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ABSTRACT The increasing proliferation of industrial internet of things (IIoT) devices requires the develop-
ment of efficient radio resource allocation techniques to optimize spectrum utilization. In densely populated
IIoT networks, the interference that results from simultaneously scheduling multiple IIoT devices over
the same radio resource blocks (RRBs) severely degrades a network’s achievable capacity. This paper
investigates an interference management problem for IIoT networks that considers both finite blocklength
(FBL)-coded transmission and signal distortions induced by hardware impairments (HWIs) arising from
practical, low-complexity radio-frequency front ends. We use the rate-splitting multiple access (RSMA)
scheme to effectively schedule multiple IIoT devices in a cluster over the same RRB(s). To enhance the
system’s achievable capacity, a joint clustering and transmit power allocation (PA) problem is formulated.
To tackle the optimization problem’s inherent computational intractability due to its non-convex structure,
a two-step distributed clustering and power management (DCPM) framework is proposed. First, the DCPM
framework obtains a set of clustered devices for each access point by employing a greedy clustering
algorithm while maximizing the clustered devices’ signal-to-interference-plus-noise ratio. Then, the DCPM
framework employs a multi-agent deep reinforcement learning (DRL) framework to optimize transmit PA
among the clustered devices. The proposed DRL algorithm learns a suitable transmit PA policy that does not
require precise information about instantaneous signal distortions. Our simulation results demonstrate that
our proposed DCPM framework adapts seamlessly to varying channel conditions and outperforms several
benchmark schemes with and without HWI-induced signal distortions.

INDEXTERMS Deep reinforcement learning (DRL), Industrial Internet of Things (IIoT), finite block length
(FBL), hardware impairment (HWI), rate-splitting multiple access (RSMA).

I. INTRODUCTION

THE industrial internet of things (IIoT) has emerged as
a transformative force that is propelling industries into

a new era of automation, data-driven decision-making, and
operational efficiency. IIoT networks incorporating devices,
robots, and healthcare systems that require low-latency
(around 1ms) communication are anticipated to grow in scale

in future-generation wireless networks [1]. Significant chal-
lenges must be overcome to meet such stringent quality-of-
service (QoS) requirements, particularly over time-varying
fading channels. Finite blocklength (FBL) codes are used to
reduce the latency of over-the-air transmission in applica-
tions, such as industrial automation where control packets
of around 100 bits are transmitted to provide instructions to
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robots and autonomous vehicles [2]. This is in stark contrast
to the conventional practice of transmitting arbitrary long
codes for negligible error. Moreover, next-generation IIoT
networks for 6G-based Industry 5.0 are expected to sup-
port much higher data rates, traffic volumes, and connection
density levels (devices/km2) than IIoT networks designed
for Industry 4.0 [3]. In such large-scale IIoT networks, the
fact that spectrum resources are limited means that radio
resource blocks (RRBs) must be shared among multiple IIoT
devices, which leads to co-channel interference. Addition-
ally, IIoT devices often use low-complexity radio-frequency
(RF) front ends that are power-efficient and cost-effective
but usually result in hardware impairment (HWI)-induced
signal distortions. Co-channel interference and HWI-induced
signal distortions make it difficult to achieve the QoS levels
that IIoT networks require over time-varying fading channels.
Thus, effective radio resource allocation that takes into con-
sideration FBL-coded transmission, co-channel interference,
and HWI-induced signal distortions is crucial for improving
spectrum utilization in IIoT networks.

Device clustering and transmit power allocation (PA) are
critical for managing interference and improving spectrum
utilization in wireless networks [4]. More specifically, clus-
tering IIoT devices can improve the utilization of the limited
RRBs that are available, and optimizing transmit PA in
multiple access (MA) systems can enhance system capacity
over the inferring channels. Accordingly, this work aims to
develop a device clustering and transmit PA optimization
framework to improve resource utilization and manage inter-
ference in IIoT networks.

