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ABSTRACT This article addresses the joint power allocation and channel assignment (JPACA) problem
in uplink non-orthogonal multiple access (NOMA) networks, an essential consideration for enhancing the
performance of wireless communication systems. We introduce a novel methodology that integrates convex
optimization (CO) and machine learning (ML) techniques to optimize resource allocation efficiently and
effectively. Initially, we develop a CO-based algorithm that employs an alternating optimization strategy
to iteratively solve for channel and power allocation, ensuring quality of service (QoS) while maximizing
the system’s sum-rate. To overcome the inherent challenges of real-time application due to computational
complexity, we further propose a ML-based approach that utilizes a stacking ensemble model combining
convolutional neural network (CNN), feed-forward neural network (FNN), and random forest (RF). This
model is trained on a dataset generated via the CO algorithm to predict optimal resource allocation
in real-time scenarios. Simulation results demonstrate that our proposed methods not only reduce the
computational load significantly but also maintain high system performance, closely approximating the
results of more computationally intensive exhaustive search methods. The dual approach presented not
only enhances computational efficiency but also aligns with the evolving demands of future wireless
networks, marking a significant step towards intelligent and adaptive resource management in NOMA
systems.

INDEX TERMS non-orthogonal multiple access (NOMA), machine learning (ML), quality of service
(QoS), joint power allocation and channel assignment (JPACA), resource allocation, convex optimization
(CO), stacking ensemble method.

I. INTRODUCTION

WITH the continuous advancement of wireless com-
munication networks, devising effective and efficient

strategies for resource allocation in non-orthogonal multiple
access (NOMA) networks is critical. Efficient network
operation requires the ability to handle both predictable
and unpredictable changes in conditions and user behav-
ior. A promising mechanism to address these complex
challenges is machine learning (ML), which offers the
potential to dynamically and adaptively optimize resource
allocation, i.e., power allocation (PA) and channel assign-
ment (CA) [1]. Recent years have seen steady research

interest in exploring ML‘s potential in NOMA networks. For
example, deep reinforcement learning has been applied to
optimize joint beamforming and PA in multi-user MIMO-
NOMA systems, demonstrating significant improvements
in system performance by leveraging machine learning
(ML) techniques to address complex resource allocation
challenges [2]. However, despite these advancements, a
notable research gap exists in the application of ML to
the joint optimization of PA and CA specifically in uplink
NOMA networks. Most existing studies focus on downlink
scenarios or address PA and CA separately, often relying
on conventional optimization techniques that may not scale
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well in dynamic and complex environments. Moreover,
while there has been significant progress in applying convex
optimization (CO) and ML techniques independently for
resource allocation, there is a lack of comprehensive studies
that integrate these approaches to address the computational
challenges and dynamic nature of uplink NOMA systems [3].
To address this gap, we propose a stacking ensemble
approach, integrating convolutional neural network (CNN),
feed-forward neural network (FNN), and random forest
(RF) models. By capitalizing on the strengths of each
model in capturing spatial features, non-linear relationships,
and robust decision boundaries, the proposed ensemble
achieves superior performance in solving the joint power
allocation and channel assignment (JPACA) problem for
uplink NOMA. Our results demonstrate significant improve-
ments in sum rate and computational efficiency, alongside
enhanced adaptability to dynamic network conditions. The
effectiveness of the proposed approach and its performance
gains are assessed through extensive simulations.

II. RELATED WORK
The inception of NOMA technology marked a pivotal
development in wireless communication, aiming to meet
the escalating demand for higher spectral efficiency and
improved user multiplexing capabilities. Initial research
focused on optimizing resource allocation mechanisms such
as PA and CA to enhance system performance. As the
field progressed, integrating ML and advanced optimization
techniques into NOMA became a crucial area of investiga-
tion. For instance, [1] presented an ML-based localization
method for NOMA in shadowed visual light communication
systems, highlighting ML‘s potential to navigate complex
optimization landscapes. Similarly, [2] utilized deep rein-
forcement learning to optimize joint beamforming and PA in
multi-user MIMO-NOMA systems. This approach demon-
strates significant improvements in system performance by
leveraging ML techniques to address the complex resource
allocation challenges in NOMA networks. Focusing on
uplink NOMA scenarios, the JPACA problem emerged as
a critical challenge, necessitating innovative approaches for
efficient resource management. Contributions such as [4]
and [5] proposed algorithms to enhance the energy effi-
ciency and security of NOMA systems, respectively. Further
explorations into grant-free NOMA systems by [6] and
wireless power transfer in [7] reflected the wide spectrum
of applications and challenges within NOMA resource
allocation. Additionally, recent studies have emphasized the
practical implications of imperfect successive interference
cancellation (SIC) due to channel estimation errors and
hardware impairments, which are important for realistic
implementations of NOMA. For instance, Prakriya explored
the performance of multiuser uplink underlay NOMA
networks with channel knowledge, highlighting the impact
of imperfect SIC on system performance [8]. Similarly,
Gupta and Prakriya examined spectrally-efficient uplink
underlay multiuser networks with imperfect SIC, providing

insights into how residual interference can affect network
efficiency [9]. Further, The authors in [10] investigated
CSI-based power control and NOMA/orthogonal multiple
access (OMA) switching for uplink underlay networks with
imperfect SIC, demonstrating the necessity of accounting for
imperfect SIC in power control strategies. To address the
JPACA challenge, various methodologies have been intro-
duced to optimize resource distribution in uplink NOMA.
Techniques centered on spectrum and energy efficiency,
utilizing graph-based methods and considering spectral effi-
ciency metrics, are presented in works such as [11] and [12].
These contributions are vital for understanding established
strategies and identifying constraints in JPACA optimization.
Despite technological advancements, there remains a void in
devising computationally efficient algorithms that can deliver
near-optimal solutions for JPACA in uplink NOMA. Our
investigation aims to fill this gap by proposing an innovative
algorithm that integrates CO with a stacking ensemble ML
technique, striving to enhance both computational efficiency
and service quality. This initiative is inspired by insights
from [13], which explores user fairness and quality of service
(QoS)-aware resource allocation, and [14], which emphasizes
the need for adept algorithms in NOMA frameworks. A
comparative analysis of existing literature is provided in
Table 1. This table highlights the significant differences
between our work and previous studies, demonstrating the
unique contributions and advancements of our approach.
Unlike previous approaches, our proposed method lever-

ages ML‘s predictive capabilities to anticipate optimal
allocation strategies under varying network conditions,
addressing the static nature and lack of real-time adaptability
of existing methods. By adopting a stacking ensemble
ML approach, we synergize the strengths of individual
ML models, such as CNNs for spatial feature extraction
and RFs for robust decision boundaries. This integration
enhances computational efficiency and improves the quality
of service by adapting more effectively to network dynamics.
Building upon and integrating the contributions from related
works, this study presents a comprehensive solution to the
JPACA problem, addressing the computational challenges
and performance requirements of modern wireless networks.
Our proposed method contributes to the ongoing develop-
ment of efficient and effective NOMA systems by leveraging
the strengths of both ML and CO in a novel approach to
resource allocation.

