculation of the overall LCOE. By incorporating
technical losses into the grid’s operational costs, the algorithm provides a more accurate
reflection of the true advantages of energy distribution, leading to more efficient resource
allocation and energy dispatch. Additionally, the algorithm evaluates the cost implications
of GHG emissions produced by various energy sources, integrating these costs into the
optimization process to ensure that the environmental impact is considered alongside
economic factors. By including both the reduction in technical losses and the cost of GHG
emissions, the MILP algorithm provides a comprehensive approach to minimizing LCOE,
balancing operational efficiency with environmental and economic sustainability. This
multi-faceted approach ensures that the VPP operates at an optimal level while addressing
both technical and ecological concerns. The algorithm’s ability to balance these complex
factors underscores its potential to transform VPP management, paving the way for more
sustainable and cost-effective energy systems.

3. MILP Optimization Algorithm

In order to provide an optimized cost-effective and efficient energy management for
VPPs, the MILP optimization technique has been used. MILP is a mathematical optimiza-
tion technique used to solve problems involving both continuous and discrete decision
variables. The MILP algorithm is based on two main mathematical functions. The first
function is the mixed integer (MI) element, and the second one is the linear programming
function. The MI element refers to the inclusion of integer or binary decision variables,
which allows for the modelling of discrete decisions within the optimization problem.
The LP function is a mathematical method used to optimize a linear objective function
subject to linear constraints. The key characteristics of LP are that the objective function and
constraints are linear equations or inequalities, and the decision variables are continuous,
meaning they can take any real value within a specified range. MILP algorithms are de-
signed to find the best possible solution that satisfies all constraints, ensuring optimality in
decision-making. MILP is widely used in fields such as energy management and schedul-
ing, supply chain and logistics optimization, financial planning and portfolio optimization,
and manufacturing and production planning. The objective function in MILP is a linear
function that needs to be maximized or minimized. It typically takes the following form:

Minx(or Maxx)cTx (1)

where c is a vector of coefficients, and x is a vector of decision variables that can either be
continuous or discrete. Vector c contains coefficients that represent the contribution of each
decision variable to the objective function, such as cost, profit, or resource usage. Vector
x consists of the decision variables, which are the elements that the optimization process
will determine. These variables can be continuous, integer, or binary. Additionally, the
constraints of the MILP model are expressed in the following form:

Ax ≤ b (2)

where A is a matrix of constraint coefficients, x is the vector of decision variables, and b is
a vector of constants representing the right-hand side of the constraints. The constraints
ensure that the solution adheres to various restrictions such as resource limits, capacity
constraints, or operational bounds. Through this formulation, the MILP model aims to find
the optimal values for the decision variables that satisfy all constraints while optimizing
the objective function.
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In the context of optimizing VPPs, MILP is used to optimize the selection of energy
sources and their operation schedules to achieve objectives like minimizing the LCOE,
balancing supply and demand, reducing losses, and decreasing GHG emissions. The vector
of coefficients includes the incurred costs of energy, GHG emissions, and technical losses,
while the constraints involve load balancing, maximum emissions value in kg of CO2
per kWh, and maximum accepted total LCOE. Hence, in our case the MILP is used to
minimize the total cost of power supply of the VPP by minimizing the total LCOE of the
connected DERs, minimizing the cost of emissions resulting from penalties paid for CO2e
emissions, and minimizing the cost of technical losses. Hence, the MILP formula is given
by Equation (3):

Min Cost f unction = φLCOE + φGHG + φLosses (3)

where φLCOE is the combined LCOE of all the power sources connected to the grid including
both the utility power generators and the DERs, φGHG is the combined cost of GHG
emissions from the different power sources, and φLosses is the combined cost incurred by
the grid’s technical losses.

The first step of the MILP algorithm is to formulate the problem as a mathematical
optimization model. This involves defining the decision variables, the objective function to
be minimized, and the constraints that the solution must satisfy. Thus, the first item of the
MILP equation is the combined LCOE of the different considered generators. The LCOE
is a measure of the average net present cost of electricity generation for a generator over
its lifetime. It is a metric used to assess the average cost of producing electricity from a
specific power source and it accounts for all the costs associated with the project, including
initial capital costs, ongoing operation and maintenance costs, fuel costs, and financing
costs. The LCOE is typically expressed in monetary terms per unit of electricity generated
($/kWh). When combining different energy sources to form a composite or blended LCOE,
it is essential to consider the proportional contributions of each energy source to the total
energy mix. Thus, the combine LCOE ( φLCOE) is provided by Equation (4):

φLCOE =
∑N

i=1 xi × LCOEi × Pi

∑N
i=1 xi × Pi

(4)

where LCOEi is the levelized cost of energy of the power source i, Pi is the power in kW
provided by the power source i in kW, xi is a binary decision variable (equal to 1 if the
power source is selected to be connected to the grid and 0 if not), and N is the set of
available power sources to select among and optimize the VPP.

The second item of the MILP equation is the combined cost of GHG emissions. The cost
of GHG emissions rights, also known as carbon pricing, can vary significantly depending
on the specific market, regulatory framework, and geographical region. Carbon pricing,
usually expressed in dollars per tonne of CO2 ($/t CO2), is a financial measure used to
assign a cost to the emission of one metric tonne of carbon dioxide CO2 into the atmosphere.
This pricing mechanism is a key tool in climate policy aimed at reducing greenhouse gas
emissions by making it more expensive to emit CO2. In the context of a VPP that aggregates
multiple energy sources, calculating the combined carbon pricing involves determining
the weighted average carbon cost based on the contributions and carbon emissions of each
energy source, as presented in Equation (5):

φGHG = ∂ × ∑N
i=1 xi × GHGi × Pi

∑N
i=1 xi × Pi

(5)

where GHGi is the CO2e emissions of the power source i in kg of CO2e/kWh, and ∂ is
the carbon price of the power source i in $/kg of CO2e.

