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Abstract: The rapid advancement of unmanned aerial systems in various civilian roles necessitates
improved safety measures during their operation. A key aspect of enhancing safety is effective
collision avoidance, which is based on conflict detection and is greatly aided by accurate trajectory
prediction. This paper represents a novel data-driven trajectory prediction methodology based on
applying the Long Short-Term Memory (LSTM) prediction algorithm to the UAS-S4 Ehécatl. An
LSTM model was designed as the baseline and then developed into a Staked LSTM to better capture
complex and hierarchical temporal trajectory patterns. Next, the Bidirectional LSTM was developed
for a better understanding of the contextual trajectories from both its past and future data points, and
to provide a more comprehensive temporal perspective that could enhance its accuracy. LSTM-based
models were evaluated in terms of mean absolute percentage errors. The results reveal the superiority
of the Bidirectional LSTM, as it could predict UAS-S4 trajectories more accurately than the Stacked
LSTM. Moreover, the developed Bidirectional LSTM was compared with other state-of-the-art deep
neural networks aimed at aircraft trajectory prediction. Promising results confirmed that Bidirectional
LSTM exhibits the most stable MAPE across all prediction horizons.

Keywords: bidirectional; long short-term memory; trajectory prediction; unmanned aerial systems

1. Introduction

Unmanned aerial systems (UASs) have rapidly evolved from military to civil sys-
tems [1]. As technology has progressed, the cost, size, and complexity of UASs have
diversified, making them accessible to a broader range of users [2]. These advancements
have paved the way for a variety of applications, from aerial photography and surveying [3]
to disaster relief and agricultural monitoring [4,5].

With the fast-growing application of UASs in various sectors, skies have become
more congested with drones, and the risk of aerial collisions has intensified [6]. UAS
collisions not only pose threats to property and to UASs themselves but, more critically,
to human life [7,8]. Additionally, given the varying levels of operator experience and the
diverse range of UAS sizes and capabilities, ensuring consistent safety standards becomes
increasingly challenging [9,10]. Addressing these concerns requires reliable regulatory
frameworks and advanced collision-avoidance technologies to ensure that the integration
of UASs into airspace remains safe [11].

The precise prediction of UAS trajectories is a key element to designing an ad-
vanced collision avoidance algorithm and improving air traffic management (ATM) perfor-
mance [12]. Hence, developing an algorithm to predict the path of a UAS becomes vital [13].
In knowing where a UAS is likely to be at any given time in the future, traffic controllers
can better manage airspace, allocate flight corridors, and ensure safe distances between
aircraft [14]. Moreover, in real-time flight operations, collision avoidance systems rely
on these trajectory predictions to take proactive measures, such as rerouting or adjusting
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altitudes, to prevent potential collisions [15]. All in all, the accuracy of UAS trajectory
prediction is infrastructure for ensuring safety and efficiency in congested skies [16].

Over recent years, UAS trajectory prediction has seen significant advancements under-
pinned by technological and algorithmic developments [17,18]. These methods range from
physical models [19], which rely on fundamental physics principles, to statistical models
that use historical data for forecasting [20].

Modern trajectory prediction tools now incorporate sophisticated artificial intelligence
techniques [21], allowing for real-time predictions based on dynamic environmental condi-
tions [22]. By integrating big data, these systems can learn from vast amounts of previous
flight data and refine their predictions over time [23,24]. In this way, machine learning
algorithms [25], especially deep learning models [26], are being successfully employed.
These models can learn complex patterns from large datasets and often provide more
accurate predictions, especially when the system encounters uncertainties that might not
be explicitly programmed into traditional models.

Deep learning algorithms, particularly those underpinned by multi-layered neural
networks, have revolutionized trajectory prediction [27]. Convolutional Neural Networks
(CNNs) [28], Generative Adversarial Networks (GANs) [29], autoencoders [30], and Ran-
dom Forest [31] contribute, in particular, to trajectory feature identification and data gener-
ation. Each of these methodologies brings unique capabilities to the challenge of predicting
motion paths. CNNs can extract and utilize spatial hierarchies from trajectory data where
trajectories are heavily influenced by GPS features. However, it has limited capabilities in
handling temporal dependencies [28]. GAN is utilized for its ability to generate diverse
and plausible future trajectories, proving invaluable in dynamic air corridors. The training
of GANs, however, is marred by stability issues, such as mode collapse, where the diversity
of the data is not adequately captured by the model [29].

An autoencoder is employed for its ability to condense trajectory data into a more
manageable, lower-dimensional space, thus improving the computational efficiency of
prediction models. Yet, the accuracy of data reconstruction by the autoencoder is problem-
atic, as some crucial information has been lost in decoded outputs [30]. Random Forest is
employed for its robust performance across varied conditions, benefiting from an ensemble
nature that helps reduce variance and prevent overfitting. However, its effectiveness in
capturing the sequential dependencies essential to trajectory data and crucial for accurate
predictions degraded [31].