A. MOTIVATIONS AND CONTRIBUTIONS OF THIS WORK
JPACA optimization in NOMA-based wireless networks
is a critical area of research. Current research primarily
focuses on iterative algorithms. However, another promising
approach to JPACA optimization in NOMA-based wireless
networks is the use of ML. In this study, we first derive
the closed-form rate of each user by considering the effects
of CA and PA in multi-user uplink communication in
a cellular wireless network. Subsequently, we construct
an optimization framework to maximize the sum rate
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TABLE 1. Comparative analysis of existing literature.

for all users by optimizing JPACA. Given that the sum-
rate maximization problem is a mixed-integer non-convex
problem, a significant challenge is obtaining a comprehensive
solution. To overcome this challenge, we present a two-stage
CO methodology that systematically handles one unknown
variable while retaining the other as fixed. We also present
an efficient algorithm, based on supervised ML, to solve the
joint optimization problem. The main motivation is to use
supervised ML to address the high computation latency by
converting the joint optimization problem into a regression
problem. Overall, supervised ML has two primary stages:
(1) the pre-processing phase and (2) the post-processing
phase. In the former phase, an ML model is trained using
labeled datasets associated with channel state information
(CSI). In the latter phase, the trained ML model is used to
identify the optimal parameters, without the need to solve a
CO-based algorithm, thereby reducing computation latency.
Major contributions and novelties of the present study can
be summarized as follows:

• Aiming to maximize the sum-rate while guaranteeing
QoS requirements, we formulate a novel application of
the JPACA problem for uplink NOMA-based wireless
communication networks.

• To solve the problem, we propose a two-stage CO
algorithm that iteratively optimizes one variable while

keeping the others fixed, allowing us to achieve near-
optimal solutions with low complexity.

• We introduce an ML-based approach to further
enhance the computational efficiency of the joint
optimization algorithm. By transforming the problem
into a regression problem and using supervised learning,
we approximate the optimal solution, significantly
reducing computation time without sacrificing system
performance.

• To demonstrate the effectiveness and efficiency of our
proposed algorithms and compare them with state-
of-the-art methods, we conduct extensive simulations.
The results show that our proposed algorithms can
achieve superior performance with lower computational
complexity.

B. ORGANIZATION
The remainder of this paper is structured as follows.
Section II introduces the related work. Section III presents
the system model and problem formulation. In Section IV,
we describe the proposed CO-based method. Section V
discusses the ML-based method for enhancing computational
efficiency. Section VI reports simulation results and com-
putational complexity analysis, focusing on comparing the
proposed method to other available approaches. Section VII
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FIGURE 1. System model of a NOMA uplink with ML-based resource allocation.

outlines potential future applications. Finally, Section VIII
concludes the paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
In this study, we consider a system with N subchannels and
M users, where each subchannel can be assigned to one or
more users due to the limited number of channels available
(M ≥ N). In this access scheme, NOMA with multiple users
in each subchannel is used (see Fig. 1).
The received signal at the base station (BS) in the n-th

subchannel is represented by Eq. (1):

yn =
M∑

m=1

hm,n
√
pmxm,nsm + wn, (1)

where sm is the signal transmitted by the m-th user with unit
power and E[|sm|2] = 1 for all m ∈ 1, . . . ,M. The binary
variable xm,n denotes whether the m-th user occupies the n-th
subchannel (xm,n = 1) or not (xm,n = 0). The corresponding
transmit power is denoted by pm, while hm,n represents the
gain of the n-th subchannel for the m-th user. The received
white Gaussian noise in the n-th subchannel, which follows
the distribution of CN (0, σ 2), is denoted by wn. Assuming
successive interference cancellation (SIC) in the uplink
NOMA communication, the signal-to-interference-plus-noise
ratio (SINR) of the m-th user in the n-th subchannel is given
by [15] (see Eq. (2)):

SINRm,n = xm,npmhm,n∑M
i=m+1 xinpihin + σ 2B

, (2)

where B is the bandwidth of each subchannel, and For the
last user m = M, there is no interference from other users,
but the noise term remains:

SINRM,n = xM,npMhM,n

σ 2B
, (3)

According to Eq. (2), the achievable data rate of the m-th
user under the NOMA protocol considering SIC is given by
Eq. (4):

rm =
N∑

n=1

B log2
(
1 + SINRm,n

)
, (4)

and the sum rate of all users assigned to the n-th subchannel
is given by Eq. (5):

rn =
M∑

m=1

B log2
(
1 + SINRm,n

)
(5)

(a)= B log2

(
1 +

∑M
m=1 xm,npmhm,n

σ 2B

)
,

where (a) holds since the terms inside the brackets in
the sum rate expression form a telescoping product. To
account for the impact of the downlink control chan-
nel’s latency and performance, we introduce additional
constraints in the optimization process. These constraints
ensure that the control signaling overhead does not adversely
affect the performance of the resource allocation strategies.
Specifically, we include constraints for control channel
latency and bit error rate (BER):

Lcontrol ≤ Lmax,

BERcontrol ≤ BERmax.

These constraints ensure that the latency and reliability of
the downlink control channel are within acceptable limits,
supporting the dynamic and adaptive nature of the proposed
PA and CA schemes.

B. PROBLEM FORMULATION
In this study, we aim to maximize the sum rate of the users
through the JPACA problem. This problem can be expressed
as shown in Eq. (6):

(P): max
x,p

N∑

n=1

rn (6a)

s.t. pm ≤ pmax
m , ∀m ∈ {1, . . . ,M}, (6b)

rm ≥ Rmin
m , ∀m ∈ {1, . . . ,M}, (6c)

N∑

n=1

xm,n = 1, ∀m ∈ M, (6d)

M∑

m=1

xm,n = A, ∀n ∈ N , (6e)

xm,n ∈ {0, 1}, ∀m ∈ M, n ∈ N , (6f)

Lcontrol ≤ Lmax, (6g)

BERcontrol ≤ BERmax, (6h)

where x = [x11, x12, . . . , xM,N]T and p = [p1, p2, . . . , pM]T

represent the CA matrix and the transmit power vector,
respectively. Constraints (6b) and (6c) ensure that the
corresponding transmit power does not exceed the maximum
transmit power, i.e., pmax

m , and guarantee the QoS for each
individual user, where Rmin

m is the minimum rate requirement
for the m-th user. Additionally, constraint (6e), ensures
each user is assigned to at least one subchannel while
respecting the maximum capacity, A, of users per subchannel.
Constraints (6b) and (6c) guarantee the transmit power
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does not exceed the maximum allowed and that the QoS
requirements are met, respectively. This allows efficient
resource utilization by ensuring each subchannel is fully used
but prevents overloading with more users than it can handle.