Finally, the last element of the MILP equation is to determine the cost of the technical
losses in the grid. Technical losses refer to the energy losses that occur in the process of
transmitting and distributing electricity from power plants to end-users. These losses are
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inherent to the physical and electrical properties of the transmission and distribution infras-
tructure and are different from non-technical losses, which result from theft, billing errors,
or other non-physical causes. Technical losses in the electrical grid, such as transmission
and distribution losses, are not typically included in the calculation of the LCOE. In order to
account for the technical losses cost, first it is fundamental to determine the total technical
losses in the grid, then calculate the cost associated with technical losses, which involves
multiplying the amount of lost energy by the cost of generating that energy, and finally
distribute the cost of technical losses among consumers based on their consumption. How-
ever, the trickiest part of the procedure is to calculate the grid’s technical losses. Usually,
calculating the technical losses involves sophisticated and time-consuming techniques such
as power flow analysis. Nevertheless, for the proper performance of our optimization
algorithm, it is very important to rapidly calculate these losses. For this reason, we used
the dynamic varying coefficient regression model, presented in article [39], to analytically
estimate the grid’s technical losses. The aforementioned model is given by Equation (6):

y = fa(Li, Zi)·x2
i + fb(Li, Zi)·xi + c (6)

where
fa(Li, Zi) =

Li
(642.896 − 45.0559 × Zi)

(7)

fb(Li, Zi) = 0.001472 × Zi × Li (8)

c = Initial losses o f the grid (9)

Therefore, by using Equation (6) to calculate the contribution of each DER to the
reduction in the grid’s technical losses, the cost of the technical losses (φLosses) can be
calculated using Equation (10):

φLosses = φLCOE ×

[
c − ∑N

i=1 (c − yi)× xi

]
Load

(10)

where the contribution of DER to the reduction in grid technical losses is given by (c − yi),
the total reduction in grid technical losses from all connected DERs is given by c−∑(c − yi ),

and the distribution of the cost of technical losses over the load is given by [c−∑N
i=1 (c−yi)×xi]

Load .
The second step of the MILP algorithm, after formulating the problem as a mathemat-

ical optimization model, involves defining the constraints. The first constraint equation
balances energy production with load demand, factoring in grid losses and the spinning
reserve when necessary for improved grid stability. Therefore, every combination of avail-
able connected resources, including both utility grid power generation and DERs, must
satisfy Equation (11):

∑ (xi × Pi) ≥ Load + Losses + Spinning Reserve (11)

In order to ensure that environmental objectives are met alongside economic and
operational goals, a second constraint equation (Equation (12)) is added to the algorithm to
make sure that the selected combination of power sources (grid and DERs) do not exceed
the threshold set for GHGMax.

∑ xi × GHGi × Pi

∑ xi × Pi
≤ GHGMax (12)

Similarly, in order to ensure that the selected mix of DERs remains cost-effective, a
third constraint equation (Equation (13)) is added to the algorithm. LCOEMax is a value set
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by the grid operator and guarantees that the optimized mix of DERs meets the economic
limitations. For simulation purposes, the LCOEMax value is set to 0.21 $/kWh.

∑ xi × LCOEi × Pi

∑ xi × Pi
≤ LCOEMax (13)

In a VPP, the power mix includes both grid power and DERs. Hence, with the aim
to simulate a real-world scenario, when optimizing the DER selection within the VPP, we
extended the MILP model to incorporate both sources while adhering to constraints on
CO2 emissions and LCOE. Thus, the MILP algorithm explores combinations that include
the grid alone, a mix of the grid and DERs, and only DERs if they can satisfy the total load
demand without additional power from the grid. However, when a mix of the grid and
DERs is considered, the power provided by the grid must satisfy Equation (14):

Pgrid = Load − ∑ xi × Pi (14)

In the context of optimizing VPPs using MILP, balancing multiple objectives inherently
involves navigating trade-offs between conflicting goals. One of the primary trade-offs is
between minimizing the LCOE and reducing greenhouse gas (GHG) emissions. Achieving
a lower LCOE often involves utilizing energy sources that may have higher emissions
but are cost-effective, while prioritizing lower emissions might necessitate investing in
more expensive, cleaner technologies. Additionally, optimizing operational efficiency by
reducing technical losses may require adjusting energy dispatch and storage strategies,
which could impact both the economic performance and the reliability of the VPP. The
MILP model addresses these trade-offs by employing objective functions and constraints
that reflect the relative importance of each goal, allowing for a balanced solution. This
process involves iterative adjustments to the model parameters and constraints, which
are conducted by the grid operator and provided as inputs to the MILP algorithm to find
an optimal compromise that meets the predefined performance criteria. By methodically
setting the constraints, like LCOEMax, GHGMax, and the spinning reserve, the MILP frame-
work facilitates informed decision-making that aligns with the strategic objectives of the
VPP, ensuring that the trade-offs between cost, efficiency, and environmental impact are
effectively managed.