A. RELATED WORKS
1) RELATED WORKS ON RATE-SPLITTING MULTIPLE
ACCESS (RSMA)
Designing optimal MA schemes is fundamentally important
for interference mitigation and improving resource utilization
in multi-user networks. Although orthogonal frequency-
division multiple access (OFDMA), which the LTE-A and
5G new radio standards rely on, can avoid multi-user interfer-
ence by allocating each user dedicated RRBs, it is inherently
resource-inefficient for dense networks. Recently, RSMA has
emerged as a novel MA scheme to simultaneously sched-
ule multiple users over the same RRB. RSMA manages
interference in multi-antenna systems by splitting messages
into the power and spatial domains and providing flexibil-
ity between complete and partial interference cancellation
at user devices [5]. Furthermore, the literature attests that
RSMA requires fewer successive interference cancellation
(SIC) operations at devices than non-orthogonal multiple
access (NOMA) [6], which makes RSMA more suitable for
low-complexity IIoT devices. In addition, even in single-
antenna multi-user networks, RSMA can achieve a higher
sum rate than NOMA in the presence of erroneous channel
state information (CSI) at the transmitter or practical SIC
constraints [7], [8]. RSMA’s effectiveness when it comes

to improving the energy efficiency of single-antenna multi-
user networks is also demonstrated [9]. While these studies
report RSMA’s advantages for infinite blocklength-coded
systems, RSMA has also been shown to be effective at deal-
ing with interference in FBL-coded systems. For instance,
the authors of [10] optimize the RSMA scheme for a two-
user FBL-coded uplink communication system, while the
authors of [11] propose to optimize the precoding matrix
in order to maximize the sum rate in multi-antenna FBL
downlink communications that require low latency. However,
the HWI-induced signal distortions resulting from the FBL-
coded devices’ low-complexity RF front ends were ignored
in these studies. In addition, both [10] and [11] rely on
time-consuming iterative optimization methods to find the
near-optimal solution for each channel fading state, which is
challenging to implement in delay-constrained networks.

2) RELATED WORKS ON PA
Several transmit PA schemes for FBL-coded IIoT systems
are proposed in the state-of-the-art literature. In [12], joint
power and bandwidth allocation and active base station
(BS) antenna selection are proposed to maximize the short
blocklength regime’s energy efficiency in ultra-reliable low-
latency communications (URLLCs). However, the URLLC
rate expression that is considered is not appropriate. The
authors of [13] propose to use beamforming optimization to
maximize the weighted sum rate in multiple-input single-
output and multi-user downlink URLLC networks. In [14],
joint bandwidth and PA is proposed to ensure max-min fair-
ness in a multi-user URLLC network. In [15], the authors
study the joint optimization of FBL and shared-pilot length
for a multi-device downlink IIoT network.

While the aforementioned works focus on downlink sys-
tems, uplink resource allocation is also important for IIoT
networks. The authors of [16] study jointly optimizing
the blocklength and a drone-mounted flying BS’s position,
height, and beamwidth to minimize the power consumption
of uplink URLLC devices. The authors of [17] investigate
how transmit PA can be utilized to minimize the decod-
ing error of relay-assisted URLLC IoT systems. In [18],
a joint pilot and payload PA scheme is proposed for mas-
sive multiple-input multiple-output (MIMO)-enabled IIoT
networks.

However, the aforementioned studies either ignore interfer-
ence in the network by using orthogonal RRB allocation [12],
[14], [15], [16], [17], [18] or adopt complex iterative opti-
mizationmethods [13]. Notably, in an FBL-coded system, the
achievable rate is a highly evolved function of the transmit
power, blocklength, and decoding error probability [19], and
leads to computationally challenging non-convex resource
allocation problems. The simultaneous presence of multi-
user interference and HWI-induced signal distortions makes
the resource allocation problems even more complicated.
Standard iterative optimization methods, such as succes-
sive convex approximation (SCA) and difference-of-convex
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(DC) optimization, require many iterations and a signifi-
cant amount of memory to converge, which makes them
inefficient for dynamic resource optimization in large-scale
IIoT networks. Recently, deep reinforcement learning (DRL)
has emerged as a promising technique for solving com-
plex optimization problems in various fields, including IoT
networks [20], heterogeneous cellular networks [21], and
cognitive radio networks [22]. More specifically, the fact that
DRL is able to learn a suitable policy by adapting to dynamic
and complex environments makes it an ideal candidate for
PA in IIoT networks, especially in the presence of co-channel
interference and unknown HWI-induced signal distortions.