IV. CONVEX OPTIMIZATION-BASED METHOD
In this section, we present a CO-based algorithm for the
multi-user NOMA system, which concurrently addresses
both CA and PA problems. In the optimization problem
(P), we identify that constraints (6d) to (6f) pertain only to
the CA variable x. Meanwhile, variables pm and rm in (6a)
and (6b) are dedicated exclusively to controlling the transmit
power and the QoS for each user. Given this observation,
we employ the alternating optimization strategy to address
the challenge delineated in problem (P). To this end, we
iteratively optimize pm and xm,n by addressing the following
two related sub-problems:
Sub-Problem 1: CA aims to maximize the sum rate of

all users in the NOMA system. The problem is formulated
as an integer linear programming problem, which can be
efficiently solved using standard optimization techniques or
heuristics.
Sub-Problem 2: PA with QoS consideration, The PA

problem focuses on maximizing the total rate while con-
sidering the QoS for each user. The problem is formulated
as a CO problem, with due consideration of the minimum
required rate for each user (Rmin

m ). To solve this problem,
we propose using the interior point method, which is well-
suited for solving CO problems and can provide an optimal
solution for the PA problem with the QoS constraint.
In what follows, we provide an overview of the proposed

method and the sub-problems it addresses.

A. SUB-PROBLEM 1: CA OPTIMIZATION
Given the conditions for power and QoS, we can reformulate
the optimization problem (P) as a CA problem:

(P1): max
x

N∑

n=1

rn (7a)

s.t.
N∑

n=1

xm,n = 1, ∀m ∈ M, (7b)

M∑

m=1

xm,n = A, ∀n ∈ N , (7c)

xm,n ∈ {0, 1}, ∀m ∈ M, n ∈ N . (7d)

Lcontrol ≤ Lmax, (7e)

BERcontrol ≤ BERmax. (7f)

To solve problem (P1), we initially relax the binary
constraints in Eq. (7d) by allowing variables xm,n to assume
continuous values within the interval [0, 1]. This relaxation
transforms the problem into a linear and CO problem, which
can then be efficiently solved using the dual method. By

incorporating the Lagrange function into the problem (P1),
we can formulate the Lagrangian as shown in Eq. (8):

L =
N∑

n=1

rn

+
M∑

m=1

λm

(
N∑

n=1

xm,n − 1

)

+
N∑

n=1

(
αn

(
M∑

m=1

xm,n − A

))

+
N∑

n=1

M∑

m=1

(
βm,nxm,n + γm,n(1 − xm,n)

)

+
M∑

m=1

νm(Lcontrol − Lmax)

+
M∑

m=1

μm(BERcontrol − BERmax), (8)

where λm, αn, βm,n, γm,n, νm, and μm are the dual variables
associated with the constraints in Eq. (7b), (7c), (7d), (7e),
and (7f), respectively. The Karush-Kuhn-Tucker (KKT)
conditions for problem (P1) are presented as shown in
Eq. (9):

pm
κn

+ λm = γm,n − βm,n − αn

+ ν
∂Lcontrol
∂xm,n

+ μ
∂BERcontrol

∂xm,n
, (9a)

N∑

n=1

xm,n = 1, (9b)

M∑

m=1

xm,n = A, (9c)

βm,nxm,n = 0, (9d)

γm,n
(
1 − xm,n

) = 0. (9e)

where κn is a new variable, remaining constant for each user
m, introduced as in Eq. (10):

κn = (ln 2)

(
M∑

m=1

xm,npmhm,n + σ 2B

)
. (10)

Based on Eq. (9d) and (9e), for a given sub-channel n, we
can draw the following conclusions:

• If βm,n = 0 and γm,n ≥ 0, then xm,n = 1.
• If βm,n ≥ 0 and γm,n = 0, then xm,n = 0.

These conditions imply that the right-hand side of Eq. (9a)
should be maximized when xm,n = 1. Furthermore, from
Eq. (9c), it is evident that only A users will have xm,n = 1.
Therefore, A users with the highest values of:

pmhm,n

κn
+ λm + μ

∂Lcontrol
∂xm,n

+ ν
∂BERcontrol

∂xm,n
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Algorithm 1 Proposed Algorithm for Optimal CA
1: Initialization: λm, μ, ν,∀m ∈ M
2: while Not converged do
3: Calculate κn by solving (12) using bisection method.

4: Update channel assignment based on (11).
5: Update λm, μ, and ν using the gradient descent

method.
6: end while
7: Output: Optimal channel assignment x
m,n

should be assigned xm,n = 1. This leads to the following
optimal solution for xm,n:

x
m,n(κn, λm, μ, ν) =
{

1, if m ∈ MA

0, otherwise ,
(11)

where the set MA denotes the indices of the A users with
the highest values of pmhm,n

κn
+ λm + μ

∂Lcontrol
∂xm,n

+ ν
∂BERcontrol

∂xm,n
.

To ascertain the value of κn, we combine Eq. (10) and (11),
which gives:

κn = (ln 2)

(
M∑

m=1

x
m,n(κn, λm, μ, ν)pmhm,n + σ 2B

)
. (12)

With a constant λm, as κn increases, users with
lower pmhm,n values may achieve higher pmhm,n

κn
+ λm +

μ
∂Lcontrol
∂xm,n

+ ν
∂BERcontrol

∂xm,n
values. Consequently, the value of

∑M
m=1 x



m,n(κn, λm, μ, ν)pmhm,n decreases, indicating that the

right-hand side of Eq. (12) diminishes as κn increases.
Since the left side of Eq. (12) increases with κn and the
right side decreases with κn, a unique value of κn can be
identified using the bisection method. Thereafter, the value
of λm can be determined using the gradient method [16].
By iteratively optimizing the primary variable xm,n and the
secondary variables λm, μ, and ν, the optimal subchannel
allocation is achieved. The proposed optimal CA, along
with the dual approach used to achieve this allocation, is
thoroughly detailed in Algorithm 1.

