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Abstract: Laser powder bed fusion allows the production of complex geometries and eases the shap-
ing of difficult-to-transform materials, such as near-equiatomic Ti-Ni shape memory alloys. In this
study, a numerical model was used to select 11 sets of printing parameters with different volumetric
energy densities (VEDs) and build rates (BRs) to produce bulk Ti-50.26at%Ni alloy specimens. The
manufactured specimens were studied in terms of their structural integrity, printed density, chemical
composition, transformation temperatures, and crystalline phases. At high VEDs and low BRs, a
significant decrease in the nickel content was observed. VED = 90 J/mm3 and BR = 10 cm3/h yielded
a printed density of 99.94% and an austenite finish temperature of Af = 26.3 ◦C. The same printing
conditions were used to produce 60% porous diamond and gyroid lattice structures. After heat
treatment at 500 ◦C for 30 min, the diamond lattices manifested larger apparent recovery strains
(7 vs. 6%), higher compliance (2.9 vs. 3.4 GPa), and similar yield stresses (~48 MPa) compared to their
gyroid equivalents. The numerical model predicted that at an equivalent apparent compression strain
of 6%, only a ~2% volume fraction of the diamond lattice material underwent plastic deformation as
compared to ~20% for its gyroid equivalent.

Keywords: laser powder bed fusion; shape memory alloy; lattice structure

1. Introduction

The advent of additive manufacturing (AM) has opened the door to numerous new
applications and developments in recent years, most notably the manufacture of com-
plex geometries for the aerospace and biomedical fields [1,2]. Particularly of interest in
biomedical science is the production of porous implants with mechanical properties close
to those of bone [3–5]. In this context, various types of lattice structures are being studied
and are providing favorable outcomes [6,7]. Additive manufacturing has also facilitated
the shaping of materials that are difficult and costly to form. One such material is near-
equiatomic Ti-Ni shape memory alloy (SMA), also known as Nitinol, a functional metallic
material that has been widely used in stents and orthodontics due to its shape memory and
superelastic properties [8]. These remarkable properties are attributable to the diffusion-
less transformation occurring between the two crystallographic phases: high-temperature
austenite and low-temperature martensite. This martensitic transformation can be triggered
either by inducing mechanical stress or by changing the temperature. The notoriously
low formability of Ti-Ni has been a limiting factor for its wider practical application, since
commonly used forming methods such as casting, forging, rolling, drawing, and laser or
electrochemical machining restrain the product geometry to relatively simple shapes [9].
Since additive manufacturing allows the production of complex geometries and eases the
shaping of difficult-to-transform functional materials, an investigation is warranted into
the synergy between benefits offered by AM, the design flexibility of porous structures, and
the functional properties of Ti-Ni. The most common metal AM processes are laser-directed
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energy deposition (L-DED) and laser or electron beam powder bed fusion (L(EB)-PBF).
L-DED involves feeding powdered material through a nozzle into the focus of a laser
beam, fusing the powder particles to the substrate. This process is primarily used for
repairs. In contrast, L(EB)-PBF processes involve spreading a powder layer on a previously
fused substrate, with the new layer being melted by a laser or electron beam. Within the
PBF processes, EB-PBF is characterized by greater productivity, reduced cooling rates and
residual stresses, and therefore lower risks of distortion and cracking. On the other hand,
LPBF provides higher resolution and better surface finish, both advantages being crucial
for the production of such intricate geometries as lattice structures [10].

Multiple attempts to produce Ti-Ni by laser powder bed fusion have been documented
in the literature, but with varying degrees of success [11–13]. The main difficulty encoun-
tered in this effort appears to be the selection of printing parameters which would allow
the printing of defect-free parts, while preventing excessive nickel evaporation from the
alloy [14–19]. The latter is especially important, since the shape memory and superelastic
properties of Ti-Ni are strongly dependent on the chemistry of the material [20]. In a bid to
produce low-stiffness structures, Bartolomeu et al. [21] attempted to manufacture supere-
lastic Ti-Ni lattices, but they were not able to observe in them any superelastic response.
Biffi et al. [22] were more successful, but the superelasticity of their lattice structures was
only partial. This was partially due to increased martensitic transformation temperatures
caused by the complexity of controlling the material composition during printing. The
above-mentioned difficulties mean that more work must be devoted to the optimization of
laser powder bed fusion of superelastic Ti-Ni lattice structures.

With this objective in mind, this study aims to design, manufacture, numerically
simulate, and experimentally characterize superelastic Ti-Ni lattice structures [23]. To find
an optimal manufacturing regime, a series of Ti-Ni specimens were manufactured using a
simulation-driven density process mapping. The printed specimens were analyzed in terms
of their density and chemical composition, and subjected to structural and differential
scanning calorimetry analyses. Next, the most promising printing regime was selected and
used to manufacture bulk testing coupons as well as diamond and gyroid lattice structures.
The lattice structures were analyzed in terms of their structural integrity, geometric confor-
mity, and mechanical behavior, and the experimental results were compared to those of
the numerical simulations to validate the numerical model and establish a comprehensive
basis for the optimal use of these structures.

2. Materials and Methods
2.1. Manufacturing Parameter Selection

In this study, Ti-50.26 at% Ni 15–53 µm powder was procured from Avimetal Powder
Metallurgy Technology Co., Ltd. (Beijing, China) and loaded into a laser powder bed fusion
TruPrint 1000 system (Trumpf GmbH, Ditzingen, Germany) equipped with two 200 W fiber
lasers (spot diameter of 55 µm). The powder was also subjected to a particle size analysis
using an LS 13 320 XR apparatus (Beckman Coulter, Indianapolis, IN, USA) (Figure 1a) and
to scanning electron microscopy (SEM) observations, using a TM3000 microscope (Hitachi,
Tokyo, Japan) (Figure 1b).
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To determine the process parameter sets allowing us to print highly dense components,
a proprietary numerical algorithm allowing the prediction of the density of printed material
as a function of the volumetric laser energy density (VED—Equation (1)) and the material
build rate (BR—Equation (2)) was used:

VED = P/(v × t × h) (1)

BR = v × t × h (2)

with P [W] being the laser power; v [mm/s], the laser speed; t [mm], the layer thickness;
and h [mm], the hatch distance [24].