The overall process of the applied MILP algorithm is summarized in the flow diagram
shown in Figure 1. In theory, optimization using the MILP technique can result in one of
three outcomes: an optimal solution found, an infeasible model, or an unbounded objective.
If an optimal solution is found, it means the algorithm has identified the best possible
values for the decision variables that satisfy all constraints and maximize or minimize
the objective function. If the model is infeasible, it indicates that no solution exists that
meets all the given constraints, implying a contradiction or overly restrictive conditions.
Finally, if the objective is unbounded, the algorithm determines that the objective function
can be increased indefinitely (for maximization problems) or decreased indefinitely (for
minimization problems) without violating any constraints, suggesting that the model
lacks necessary bounds or constraints to limit the solution space. The convergence of
an MILP algorithm to an optimal value is highly dependent on the set of constraints
defined in the model. Constraints shape the feasible region, dictating which solutions are
permissible within the problem’s context. Tight or well-defined constraints can guide the
algorithm efficiently toward the optimal solution, reducing the search space and improving
convergence speed. Conversely, poorly defined constraints can lead to a larger feasible
region, making it more challenging for the algorithm to navigate and identify the optimal
solution. Infeasible or conflicting constraints can prevent convergence entirely, while
unbounded constraints can lead to an unbounded objective.
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In our case, as long as PGrid is infinite, LCOEMax ≥ LCOEGrid, and the environmental
constraint exceeds the grid’s emissions limit, the model will always converge to a value.
This is because one combination, for sure, can meet these conditions—connecting all the
load to the grid without relying on any DER.

4. Simulation Results

The VPP MILP-based optimization algorithm was built and tested using an Intel
i7-7500U, 2.70 GHz, dual-core CPU with 16 GB RAM, operating on Windows 10. The
model was tested using the IEEE 33-bus grid model with 10 different DERs. The algorithm
was programmed and tested using both Microsoft 365 Excel and Matlab/Simulink R2022a
version.

The IEEE 33-bus system is a standard test case in power system engineering used
for studying the distribution network. This test case is commonly utilized for various
purposes, such as the analysis of power flow, voltage stability, and optimization algorithms
for distribution networks. The IEEE 33-bus grid model data are provided in Appendix A.
The VPP is formed by 10 DERs, one wind turbine, four diesel generators, and five solar
photovoltaic (PV) systems. The 10 DER generators’ connection points to the IEEE 33-bus
grid, as well as the nominal power of each generator, are detailed in Table 1.



Energies 2024, 17, 4075 12 of 23

Table 1. DERs connected to the IEEE 33-bus model.

Bus
Number

Load
Connected to
the Bus (kW)

Power
Generation

Capacity
(kW)

DER Int. (%) Type

DER Contri-
bution to

Tech. Losses
Reduction

(kW)

LCOE
($/kWh)

GHG (kg of
CO2e/kWh

0 0 ∞ 0 Grid 0 0.18 0.7
3 120 84 0.7 Wind 3 0.09 0
7 200 140 0.7 PV 13.1 0.06 0
13 120 102 0.85 Gen 13.2 0.22 0.3
18 90 27 0.3 PV 0.3 0.06 0
21 90 63 0.7 PV 4.1 0.06 0
23 420 399 0.95 Gen 15.3 0.22 0.3
26 60 42 0.7 PV 2.1 0.06 0
29 200 80 0.4 PV 7.6 0.06 0
30 150 105 0.7 Gen 12 0.22 0.3
31 210 147 0.7 Gen 17.7 0.22 0.3

In the simulation study, key variables and constraints are defined to assess the perfor-
mance and optimization of the VPP within the IEEE 33-bus system. These variables include
the power output from each DER and the power imported from the grid, as well as the
total demand load and the required spinning reserve. They also consider the LCOE per
unit of power generation and the environmental impact of each source, measured through
the CO2 emissions variables for each DER and grid power. By adjusting these variables
and constraints, the simulation seeks to test the performance of the MILP algorithm. This
algorithm aims to optimize the DER selection and operation strategy to reduce costs, satisfy
demand, and comply with environmental regulations. The baseline model is considered as
the scenario where all available DERs are fully used, and the grid provides the remaining
necessary power. In this baseline scenario, all decision variables are set to 1. For this
purpose, we have defined the following scenarios:

• Scenario #1: This scenario assumes a total demand load of 3926 kW and no spinning
reserve is assumed to be provided by the VPP. The LCOEGrid is set at 0.18 $/kWh,
LCOEPV at 0.06 $/kWh, LCOEWind at 0.09 $/kWh, and LCOEGen at 0.22 $/kWh.
Additionally, it presumes that both the wind turbine and solar PV produce no GHG
emissions. However, the utility grid’s emissions are set at 0.7 kg of CO2e/kWh, and the
diesel generators’ emissions are at 0.3 kg of CO2e/kWh. The carbon price is estimated
to be $0.01/kg CO2e. In terms of constraints, GHGMax is set to 0.65 kg of CO2e/kWh.
LCOEMax is set to 0.21 $/kWh;

• Scenario #2: This scenario maintains the same conditions as scenario #1, with the sole
difference being a demand load that is half of scenario #1’s load;

• Scenario #3: This scenario maintains the same conditions as scenario #1, with the sole
difference being an LCOEGrid equal to 0.24 $/kWh and LCOEMax is set to 0.25 $/kWh;

• Scenario #4: This scenario maintains the same conditions as scenario #1, with the
addition of 25% spinning reserve to be provided by the VPP;

• Scenario #5: This scenario maintains the same conditions as scenario #1, with the sole
difference being a demand load that is one quarter of scenario #1’s load;

• Scenario #6: This scenario maintains the same conditions as scenario #5, with the sole
difference being an LCOEGrid equal to 0.24 $/kWh.