3) RELATED WORKS ON DEVICE CLUSTERING
The clustering of devices in accordance with specific cri-
teria has been studied extensively and in combination with
various access technologies, including NOMA [23], [24],
OFDMA [25], [26] and RSMA, in the literature. In the
context of RSMA technologies, in particular, the existing
research delves into employing the RSMA strategy within
each cluster. This strategy aims to schedule the devices in
an RRB in such a way as to potentially enhance network
performance and resource utilization. In [9], the authors pro-
pose to use a clustering algorithm to organize devices into
non-overlapping clusters according to their respective loca-
tions. Additionally, they apply an RSMA strategy to enable
devices to receive data from a suitable fog access point (AP)
and a cloud BS over the same RRB. Similarly, in [7], the
authors extend the application of the RSMA strategy to each
cluster. However, the authors employ a distinct approach for
clustering user devices (UDs) in this context. They utilize a
multi-agent RL technique to maximize the UD’s long-term
achievable data rate. In [27], the authors propose a low-
complexity k-means clustering algorithm that dynamically
divides multiple users into clusters based on their respective
locations.

The aforementioned works demonstrate that clustering can
improve the RSMA strategy’s performance. However, how
clustering can be exploited to enhance the performance of
RSMA-aided networks in the presence of FBL-coded data
transmission and HWI-induced signal distortions remains
largely unexplored in the existing literature. This research gap
is addressed in this work.

B. MOTIVATION
Despite significant advancements in resource optimization
having been made, the current literature fails to address
some limitations, particularly in terms of clustering IIoT
devices and allocating transmit power among device clus-
ters1 while considering FBL, co-channel interference, and
HWI-induced distortions. Most radio resource allocation
studies overlook the detrimental impact HWIs have on

1In this work, an IIoT device cluster implies the set of IIoT devices that
are scheduled over the same RRB. We consider a dense IIoT network and
assume that IIoT devices are clustered to ensure efficient spectrum use.

network resource optimization. Note that, HWIs caused by
non-linearity in low-cost and low-power IIoT devices can
significantly reduce the average sum rate achieved. Practi-
cal radio equipment, such as power amplifiers and filters,
often have inherent limitations that cannot be ignored [28].
Additionally, it is impractical to assume Shannon channel
capacity in the context of IIoT networks since the transmitted
packets’ blocklengths are short due to the stringent delay
requirements. Consequently, FBL information theory must
be employed in place of the classical Shannon rate formula
to accurately estimate the rate performance of finite packet
transmission. Notably, the optimization of transmit power and
device clustering in a downlink FBL-coded IIoT network is a
computationally intractable problem when HWI-induced dis-
tortions are present. Off-the-shelf optimization tools usually
fail to provide scalable solutions for these types of opti-
mization problems. Furthermore, these approaches require
accurate HWI models for devices, which are not always
available in practice. These challenges motivate our work to
develop an optimized device clustering and PA framework
in order to improve the system capacity of FBL-coded IIoT
networks with non-negligible co-channel interference and
HWI-induced distortions.

C. CONTRIBUTIONS AND PAPER ORGANIZATION
This work presents a comprehensive resource optimization
framework to enhance the system capacity of RSMA-enabled
IIoT networks in the presence of FBL-coded data trans-
mission and HWI-induced signal distortions. This work’s
specific contributions are summarized below.
1) This work investigates a downlink data transmission

scheme for an FBL-coded multi-cell IIoT network.
Each AP in the envisioned network utilizes dedicated
orthogonal RRBs for data transmission to overcome
inter-cell interference. Each AP’s devices are grouped
into non-overlapping clusters such they are concurrently
scheduled over the sameRRB.Using the RSMA strategy
enables the IIoT devices in each cluster to receive data
over the same RRB, which makes the proposed frame-
work particularly suitable for resource-constrained IIoT
networks. Note that the network’s system capacity
is impaired by both intra-cell co-channel interference
and HWI-induced signal distortions arising from the
practical low-complexity RF front ends. A sum rate
maximization problem is formulated to optimize the
clusters of IIoT devices and select a suitable transmit
PA for the interfering IIoT links in order to mitigate
the HWI-induced signal distortions. To the best of the
authors’ knowledge, this is the first work to develop a
device clustering and transmit PA solution for IIoT net-
works that explicitly considers the detrimental effects of
FBL, co-channel interference, and HWI-induced signal
distortions.