This algorithm is based on the numerical modeling of a melt pool created by moving a
Gaussian heat source across the powder bed and targeting the simultaneous satisfaction
of three adimensional ratios relating melt pool dimensions to laser scanning parameters:
the melt pool width-to-hatch distance ratio, W/h ∈ 1.5–2.5; the melt pool depth-to-layer
thickness ratio, D/t ∈ 2–3.5; and the melt pool length-to-width ratio, L/W ≤ 4. The Ti-Ni
alloy material properties used in the model are presented in Table 1.

Table 1. Material properties of Ti-Ni used for the LPBF process modeling and specimen density
prediction [8,25].

Melting temperature [K] 1573

Thermal conductivity [W/m·K] 18

Specific heat capacity [J/kg·K] 450

Laser absorptivity, % * 45.6

Powder bed density, % 60

* Absorptivity was calculated using the Hagen–Rubens model and an electrical resistivity value of 1 × 10−6 Ohm · m [24].

To build the printed density process map shown in Figure 2, the laser power P was
varied from 60 to 200 W, the laser speed v from 200 to 3000 mm/s, and the hatch distance h
from 30 to 130 µm. Based on the particle size distribution available, the layer thickness t
was set to 30 µm. In accordance with the algorithm predictions, a 70 µm hatch distance
with VED = 70–100 J/mm3 and BR = 3–10 cm3/h processing parameter ranges predicted a
sufficiently large area of the highest printed density. Next, to cover a large portion of the
processing map with predicted densities ranging from 97 to 100% with a bid to validate the
algorithm, eleven processing parameter sets were selected (Table 2).

Table 2. Printing parameters and predicted densities for 30 µm layer thickness and 70 µm hatch distance.

Specimen Power (W) Speed
(mm/s)

Volumetric Energy
Density (J/mm3)

Build Rate
(cm3/h)

Predicted
Density (%)

1 83 397 100 3 99.86

2 75 397 90 3 100.00

3 125 661 90 5 99.94

4 188 992 90 7.5 99.85

5 78 529 70 4 99.66

6 146 992 70 7.5 99.86

7 194 1323 70 10 99.87

8 69 661 50 5 97.73

9 104 992 50 7.5 98.04

10 139 1323 50 10 98.07

11 111 1323 40 10 96.10
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Figure 2. Processing map of the predicted material density as a function of VED and BR for
30 µm layer thickness and 70 µm hatch distance; zone encompassed by VED = 70–100 J/mm3

and BR = 3–10 cm3/h corresponds to the highest expected printed density. The numbers correspond
to parameter sets selected to be studied.

2.2. Manufacture, Preparation, Chemical and Structural Analyses of Printed Specimens

The first printing iterations were carried out on titanium and steel substrates and
resulted in the separation of parts from the build plate, forcing the cancelation of the
builds after a few layers. This problem was resolved by using a Ti-Ni build plate. Printing
was carried out under an argon atmosphere with an O2 content ≤0.01%. Two types of
cylindrical specimens were manufactured for each parameter set: 5 mm diameter–10
mm height for DSC and XRD measurements, and 10 mm diameter–20 mm height for
density measurements (Figure 3d). Furthermore, 60% porous gyroid and diamond lattice
structures were manufactured with Parameter set 7, which had a predicted density of
99.87% and the fastest productivity (BR) among the selected parameters (Figure 3c). The
sheet-based gyroid lattice structure was designed using nTop (nTopology, New York, NY,
USA) software with the following parameters: a sheet thickness of 0.305 mm, a cell size
of 2.431 mm, and a pore size of 0.75 mm (Figure 3b). The equivalent porosity strut-based
diamond structure was designed using a proprietary MATLAB (MathWorks, Natick, MA,
USA) algorithm with a strut thickness of 0.455 mm, a cell size of 1.485 mm, and a pore
size of 0.75 mm (Figure 3a). The selection of these lattice configurations was discussed in
detail in a previously published study [26]. Finally, a heat treatment at 500 ◦C for 30 min
followed by air cooling was performed on some of the printed specimens to study the effect
of removing residual stresses on the printed material properties.

Titanium and nickel compositions of the as-received powder and printed specimens
were measured using electron probe microanalysis (EPMA) on a Cameca SX100 FiveFE
system (Ametek, Gennevilliers, France). An accelerating voltage of 20 kV, a beam current
of 20 nA, and a beam size of 5 µm were used to analyze 10 points on each specimen. In
accordance with Tukey’s significant difference test results, outlier values were discarded.
Porosity analyses on the 5 mm diameter cylinders and lattice structures were carried out
using a Nikon XTH225 (Tokyo, Japan) computed tomography (CT) system. Scans were
carried out using a 0.25 mm Cu filter with a 208 kV tube voltage, 60 µA current and
5 µm resolution for the cylinders, and a 210 kV tube voltage, 93 µA current, and 12.4 µm
resolution for the lattice structures. The resulting images, with grey values representing
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the density of the material, were treated in Dragonfly software (Comet Technologies Inc.,
Montreal, QC, Canada) where a binarization (thresholding) was performed to separate air
and pores from the solid material. Using porosity segmentation, the volume of pores and
solid material were calculated and converted to relative density [27]. To validate the CT
scan results, pycnometry density measurements on the 10 mm diameter specimens were
carried out on an AccuPyc II 1340 (Micromeritics, Norcross, GA, USA) apparatus using
helium gas with three repetitions of 10 purging cycles.
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A phase analysis of the as-received powder, and of the as-built and heat-treated
specimens, was carried out on a Panalytical X’Pert Pro (Malvern Panalytical, Malvern, UK)
X-ray diffractometer in the 30 to 100◦ 2θ range, using copper Kα radiation (λ = 0.1506 nm),
a step size of 0.0167◦, a generator voltage of 45 kV, and a tube current of 40 A. Specimens
for the XRD analyses were polished to remove the surface oxide layer using 400-grit
sandpaper. To remove the background, smoothen the curves, and identify the phase peaks,
the resulting data were treated using a custom MATLAB algorithm. References from the
HighScore software database (Malvern Panalytical, Malvern, UK) were used to correlate
the measured phase peaks with the known austenitic (B2), martensitic (B19’), and R-phase
peak positions [28–33]. The as-built and heat-treated Parameter set 7 specimens were
observed by an optical microscope (Leica DMLM, Leica Microsystems, Wetzlar, Germany)
and subjected to electron backscatter diffraction (EBSD) analysis using a Hitachi SU8230
SEM (Hitachi, Tokyo, Japan). For the latter, specimens were mounted in carbon-charged
resin, polished using grit 400, 600, 800, and 1200 SiC sandpaper and colloidal silica (24 h),
and etched using Kroll’s reagent (1.9% HF, 4.7% HNO3 and 93.4% H2O) for 45 s. Finally,
the EBSD specimens were subjected to secondary colloidal silica polishing for 2 h and
ion milling.