B. SUB-PROBLEM 2: PA OPTIMIZATION
In sub-problem 2, the given CA, i.e., xm,n, reduces (P) to
an optimization problem with PA only (see Eq. (13)):

(P2): max
p

B log2

(
1 +

∑M
m=1 pmhm
σ 2B

)
(13a)

s.t. pm ≤ pmax
m , ∀m ∈ {1, . . . ,M}, (13b)

rm ≥ Rmin
m , ∀m ∈ {1, . . . ,M}, (13c)

Lcontrol ≤ Lmax, (13d)

BERcontrol ≤ BERmax, (13e)

where hm = ∑N
n=1 xm,nhm,n is the subchannel used by the

m-th user. In this study, we assume that the BS knows
hm perfectly. The BS aims to maximize the SINR of each
user using a PA vector p = [p1, . . . , pM] subject to the

constraint in Eq. (13c). As each user can be assigned to only
one subchannel (according to Eq. (6d)), Eq. (13c) can be
rewritten as shown in Eq. (14):

rm = B log2

(
1 + pmhm∑M

i=m+1 pihi + σ 2B

)
≥ rmin

m . (14)

Thus, (P2) can be formulated as follows (see Eq. (15)):

max
p

B log2

(
1 +

∑M
m=1 hmpm
σ 2B

)
(15a)

s.t. hmpm ≥
(

2R
min
m − 1

)
⎛

⎝
M∑

i=m+1

hipi + σ 2B

⎞

⎠, (15b)

∀m ∈ {1, . . . ,M}, (15c)

pm ≤ pmax
m , ∀m ∈ {1, . . . ,M}, (15d)

Lcontrol ≤ Lmax, (15e)

BERcontrol ≤ BERmax. (15f)

The convexity of the problem in Eq. (15) allows for an
effective resolution using CO techniques, such as the interior
point method [17].

C. JOINT OPTIMIZATION: ALTERNATING ALGORITHM
Problem (P) is a non-convex mixed-integer optimization
problem because of the integer CA constraints, i.e., (7c)
and (7d), and the non-concavity of its objective function.
However, as we discussed in previous sections, fixing one
optimization variable reduces problem (P) to solvable sub-
problems using CO methods, such as the gradient method
and interior point method. This fact motivates the use of the
alternating approach to solve problem (P) sub-optimally.

D. CONVERGENCE AND COMPUTATIONAL
COMPLEXITY ANALYSIS OF CO-BASED METHOD
This section delves into the convergence behavior and com-
putational complexity of the alternating Co-based algorithm
to ascertain its efficiency and reliability.

1) CONVERGENCE ANALYSIS

The algorithm guarantees optimal solutions for each sub-
problem, (P1) and (P2), incrementally enhancing the
sum-rate with each iteration. Considering the sum-rate’s
upper limit within the bounded feasible set of problem
(P), the algorithm’s convergence is assured, marked by the
cessation of indefinite sum-rate increase.

2) COMPUTATIONAL COMPLEXITY ANALYSIS

The purpose of Algorithm 2 is to provide an efficient solu-
tion to the JPACA problem by iteratively optimizing CA and
PA. This algorithm ensures that both tasks are handled in a
coordinated manner, improving overall system performance.
The Alternating Algorithm for problem (P), designated
as Algorithm 2, incorporates two primary operations: (1)
Channel Assignment (Algorithm 1) addressing (P1) with
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Algorithm 2 Proposed Alternating Algorithm for Problem
(P) With Control Channel Consideration
1: Initialize p
2: repeat
3: Channel assignment (P1): Perform the CA according

to Algorithm 1.
4: Check control channel constraints after CA: Ensure

Lcontrol ≤ Lmax and BERcontrol ≤ BERmax.
5: Power allocation (P2): Calculate the PA vector p

based on the interior point algorithm.
6: Check control channel constraints after PA: Ensure

Lcontrol ≤ Lmax and BERcontrol ≤ BERmax.
7: until convergence
8: Output: X
,P


complexity O(M2N), and (2) PA via the interior point method
for (P2) with complexity O(M3).

• The CA algorithm manifests a complexity of O(M2N),
dictated by the channel allocation process across M
users and N subchannels.

• The PA, facilitated by the interior point method, exhibits
O(M3) complexity, attributed to its polynomial-time
operational characteristic in power distribution among
M users.

Hence, the overall computational load of Algorithm 2
primarily hinges on the step with the highest complexity,
leading to a more accurately depicted overall complexity of
O(M3). This delineation considers the PA’s computational
intensity as the pivotal factor, especially under scenarios
where user count (M) notably surpasses subchannel quan-
tity (N), earmarking the PA phase as the computational
crux.

V. ML-BASED METHOD
In addressing the challenges posed by the JPACA
optimization problem in uplink NOMA networks, which are
frequently difficult for convex-based optimization methods
such as Algorithm 2 to solve in real-time, we propose an
ML-based technique that leverages the capabilities of ML to
learn complex relationships and provide efficient solutions.
Our ML-based algorithm focuses on the following four key
ML techniques: CNN, FNN, RF, and the Stacking Ensemble
Method. To predict the optimal resource allocation in real-
time, the algorithm learns from a training dataset generated
using a CO-oriented algorithm, Algorithm 2, in an offline
mode. This approach considerably reduces the computational
burden, which makes this approach well-suited for large-
scale systems. Operating with the channel gains hm,n as
inputs, the ML model produces optimal solutions for both
CA and PA, represented by X
 and p
, respectively. In the
subsections below, we provide more detailed explanations of
the proposed ML-based algorithm and its application to the
JPACA problem.

A. TRAINING DATASET GENERATION
To train and evaluate our regression models for the JPACA
problem in uplink NOMA networks, we generate a training
dataset comprising 1 million instances of the problem (P).
Each instance, denoted as hm,n, corresponds to a unique set of
subchannel gains for users. The optimal CA and PA for each
instance are computed using CO in an offline mode. Each BS
is responsible for generating locally optimized data, which is
then used to train the ML model. This offline data generation
ensures that the real-time performance of the system is not
impacted. In each independent run, Algorithm 2 is used to
compute the optimal CA and PA for the given subchannel
gains, which serve as the output labels. To ensure the
robustness and generalization of our regression models, we
perform data partitioning by dividing the generated samples
into training, validation, and test datasets. The training
dataset constitutes 70% of the total samples, providing a large
and diverse set of instances for the models to learn from.
The test dataset accounts for 10% of the data and is used
to evaluate the models’ performance on unseen instances.
The remaining 20% of the data is reserved for the validation
dataset, which plays a critical role in the model ensemble
stage, such as during the stacking procedure. We employ a
large training dataset along with a separate validation dataset
to fine-tune the regression model’s hyperparameters and to
ensure strong generalization to unseen data. This rigorous
process enhances the accuracy and reliability of the models
in optimizing JPACA in uplink NOMA networks.