The calculated LCOE (the value of the objective function) of all feasible integer so-
lutions which satisfy all the constraints for scenarios #1 and #2 is depicted in Figures 2
and 3. From the simulations, it was observed that 831 (out of 211 possible combinations)
feasible integer solutions adhered to the constraints of the MILP algorithm for scenario #1
and 1024 for scenario #2. Figures 2 and 3 also illustrate the output of the MILP function
(orange curve), showing the model’s convergence toward the optimal minimum LCOE.
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Both calculated LCOE of valid combination outputs and the MILP function output are
shown on the same graph to validate the model’s convergence towards the optimal value.
The simulation times for both scenarios were 0.075 and 0.078 s, respectively. Both simu-
lations indicated that the same combination of DERs resulted in the lowest total LCOE.
The selected DERs are displayed in Tables 2 and 3. The total LCOE in scenario #1 was
0.181243 $/kWh, 2.5% lower than the baseline model LCOE. However, when the demand
load was halved, this LCOE dropped to 0.167197 $/kWh, nevertheless achieving 6.7%
reduction from the baseline model LCOE. In the first scenario, the power supplied by the
utility grid was 3490 kW, while in the second scenario, Pgrid equaled 1527 kW. Moreover,
diesel generators were excluded from the selected DERs in both scenarios. This is due
to the total LCOE of the generators being higher than the grid’s LCOE. The lower GHG
emissions and the contribution to decreasing the grid’s technical losses from the diesel
generators were insufficient to bridge this gap.
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Table 2. Scenario #1 with a total load of 3926 kW and no spinning reserve.

Scenario #1

LCOE_Grid 0.18 $/kWh LCOE_PV 0.06 $/kWh
LCOE_W 0.09 $/kWh LCOE_Gen 0.22 $/kWh

GHG_Grid 0.7 kg CO2e/kWh GHG_PV 0 kg CO2e/kWh
GHG_Gen 0.3 kg CO2e/kWh GHG_Wind 0 kg CO2e/kWh
Grid Power 3490 kW P_CO2e 0.01 $/kg CO2e
Total Load 3926 kW Spinning Res. 0%

Total LCOE 0.181243 $/kWh
Total GHG emissions 0.628 kg CO2e/kWh

Baseline LCOE 0.185907 $/kWh
Bus_3 (Wind) 84 kW Bus_23 (Wind) 0 kW

Bus_7 (PV) 140 kW Bus_26 (PV) 42 kW
Bus_13 (Gen) 0 kW Bus_29 (Gen) 80 kW
Bus_18 (PV) 27 kW Bus_30 (PV) 0 kW
Bus_21 (PV) 63 kW Bus_31 (Gen) 0 kW

Table 3. Scenario #2 with a total load of 1963 kW and no spinning reserve.

Scenario #2

LCOE_Grid 0.18 $/kWh LCOE_PV 0.06 $/kWh
LCOE_W 0.09 $/kWh LCOE_Gen 0.22 $/kWh

GHG_Grid 0.7 kg CO2e/kWh GHG_PV 0 kg CO2e/kWh
GHG_Gen 0.3 kg CO2e/kWh GHG_Wind 0 kg CO2e/kWh
Grid Power 1527 kW P_CO2e 0.01 $/kg CO2e
Total Load 1963 kW Spinning Res. 0%

Total LCOE 0.167197 $/kWh
Total GHG emissions 0.556 kg CO2e/kWh

Baseline LCOE 0.179193 $/kWh
Bus_3 (Wind) 84 kW Bus_23 (Wind) 0 kW

Bus_7 (PV) 140 kW Bus_26 (PV) 42 kW
Bus_13 (Gen) 0 kW Bus_29 (Gen) 80 kW
Bus_18 (PV) 27 kW Bus_30 (PV) 0 kW
Bus_21 (PV) 63 kW Bus_31 (Gen) 0 kW

Scenario #3 demonstrates that when the LCOE provided by the grid increases to
0.24 $/kWh, compared to a diesel generator LCOE at 0.22 $/kWh, the optimization algo-
rithm prioritizes extracting maximum power from diesel generators and other DERs. It
also minimizes the power provided by the grid (Pgrid = 2737 kW). In this scenario, the total
LCOE equals 0.229042 $/kWh (Table 4), which is the same as the baseline model. The
LCOEs of the different feasible integer solutions are shown in Figure 4.

Table 4. Scenario #3 with a load of 3926 kW and no spinning reserve, with LCOEGrid = 0.24 $/kWh
and LCOEMax = 0.25 $/kWh.

Scenario #3

LCOE_Grid 0.24 $/kWh LCOE_PV 0.06 $/kWh
LCOE_W 0.09 $/kWh LCOE_Gen 0.22 $/kWh

GHG_Grid 0.7 kg CO2e/kWh GHG_PV 0 kg CO2e/kWh
GHG_Gen 0.3 kg CO2e/kWh GHG_Wind 0 kg CO2e/kWh
Grid Power 2737 kW P_CO2e 0.01 $/kg CO2e
Total Load 3926 kW Spinning Res. 0%

Total LCOE 0.229042 $/kWh
Total GHG emissions 0.545 kg COe/kWh

Baseline LCOE 0.229042 $/kWh
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Table 4. Cont.