2.3. Measurement of the Transformation Temperatures and Mechanical Testing

The phase transition temperatures of the powder, as-built and heat-treated specimens
were measured by differential scanning calorimetry using a DSC2500 apparatus (TA In-
struments, New Castle, DE, USA). Specimens in the shape of disks cut from the 5 mm
diameter cylinders were sanded down in cold water until reaching a mass of 15 to 45 µg and
tested in the −85 to 100 ◦C temperature range at a heating–cooling rate of 5 ◦C/min under
nitrogen cover gas. It is known that Ti-Ni SMA can undergo martensitic transformation
via direct austenite–martensite transformation, asymmetric R-phase transformation, and
symmetric R-phase transformation. Depending on the material condition, multiple phase
transformation peaks could therefore be expected: during cooling, an R-phase peak (R)
and a martensite peak (M) representing the austenite transformation to R-phase and the
R-phase change to martensite, respectively. Inversely, during heating, an R-phase peak
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(R) and an austenite peak (A) appeared, representing the transformation of martensite
into R-phase and then into austenite. For each peak (p), the transformation start (s) and
finish (f) temperatures can be identified as intercepts between the tangents of the baselines
and the tangents to the inflection points on the heating and cooling peaks, as per ASTM
F2004-17 [34] (Figure 4a). The characteristic temperature of greatest interest for this study
is Af (austenite finish), and it corresponds to the fully austenitic state of the material; above
this temperature, Ti-Ni should manifest the superelastic behavior, which is targeted for the
biomedical applications of lattice structures.
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Mechanical tensile testing was performed on bulk specimens manufactured with
Parameter set 7. ASTM E8 dogbone sub-specimens with a 4 mm diameter and a 24 mm
length gauge section were tested in tension to assess the mechanical response of the alloy.
An Alliance RF/200 system (MTS, Eden Prairie, MN, USA) was used to apply incremental
displacements in 0.015 mm/mm steps at a rate of 0.001 mm/mm/s (Figure 5a). The
load–displacement data are used to determine the modulus of elasticity (E), the martensite
transformation start (σtr or σAMS) and finish (σAMF) stresses, the austenitic transformation
start (σMAS) and finish (σMAF) stresses, the dislocation yield stress (σy), the maximum stress
before failure (σmax), and the relative elongation to failure (δ), as shown on the idealized
stress–strain diagram of Figure 4b. These material properties represent a minimum set of
material characteristics required for the finite element analysis (FEA) of superelastic lattice
structures using ANSYS software.
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Figure 5. Mechanical testing setup of (a) bulk specimens in tension and (b) lattice structures
in compression.

2.4. Numerical Simulations and Experimental Validation

Numerical simulations were carried out on the idealized CADs of the 60% porous
gyroid and diamond lattice specimens using a workstation with two 14-core Intel Xeon E5-
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2660 CPUs and 256GB of RAM. STLs of the specimens were imported into Ansys Workbench
2021R1 where compression was simulated with large deformation analysis. Following a
mesh convergence analysis using a 5% deviation criterion, a layered tetrahedron method
with an element size of 0.1 mm and a layer height of 0.1 mm was used to create the FEA
mesh with an average of 2.5 million elements. For the simulation of the structures, a
standard Ansys idealized superelastic material law was approximated from the tensile
testing results.

The boundary conditions consisted of displacements applied directly to the mesh
nodes. The displacements of all bottom surface nodes were set to zero in the axial direction
and the bottom nodes along the symmetry planes were blocked laterally to prevent the
transverse displacement of the structure. The axial displacements of the top nodes were
applied using automatic stepping up to 6% apparent strain, with an average of 20 steps to
resolution. The reaction force probe was applied to the blocked displacements and then
converted to compression stress using the specimens’ apparent cross-sectional area. The
resulting stress–strain data were used to calculate the apparent modulus of elasticity and
the apparent yield stress of the structures. In addition to calculating the stress–strain data,
the simulations were also used to assess the material volume fractions under different states
(elastic, plastic, stress-induced phase transformation). To select the elements in different
states and extract their relative volumes, a script was written using the Ansys parametric
design language (APDL) command tool. The numerical model was validated by testing
the manufactured lattice structures in compression and comparing the measured apparent
stress–strain responses of the specimens to those of the simulations (Figure 5b).