B. PRE-PROCESSING
In the context of our computational framework, the pre-
processing phase plays a critical role in transforming raw
data into a format that would seamlessly integrate with
ML models. This essential phase encompasses a series of
operations that collectively facilitate efficient data conver-
sion. The primary objective is establishing the intricate
relationship between the constant channel gains H = [hm,n]
as input parameters and the PA vector p = [pm] and CA
matrix X = [xm,n] as output parameters. To effectively
represent the CA matrix X, we use a one-hot encoding
approach. This format signifies that, for each user m, a
solitary 1 is present in the column corresponding to the
assigned subchannel, while all other elements are set to
0. For instance, if X = [[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0]],
user 1 is allocated to subchannel 2, user 2 to subchannel
1, and user 3 to subchannel 3. To adapt this CA data for
a regression problem, we undertake the conversion of the
one-hot encoded X into a vector form denoted as x̄ = [x̄m].
In this vector, each x̄m indicates the index of the non-
zero element in the m-th row of X. In the aforementioned
example, the transformation results in x̄ = [2, 1, 3]. This
vector is subsequently used as the target output for our
ML models. Through the application of this pre-processing
scheme, we successfully render the raw data interpretable
for ML models, while concurrently elevating their learning
and predictive capabilities. This strategic approach ensures
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that the inputs to our models are imbued with theoretical
robustness, practical implementability, and an environment
conducive to achieving optimal performance in the realm of
uplink NOMA networks.

C. POST-PROCESSING
The efficacy and reliability of our proposed solution largely
depend on the accuracy achieved during the post-processing
phase. This crucial stage is dedicated to the vital task
of converting the continuous-valued estimates generated
by our ML models into discrete CAs. To ensure the
validity and practicality of this transformation, we have
rigorously implemented comprehensive verification and val-
idation processes, meticulously scrutinizing every aspect
of the post-processing procedure. The ML model’s output
for a specific user is denoted by ypred, representing the
anticipated CA as a continuous variable. With M users
and N subchannels, the model’s output is presented as a
matrix O = [om,n], where m ∈ M and n ∈ N . Each
element om,n signifies the predicted allocation of user m
to subchannel n. For instance, let us consider a scenario
where the model generates the output Ypred = [1.6, 0.9, 2.8].
Since these values are continuous, they must be discretized
into integer indices representing the assigned subchannels.
Considering the inherent discreteness of user-to-subchannel
assignments in our problem, the continuous predictions
undergo the following multi-step process to acquire discrete
indices:

1) Rounding: The initial step involves rounding each
om,n to the nearest integer, resulting in o′

m,n. In the
aforementioned example, this operation yields Y ′

pred =
[2, 1, 3].

2) Indexing: Next, we obtain a matrix of integers O′ =
[o′
m,n]. However, these values are not yet indices. To

represent CAs for each user, we use the max function
to find the maximum value in each row of O′, effec-
tively assigning each user to a specific subchannel. The
resulting index vector is denoted by I = [mk], where
mk indicates the index of the subchannel assigned to
user k. Mathematically, this operation is represented
as mk = max

n
(o′
k,n), ∀k ∈ [1,M]. Subsequently,

these indices are translated into actual assignments by
creating a one-hot encoded matrix, resulting in X′

pred =
[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0]].

Following this post-processing procedure, we successfully
convert the continuous-valued predictions from our ML
models into feasible, discrete CA.

D. REGRESSION MODEL
In addressing the JPACA problem in uplink NOMA
networks, we utilize ensemble learning techniques and
regression models to model the continuous relationships
between channel gains as inputs and optimal PA and CA as
outputs.

1) CONVOLUTIONAL NEURAL NETWORKS (CNN)

CNNs capture spatial relationships in the received signal
matrix and user indices. Our CNN model consists of four
convolutional layers for feature extraction, followed by a
MaxPooling2D layer for downsampling, a Flatten layer
for vector transformation, and two Dense layers for final
predictions. Batch normalization and activation functions
(ReLU for hidden layers and linear for the output layer)
enhance performance. Through training, CNN minimizes the
mean squared error (MSE) loss. CNN excels at capturing
spatial relationships within the signal matrix and user indices,
crucial for regression analysis. However, it is computation-
ally intensive and requires large datasets for optimal training.
To address this, we incorporate FNN and RF into our
ensemble.

2) FEED-FORWARD NEURAL NETWORKS (FNN)

FNNs, or multilayer perceptrons, capture complex nonlinear
relationships. Our FNN model has two Dense layers,
activation functions (ReLU for hidden layers and linear for
the output layer), and batch normalization. It is trained
using the MSE loss function and the Adam optimizer. FNNs
are versatile and adaptable across tasks, learning complex
nonlinear relationships. They struggle with spatial/temporal
dependencies without complex adjustments, which is mit-
igated by the spatial modeling strength of CNNs and the
robustness of RFs.

3) RANDOM FOREST (RF)

RF combines multiple decision trees for robust regression.
Each tree independently makes predictions, aggregated by
RF to determine optimal PA and CA values. The number
of decision trees, or estimators, can be adjusted for optimal
performance. RF is evaluated using MSE and accuracy. RF
is chosen for its resistance to overfitting, handling outliers
and non-linear data effectively, and ensuring robustness in
dynamic NOMA networks. RF’s reduced interpretability and
longer training times with extensive datasets are balanced
by the efficiency of CNNs and the versatility of FNNs.

4) STACKING ENSEMBLE METHOD

Utilizing the specialized strengths of CNN, FNN, and RF,
our approach incorporates the stacking ensemble method to
enhance the efficacy of regression models for the JPACA
issue within uplink NOMA networks. By merging the
predictions from each distinct model, we create a unified,
powerful ensemble forecast that leverages CNN’s skill in
spatial feature extraction, FNN’s capability in understanding
complex nonlinear relationships, and RF’s robustness in
decision boundary determination. We recognize the slight
increase in computational latency due to the ensemble
approach as a deliberate trade-off, justified by the marked
improvement in predictive performance and the method’s
adaptability to varying network conditions.
The principle behind the stacking ensemble is to use a

meta-model to learn how to best combine the predictions of
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FIGURE 2. An overview of stacking ensemble technique in our ML process.

the base models. This involves training multiple base models
independently and then using their predictions as inputs for a
higher-level learner, the meta-model, which makes the final
prediction.
Figure 2 illustrates the design of our stacking ensemble

method. The process begins with the dataset, which is
preprocessed and divided into training, validation, and testing
sets. The training and validation data are used to train the
base models: CNN, FNN, and RF. Each base model captures
different aspects of the data:

• CNN: Excels at capturing spatial relationships in the
received signal matrix and user indices.