LSTMs, a type of recurrent neural network (RNN) [32], have shown a very good
performance in processing and predicting time-series data [33]. Among these algorithms,
Long Short-Term Memory (LSTM) networks stand out for their unparalleled ability to
handle sequential data and capture temporal dependencies, making them well-suited for
predicting future motions based on historical patterns. Its intrinsic strength positions LSTM
as a leading tool in the domain of trajectory prediction, ensuring more accurate and reliable
predictions compared to non-recurrent algorithms [34]. Hence, this study focuses on the
development of an LSTM architecture to better understand contextual trajectories, aiming
to achieve more accurate trajectory predictions.

In this way, the contribution of this article can be stated as follows. First, the UAS-S4
trajectory prediction is formulated as a time-series regression problem. The Stacked LSTM
architecture is then developed to predict future trajectories, outperforming the LSTM in
capturing trajectory patterns more precisely. Eventually, a Bidirectional LSTM is designed
such that it empowers the capture of temporal dependencies and early detection of sharp
trajectory changes. Therefore, it can be more resilient to imperfections in trajectory data
and perform better predictions compared to the Stacked LSTM.

The organization of the paper is as follows. In Section 2, the related works on LSTM-
based contextual trajectory prediction problems are investigated. The proposed methodolo-
gies using the Stacked LSTM and Bidirectional LSTM are described in Section 3. Trajectory
prediction performance is numerically analyzed and discussed in Section 4. A comprehen-
sive conclusion is given in Section 5.
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2. Related Works

LSTM algorithms have been significantly used for solving various trajectory-based
problems. These types of algorithms have been successfully employed for autonomous
driving, maritime traffic prediction, robot navigation, human activity recognition, crowd
management, and air traffic management. A long-term interactive trajectory prediction
method was designed [35], and it utilized a hierarchical multi-sequence learning network
to capture dependencies between multiple interacting vehicles, and it could automatically
learn high-level dependencies. Its innovation lies in the use of a structural LSTM network.
The method assigned an LSTM for each interacting vehicle. These LSTMs then share
their cells and hidden states with neighboring LSTMs in a spatial manner through radial
connections. This process allows the network to analyze its own output state as well as the
states of other LSTMs in their deeper layers. Based on these output states, the network is
able to develop trajectory predictions for the surrounding vehicles [35].

With the aim of marine vessel trajectory prediction, an unsupervised trajectory predic-
tion methodology with prediction regions at arbitrary probabilities was introduced. This
approach leverages two methods: LSTM prediction region learning and wild bootstrap-
ping [36]. The study demonstrated that both the autoencoder-based and wild bootstrapping
region prediction algorithms could effectively predict vessel trajectories. These predic-
tions could be applied to detect abnormal marine traffic in an unsupervised manner by
evaluating the predicted values at desired prediction probabilities [37].

In the context of robot navigation, an LSTM network was introduced as an online
search agent to address the challenges of path planning for mobile robots in unfamiliar
environments. This approach relies solely on local map awareness, obtained through a
Laser Range Finder (LRF) sensor, and relative information between the robot’s position
and the destination. The study thoroughly examined the final structure of the LSTM
network and assessed its performance in comparison to that of the A* algorithm, which is a
well-established method that employs a best-first search approach for path planning [38].

An innovative approach was presented for predicting the future trajectory of pedestri-
ans based on a limited history of their past actions, as well as those of their neighboring
pedestrians. This work was developed using an LSTM-based attention model, which
incorporated both “soft” and “hard” attention mechanisms. This approach effectively
mapped trajectory information from the local neighborhood to predict future positions
of the pedestrian of interest. The obtained results demonstrated how a straightforward
approximation of hard attention weights could be integrated with soft attention weights,
making the model suitable for complex scenarios involving numerous neighbors [39].

In the context of crowd management, an innovative LSTM model was designed to
collectively analyze the behaviors of multiple individuals within a given scene. Unlike
traditional LSTMs, this model incorporated a new pooling layer that facilitated information
sharing between multiple LSTMs. This pooling layer aggregates hidden representations
from LSTMs associated with neighboring trajectories, effectively capturing interactions and
dependencies among individuals within the same neighborhood [40].

For ATM systems, a new aircraft trajectory prediction (ATP) model was introduced
based on a constrained LSTM. This model was specifically designed to account for the
dynamic characteristics of an aircraft flight, with particular attention given to the climbing,
cruising, and descending/approaching phases. A notable feature of this model is its
capability to maintain long-term dependencies while incorporating such dynamic physical
constraints. Data segmentation and preprocessing were performed using a combination
of density-based spatial clustering applications with noise [41]. The LSTM model was
then developed to capture long-term trajectory dependencies to improve the accuracy of
trajectory predictions. The sliding windows technique [42] was utilized within the LSTM
to maintain data continuity and preserve dynamic dependencies between adjacent states in
long sequences.