3. Results
3.1. Integrity and Density of Manufactured Specimens

By using a Ti-Ni substrate, all components were manufactured in their entirety, as
shown in Figure 6. However, all the 10 mm diameter specimens exhibited cracking, while
only some of the 5 mm diameter specimens showed visible cracks. However, CT scanning
showed that most of the 5 mm diameter cylinders also contained cracks (highlighted in
yellow on the sideview of Figure 7), which were more pronounced and more numerous with
a decrease in the VED. While gauge sections of the tensile specimens did not show signs of
cracking, the endpieces touching the baseplate contained some cracks and the endpieces
away from the baseplate showed signs of oxidation. No cracks were found in the lattice
structures and the measured porosities of diamond lattices were 54.4% and those of gyroid
lattices were 56.7%, i.e., 5.6% and 3.3% lower than the 60% design target, respectively.
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Figure 7. CT scan analysis of the 5 mm diameter specimens printed with the 11 sets of parameters
shown as a cross-section image and the sideview of the specimen porosity (red) and cracks (yellow).
Images are arranged according to the specimen position on the processing map.

Relative density results are presented in Figure 8 and in Table A1 of Appendix A.
It is noteworthy that the CT scan and pycnometry measurements did not consider the
presence of cracks. During the CT measurements, the cracks were removed in the imaging
software, while during the pycnometry measurements, cracks were filled with gas, thus
being neglected. Various types of processing-induced pores were detected by the CT
measurements, with the largest ones caused by spattering. These spatters, up to 0.25 mm
in diameter, or 5 times the size of an average powder particle, were trapped and formed
toroidal pores partially filled with unmelted powder particles, as can be observed in
Specimens 3, 6, and 8 of Figure 7.

All measurements indicated that the relative density of the printed parts was higher
than 99%, which significantly diverged from the numerical predictions, which underesti-
mated the printed densities by 1–3%. However, the low-VED Parameter sets 8–11 resulted
in the lowest densities (≤99.4%), while the high-VED Parameter sets 1–7 resulted in the
highest densities (≥99.7%), which is qualitatively consistent with the predicted values.
Note that when taking into account the standard deviations of density measurements,
only the results of pycnometry measurements on specimens printed using Parameter sets
8–11 and 1–7 were statistically different (p < 0.05). Although specimens printed using
Parameter set 1 did not show signs of cracking, they manifested systematic porosity, which
was repeated layer-wise, as seen in Figure 7. Finally, specimens printed using Parameter
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set 7 were among the densest, while also providing the fastest build rate. Based on these
results, this parameter set was selected for future printing.
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related to the (b) processing map.

3.2. Chemical Composition

A chemical analysis of the as-received powder showed that its nickel content was
~50.26 at%. As illustrated in Figure 9, all the printed specimens had lower nickel concentra-
tions as compared to the powder, indicating different levels of nickel evaporation during
manufacturing. Figure 9b shows a best-fit model of the experimental points in the VED-BR
design space. It appeared, as a general trend, that the nickel content decreased as the VED
increased and the BR decreased. Specimen 1, manufactured with a VED of 100 J/mm3 and
BR of 3 cm3/h, had the lowest nickel content of 49.83 at%, and Specimen 7, manufactured
with a VED of 70 J/mm3 and BR of 10 cm3/h, had one of the highest nickel contents of
50.16 at%. Specimen 3 appeared to be an outlier, having a nickel content identical to that
of the powder. Note, however, that considering a relatively high standard deviation of
the measurements (±0.15 at%), the observed differences in the chemical compositions are
not statistically significant (p < 0.05). Of note, such a significant scatter in otherwise very
precise EPMA measurements could be caused by a high level of chemical heterogeneity in
the as-printed specimens.
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3.3. Phase Transition Temperatures

It can be seen from the DSC curves (Figure 10) that the printing parameters influence
phase transformation temperatures. Indeed, these temperatures were lower by 40 to 60 ◦C
for the low VED–high BR than for the high VED–low BR specimens. Specimens 1 and 2
were significantly different from the other specimens, and were the only specimens with
transformation temperatures higher than those of the as-received powder. The as-built
specimens had wide peaks revealing direct austenite-to-martensite transformation during
cooling and heating. Following the heat treatment, the transformation peaks became
narrower and more pronounced, and the presence of transient R-phase was observed. The
appearance of R-phase proved problematic when it came to determining the transition
temperatures, since some specimens exhibited asymmetric transformations, and others,
symmetric transformations, resulting in an overlap between the R-phase and austenite
transformation peaks during heating, as observed for Specimens 1, 2, 6, 7, 9, 10, and 11. The
heat treatment increased the phase transition temperatures of all the investigated specimens,
except for Specimens 1 and 2, for which the Mf and Af temperatures remained virtually
unchanged (Table A2 in Appendix A). Moreover, the differences in Af temperatures of the
specimens manufactured using different VED-BR parameter sets were reduced from ~50 ◦C
in the as-built conditions to ~12 ◦C after the heat treatment, with Specimens 4–11 stabilizing
at an Af of 26–30 ◦C (Figure 11).
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3.4. Crystalline Phase Analysis

Figure 12 presents XRD diffractograms with the detected phase peaks encircled. Phases
were identified as austenitic (red), martensitic (blue), or R-phase (green). The as-received
powder had four main diffraction peaks of the austenite (B2) phase and three minor peaks
representing the martensite (B19’) phase. Specimens in the as-built conditions displayed
the same austenitic peaks as the powder, their intensities, however, being lower. Austenite
in the high VED–low BR specimens had a preferential (200) orientation, whereas in the low
VED–high BR specimens, the (110) peak was the most intense, similarly to the powder. The
martensitic phase increased in intensity, and new martensite peak positions appeared in
the printed specimens, as compared to the powder. Some B19 peaks were not detected by
the software, because they blended in with adjacent peaks (e.g., B19 (022) with B2 (200)).
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Figure 12. X-ray diffractograms of the powder and printed specimens in the (a) as-built condition and
(b) after heat treatment; peaks of austenite (red), martensite (blue), and R-phase (green) are identified.