Scenario #3

Bus_3 (Wind) 84 kW Bus_23 (Wind) 399 kW
Bus_7 (PV) 140 kW Bus_26 (PV) 42 kW

Bus_13 (Gen) 102 kW Bus_29 (Gen) 80 kW
Bus_18 (PV) 27 kW Bus_30 (PV) 105 kW
Bus_21 (PV) 63 kW Bus_31 (Gen) 147 kW
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Scenario #4 examines the effect of adding a spinning reserve to the energy mix pro-
vided by the DERs. The results show that adding a spinning reserve incurs a minimal
increase in the total LCOE, leading to an LCOE of 0.182487 $/kWh (Table 5), 2% lower
than the baseline model. This is compared to 0.181243 $/kWh under the same conditions,
but without a spinning reserve (scenario #1). The simulation for the 695 feasible integer
solutions is 0.07506 s, as shown in Figure 5.

Table 5. Scenario #4 with a total load of 3926 kW and 25% spinning reserve.

Scenario #4

LCOE_Grid 0.18 $/kWh LCOE_PV 0.06 $/kWh
LCOE_W 0.09 $/kWh LCOE_Gen 0.22 $/kWh

GHG_Grid 0.7 kg CO2e/kWh GHG_PV 0 kg CO2e/kWh
GHG_Gen 0.3 kg CO2e/kWh GHG_Wind 0 kg CO2e/kWh
Grid Power 4471 kW P_CO2e 0.01 $/kg CO2e
Total Load 3926 kW Spinning Res. 25%

Total LCOE 0.182487 $/kWh
Total GHG emissions 0.637 kg COe/kWh

Baseline LCOE 0.186151 $/kWh
Bus_3 (Wind) 84 kW Bus_23 (Wind) 0 kW

Bus_7 (PV) 140 kW Bus_26 (PV) 42 kW
Bus_13 (Gen) 0 kW Bus_29 (Gen) 80 kW
Bus_18 (PV) 27 kW Bus_30 (PV) 0 kW
Bus_21 (PV) 63 kW Bus_31 (Gen) 0 kW
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Scenario #5 explores the case of a demand load reduced to 25% of the baseline load.
As shown in Table 6, the total LCOE decreases to 0.13913 $/kWh. This drop results from
the DERs with low LCOE, like solar PV systems and wind turbines, serving a higher share
of the load (around 40%). Consequently, the utility grid’s share decreases to 546 kW. The
MILP algorithm achieved an LCOE 16% lower than the baseline model.

Table 6. Scenario #5 with a total load of 982 kW and no spinning reserve.

Scenario #5

LCOE_Grid 0.18 $/kWh LCOE_PV 0.06 $/kWh
LCOE_W 0.09 $/kWh LCOE_Gen 0.22 $/kWh

GHG_Grid 0.7 kg CO2e/kWh GHG_PV 0 kg CO2e/kWh
GHG_Gen 0.3 kg CO2e/kWh GHG_Wind 0 kg CO2e/kWh
Grid Power 546 kW P_CO2e 0.01 $/kg CO2e
Total Load 982 kW Spinning Res. 0%

Total LCOE 0.13913 $/kWh
Total GHG emissions 0.39 kg COe/kWh

Baseline LCOE 0.16577 $/kWh
Bus_3 (Wind) 84 kW Bus_23 (Wind) -

Bus_7 (PV) 140 kW Bus_26 (PV) 42 kW
Bus_13 (Gen) 0 kW Bus_29 (Gen) 80 kW
Bus_18 (PV) 27 kW Bus_30 (PV) 0 kW
Bus_21 (PV) 63 kW Bus_31 (Gen) 0 kW

Like scenario #5, scenario #6 also explores the case of reduced demand load. However,
this scenario assumes that the LCOE of the grid is higher than that of diesel generators.
As a result, Table 7 shows that under these conditions, the power supplied by the grid is
replaced by diesel generators connected to buses 23 and 31, leading to a total LCOE of
0.158897 $/kWh, 6.7% lower than the baseline.
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In order to assess the impact of the set constraints on the algorithm, we tested the
model defined in scenario #1 under various constraint values for GHGMax and LCOEMax
(scenarios 7–12). The results are presented in Table 8. When GHGMax is lowered to
0.55 kg of CO2e/kWh, only one solution respects the constraints which is the baseline
model where all DERs are online, and the grid provides the remaining power needed to
serve the total load. When GHGMax and LCOEMax are both lowered, it is noticed that
the number of feasible integer solutions decreases a lot compared to the same number
calculated in scenario #1. Hence, it proves that a good set of tight constraints can guide the
algorithm efficiently toward the optimal solution, reducing the search space and improving
convergence speed. Lastly, when GHGMax or LCOEMax are extremely tightened, it leads to
an infeasible solution.

Table 7. Scenario #6 with a load of 982 kW and no spinning reserve, with LCOEGrid = 0.24 $/kWh
and LCOEMax = 0.25 $/kWh.

Scenario #6

LCOE_Grid 0.24 $/kWh LCOE_PV 0.06 $/kWh
LCOE_W 0.09 $/kWh LCOE_Gen 0.22 $/kWh

GHG_Grid 0.7 kg CO2e/kWh GHG_PV 0 kg CO2e/kWh
GHG_Gen 0.3 kg CO2e/kWh GHG_Wind 0 kg CO2e/kWh
Grid Power 0 kW P_CO2e 0.01 $/kg CO2e
Total Load 982 kW Spinning Res. 0%

Total LCOE 0.158897 $/kWh
Total GHG emissions 0.16 kg COe/kWh

Baseline LCOE 0.17045 $/kWh
Bus_3 (Wind) 84 kW Bus_23 (Wind) 399 kW

Bus_7 (PV) 140 kW Bus_26 (PV) 42 kW
Bus_13 (Gen) 0 kW Bus_29 (Gen) 80 kW
Bus_18 (PV) 27 kW Bus_30 (PV) 0 kW
Bus_21 (PV) 63 kW Bus_31 (Gen) 147 kW

Table 8. Various scenarios based on the conditions of scenario #1 but with different constraints.