The LSTM architecture was developed into “Deep Long Short-Term Memory” (D-
LSTM) for the ATP. The proposed D-LSTM model enhanced the accuracy of aircraft tra-
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jectory predictions, particularly in complex flight scenarios. It effectively integrated the
multi-dimensional features of aircraft trajectories into the LSTM framework and was em-
pirically validated using real-world ADS-B flight data [43].

With respect to the advancement of designed LSTMs, a security issue arose from
data-driven ATP problems. Hence, an LSTM model was developed for robustness against
adversarial attacks [44]. The sensitivity of the model was investigated, and then the model
was retrained using adversarial samples generated through the adaptive fast gradient sign
method. The model was retrained using a 4-D trajectory of a UAS-S4 and was able to
predict future trajectories accurately despite approaching adversarial samples [27].

In technical terms, using adversarial retraining to improve robustness can compro-
mise prediction accuracy and degrade LSTM’s efficiency. Therefore, the LSTM must be
enhanced to achieve its maximum potential by implementing advanced techniques, such
as Bidirectional LSTMs [45], Stacked LSTMs [46], Gated Recurrent Units [47], and attention
mechanisms [48]. In the following section, we delve deeper into these methodologies and
adapt them specifically for the ATP task.

3. Methodology

In order to utilize the LSTM model for the ATP, we need to formulate it as a time-series
regression problem [49]. In this way, firstly, an aircraft should be arranged in an air corridor
considering “timestamp”. Then, it is assumed that an aircraft is navigating within its
designated pathway, as illustrated in Figure 1 [50].
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Figure 1. Time-series ATP problem in an air corridor [50].

The goal is to forecast the aircraft’s future path on its upcoming m steps (prediction
horizon) using GPS data at any given moment (Tn). The GPS data encompasses parameters
including latitude, longitude, altitude, heading, speed, and time.

Then, an LSTM model needs to be developed for the ATP task. Improving the perfor-
mance of LSTM networks for time-series problems involves a combination of architectural
improvements and training strategies [51]. The ATP problem inherently requires under-
standing complex sequential patterns, predicting future movements based on historical
data, and sometimes even integrating upcoming contextual clues. Given the nature of this
task, the enhancements brought by the Stacked LSTMs and Bidirectional LSTMs (BiLSTMs)
can be particularly beneficial.

Stacked Long Short-Term Memory (SLSTM) networks represent an advanced configu-
ration of the LSTM architecture. The distinctive feature of Stacked LSTMs is their layered
structure. Instead of relying on a single LSTM layer, this model comprises multiple LSTM
layers stacked sequentially. Each layer processes the output sequence of its predecessor,
creating a cascade of information through the layers [52]. Figure 2 illustrates our Stacked
LSTM designed for the ATP problem.

The principle behind this architecture is not just adding more neurons to a single layer
but adding depth (more layers) to the network. The idea is that as trajectory data progress
through these multiple layers, they capture intricate patterns and dependencies, building
on the simpler patterns detected by the initial layers.

Let us consider multiple LSTM layers stacked on top of each other. UAS-S4 trajectories
(as input samples X) and actual target trajectory Y are applied to the model, and, after
processing using LSTM blocks, activation functions (h = tanh) introduce non-linearity into



Aerospace 2024, 11, 625 5 of 17

the output of a neuron, which provides predicted trajectories Ỹ. This deep architecture
can capture more complex patterns and representations in the data, potentially leading
to enhanced model performance, especially in datasets that possess hierarchical or multi-
tiered characteristics.
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Algorithm 1 represents the Stacked LSTM algorithm that trained a model for the
UAS-S4 trajectory prediction.

Algorithm 1. Stacked LSTM Algorithm

Initialize Parameters:
1. Define the number of layers l in the LSTM.
2. Define the number of hidden units in each layer H.
3. Initialize weights W, and biases b for each layer.

Input Preparation:
4. Prepare input sequence X = {x1, x2, . . . , xT} and standardize it.

Procedure:
5. For each time step, t = 1 : T.
6. For each layer, l = 1 : L.
7. Input gate : il

t = σ
(

W l
ii·

[
hl

t−1, xl
t

]
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ii

)
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8. Forget gate : f l
t = σ

(
W l

i f ·
[

hl
t−1, xl

t

]
+ bl

i f

)
.

9. Cell candidate : C̃l
t = tanh

(
W l

ig·
[

hl
t−1, xl

t

]
+ bl

ig

)
.

10. Output gate : ol
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]
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)
.

11. Cell State update : ol
t = f l

t ∗ Cl
t−1 + il

t ∗ C̃l
t .

12. Hidden state update : hl
t= ol

t ∗ tanh
(

Cl
t

)
.

13. Set output of current layer as input to next layer : xl+1
t = hl

t .
Backpropagation:

14. Compute gradients of the loss function with respect to all parameters.
15. Update model parameters using Stochastic Gradient Descent optimizer.