• FNN: Learns complex non-linear relationships.
• RF: Handles decision boundary determination and
robustness to outliers.

The predictions from these base models are concatenated
to form stacked inputs, which are then fed into a meta-model.
In our study, the meta-model is an RF regressor trained to
minimize the MSE between the predicted values and the
actual target labels. This ensures that the ensemble leverages
the complementary strengths of each base model, improving
overall prediction accuracy and robustness.
Mathematically, let us denote the predictions of the CNN,

FNN, and RF models as CNNpred, FNNpred, and RFpred,
respectively. The stacked inputs, denoted as Stackpred, can
be represented as:

Stackpred = [
CNNpred,FNNpred,RFpred

]
(16)

The meta-model, denoted as Ms, takes the Stackinput as
the input data and aims to learn the optimal parameters that
minimize the MSE between the predicted values and the
actual target labels:

MSE = 1

Ns

Ns∑

i=1

(
Ms(Stackinput) − ytarget

)2 (17)

where Ns is the number of samples in the dataset.

Postprocessing is applied to the meta-model’s output to
generate the optimal power and channel allocations (X
,P
).
This method not only enhances the predictive performance
but also ensures adaptability to varying network conditions.
Detailed discussions on each step of this process can be
found in Sections IV-A–IV-D.

E. COMPUTATIONAL COMPLEXITY ANALYSIS OF
ML-BASED METHOD
Importantly, the inherent computational complexity of both
base learners and top models, crucial to ensemble methodolo-
gies like stacking, is capped at O(N2) [18]. Compared to the
CO-based method, which exhibits a complexity of O(M3N),
the ML-driven strategy exhibits a significant computational
efficiency. Moreover, the innate scalability of the ML-based
method allows for extensive training on voluminous datasets,
ensuring efficacious use across varied operational terrains
without the need for perpetual recalibration.
By incorporating the stacking ensemble method into our

research, we enhance the regression models’ predictive
capabilities in optimizing JPACA in uplink NOMA networks.
This method not only improves prediction performance but
also ensures adaptability to varying network conditions.
The combination of CNN, FNN, and RF models through
the stacking ensemble approach offers a robust and accu-
rate solution to address the complexities of the problem.
This methodology holds promise in terms of improving
the performance and efficiency of wireless communication
systems in real-world scenarios, thereby contributing to the
advancement of uplink NOMA networks.

VI. SIMULATION RESULTS AND COMPUTATIONAL
COMPLEXITY
In this section, we present the results derived from the
evaluation of the proposed convex-based and ML-based
algorithms, in numerical simulations. The system parameters
for the BS and users are established as shown in Table 2.
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TABLE 2. System parameters for users and BS.

FIGURE 3. Total achievable rate as a function of the number of subchannels,
assuming M users and a subchannel capacity of A = 2.

The channel gains for each effective path, represented as
hmn, are modeled as (hmn = |hplmnhlsmhssmn|,m, n ∈ M,N ),
where hplmn = (λ/4πdm)2 signifies the open space path loss
coefficient, while hssmn, h

ls
m ∼ CN (0, 1) denote the large-scale

shading coefficient and the Rayleigh fading coefficient,
respectively [19], [20].

A. EVALUATION OF CONVEX-BASED METHODS
We present the results of our convex-based methods in terms
of achievable sum rates with respect to both the number of
subchannels and the number of users. The performance of the
proposed algorithm is compared against three other cases:
exhaustive search, optimal CA, and optimal PA.

1) ACHIEVABLE SUM RATES VS. NUMBER OF
SUBCHANNEL

The variation of achievable sum rates with respect to the
number of subchannels for the different methods is illustrated
in Figure 3. The figure shows that the proposed algorithm
(Case II) demonstrates a higher sum rate, particularly as the
number of subchannels increases. This indicates the effec-
tiveness of the proposed method in harnessing the potential
of multiple subchannels. The Exhaustive Search (Case I) and
the Proposed Algorithm (Case II) converge to similar values
with an increase in the number of subchannels, suggesting
that the efficiency of the proposed algorithm approaches the

FIGURE 4. Total achievable rate as a function of the number of users, assuming N
subchannel and a user capacity of (6d).

exhaustive search in high subchannel scenarios. By contrast,
the Optimal CA (Case III) and Optimal PA (Case IV) show
sub-linear growth with the number of subchannels. This
indicates that, while they provide benefits in terms of power
and channel utilization, they might not be as efficient in
scenarios with a large number of subchannels.

2) ACHIEVABLE SUM RATES VS. NUMBER OF USERS

Figure 4 showcases the achievable sum rates against the
number of users. With an increase in the number of users,
the proposed algorithm consistently outperforms the other
cases. This finding underscores the algorithm’s capability
to efficiently allocate resources even in dense network
scenarios. While the Exhaustive Search (Case I) offers com-
petitive performance, its computational complexity becomes
a limiting factor in practical scenarios. Conversely, both the
Optimal CA (Case III) and Optimal PA (Case IV) exhibit
a steady increase in the achievable sum rate; however, they
lag behind the proposed algorithm. Of note, the gap between
the proposed algorithm and the other methods widens with
an increase in the number of users. This further underscores
the scalability and robustness of the proposed algorithm in
dense deployments.

3) ANALYSIS SUMMARY

A comparison of Optimal CA (Case III) and Optimal
PA (Case IV) suggests that each method’s singular focus
results in inherent inefficiencies. Case III, which pri-
oritizes spectral efficiency, frequently overlooks optimal
power distribution, leading to potential power wastage.
Conversely, Case IV, while adept at PA, can sometimes
allocate power to suboptimal channels, which undermines
its effectiveness. Albeit beneficial in their specific domains,
these isolated approaches fall short of maximizing the
sum rate, particularly in dense network scenarios. Yet
efficient communication systems must concurrently consider
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TABLE 3. Analysis of computation latency for 10,000 samples employing co-based and ML-based resource allocation methods.

FIGURE 5. Stacking ensemble’s precision beyond power predictions.

both channel quality and PA. An adaptive solution that
dynamically balances these factors, such as the proposed
one, offers superior performance in complex communication
environments.