Scenario
GHGMax

(kg of
CO2e/kWh)

LCOEMax
($/kWh)

No. of
Feasible
Integer

Solutions

Total LCOE
($/kWh)

Baseline
Model LCOE

($/kWh)

7 0.55 0.21 1 0.185907 0.185907
8 0.6 0.21 239 0.182306 0.185907
9 0.6 0.19 115 0.182306 0.185907
10 0.57 0.19 26 0.185053 0.185907
11 0.5 0.19 0 - -
12 0.65 0.18 0 - -

In the second part of the simulation, we conducted a sensitivity analysis of the pro-
posed MILP optimization algorithm for the VPP, focusing on examining how variations
in the LCOE of the solar PV systems and the carbon price impact the total LCOE results.
By systematically varying the LCOE of the solar PV system, we can evaluate the influ-
ence of changes in solar energy costs on the selection and operation of DERS within the
VPP. Simultaneously, altering the carbon price allows us to assess the effect of different
carbon pricing scenarios on the economic and environmental performance of the VPP. The
sensitivity analysis provides insights into the robustness of the optimization algorithm,
revealing how shifts in key economic parameters can affect the total cost, CO2 emissions,
and the optimal mix of energy sources. This analysis is crucial to understand the potential
financial and environmental implications under varying market conditions and to make
informed decisions for sustainable and cost-effective energy management. Figure 6 shows
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the variation in the total LCOE as a function of the variation in the solar PV’s LCOE. An
increase in the solar PV’s LCOE certainly incurs an augmentation in the total LCOE. How-
ever, it is also to be noted that the proposed MILP algorithm has a rapid response time that
allows it to quickly respond to fluctuations in market prices, and this is revealed in the
response time (Rs_Time) shown in Figure 6. The decreasing LCOE for solar PV systems
has a significant impact on the LCOE of the overall energy mix. As solar PV becomes
more cost-competitive, it increasingly displaces more expensive and less environmentally
friendly energy sources, like the grid power plants and the diesel generators, thus lowering
the average cost of electricity generation. Similarly, Figure 7 shows the impact of the carbon
price on the total LCOE. As the carbon price increases from 0.01 to 0.055 $/kg of CO2e,
the total LCOE goes from 0.181243 $/kWh to 0.209166 $/kWh. Higher prices for carbon
emissions have a substantial impact on the overall LCOE. As carbon pricing mechanisms,
such as carbon taxes or cap-and-trade systems, increase the cost of emitting carbon dioxide,
fossil fuel-based power generation becomes more expensive. This cost pressure incentivizes
a shift towards cleaner, renewable energy sources like wind, solar, and hydropower, which
do not incur carbon costs. Consequently, the overall LCOE of the grid may initially rise
due to the increased costs associated with fossil fuels. However, over time, as the energy
mix transitions to a higher proportion of renewables, the grid’s LCOE can stabilize or even
decrease due to the declining costs of renewable technologies and improved efficiencies.
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5. Conclusions

Looking ahead, the continued evolution of VPPs will be shaped by technological
innovations, regulatory developments, and market dynamics. The integration of advanced
energy storage technologies, like solid-state batteries and hydrogen fuel cells, can enhance
the storage capacity and flexibility of VPPs. Emerging technologies, like vehicle-to-grid
(V2G) systems, where EVs can both draw from and supply power to the grid, hold promise
for expanding VPPs’ capabilities. Additionally, the development of P2P energy trading
platforms can further democratize the energy market, allowing consumers to directly trade
energy with each other through VPPs. However, the optimization of the resources remains
a cornerstone of any VPP. By strategically selecting and operating DERs, VPPs can effi-
ciently balance supply and demand, minimize operational costs, and reduce greenhouse
gas emissions. This optimization ensures that energy generation and consumption are
managed in the most cost-effective and environmentally friendly manner. Advanced algo-
rithms, such as MILP, play a crucial role in this process by enabling the precise allocation of
resources, considering various constraints and objectives. The ability to dynamically opti-
mize resources allows VPPs to adapt to changing market conditions, integrate renewable
energy sources, and enhance the reliability and resilience of the power grid. Therefore, the
continuous improvement and application of optimization techniques are fundamental to
the success and sustainability of VPPs.