Iteration/Epoch Control:

16.
Repeat steps 5–15 for each batch of data, and for each epoch, until convergence or the
maximum number of epochs is reached.

17. Output = hl
t.

The first step in this algorithm involves initializing the parameters, which sets the
stage for the network’s structure and its learning capacity. This includes specifying the
number of layers (l) and the number of hidden units (H) in each layer. Additionally, weights
and biases for each LSTM unit across all layers are initialized, which is crucial for the gate
operations within each LSTM cell. These operations include the input gate, forget gate,
output gate, and cell state adjustments that regulate the flow of information through the
network, determining what to retain or forget as the data progress through the model.

During the forward pass, the Stacked LSTM processes the input sequence step-by-
step. At each time step t, the input xl

t is fed into the first layer, which processes the data
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and outputs a hidden state hl
t. This output then serves as the input to the second layer,

continuing in this fashion through all layers. Each layer’s LSTM cells independently execute
their gate operations and state updates, with the output of the last layer in the sequence
representing the final output for that time step.

Trajectory patterns, especially in dynamic environments, are not solely governed by
historical flight trajectories. Instead, they often intertwine with anticipatory reactions to
upcoming events. Let us consider the trajectory of an aircraft navigating along a corridor.
While its previous route provides insights into its immediate direction, forthcoming chal-
lenges, such as encountering deviations due to uncertainties or unpredictable failures, could
play an influential role in its future path. A model that relies predominantly on historical
data, such as Stacked LSTM, might inadvertently overlook these critical dynamic cases.

This is where the strength of BiLSTMs comes into play. By processing data from both
forward and backward directions, BiLSTMs create a comprehensive contextual understand-
ing of the trajectory for every point in the data sequence [45]. In the realm of trajectory
prediction, this dual-direction processing offers several distinct advantages:

• “Understanding Trajectories”: BiLSTMs make each trajectory prediction within a dual
context derived from both past actions and potential future occurrences. This approach
aligns predictions closer to real-world trajectories, which are often adjusted based on
retrospective and prospective cues.

• “Early Detection of Sharp Trajectory Changes”: Trajectories can sometimes exhibit
sudden resolution advisories. BiLSTMs, through their backward pass, are strong at
recognizing these shifts, leading to more accurate predictions.

• Resilience in Data Imperfections: In practical scenarios, trajectory data might not be
perfect due to missing data or inherent noise. BiLSTMs’ bidirectional processing offers
a form of data redundancy, enhancing the model’s resilience against such imperfections
and ensuring more stable predictions.

Compared to the Stacked LSTM, BiLSTM networks are an evolved form of recurrent
neural network (RNN) specifically designed to enhance sequence modeling. Their unique
capability is rooted in their ability to observe both the preceding and the succeeding
contextual trajectories within a sequence. Unlike standard LSTMs that progress linearly
from the beginning to the end of a sequence, BiLSTMs adopt a dual-directional approach. In
other words, BiLSTMs process the input sequence both forward and backward, allowing the
model to capture trajectory dependencies in both directions. Figure 3 shows the architecture
of the designed BiLSTM.
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Figure 3. Proposed BiLSTM architecture for solving the ATP time-series problem.
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As seen in Figure 3, within this structure, the first layer interprets the sequence from
the initial to the final element (the forward direction is shown in red), while a second
layer traverses in the opposite direction, from the final to the initial element (the backward
direction is shown in blue). In the model, the trajectories of UAS-S4 (represented as input
samples X) are fed into the LSTM layers. After being processed through the LSTM blocks
and the activation functions (h = tanh), the model generates predicted trajectories (denoted
as output samples Y). By strategically merging the outputs from both LSTM layers (using
the function σ) at every time step, BiLSTMs create a more comprehensive representation of
trajectories.

This synthesized representation benefits from insights drawn from both previous
and future contextual trajectory sequences of the aircraft. Algorithm 2 represents the
Bidirectional LSTM algorithm that was developed using the Stacked LSTM algorithm.

Algorithm 2. Bidirectional LSTM Algorithm

Initialize Parameters:
1. Define the number of layers l in the LSTM.
2. Define the number of hidden units in each layer H.
3. Initialize forward and backward weights (W f , Wb) and biases (b f , bb), for each layer.

Input Preparation:
4. Prepare input sequence X = {x1, x2, . . . , xT} and standardize it.

Procedure:
Forward pass:

5. For each time step, t = 1 : T.
6. For each layer, l = 1 : L.
7. Input gate: il, f

t = σ
(

W l, f
ii ·

[
hl, f

t−1, xl, f
t

]
+ bl, f

ii

)
.

8. Forget gate: f l, f
t = σ

(
W l, f

i f ·
[

hl, f
t−1, xl, f

t

]
+ bl, f

i f

)
.

9. Cell candidate: C̃l, f
t = tanh

(
W l, f

ig ·
[

hl, f
t−1, xl, f

t

]
+ bl, f

ig

)
.