B. EVALUATION OF ML MODEL PERFORMANCE
In this section, we evaluate the efficacy of diverse ML
methodologies in optimizing the JPACA process within
wireless communication systems. To this end, we undertake
a comprehensive comparison of the outcomes against those
obtained from a proposed algorithm. Performance evaluation
relies on the employment of MSE and computational time
efficiency as essential performance metrics.

1) PERFORMANCE EVALUATION

The proposed algorithm consistently demonstrates lower
MSE values across diverse user and subchannel modes,
which means superior precision in power and channel allo-
cation. This enhanced accuracy is particularly pronounced
in the context of NOMA, wherein the algorithm adeptly
manages user interference within the same cell, resulting
in an elevated system performance. Figure 5 provides a
visual representation of performance across different user
and subchannel modes under the proposed algorithm. The
algorithm sustains robust performance across varying sce-
narios, effectively overseeing power and channel allocation,
even in demanding conditions. Upon adopting the stack-
ing mode, the composite model showcases a significantly
minimized mean square error, (see Figure 6). This outcome

FIGURE 6. MSE for resource allocation using the stacking ensemble meta-model.

underscores the amalgamation of algorithmic components
within ML networks, effectively discerning complex patterns
and relationships. Consequently, more advanced resource
optimization and improved data collection rates are achieved.

2) COMPUTATIONAL EFFICIENCY

Table 3 showcases the comparative computation latencies
between the conventional Algorithm 2 and various ML
methodologies. Notably, while Algorithm 2 consistently
achieves a perfect accuracy score across configurations, it
does so at the expense of substantial computation time.
For instance, for a configuration of M = 2, N = 2,
the ML-based model, specifically the Stacking method,
yields an accuracy of 99.61% but takes only 323 ms, in
stark contrast to the 627,149 ms required by Algorithm 2.
This outcome demonstrates the computational prowess of
ML-based methods in handling the resource allocation
problem without significant losses in accuracy.

3) COMPARATIVE PERFORMANCE ANALYSIS

The performance of the stacking ensemble model is evaluated
using well-established metrics including MSE, Root Mean
Squared Error (RMSE), and R-squared. These metrics
specify the model’s predictive error, accuracy, and data fit.
Specifically, lower MSE and RMSE values underscore higher
accuracy, whereas an elevated R-squared value reflects a
commendable fit to the target labels. Table 4 provides a
detailed comparison between the stacking ensemble and
other ML models. As the table shows, the stacking ensem-
ble method consistently outshines the best individual ML
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TABLE 4. Comparative performance analysis of stacking ensemble and ML models.

model across all metrics. For instance, the MSE for the
Stacking-Model is 0.0025, which is substantially lower than
the corresponding value of the top-performing standalone
ML model. Similarly, its RMSE and R-squared values,
registered at 0.05 and 0.96, respectively, further accentuate
the ensemble’s exceptional performance. The results of this
comparative analysis underline the superior precision and
robustness of the stacking ensemble model in the realm of
ML methodologies.

VII. POTENTIAL FUTURE APPLICATIONS
The advancements made in JPACA in uplink NOMA
networks through CO and ML techniques hold significant
promise for a variety of future applications. These methods
can be directly applied to enhance the performance and
efficiency of 5G and beyond wireless networks, which
require sophisticated resource allocation to support a vast
number of devices and diverse use cases. Additionally,
the Internet of Things (IoT) can benefit greatly from
these techniques, as they enable scalable, reliable, and
energy-efficient communication among countless connected
devices with varying QoS needs. In the realm of Vehicle-
to-Everything (V2X) communications, optimized resource
allocation is crucial for enabling low-latency, high-data-rate
interactions that improve traffic management and safety.
Similarly, smart grid communications can leverage these
advancements to enhance real-time monitoring, control, and
management of energy distribution. Furthermore, the high
data rate and low latency requirements of Augmented
and Virtual Reality (AR/VR) applications can be better
met with these techniques, providing more immersive user
experiences. Public safety networks, which demand robust
and efficient communication in emergency situations, can
also be significantly improved. Lastly, satellite and aerial
communication networks can utilize these methods to ensure
better coverage and reliability, particularly in remote or
underserved regions. By addressing the complex challenges
of resource allocation in NOMA networks, this work
contributes to the development of more efficient, reliable,
and scalable communication systems across a wide range of
advanced applications.

VIII. CONCLUSION
In this study, we conducted a comprehensive evaluation
of power and channel allocation methodologies for wire-
less communication systems. The proposed convex-based
algorithm and ML techniques were scrutinized for their

effectiveness in optimizing JPACA. The results highlight the
potential of these methodologies to enhance the efficiency
and reliability of wireless communication systems. More
specifically, the proposed algorithm exhibited remarkable
computational efficiency, demonstrating its applicability in
real-time processing scenarios. Through careful optimization
of power and channel allocation, the algorithm consistently
achieved lower MSE values, which indicates its accuracy in
power distribution. Performance gains, particularly evident
in scenarios involving NOMA, illustrate its effectiveness in
managing user interference and improving the overall system
performance. Furthermore, the integration of ML method-
ologies showcased their capacity to discern intricate patterns
within data, thereby enabling precise predictions for optimal
CA and PA. The stacking ensemble model, in particular,
demonstrated improved prediction accuracy, as evidenced by
its lower MSE and RMSE values. The higher R-squared
value for the stacking ensemble model highlights its better
fit to the target labels, showcasing its potential in wireless
communication systems. Collectively, the results of this study
emphasize the significance of harmonizing JPACA method-
ologies, which can lead to elevated achievable aggregation
rates. These methodologies are poised to revolutionize the
efficiency, reliability, and performance of wireless communi-
cation systems, particularly in scenarios employing NOMA
techniques.

REFERENCES

[1] A. Affan, H. M. Asif, and N. Tarhuni, “Machine-learning-
based indoor localization under shadowing condition for P-NOMA
VLC systems,” Sensors, vol. 23, no. 11, p. 5319, 2023,
doi: 10.3390/s23115319.

[2] Z. Zhang, H. Lu, S. Jin, and X. Liang, “Joint beamforming and
power allocation for multi-user MIMO-NOMA systems via deep
reinforcement learning,” IEEE Trans. Wireless Commun., vol. 22,
no. 1, pp. 234–247, Jan. 2023, doi: 10.1109/TWC.2022.3208667.

[3] H. Amiriara, F. Ashtiani, M. Mirmohseni, and M. Nasiri-Kenari,
“IRS-user association in IRS-aided MISO wireless networks:
Convex optimization and machine learning approaches,” IEEE Trans.
Veh. Technol., vol. 72, no. 11, pp. 14305–14316, Nov. 2023,
doi: 10.1109/TVT.2023.3282272.