2) The joint device clustering and transmit PA prob-
lem is proved to be NP-hard and computation-
ally intractable. A distributed clustering and power
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TABLE 1. Table of variables and descriptions.

management (DCPM) framework is proposed to effi-
ciently solve the joint problem. The framework decom-
poses the joint problem into multiple device clustering
and transmit PA sub-problems (one for each AP) and
solves them sequentially utilizing only local CSI.

3) We propose a greedy clustering algorithm to solve the
device clustering sub-problem for a given transmit PA.
In the algorithm, each AP’s devices are grouped into
multiple clusters to enhance their signal-to-interference-
plus-noise ratios (SINRs) in an RSMA setup. We also
devise a multi-agent DRL-empowered PA algorithm to
solve the PA sub-problem. The proposed algorithm effi-
ciently distributes the AP’s transmit power among the
IIoT devices in each cluster. Our proposed PA algorithm
is innovative because it learns a suitable transmit
PA policy without requiring precise and instantaneous
knowledge of HWI. This learned policy facilitates the
cooperative allocation of the most suitable transmit
power across all APs to support dynamic adaptation to
changing channel conditions and network variables.

4) Extensive simulations are conducted to verify the influ-
ence of several system parameters, including HWI,
FBL, block error probability, total available power at
the AP, and number of UDs, on the proposed DCPM

framework’s system capacity. The provided simulation
results confirm the framework is able to adapt and
effectively learn an appropriate PA strategy for a range
of IIoT networking scenarios. The simulation results
also validate that the DCPM framework consistently
outperforms state-of-the-art transmit PA algorithms and
interference management schemes, which attests that
our proposed DCPM is able to enhance the IIoT net-
work’s resilience to co-channel interference.

The rest of the paper is organized as follows. Section II pro-
vides an overview of the system and the problem formulation.
The sub-problem solutions are detailed in Sections III and IV.
Sections V and VI present the overall algorithm and the
simulation results, respectively. Finally, Section VII contains
the conclusion. A list of symbols and notations used in this
paper is given in Table 1.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM OVERVIEW
We consider a multi-device downlink IIoT network of M
cells each equipped with one AP and K devices randomly
distributed within their coverage areas (Fig. 1). For sim-
plicity, let M = {1, 2, · · · ,M} be the set of all APs,
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FIGURE 1. An RSMA-enabled downlink IIoT network with two
APs, and multiple IIoT devices in each cell.

K = {1, 2, · · · ,K } be the set of IIoT devices in each cell, and
N = {1, 2, · · · ,N } be the set of RRBs in each cell.We ignore
the inter-AP interference by assigning the neighboring APs
orthogonal RRBs and reusing the same RRBs at the far APs.
This consideration can be explained by assuming that a total
of S > N RRBs are available in the system, and the RRBs
are divided into a total of L non-overlapping RRB groups
(RRBGs) (each containing N RRBs), which are denoted by
G1 = {1, 2, · · · ,N }, G2 = {N + 1,N + 2, · · · , 2N }, G3 =
{2N + 1, 2N + 2, · · · , 3N }, · · · , GL = {S − N + 1, S −
N + 2, · · · , S}. Each AP is assigned an RRBG in such a
way that its L nearest APs are assigned orthogonal RRBGs
and its (L + 1)-th nearest AP reuses its RRBG. Also, the
AP’s down-tilt angles can be optimized as very little power
(interference) radiates from the neighboring cell. As a result,
inter-cell interference from distant APs can be ignored due to
path loss and shadowing without any performance degrada-
tion. In this work, we assume that both RRBG assignments
and the down-tilt angles have been pre-optimized to keep
inter-AP interference at a minimum.2 However, in the IIoT
network considered, K ≫ N (corresponding to a dense
network) leads to there being fewer resources available than
are needed to accommodate the vast number of devices.
We address this challenge by concurrently scheduling multi-
ple IIoT devices over the sameRRB.Wemitigate the resultant
interference and improve system capacity by incorporating
a one layer RSMA strategy in each cluster so that multiple
devices can be scheduled over the same RRB simultaneously.
A two-step procedure is then followed to optimize the RSMA
framework’s ability to manage interference. In the first step,
we divide the K IIoT devices that are in each cell into a total
of N clusters, and each cluster is assigned to one orthogonal
RRB. In the second step, we execute the DRL algorithm to
optimize PA and maximize each cluster’s capacity.