10. Output gate: ol, f
t = σ

(
W l, f

io ·
[

hl, f
t−1, xl, f

t

]
+ bl, f

io

)
.

11. Cell state update: ol, f
t = f l, f

t ∗ Cl, f
t−1 + il, f

t ∗ C̃l, f
t .

12. Hidden state update: hl, f
t = ol, f

t ∗ tanh
(

Cl, f
t

)
.

Backward pass:
13. For each time step, t = 1 : T.
14. For each layer, l = 1 : L.
15. Input Gate: il,b

t = σ
(

W l,b
ii ·

[
hl,b

t−1, xl,b
t

]
+ bl,b

ii

)
.

16. Forget Gate: f l,b
t = σ

(
W l,b

i f ·
[

hl,b
t−1, xl,b

t

]
+ bl,b

i f

)
.

17. Cell Candidate: C̃l,b
t = tanh

(
W l,b

ig ·
[

hl,b
t−1, xl,b

t

]
+ bl,b

ig

)
.

18. Output Gate: ol,b
t = σ

(
W l,b

io ·
[

hl,b
t−1, xl,b

t

]
+ bl,b

io

)
.

19. Cell State Update: ol,b
t = f l,b

t ∗ Cl,b
t−1 + il,b

t ∗ C̃l,b
t .

20. Hidden State Update: hl,b
t = ol,b

t ∗ tanh
(

Cl,b
t

)
.

21. At each time step, t, concatenate, hl, f
t and hl,b

t , for the last layer L to form the final
output for that time step.

Backpropagation:
22. Compute gradients of the loss function with respect to all parameters.
23. Update model parameters using Stochastic Gradient Descent optimizer.

Iteration/Epoch Control:

24.
Repeat steps 5–23 for each batch of data, and for each epoch, until convergence or the
maximum number of epochs is reached.

25. Output = hl
t

[
hl, f

t , hl,b
t

]
.

The process begins with the initialization of model parameters, including the weights
and biases for both the forward and backward LSTM layers. Each LSTM layer in the model
consists of multiple gates (input, forget, output, and cell candidate) that control the flow
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of information. These gates manage how information is retained or forgotten over time,
making LSTMs particularly effective for tasks where long-range dependencies are crucial.

During the forward pass of a Bidirectional LSTM, the input sequence is fed through the
network in two directions: forward and backward. For each time step, the forward LSTM
processes information as it appears in the sequence, while the backward LSTM processes
information in reverse order. This setup results in each time step producing two sets of
hidden states from both the forward and backward passes, which capture different aspects
of the sequence’s context. These hidden states are then typically concatenated to form a
comprehensive representation of the data at each point in the sequence. This concatenated
output can then be used to further process layers or directly influence the final output.

For our ATP task, where the evolution of a path is intrinsically linked to both past
and future UAS-S4 trajectories, BiLSTMs present a compelling modeling choice, offering a
richer, more integrated perspective on sequence data

4. Results and Discussion

The LSTM, as a deep neural network algorithm, can enhance its performance when
provided with a large and diverse dataset. To create such a dataset, the UAS-S4 was utilized
to generate a significant amount of aircraft trajectory data. Figure 4 illustrates the UAS-S4
Ehécatl, developed by Hydra Technologies. Table 1 represents an in-depth overview of its
geometrical dimensions and flight data characteristics [53].
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Table 1. The UAS-S4 geometrical and flight data specification.

Specification Value

Wingspan 4.2 m
Wing area 2.3 m2

Total length 2.5 m
Mean aerodynamic chord 0.57 m

Empty weight 50 kg
Maximum take-off weight 80 kg

Loitering airspeed 35 knots
Maximum speed 135 knots

Service ceiling 15,000 ft
Operational range 120 km

The aircraft trajectory database was developed using a simulator that incorporated
our UAS-S4 flight dynamics model, developed at Laboratory of Applied Research in Active
Controls, Avionics and AeroServoElasticity (LARCASE), Montreal, Canada [54–57]. This
model integrates a Support Vector Regression algorithm and a resilient adaptive fuzzy con-
troller [58]. The database contained 1820 individual trajectories, totaling 218,400 samples.
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Each sample in the database was a vector comprising elements (i.e., [latitude, longitude,
altitude, heading, speed, time]T derived from GPS data.

The UAS-S4 trajectory dataset underwent standardization to be prepared for SLSTM
and to enhance the model’s sensitivity to input scale variance. These processed data were
then divided, allocating 70% for training and 30% for testing. For compatibility with the
SLSTM models, the data were reshaped into sequences defined by the ‘time_steps’ T
parameter. The SLSTM layers were configured with 40 units each, and dropout layers with
a rate of 0.2 were integrated to mitigate overfitting. The ‘tanh’ activation function was
chosen for its superior accuracy over ‘ReLU’.