This article has presented an MILP-based optimization algorithm designed to en-
hance the operation of VPPs by minimizing the LCOE, technical losses, and GHG emis-
sions. Through comprehensive simulations utilizing the IEEE 33-bus model, the algorithm
demonstrated its effectiveness in optimizing resource allocation and operational strategies
within the VPP framework. The results underscore the algorithm’s capability to achieve
a low LCOE, while accounting for the grid’s technical losses and the GHG emissions of
the different power sources. The rapid convergence of the MILP algorithm further high-
lights its practical applicability for real-time and large-scale energy management scenarios.
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This study confirms the potential of advanced optimization techniques in transforming
the management of distributed energy resources, paving the way for more sustainable
and economically viable power systems. Nevertheless, the future research direction in
VPP optimization is poised to integrate real-time operational data with advanced analyt-
ical frameworks, such as chance-constrained programming (CCP) and Nash bargaining
models [40], to enhance the accuracy and effectiveness of decision-making processes. By
leveraging actual operational data, researchers can conduct more in-depth analyses and fine-
tune VPP strategies to better accommodate dynamic conditions and improve performance.
The combination of CCP with Nash bargaining models offers a promising approach to ad-
dressing the inherent uncertainties in renewable energy generation and market fluctuations.
Additionally, the development of multilevel decision models can provide a comprehensive
network of interactions and optimizations across various levels of VPP operations, such as
using a stochastic bi-level optimal allocation model for intelligent energy storage sharing
services to reduce investment and operating costs, addressing uncertainties in electricity
prices [41]. Moreover, challenges such as managing the inherent uncertainties in renewable
energy sources, fluctuating demand, and integration complexities will need to be addressed.
These challenges require innovative approaches to data integration, model accuracy, and
computational efficiency to ensure that VPPs can operate optimally in increasingly complex
and variable environments.

Additionally, in a real-world scenario, several systems can induce delays in data
acquisition and control of VPP resources, impacting overall operational efficiency. One
primary source of delay is the communication infrastructure, including network latencies
and bandwidth limitations, which can affect the timely transmission of data from DERs to
the central control system. Additionally, the integration of various types of generators and
storage systems, each with different communication protocols and data formats, can cause
compatibility issues and slow down the data aggregation process. The data processing
systems, which include data analytics and real-time monitoring tools, may also contribute to
delays if they lack sufficient computational power or efficiency in processing large volumes
of data. Furthermore, software and algorithmic delays can occur due to the complexity
of optimization and control algorithms used for managing the VPP’s operations. Lastly,
external factors such as cybersecurity measures and regulatory compliance checks can
introduce additional delays, as ensuring data security and meeting regulatory requirements
often involves rigorous verification processes. Collectively, these factors can lead to slower
response times in controlling generators, potentially affecting the VPP’s ability to balance
supply and demand effectively. However, the proposed MILP algorithm has proven to
be able to provide an optimal solution very quickly, significantly reducing software and
algorithmic delays.

In conclusion, virtual power plants represent a transformative approach to energy
management, offering multiple benefits for grid stability, economic efficiency, and environ-
mental sustainability. By harnessing the collective power of distributed energy resources,
VPPs can provide flexible, reliable, and clean energy solutions. The successful imple-
mentation of VPPs will depend on overcoming technical, regulatory, and cybersecurity
challenges, as well as fostering collaboration and innovation across the energy sector. As the
energy landscape continues to evolve, VPPs will play a pivotal role in shaping a resilient,
sustainable, and decentralized energy future.
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Appendix A. IEEE 33-Bus VPP Grid Model
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23. Hropko, D.; Ivanecký, J.; Turček, J. Optimal dispatch of renewable energy sources included in Virtual power plant using
Accelerated particle swarm optimization. In Proceedings of the 2012 ELEKTRO, Rajecke Teplice, Slovakia, 21–22 May 2012; pp.
196–200. [CrossRef]

https://doi.org/10.1109/ACCESS.2022.3205731
https://doi.org/10.1016/j.scs.2020.102640
https://doi.org/10.1109/ACCESS.2021.3072550
https://doi.org/10.3390/en16093705
https://doi.org/10.1016/j.epsr.2017.04.010
https://doi.org/10.1109/ACCESS.2023.3334607
https://doi.org/10.1016/j.apenergy.2022.120158
https://doi.org/10.3390/en12234447
https://doi.org/10.1016/j.enconman.2021.114180
https://doi.org/10.1093/ce/zkad022
https://doi.org/10.1016/j.seta.2021.101678
https://doi.org/10.1109/TIA.2022.3148217
https://doi.org/10.1016/j.erss.2019.101415
https://doi.org/10.1109/SPIES48661.2020.9242966
https://doi.org/10.1016/j.ifacol.2019.08.246
https://doi.org/10.1109/PEDG51384.2021.9494255
https://doi.org/10.1016/j.adapen.2024.100170
https://doi.org/10.1109/ICECET52533.2021.9698703
https://doi.org/10.1109/ISMSIT.2019.8932764
https://doi.org/10.1109/ACPEE48638.2020.9136240
https://doi.org/10.1109/PESGM48719.2022.9916985
https://doi.org/10.3390/electronics12173717
https://doi.org/10.1109/ELEKTRO.2012.6225637


Energies 2024, 17, 4075 23 of 23

24. Shinde, P.; Kouveliotis-Lysikatos, I.; Amelin, M. Multistage Stochastic Programming for VPP Trading in Continuous Intraday
Electricity Markets. IEEE Trans. Sustain. Energy 2022, 13, 1037–1048. [CrossRef]

25. Ju, L.; Tan, Z.; Yuan, J.; Tan, Q.; Li, H.; Dong, F. A bi-level stochastic scheduling optimization model for a virtual power plant
connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response. Appl. Energy 2016,
171, 184–199. [CrossRef]

26. Fang, F.; Yu, S.; Xin, X. Data-Driven-Based Stochastic Robust Optimization for a Virtual Power Plant With Multiple Uncertainties.
IEEE Trans. Power Syst. 2022, 37, 456–466. [CrossRef]

27. Liang, Z.; Guo, Y. Robust optimization based bidding strategy for virtual power plants in electricity markets. In Proceedings of
the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5. [CrossRef]