2The mitigation of both inter-cell and intra-cell interference in an IIoT
network is left for future work.

For analytical tractability, the following assumptions are
made. A1: Each AP is aware of the CSI of the devices in its
cell. However, APs do not have any information about the
presence of instantaneous HWI-induced signal distortions at
the devices. A2: The clusters are non-overlapping to ensure
that inter-cluster interference is negligible. A3: Each device
can be associated with a maximum of one AP and one cluster.
A4: The time horizon is decomposed into multiple non-
overlapping time slots (TSs). We consider all communication
links to exhibit quasi-static channel fading, i.e., the CSI of
the links remains constant in each TS and can change inde-
pendently from one TS to the next.

B. CHANNEL MODEL
We model the downlink channel gain from the m-th AP to
the k-th IIoT device in the n-th cluster the same way as it is
modeled in [29], where each channel is subjected to large-
scale fading β

(m)
k,n and small-scale block Rayleigh fading h(m)k,n .

In the t-th TS, the channel gain is expressed as:

g(m)k,n(t) = |h
(m)
k,n(t)|

2β
(m)
k,n . (1)

According to the Jakes fading model [30], h(m)k,n(t) can be
expressed as a first-order complex Gauss-Markov process:

h(m)k,n(t) = ρh(m)k,n(t − 1)+ σ ′, (2)

where ρ = J0(2π fdTs) is the correlation coefficient between
two TSs, with J0(.) being the zeroth-order Bessel function,
fd being the Doppler frequency, and Ts being the duration of
each TS, and σ ′ is a random variable with a distribution σ ′ ∼

CN (0, 1−ρ2). The large-scale fading includes both path loss
and shadowing. We consider the path loss model proposed
by 3GPP [31] for a scenario involving an indoor factory with
space clutter and a high BS height (InF-SH) [32]. The average
path loss (in dB) between the AP and the k-th IIoT device is
given by:

PL = PrLoSPLLoS + PrNLoSPLNLoS , (3)

where PrLoS and PrNLoS are the probability of having a
line-of-sight (LoS) and a non-line-of-sight (NLoS) link,
respectively, between the AP and the k-th IIoT device. PLLoS
and PLNLoS represent the path loss (in dB) between the AP
and the k-th IIoT device for the LoS and NLoS links, respec-
tively. They are expressed as [31, Table 7.4.1-1]:

PLLoS = 31.84+ 21.5 log10(dk,AP)+ 19 log10(fc)+ ηLoS

(4)

and

PLNLoS = max(32.4+ 23 log10(dk,AP)+ 20 log10(fc)

+ ηNLoS ,PLLoS ), (5)

where dk,AP =
√
(dxk − X )2 + (dyk − Y )2 + (hk − H )2 rep-

resents the 3D distance between the AP and the k-th IIoT
device, with (dxk , dyk ) being the position of the k-th IIoT
device, (X ,Y ) being the position of the AP, H denoting the
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height of the AP, and hk denoting the height of the k-th IIoT
device, fc denotes the carrier frequency and ηLoS and ηNLoS
represent additional attenuation factors due to the LoS and
NLoS connections, respectively.

The probability values can be obtained from [31,
Table 7.4.2-1]:

PrLoS = e(
−d

ksubsce
) (6)

and

PrNLoS = 1− PrLoS , (7)

where

ksubsce = −
dclutter
ln(1− r)

H − hk
hc − hk

, (8)

with dclutter being the typical clutter size, hc representing the
effective clutter height, and r representing the clutter density.