Additionally, L2 regularization was employed in the SLSTM layers as a further mea-
sure against overfitting. The learning rate was determined to be 0.004, which was optimized
through the Stochastic Gradient Descent (SGD) optimizer, known for its effectiveness in
fitting regressors with convex loss functions. The model’s training involved 40 epochs, and
hyperparameters were optimized using ‘KerasTuner’.

Similar to the SLSTM model, UAS-S4 trajectory data were standardized for the BiLSTM
model to address its sensitivity to variations in the input scale. The standardized data were
then split, with 70% allocated for training and 30% for testing. To set up the architecture,
each BiLSTM layer was composed of 40 units, and dropout layers with a rate of 0.2 were
employed to reduce overfitting. The ‘tanh’ activation function was selected due to its
higher accuracy compared to ‘ReLU’, and L2 regularization was applied within the LSTM
layers as an additional measure against overfitting. The learning rate, established at
0.004, was determined using the Stochastic Gradient Descent (SGD) optimizer, chosen for
its effectiveness in handling regressors with convex loss functions. The training of the
model was conducted over 40 epochs, with hyperparameters finely tuned via KerasTuner.
KerasTuner involves defining the model architecture, specifying the hyperparameter search
space, selecting a tuner (RandomSearch, Hyperband, and BayesianOptimization), and
running the search process to find the optimal hyperparameters. This process helps in
improving model performance by finding the most suitable hyperparameters for the
UAS-S4 dataset and ATP problem.

In the context of BiLSTM, the chosen “merge mode” was “sum”, where outputs from
both the forward and backward passes of the LSTM were combined by addition. This merge
mode was selected to maintain a more manageable model size while still leveraging the ad-
vantages of bidirectional processing. It proved to be especially beneficial when the forward
and backward states were anticipated to be similar or to have overlapping information.

Evaluating and comparing error loss figures during LSTM-based model training
is fundamental for effective model development. This process assists in performance
assessment, helps to prevent overfitting, guides hyperparameter tuning, ensures model
convergence, enables comparative analysis, facilitates early stopping, assists in algorithmic
diagnostics, and builds confidence for model deployment. Hence, Figures 5 and 6 are
represented for loss analysis when utilizing SLSTM and BiLSTM, respectively.
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In the SLSTM training graph, to solve our UAS-S4 trajectory prediction problem
(Figure 5), we observed initial high loss values (0.67 for the training phase and 0.26 for
the validation phase) due to the random starting weights. However, the SLSTM quickly
learned, as shown by the sharp decrease in loss during the first three epochs. As training
progressed beyond epoch 25, the loss reduction slowed down considerably and began to
plateau, indicating that the model largely adapted to the patterns in the training data. The
small fluctuations in losses are a normal part of the optimization process. There is a sign of
overfitting, particularly when the validation loss starts to diverge from the training loss at
epoch 38. Hence, we assumed that 27 epochs were enough for training.

In our exploration of the BiLSTM training to solve the UAS-S4 trajectory prediction
problem, the initial stages were characterized by a significantly high loss (0.65 for the
training phase and 0.25 for the validation phase), which is a direct consequence of the
model’s initial untrained state, as shown in Figure 6. However, the BiLSTM rapidly
evolved, mastering the complexity of the dataset, as reflected in the steep loss reduction
at the third epoch. Moving forward, as we crossed the 32nd epoch, the loss began to
level off, suggesting that the model was near its learning saturation point. The graph’s
small fluctuations indicate the iterative nature of the BiLSTM learning process. To avoid
overfitting, obtained at epoch 39, we stopped at epoch 32.

In addition to loss figures, the mean absolute percentage error (MAPE) is a robust,
interpretable, and efficient metric that provides consistent and comparable evaluations
of LSTM-based models for different prediction horizons. Its insensitivity to outliers and
direct interpretability in data units make it a practical choice for our trajectory prediction
problem. Figure 7 illustrates measured MAPEs for LSTM, SLTSM, and Bi LSTM within an
8 min prediction horizon.
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As shown in Figure 7, MAPE is plotted against the prediction horizon, revealing a
trend in predictive modeling. The initial low MAPE values (0.62%) indicate good accuracy
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for near-term forecasts. As the horizon extends, the MAPE gradually increases for all LSTM-
based models, suggesting a decrease in predictive accuracy for longer-term forecasts. This
increase aligns with the inherent uncertainty and complexity involved in making long-range
predictions. The graph also allows us to compare different LSTM models, where BiLSTM
with lower MAPE values indicates a more accurate model than the LSTM and SLSTM.
Towards the longer horizons, the MAPE values start to increase exponentially, suggesting
a limit to the forecasting ability of the models. For our UAS-S4s that were arranged in a
range of 16 km2, a 4 min prediction horizon was considered for trajectory prediction.