The heat-treated specimens were different from the as-built specimens in two ways:
an increased intensity and shifted angular positions of the martensite peaks as well as the
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appearance of new peaks, indicating the presence of R-phase. The latter was consistent
with the DSC results, which indicated that at room temperature, all heat-treated specimens
underwent R-phase transformation. An apparently lower martensite content in the as-
built specimens as compared to their heat-treated counterparts could be explained by the
presence of high residual stresses in the former. Figure 13 illustrates the as-built and heat-
treated microstructures of the specimen printed with Parameter set 7. Columnar grains
typical of the LPBF process were observed in both states. However, it appeared that the
as-built specimens were mostly austenitic, whereas after the heat treatment, fine lamella
appeared inside the grains, indicative of an increase in the martensite content also seen
in the XRD results. On the top surfaces, grains are aligned along the laser tracks. EBSD
analyses showed a preferential (100) grain orientation in the build direction in both the
as-built and heat-treated states. In addition, the as-built specimens manifested a larger
fraction of non-indexed phases than their heat-treated equivalents because of a higher
dislocation density and a higher level of residual stresses in the former.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 13. Microstructure of the specimen printed using Parameter set 7: (a,b) optical microscopy 
and (c,d) EBSD in the as-built (a,c) and heat-treated (b,d) conditions. 

3.5. Numerical Model and Validation 
The tensile stress–strain diagrams of bulk specimens printed with Parameter set 7 are 

shown in Figure 14, and the mechanical properties determined from these diagrams are 
collected in Table 3. It can be seen that the as-built specimens had a fragile behavior, suf-
fering failure at 1% strain, whereas the heat-treated specimens failed at 5.5%. For both 
conditions, the phase transformation yield stress corresponded to ~250 MPa and the mod-
ulus of elasticity varied as a function of the specimen state: 22.2 GPa in the as-built condi-
tion and 18.7 GPa in the heat-treated condition. Even though testing of the as-built speci-
mens was performed above their DSC-measured Af temperatures (−1 °C), the presence of 
residual stresses hindered superelasticity. After the heat treatment, the Af temperature 
increased and the room-temperature microstructure was no longer completely austenitic, 
thus resulting in a partial superelastic behavior with recoverable strains (elastic and su-
perelastic, εr = εe + εse) of ~2%. For the FEA of lattice structures, an idealized stress–strain 
material diagram was approximated from the tensile diagrams of heat-treated specimens 
(Figure 14b), with E = 18.7 GPa, ν = 0.3, σAMS = 250 MPa, σAMF = 500 MPa, σMAS = 200 MPa, 
σMAF = 0 MPa and εL = 0.028 (Table 3). The alpha parameter, which reflects the asymmetrical 
behavior of the material in tension and compression, was assumed to be zero. 

Figure 13. Microstructure of the specimen printed using Parameter set 7: (a,b) optical microscopy
and (c,d) EBSD in the as-built (a,c) and heat-treated (b,d) conditions.

3.5. Numerical Model and Validation

The tensile stress–strain diagrams of bulk specimens printed with Parameter set 7
are shown in Figure 14, and the mechanical properties determined from these diagrams
are collected in Table 3. It can be seen that the as-built specimens had a fragile behavior,
suffering failure at 1% strain, whereas the heat-treated specimens failed at 5.5%. For
both conditions, the phase transformation yield stress corresponded to ~250 MPa and
the modulus of elasticity varied as a function of the specimen state: 22.2 GPa in the as-
built condition and 18.7 GPa in the heat-treated condition. Even though testing of the
as-built specimens was performed above their DSC-measured Af temperatures (−1 ◦C),
the presence of residual stresses hindered superelasticity. After the heat treatment, the Af
temperature increased and the room-temperature microstructure was no longer completely
austenitic, thus resulting in a partial superelastic behavior with recoverable strains (elastic
and superelastic, εr = εe + εse) of ~2%. For the FEA of lattice structures, an idealized
stress–strain material diagram was approximated from the tensile diagrams of heat-treated
specimens (Figure 14b), with E = 18.7 GPa, ν = 0.3, σAMS = 250 MPa, σAMF = 500 MPa, σMAS
= 200 MPa, σMAF = 0 MPa and εL = 0.028 (Table 3). The alpha parameter, which reflects the
asymmetrical behavior of the material in tension and compression, was assumed to be zero.
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Figure 14. Tension stress–strain diagrams of the bulk specimens (Parameter set 7) in the as-built (AB)
and heat-treated (HT) conditions with (a) incremental loading and (b) idealized material behavior
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Table 3. Mechanical properties of the as-built and heat-treated specimens in tension and idealized
stress–strain parameters of the heat-treated specimens used for FEA simulations.

E
(GPa)

σAMS
(MPa)

σAMF
(MPa)

σMAS
(MPa)

σMAF
(MPa)

σmax
(MPa)

ε

(%)

Experimental
As-built 22.2 - - - - 250 1

Heat-treated 18.7 250 - - - 556 5.5

Simulation Idealized heat-treated 18.7 250 500 200 0 - 2.8

Figure 15a compares the stress–strain behavior of the simulated gyroid and diamond
lattice structures under compression, the former being significantly stiffer than the latter,
despite the equivalent 60% porosity. The gyroid lattices had an apparent elastic modulus of
2.9 GPa and a yield stress of 48 MPa, whereas their diamond equivalents had an apparent
elastic modulus of 1.8 GPa and a yield stress of 41 MPa. The stress distributions in the
structures close to their respective apparent yield strains (1.8 and 2.4%, respectively) were
almost identical for both lattices, ~75% of the volume of material in the elastic state and
~25% in the superelastic state. However, at an equivalent apparent strain of 6%, ~20% of the
gyroid structure underwent plastic deformation, as compared to only ~2% for its diamond
equivalent because of the much higher compliance of the latter (Figure 15b,c).
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(GPa) 
σAMS 

(MPa) 
σAMF 

(MPa) 
σMAS 

(MPa) 
σMAF 

(MPa) 
σmax 

(MPa) 
ε 

(%) 

Experimental 
As-built 22.2 - - - - 250 1 

Heat-treated 18.7 250 - - - 556 5.5 
Simulation Idealized heat-treated 18.7 250 500 200 0 - 2.8 
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Figure 15. (a) Simulated stress–strain curves of the gyroid and diamond lattices, and stress distribu-
tion in the (b) gyroid and (c) diamond structures at a common apparent strain of 6% with the mate-
rial volume fraction in the plastic, superelastic, and elastic stress states. 