28. Ali, J.U.A.B.W.; Kazmi, S.A.A.; Altamimi, A.; Khan, Z.A.; Alrumayh, O.; Malik, M.M. Smart Energy Management in Virtual Power
Plant Paradigm with a New Improved Multilevel Optimization Based Approach. IEEE Access 2022, 10, 50062–50077. [CrossRef]

29. Idrisov, I.; Veretennikov, I.; Vasilev, S.; Gutierrez, S.; Ibanez, F. Microgrid Digital Twin Application for Future Virtual Power Plants.
In Proceedings of the IECON 2023–49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 16–19 October
2023; pp. 1–8. [CrossRef]

30. Raghav, L.P.; Kumar, R.S.; Raju, D.K.; Singh, A.R. Optimal Energy Management of Microgrids Using Quantum Teaching Learning
Based Algorithm. IEEE Trans. Smart Grid 2021, 12, 4834–4842. [CrossRef]

31. Yang, L.; Li, X.; Sun, M.; Sun, C. Hybrid Policy-Based Reinforcement Learning of Adaptive Energy Management for the Energy
Transmission-Constrained Island Group. IEEE Trans. Ind. Inform. 2023, 19, 10751–10762. [CrossRef]

32. Hannan, M.A.; Abdolrasol, M.G.; Mohamed, R.; Al-Shetwi, A.Q.; Ker, P.J.; Begum, R.A.; Muttaqi, K.M. ANN-Based Binary
Backtracking Search Algorithm for VPP Optimal Scheduling and Cost-Effective Evaluation. IEEE Trans. Ind. Appl. 2021, 57,
5603–5613. [CrossRef]

33. Pal, P.; Parvathy, A.K.; Devabalaji, K.R.; Antony, S.J.; Ocheme, S.; Babu, T.S.; Alhelou, H.H.; Yuvaraj, T. IoT-Based Real Time
Energy Management of Virtual Power Plant Using PLC for Transactive Energy Framework. IEEE Access 2021, 9, 97643–97660.
[CrossRef]

34. Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the
application potential in power system operation. Appl. Energy 2015, 137, 511–536. [CrossRef]

35. Okpako, O.; Rajamani, H.-S.; Pillai, P.; Anuebunwa, U.; Swarup, K.S. Investigation of an optimized energy resource allocation
algorithm for a community based virtual power plant. In Proceedings of the 2016 IEEE PES PowerAfrica, Livingstone, Zambia,
28 June–3 July 2016; pp. 153–157. [CrossRef]

36. Qin, Y.; Rao, Y.; Xu, Z.; Lin, X.; Cui, K.; Du, J.; Ouyang, M. Toward flexibility of user side in China: Virtual power plant (VPP) and
vehicle-to-grid (V2G) interaction. eTransportation 2023, 18, 100291. [CrossRef]

37. Aoun, A.; Adda, M.; Ilinca, A.; Ghandour, M.; Ibrahim, H. Dynamic Charging Optimization Algorithm for Electric Vehicles to
Mitigate Grid Power Peaks. World Electr. Veh. J. 2024, 15, 324. [CrossRef]

38. Seven, S.; Yao, G.; Soran, A.; Onen, A.; Muyeen, S.M. Peer-to-Peer Energy Trading in Virtual Power Plant Based on Blockchain
Smart Contracts. IEEE Access 2020, 8, 175713–175726. [CrossRef]

39. Aoun, A.; Adda, M.; Ilinca, A.; Ghandour, M.; Ibrahim, H.; Salloum, S. Efficient Modeling of Distributed Energy Resources’
Impact on Electric Grid Technical Losses: A Dynamic Regression Approach. Energies 2024, 17, 2053. [CrossRef]

40. Ding, B.; Li, Z.; Li, Z.; Xue, Y.; Chang, X.; Su, J.; Jin, X.; Sun, H. A CCP-based distributed cooperative operation strategy for
multi-agent energy systems integrated with wind, solar, and buildings. Appl. Energy 2024, 365, 123275. [CrossRef]

41. Zhang, H.; Li, Z.; Xue, Y.; Chang, X.; Su, J.; Wang, P.; Guo, Q.; Sun, H. A Stochastic Bi-level Optimal Allocation Approach of
Intelligent Buildings Considering Energy Storage Sharing Services. IEEE Trans. Consum. Electron. 2024. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSTE.2022.3144022
https://doi.org/10.1016/j.apenergy.2016.03.020
https://doi.org/10.1109/TPWRS.2021.3091879
https://doi.org/10.1109/PESGM.2016.7742043
https://doi.org/10.1109/ACCESS.2022.3169707
https://doi.org/10.1109/IECON51785.2023.10311709
https://doi.org/10.1109/TSG.2021.3092283
https://doi.org/10.1109/TII.2023.3241682
https://doi.org/10.1109/TIA.2021.3100321
https://doi.org/10.1109/ACCESS.2021.3093111
https://doi.org/10.1016/j.apenergy.2014.09.081
https://doi.org/10.1109/PowerAfrica.2016.7556590
https://doi.org/10.1016/j.etran.2023.100291
https://doi.org/10.3390/wevj15070324
https://doi.org/10.1109/ACCESS.2020.3026180
https://doi.org/10.3390/en17092053
https://doi.org/10.1016/j.apenergy.2024.123275
https://doi.org/10.1109/TCE.2024.3412803

	Introduction 
	Related Works 
	MILP Optimization Algorithm 
	Simulation Results 
	Conclusions 
	Appendix A
	References