The learning rate is a pivotal hyperparameter in the LSTM models’ training. It plays a
significant role in the way in which a model effectively learns, as shown by its impact on
the MAPE. When the learning rate is set at 0.04 (high), models can learn rapidly, which can
be advantageous in the initial stages of training as it helps the model quickly approach a
lower error rate. As shown in Table 2, by considering 40 layers in LSTM-based models, a
10-times increase in the learning rate caused 37, 34, and 32 min training time reductions for
the LSTM, SLSTM, and BiLSTM, respectively. However, this high learning rate comes with
risks, including the risk of model overshooting, leading to unstable updates and potentially
higher MAPE values. As indicated in Table 2, a 10-times increase in the learning rate caused
0.14, 0.12, and 0.11% growth for MAPE for LSTM, SLSTM, and BiLSTM, respectively.

Table 2. LSTM-based prediction models’ performance in terms of MAPE and training time.

Hidden Layers Learning Rate MAPE % Training Time (min)

LSTM

20
0.004 1.96 461

0.04 2.11 425

40
0.004 1.81 474

0.04 1.95 437

SLSTM

20
0.004 1.55 511

0.04 1.67 475

40
0.004 1.41 523

0.04 1.53 489

BiLSTM

20
0.004 1.34 567

0.04 1.45 535

40
0.004 1.21 581

0.04 1.32 549

Conversely, a low learning rate ensures more stable and smaller updates to the LSTM-
based model’s parameters. This stability often leads to a more reliable convergence towards
a lower MAPE. However, the trade-off here is the pace of learning as the model adjusts its
weights only marginally in each iteration. As shown in Table 2, by considering 20 layers
in LSTM-based models, a 10-times lower learning rate causes 0.15, 0.12, and 0.11 smaller
MAPEs in the LSTM, SLSTM, and BiLSTM, respectively. We considered 40 layers for the
LSTM-based model and set the learning rate to 0.004, which allowed the BiLSTM to learn
efficiently and converge to a low MAPE (1.21%) without any issues of overshooting or
stagnation. These settings have led to a better and faster convergence to a lower MAPE,
blending the benefits of both high and low learning rates.

With the aim of a trade-off between training stability and learning time, we initially
adopted a high learning rate at the beginning, and this decreased progressively with the epoch
to enhance stability. To dynamically adjust the learning rate during training epochs within a
single trial, we used ‘LearningRateScheduler’ as a callback function provided by Keras. This
callback was used alongside KerasTuner to fine-tune the learning rate policy as part of the
model’s architecture and training process. The learning rate was initially considered 0.004
and dynamically adjusted during training epochs. For the learning rate schedule function,
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we considered decay_factor = 0.5, step_size = 10. Table 3 shows the performance of
LSTM-based prediction models while learning rates were being fine-tuned.

Table 3. LSTM-based prediction models’ performance while learning rates are fine-tuned.

Hidden Layers MAPE % Training Time (min)

LSTM
20 2.03 445

40 1.88 457

SLSTM
20 1.61 494

40 1.47 509

BiLSTM
20 1.39 554

40 1.26 569

Following Table 3, the results confirm the superiority of BiLSTM over SLSTM and
LSTM in terms of MAPE and training time, while ‘LearningRateScheduler’ was responsi-
ble for fine-tuning learning rates. The callback function could provide a trade-off between
MAPE and training time and achieve the desired accuracy in a reasonable training time.

Following the investigated LSTM-based models, the LSTM (as a type of recurrent
neural network) is designed to overcome the vanishing gradient problem common in
traditional RNNs, making it suitable for modeling trajectory sequence data. It includes
memory cells with input, forget, and output gates that regulate trajectory information flow,
allowing them to capture long-term dependencies more effectively.

Stacked LSTM builds on the basic LSTM architecture by layering multiple LSTM
layers, each passing outputs to the layer above, allowing the network to learn at multiple
levels of abstraction. This structure enables the model to handle more complex trajectory
patterns and learn nuanced features from the data. However, the increased complexity
raises the risk of overfitting and requires significantly more computational resources.

Bidirectional LSTM (BiLSTM) enhances traditional LSTMs by processing data in both
forward and backward directions, thus gaining information from both past and future
contexts. This dual-direction processing makes BiLSTM effective for trajectory prediction
tasks. Despite its superior trajectory context awareness and performance on sequence data,
BiLSTM also introduces more complexity and requires the full sequence before processing.

With respect to the superiority of the BiLSTM among LSTM-based architectures in
terms of MAPE, this model can be compared with other deep neural networks aimed
at trajectory prediction. Deep architectures such as Generative Adversarial Net [29], the
autoencoder [30], and Random Forest [31] have been investigated and developed for ATP
at the Laboratory of Applied Research in Active Controls, Avionics and AeroServoElasticity
(LARCASE).

Table 4 presents a comparative analysis of the mean absolute percentage error (MAPE%)
for four different deep learning and machine learning methodologies across three predic-
tion horizons at 1 min, 5 min, and 10 min. The purpose of this comparison is to evaluate
how well each method can predict future values in a time-series, with an increasing horizon
to assess their reliability over time.