Figure 15. (a) Simulated stress–strain curves of the gyroid and diamond lattices, and stress distribu-
tion in the (b) gyroid and (c) diamond structures at a common apparent strain of 6% with the material
volume fraction in the plastic, superelastic, and elastic stress states.



J. Manuf. Mater. Process. 2024, 8, 176 14 of 22

Figure 16a,b shows the stress–strain diagrams resulting from compression testing
of the gyroid and diamond lattices in the as-built and heat-treated conditions. It was
observed that, as predicted by the numerical simulations, the gyroids are stiffer than the
diamonds both in the as-built (E = 3.5 vs. 3.1 GPa) and heat-treated (E = 3.4 vs. 2.9 GPa)
conditions. Although yield stresses in both structures in the as-built (Sy = ~70 MPa) and
heat-treated conditions (Sy = ~48 MPa) are similar, the ultimate stress and compression
strain at failure are significantly greater for the gyroids. Similarly to the effect on the bulk
material, heat treatment appeared to decrease the yield stress and reduce the compression
strain at failure for both types of lattice structures, while increasing their ultimate stresses
(Figure 16c). Going up to 5% applied strain, the recovered strain εr was the same for both
tested structures (Figure 16d), while beyond that, the diamond lattices outperformed their
gyroid counterparts. At ~11% applied strain, the heat-treated diamond lattices exhibited
recoverable strains reaching 7.25%, about 1.25% more than their gyroid counterparts. These
results are consistent with the numerical simulations, which showed that for the same level
of apparent strain, the diamond lattices limit the degree of irreversible (plastic) deformation
because of their higher compliance.
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model was built using an idealized superelastic material law. 

Figure 16. Compression behavior of the as-built and heat-treated 60% porous (a) gyroid and
(b) diamond lattices. (c) Apparent stress and (d) recovered strain values are plotted against the
applied strain of all the tested structures with arrows indicating the effect of the heat treatment on
the structures’ properties.

The simulated and experimental stress–strain diagrams of the lattice structures are
compared in Figure 17. The simulation of the loading behavior of the gyroid lattices
reproduced the experimental behavior almost exactly, whereas in the case of diamonds,
the simulation underestimated the experiment both in terms of stress and stiffness. These
discrepancies might be attributed to two facts: the manufactured diamond lattices were
2.3% less porous (54.4%) than their gyroid equivalents (56.7%), with their strut junctions
significantly blended by the manufacturing process (Figure 18). In addition, unlike the
experiments, where the superelastic behavior of the material was only partial, the numerical
model was built using an idealized superelastic material law.
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Figure 18. Geometrical comparison between the designed and manufactured (a) gyroid and
(b) diamond lattices. The red outline corresponds to the CAD and the colored outline corresponds to
the printed surface, color-coded to the distance between the printed and CAD surfaces.

4. Discussion

The bulk-printed Ti-Ni specimens exhibited macroscopic cracking resulting from
large residual stresses caused by significant thermal gradients during laser printing. The
specimen size and the VED-BR conditions appeared to influence the size and frequency
of cracking: 10 mm diameter cylinders had cracks up to 2 mm thick, whereas in the
5 mm diameter cylinders, the cracks were much finer and could not be detected with
the naked eye. The lower the VED and the higher the BR values, the more intensive the
cracking. Cracking of bulk specimens has also been reported in the literature [15,35,36].
Potential solutions to this problem include heating the printing substrate [37,38], applying
higher VED and lower BR (at the risk of evaporating too much nickel and altering the
functional properties of the alloy) [15,39], using specifically designed support structures to
reduce the heat transfer to the build plate and, therefore, the thermal gradients [40], or using
HIP [41] and spark plasma sintering [42] to heal the processing-induced microcracks. Lattice
structures did not exhibit any cracks or delamination due to, in part, their architecture;
being less stiff, the lattice structure accommodated the residual stresses better than their
bulk counterparts.

The measured density of solid regions in all the specimens was ≥99.4% (CT) and
≥99.1% (pycnometry). Although each measurement method had its limitations (human
bias of the manual thresholding of the CT analyses and specimen size dependence of the
pycnometry measurements), a similar trend was found between the two. The density
prediction model accurately forecasted the area of increased density at BR = 3–10 cm3/h
and VED = 70–100 J/mm3 ranges (Figure 19a). Discrepancies outside this region might be
due to the assumptions made on the material property inputs for the model. In particular,
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the specific heat capacity and thermal conductivity of Ti-Ni can vary by a factor of 0.5 and 2,
respectively, depending on the phase state of the material, i.e., austenitic or martensitic [25].
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Figure 19. (a) Color-coded measured densities superimposed on the model predictions map,
(b) typical pore shape for high- and low-VED specimens, and (c) pore size distribution for Specimens
1, 7, and 11.

At higher VED–lower BR printing conditions, Specimen 1 had numerous small pores
distributed layer-wise, similar to the keyhole defects and gas pores caused by over-melting
(Figure 19b). At lower VED–higher BR conditions, Specimen 7 showed larger lack-of-
fusion and spatter-related defects. These defects were most pronounced at the lowest
VED (Specimen 11). A VED of 70–90 J/mm3 and BR of 3–10 cm3/h appeared to yield
the highest densities. Similar trends of increased porosity for VEDs under 60 J/mm3 and
over 163 J/mm3 were observed in the literature by Biffi et al. [17] and Zamani et al. [43].
Conversely, Ge et al. [44] were unable to successfully print specimens with VEDs higher
than 75.8 J/mm3, whereas Saghaian et al. [45] successfully manufactured specimens with
VEDs up to 666 J/mm3, but failed for specimens with VEDs lower than 80 J/mm3. This
indicates that the manufacturability of Ti-Ni SMA is highly dependent on the LPBF system
and the effective printing conditions, including the temperature of a build plate, the laser
spot size, and the scanning strategy, and therefore should be optimized accordingly.