[4] Y. Cui, P. Liu, Y. Zhou, and W. Duan, “Energy-efficient resource allo-
cation for downlink non-orthogonal multiple access systems,” Appl.
Sci., vol. 12, no. 19, p. 9740, 2022, doi: 10.3390/app12199740.

[5] H.-P. Dang, M.-S. V. Nguyen, D.-T. Do, M.-H. Nguyen, M.-T. Pham,
and A.-T. Kim, “Secure performance analysis of aerial RIS-NOMA-
aided systems: deep neural network approach,” Electronics, vol. 11,
no. 16, p. 2588, 2022, doi: 10.3390/electronics11162588.

[6] D.-D. Tran, V. N. Ha, and S. Chatzinotas, “Novel
reinforcement learning-based power control and subchannel
selection mechanism for grant-free NOMA URLLC-enabled
systems,” in Proc. IEEE 95th Veh. Technol. Conf., 2022, pp. 1–5,
doi: 10.1109/VTC2022-Spring54318.2022.9860574.

[7] M. B. Goktas and Z. Ding, “A wireless power transfer assisted
NOMA transmission scheme for 5G and beyond mMTC,” IEEE
Wireless Commun. Lett., vol. 11, no. 6, pp. 1239–1242, Jun. 2022,
doi: 10.1109/LWC.2022.3162411.

[8] M. Gupta and S. Prakriya, “Performance of multiuser uplink
underlay NOMA networks with channel knowledge,” IEEE
Trans. Veh. Technol., vol. 73, no. 4, pp. 6000–6005, Apr. 2024,
doi: 10.1109/TVT.2023.3335149.

VOLUME 5, 2024 5287

http://dx.doi.org/10.3390/s23115319
http://dx.doi.org/10.1109/TWC.2022.3208667
http://dx.doi.org/10.1109/TVT.2023.3282272
http://dx.doi.org/10.3390/app12199740
http://dx.doi.org/10.3390/electronics11162588
http://dx.doi.org/10.1109/VTC2022-Spring54318.2022.9860574
http://dx.doi.org/10.1109/LWC.2022.3162411
http://dx.doi.org/10.1109/TVT.2023.3335149


GHANBARZADEH et al.: RESOURCE ALLOCATION IN NOMA NETWORKS

[9] M. Gupta and S. Prakriya, “Performance of NOMA-based
spectrally-efficient uplink underlay multiuser networks with imperfect
SIC,” IEEE Trans. Netw. Service Manag., vol. 21, no. 1, pp. 866–881,
Feb. 2024, doi: 10.1109/TNSM.2023.3295652.

[10] M. Gupta and S. Prakriya, “Performance of CSI-based power control
and NOMA/OMA switching for uplink underlay networks with
imperfect SIC,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 4,
pp. 1753–1769, Dec. 2022, doi: 10.1109/TCCN.2022.3185076.

[11] D. Zhai and J. Du, “Spectrum efficient resource management for
multi-carrier-based NOMA networks: A graph-based method,” IEEE
Wireless Commun. Lett., vol. 7, no. 3, pp. 388–391, Jun. 2018.
doi: 10.1109/LWC.2017.2779485.

[12] M. Zeng, N.-P. Nguyen, O. A. Dobre, Z. Ding, and H. V. Poor,
“Spectral- and energy-efficient resource allocation for multi-carrier
uplink NOMA systems,” IEEE Trans. Veh. Technol., vol. 68, no. 9,
pp. 9293–9296, Sep. 2019, doi: 10.1109/TVT.2019.2926701.

[13] P. Gupta and D. Ghosh, “User fairness and QoS aware-
based effective resource allocation for downlink NOMA cellular
systems,” Wireless Pers. Commun., vol. 131, pp. 991–1012, Jul. 2023,
doi: 10.1007/s11277-023-10465-6.

[14] J. Wu, L. Sun, and Y. Jia, “User pairing and power allocation for
NOMA-CoMP based on rate prediction,” Information, vol. 13, no. 4,
p. 200, 2022, doi: 10.3390/info13040200.

[15] M. Aldababsa, M. Toka, S. Gökçeli, G. Karabulut Kurt, and
O. Kucur, “A tutorial on nonorthogonal multiple access for 5G and
beyond,” Wireless Commun. Mobile Comput., vol. 2018, no. 1, 2018,
Art. no. 9713450, doi: 10.1155/2018/9713450.

[16] S. Boyd and L. Vandenberghe, Convex Optimization, 1st ed.
Cambridge, U.K.: Cambridge Univ., Mar. 2004.

[17] M. Zeng, X. Li, G. Li, W. Hao, and O. A. Dobre, “Sum
rate maximization for IRS-assisted uplink NOMA,” IEEE
Commun. Lett., vol. 25, no. 1, pp. 234–238, Jan. 2021,
doi: 10.1109/LCOMM.2020.3025978.

[18] G. Jia, Z. Yang, H.-K. Lam, J. Shi, and M. Shikh-Bahaei, “Channel
assignment in uplink wireless communication using machine learn-
ing approach,” IEEE Commun. Lett., vol. 24, no. 4, pp. 787–791,
Apr. 2020, doi: 10.1109/LCOMM.2020.2968902.

[19] H. A. Ara, M. R. Zahabi, and V. Meghdadi, “Joint power
and location optimization of relay for amplify-and-forward coop-
erative relaying,” in Proc. Int. Conf. Internet Things, Embed.
Syst. Commun. (IINTEC), Hamammet, Tunisia, 2018, pp. 97–102,
doi: 10.1109/IINTEC.2018.8695281.

[20] H. Amiriara, M. R. Zahabi, and V. Meghdadi, “Power-location
optimization for cooperative nomadic relay systems using machine
learning approach,” IEEE Access, vol. 9, pp. 74246–74257, 2021,
doi: 10.1109/ACCESS.2021.3079171.

5288 VOLUME 5, 2024

http://dx.doi.org/10.1109/TNSM.2023.3295652
http://dx.doi.org/10.1109/TCCN.2022.3185076
http://dx.doi.org/10.1109/LWC.2017.2779485
http://dx.doi.org/10.1109/TVT.2019.2926701
http://dx.doi.org/10.1007/s11277-023-10465-6
http://dx.doi.org/10.3390/info13040200.
http://dx.doi.org/10.1155/2018/9713450
http://dx.doi.org/10.1109/LCOMM.2020.3025978
http://dx.doi.org/10.1109/LCOMM.2020.2968902
http://dx.doi.org/10.1109/IINTEC.2018.8695281
http://dx.doi.org/10.1109/ACCESS.2021.3079171


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