Table 4. Comparison of deep neural networks performance for increasing prediction horizon.

Methodology MAPE% along with Prediction Horizons

1 min 5 min 10 min

Generative
Adversarial Net [29] 0.76 1.24 2.92

Autoencoder [30] 0.71 1.09 2.46
Random Forest [31] 0.61 1.14 2.75
Bidirectional LSTM 0.65 1.02 2.53
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In accordance with Table 4, Generative Adversarial Net (GAN) shows increasing error
rates as the prediction horizon extends. This trend highlights the model’s challenges with
maintaining accuracy over longer periods due to its inherent design, which focuses more
on generating realistic data rather than forecasting. The autoencoder demonstrates the least
MAPE (2.46%) among all the models over a longer-term (10 min) horizon. This indicates its
potential suitability for tasks requiring the preservation of complex time-series patterns
across extended durations.

Random Forest, a non-sequential model, presents the lowest MAPE (0.61%) for the
short-term (1 min) horizon, illustrating its strength in capturing essential features over short
periods. However, its performance degrades more noticeably than that of the BiLSTM as the
prediction horizon increases, reflecting its limitations in handling temporal dependencies
without specific feature engineering. Bidirectional LSTM (BiLSTM), known for its ability
to capture both past and future contexts effectively, exhibits the most stable MAPE across
all prediction horizons. This stability underscores its applicability to various time-series
forecasting tasks, particularly where long-term dependencies are critical.

Given the superiority of the BiLSTM over the LSTM and the SLSTM in terms of
prediction accuracy, it was utilized for UAS-S4 trajectory prediction. A UAS-S4 was
considered in a customized 16 km2 flying area, and an air corridor was allocated accordingly.
Based on 10 actual UAS-S4 trajectories (extracted from the validation set) recorded at a
1500 m altitude, the trajectory prediction performance of the BiLSTM in terms of longitude
and latitude is visualized in Figure 8.
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The information displayed in Figure 8 was extracted from a 16 km2 flying area; it
depicts 10 actual trajectories (green lines) of a UAS-S4 flying through an air corridor within
a 95% confidence bound (red dashed lines). A waypoint was given in both coordinates:
longitude = 1710 m and latitude = 520 m (the orange point). The mean predicted trajectory
of the UAS-S4 given by the BiLSTM (blue lines) confirms its excellent prediction accuracy.

The BiLSTM model significantly enhances prediction accuracy in aircraft trajectory
prediction, which is critical for air traffic control systems. However, the increased training
time associated with BiLSTM models is a notable trade-off. In real-world scenarios, this
requires a balance between computational resources and operational efficiency.

For practical implementation, especially in air traffic control systems where decision-
making speed is crucial, it might be beneficial to use BiLSTM models in a hybrid approach.
For instance, rapid trajectory predictions could initially be made using fewer complex
models during real-time operations, with BiLSTM models being employed offline to contin-
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uously refine and update the system’s understanding of complex trajectory patterns. These
updates can then be cyclically integrated into the real-time system, ensuring that the model
remains both accurate and efficient.

5. Conclusions

An innovative data-driven approach was designed to solve UAS-S4 Ehécatl trajectory
prediction, utilizing the Long Short-Term Memory (LSTM) algorithm. Initially, a basic
LSTM model was created and then evolved into a Stacked LSTM to better capture complex
temporal patterns in UAS-S4′ trajectories. Subsequently, a Bidirectional LSTM was devel-
oped to achieve a dual-directional understanding of contextual trajectories, considering
both past and future data for a better temporal analysis, thereby aiming to enhance predic-
tion accuracy. The performance of these LSTM-based models was assessed using the mean
absolute percentage error (MAPE) metric.

The UAS-S4 trajectories were predicted for various prediction horizons. With the
extension of the prediction horizon, there was a consistent increase in the mean absolute
percentage error (MAPE) across all LSTM-based models, indicating a reduced accuracy in
forecasts. For the LSTM-based models, a configuration of 40 layers was chosen, along with
a learning rate initially set to 0.004 and progressively fine-tuned. This setup enabled the
BiLSTM model to learn effectively and ensured convergence to a low MAPE of 1.26%, thus
avoiding the adverse effects of overshooting or stagnation. The results demonstrate that
the BiLSTM outperformed the Stacked LSTM in accurately predicting UAS-S4 trajectories.

The primary limitation of the current study is the extended training time required for
BiLSTM models, which may not be viable for all operational environments, particularly
where on-the-fly retraining is necessary. Additionally, while BiLSTMs handle the dual-
directional trajectory context effectively, they rely on complete sequence availability, which
might not always be possible in scenarios where real-time data streaming is incomplete
or delayed. Future research could focus on the exploration of real-time adaptive learning
frameworks that can integrate new data into the trained model without the need for
complete retraining.
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