In addition to the structural integrity of printed specimens at the macroscopic and
microscopic levels, it is known that printing parameters can affect the chemical composition,
which in turn changes the transformation temperatures and alters the functional properties
of Ti-Ni SMA at a given temperature. In agreement with the chemical analysis observations,
at higher VEDs, the nickel content was lower than at low VEDs, which has also been
reported in the literature [14–19]. This can be explained by the physical properties of nickel
and titanium, particularly the higher boiling point of titanium (3289 ◦C) as compared to
nickel (2914 ◦C), and 3 times higher vapor pressure of the latter as compared to the former
at the Ti-Ni alloy’s melting temperature [35]. Together, these effects result in an overall
higher evaporation of nickel than that of titanium. Nickel-rich powders can be used to
mitigate this problem, although it was noted that Ni-rich Ti-Ni feedstock has a higher
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propensity to in-process macro-cracking due to the formation of Ni-rich precipitates that
strengthen the matrix and reduce the material ductility [35].

As a result of nickel evaporation, transformation temperatures of the printed parts are
expected to increase with respect to those of the powder. As such, higher VEDs and lower
BRs lead to increased phase transition temperatures [15,18,46]. In this study, although this
trend was observed (Figure 11), some as-built specimens manifested lower Af temperatures
than the powder (e.g., −5.5 ◦C for Specimen 11 vs. 23.7 ◦C for powder). After the heat
treatment, Af temperatures of all the specimens increased, but to different extents. For
example, intermediate-VED-BR Specimens 5–11 demonstrated an increase by 26–29 ◦C,
low-VED–high-BR Specimen 11 by 35 ◦C, while high-VED–low-BR Specimens 1 and 2 saw
almost no changes in their Af temperatures after the heat treatment.

It is well known that the phase transformation temperatures in Ti-Ni SMA are depen-
dent not only on the chemical composition of the alloy (Figure 20) but also on the stress
state of the matter. Therefore, these variations in the phase transformation temperatures
can be explained by high residual stresses generated during printing and by their relaxation
during heat treatment. It can be stipulated that when the VED is high and BR is low, the
specimens contain less residual stress because the excess energy partially acts as a stress
relief throughout the printing process. Biffi et al. [17] and Saedi et al. [47] similarly observed
an increase in the transformation temperatures after heat treatments, which was attributed
to the relaxation of residual stresses and to the formation of nickel-rich precipitates Ni4Ti3
that depleted nickel from the matrix.
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Figure 20. Af temperature in relation to the nickel content as presented in the
literature [15,18,20,48–53] and detailed view of the powder and the heat-treated specimens from
the present work. The numbers in the zoomed view correspond to the studied parameter sets.

The XRD analyses showed that by varying the VED delivered to the powder bed,
the phase content and crystallographic texture can be modified. Indeed, low-VED–high-
BR specimens were more austenitic and had a signature closer to that of the powder.
High-VED–low-BR specimens displayed more intense martensitic peaks and a preferential
(200) austenitic orientation. The same effect was noted in the literature, with higher
VED parts exhibiting a preferential (100) crystallographic orientation corresponding to the
building direction [17,18,35,54,55]. It was found that such a texture improves superelasticity
in compression, effectively allowing the mechanical behavior of printed material to be
tailored by adjusting the printing parameters [47,55,56]. Moreover, the superelastic behavior
can also be improved by increasing the heat treatment temperatures and times: Saedi,
Turabi, Andani, Moghaddam, Elahinia, and Karaca [47] showed that 600 ◦C aging for 1.5 h
significantly increased the stress recovery of printed Ti-Ni alloy samples.

The results of mechanical testing of the bulk specimens in the as-built state (ultimate
tensile stress of 250 MPa and failure strain of 1%) and after the heat treatment (550 MPa
and 5.5%, respectively) are comparable to those reported in the literature [35,41,44,50].
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The heat treatment resulted in a partial superelastic behavior of the material, bringing
forth the classic “flag”-like aspect of the stress–strain curve reported by Biffi et al. [17] and
Elahinia et al. [11], with an onset martensite transformation stress of ~250 MPa, which is
also in the literature range [11,39,52,53,56].

Numerical simulations of the lattices predicted that the diamond structures are more
suited to take advantage of the functional properties of Ti-Ni SMA, and that was confirmed
by experimental testing. In effect, at the same apparent strain, highly compliant diamond
structures had a lower volume fraction of plastically deformed material as compared to their
gyroid equivalents. Although fully superelastic behavior was not observed experimentally,
partly due to the difficulty of controlling the material composition during printing, the
recoverable strains were increased from ~2% for the bulk to 6–7% for the lattices, and
the stiffness was reduced from ~19 GPa for the bulk to 3–4 GPa for the lattices. Similar
difficulties in achieving perfect superelasticity in lattices were encountered by Lu et al. [57],
Bartolomeu et al. [21], and Biffi et al. [22].

Nonetheless, the benefits of using SMAs in the manufacturing of lattice structures can
be observed when comparing the experimental behavior of Ti-Ni lattices studied in this
work to the behavior of analogous Ti64 structures from a previously published work [26]
(Figure 21). Indeed, although the Ti-Ni lattices are ~2 times less strong than their Ti64
equivalents, they exhibit ~3–4 times larger recoverable strains, thus offering an extra margin
of safety, if loaded above the onset of phase transformation (≥σAMS). When comparing the
strength-to-stiffness ratios (Sy/E or σAMS/E) of the Ti-Ni lattices of this study with those of
their Ti-6Al-4V equivalents [26], both with 60% porosity, the former outperform the latter,
being closer to the range of properties of trabecular bones [58]. As a result, Ti-Ni lattices
have become an intriguing option to be considered for use in intervertebral cages. Of note,
since for the same porosity, the stiffness of Ti-Ni structures is significantly lower than that
of their Ti64 equivalents, the stiffness of Ti-Ni lattices can be adjusted to match that of Ti64
lattices by using larger struts/walls with lesser sensitivity to the presence of manufacturing
defects (in fact, 60% porous diamond Ti-Ni lattice has the same stiffness as the 80% porous
diamond Ti64 lattice).
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5. Conclusions

Laser powder bed fusion of Ti-50.26 at% Ni powders was carried out with the goal of
finding an optimal printing regime to manufacture superelastic lattice structures. Different
printing parameters were selected with the use of a numerical algorithm that predicts the
density of the printed material. The manufactured specimens were characterized in terms of
structural integrity, density, chemical composition, phase transformation temperatures, and
crystalline phases. A parameter set offering the best compromise between printed density
(99.94%) and transformation temperatures (Af 26.3 ◦C), while also achieving a relatively
high build rate (10 cm3/h), was selected for mechanical testing and lattice manufacturing.
Simultaneously, a numerical FEA model was built to simulate the mechanical behavior of
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superelastic lattice structures. Using the FEA model, partially validated in the framework
of this study, Ti-Ni SMA superelastic lattice structures could be optimized further to better
exploit their superelastic potential for particular applications.

The following conclusions can be drawn:

1. While the proposed melt pool-based model can be used to select printing parameters
yielding high-density specimens, the predicted densities were significantly lower than
their measured equivalents. Better predictions can be achieved by considering the
temperature-dependent behavior of Ti-Ni powders.

2. Higher VEDs and slower BRs resulted in increased Ni evaporation, increased transfor-
mation temperatures and increased fraction of martensitic phase. The nickel content
and, therefore, the transformation temperatures of printed specimens can be tailored
by adjusting both the powder composition and the printing parameters.

3. As-built parts exhibited large residual stresses which resulted in cracking and affected
the mechanical behavior of printed material. Heat treatment was necessary to relieve
these stresses and improve superelasticity. A partial superelastic behavior of the
printed material at room temperature with a recoverable strain of up to ~2% was
achieved using a VED = 90 J/mm3 and BR = 10 cm3/h parameter set and a stress-relief
heat treatment at 500 ◦C for 30 min.

4. Numerical simulation of the 60% porous Ti-Ni lattice structures offered useful insights
into the material stress/strain state during loading. These simulations accurately
predicted the apparent yield stress of the gyroid lattices, but underestimated their
apparent stiffness by 18%. As far as the diamond lattices are concerned, the model
underestimated their apparent yield stress by 25% and stiffness by 60%.

5. At the same apparent strain of 6%, recovery strains of the highly compliant diamond
lattices were significantly higher than those of their gyroid equivalents (7.25 vs. 6%).
This effect is caused by a significantly lower volume fraction of the material under-
going plastic deformation in the diamond lattices (2%) as compared to their gyroid
equivalents (20%).
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Appendix A

Table A1. Density measurements using CT imaging and pycnometry.

Specimen Predicted Density (%) CT Scan (%) * Pycnometry (%) *

1 99.86 99.85 ± 0.2 99.78 ± 0.06

2 100.00 99.95 ± 0.2 99.89 ± 0.09



J. Manuf. Mater. Process. 2024, 8, 176 20 of 22

Table A1. Cont.

Specimen Predicted Density (%) CT Scan (%) * Pycnometry (%) *

3 99.94 99.92 ± 0.2 99.85 ± 0.08

4 99.85 99.98 ± 0.2 99.92 ± 0.11

5 99.66 99.91 ± 0.2 99.74 ± 0.05

6 99.86 99.90 ± 0.2 99.82 ± 0.04

7 99.87 99.94 ± 0.2 99.95 ± 0.10

8 97.73 99.73 ± 0.2 99.38 ± 0.06

9 98.04 99.76 ± 0.2 99.24 ± 0.07

10 98.07 99.82 ± 0.2 99.22 ± 0.09

11 96.10 99.46 ± 0.2 99.13 ± 0.07
* standard deviation values are not always symmetrical, since the density has an upper limit of 100%.

Table A2. Phase transition temperatures (◦C) of the powder (as-received) and printed specimens
(as-built and heat-treated).

Mf Ms As Af Mf Ms Rf Rs As Af

As-Received
Powder −57.6 3.7 −33.9 23.7 −57.6 3.7 −33.9 23.7

As-Built Heat Treated

Specimen

1 −19.7 22.0 1.4 43.0 −27.1 −3.0 11.5 23.0 19.9 41.3

2 −23.6 25.7 −1.3 45.4 −29.7 −3.3 10.0 24.9 19.3 43.6

3 −77.9 8.7 −45.7 21.9 −32.0 −11.6 12.7 29.8 22.0 32.4

4 −60.0 12.9 −42.3 31.2 −42.4 −15.6 10.6 22.2 15.9 29.8

5 −50.1 9.3 −33.4 26.4 −40.0 −14.9 11.5 24.1 16.9 30.1

6 −80.9 1.6 −50.2 9.9 −51.1 −25.5 11.6 26.4 13.2 27.0

7 −80.1 −3.9 −50.8 −1.0 −51.6 −30.0 10.5 26.3 12.8 26.3

8 −73.7 −5.5 −44.4 7.7 −44.5 −22.0 12.7 27.6 16.0 28.5

9 −81.0 −14.6 −51.7 −4.5 −53.6 −30.5 13.1 30.0 12.6 28.8

10 −80.6 −13.9 −51.0 −4.0 −55.4 −32.3 13.3 29.1 12.0 28.1

11 −81.2 −17.1 −50.7 −5.5 −52.4 −29.7 14.3 30.1 13.1 29.1
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