C. RSMA STRATEGY
We adopt the well-known one-layer RSMA3 strategy that
splits the received data of the devices in a cluster into com-
mon and private parts. All the receivers’ common parts are
combined into a common message, which is encoded in a
common stream sc, while the private parts are encoded in a set
of private streams {sp,k}, one per device [5]. The sc and {sp,k}
streams are then linearly precoded and transmitted together
over the same RRB. The signal transmitted by them-th AP to
the n-th device cluster is expressed as:

xn =
√
P(m)c,n sc +

∑
n∈C(m)n

√
P(m)p,k,n sp,k , (9)

where C(m)n is the set of devices in the n-th device clus-
ter and |C(m)n | is the cardinality of the C(m)n set, P(m)c,n and
{P(m)p,k,n} denote the transmission power assigned to the
common and private messages, respectively, and Pn =
[P(m)c,n ,P

(m)
p,1,n, ..,P

(m)

p,|C (m)
n |,n

] denotes the power profile. The
signal received at the k-th IIoT device in the t-th TS is given
by:

yk (t) =
√
g(m)k,n(t)( xn + z)+ na, (10)

where z represents the signal distortion caused by HWI and
na is AWGNwith variance σ 2. In this article, we consider the
linear distortion introduced by the imperfect power amplifier.
According to [33], z ∼ CN

(
0, (σ 2

t + σ 2
r )Ptotal,n)

)
, where

Ptotal,n is the total power provided by the AP to the n-th clus-
ter, and σt and σr denote the level of HWI at the transmitter
and receiver, respectively.

In the RSMA strategy considered, each receiver first
decodes the common messages by treating the interference

3It is noteworthy that our DCPM framework is generic and can be applied
to IIoT networks utilizing the NOMA scheme. While NOMA-based DCPM
has the potential to achieve higher system capacity compared to RSMA-
based DCPM, its implementation is challenging due to the need for multiple
SIC operations at user devices.

from all the private streams as noise. Each receiver then
removes the interference from the decoded common stream
by applying SIC and decodes its private message while treat-
ing the other devices’ private messages as noise. Thus, the
SINRs of the common and private streams for the k-th IIoT
device, ∀k ∈ C(m)n , are expressed as:

γ
(n)
c,k =

P(m)c,n g
(m)
k,n(t)∑|C (m)

n |
k=1 P(m)p,k,n g

(m)
k,n(t)+ IHWI + σ 2

(11)

and

γ
(n)
p,k =

P(m)p,k,n g
(m)
k,n(t)∑|C (m)

n |

k ′=1
k ′ ̸=k

P(m)p,k ′,n g
(m)
k,n(t)+ ISIC + IHWI + σ 2

, (12)

respectively, where IHWI = g(m)k,n(t)(σ
2
t + σ 2

r )Ptotal,n rep-
resents the interference caused by HWI-induced signal
distortions and ISIC = θcgk,m,n(t)P

(m)
c,n is the interference

caused by applying SIC to decode the commonmessage, with
θc ∈ [0, 1] representing the SIC error coefficient. θc = 0 and
θc = 1 represent the scenarios with ideal SIC and no SIC,
respectively.

The common stream’s achievable rate for the k-th IIoT
device when considering FBL is expressed as [34]:

R(n)
c,k = log2(1+ γ

(n)
c,k )−

Q−1(ϵ)
√
nb

√
V(γ (n)

c,k ), (13)

where V(γ (n)
c,k ) is defined as:

V(γ c,k ) = 1−
1

(1+ γ
(n)
c,k )

2
, (14)

and nb and ϵ represent the blocklength and block error prob-
ability, respectively. Moreover, Q−1(.) is the inverse of the

Gaussian Q-function Q(x) = 1
√
2π

∫
∞

x e−
t2
2 dt . It should be

noted that the common message needs to be decoded by each
device, and, therefore, the common stream’s achievable rate
is equal to the lowest of all the receivers’ common rates:

R(n)
c = min[ R(n)

c,1, · · · ,R
(n)

c,|C (m)
n |

]. (15)

Once the interference has been removed from the common
message using SIC, each device decodes its private message
by considering the interference from the other devices in the
device cluster as noise. The private stream’s achievable rate
for the k-th IIoT device, ∀k ∈ C(m)n , is obtained as:

R(n)
k,p = log2(1+ γ

(n)
p,k )−

Q−1(ϵ)
√
nb

√
V(γ (n)

p,k ). (16)

We consider that each AP has a total of N RRBs, and
consequently, each AP has a maximum of N IIoT device
clusters. We denote the m-th AP’s device clusters by the sets
C(m)1 , C(m)2 , · · · , C(m)N . The achievable sum rate of the n-th
device cluster in the m-th AP is obtained as

R(m)
Cn =

B
MN

R(n)
c +

∑
k∈C(m)n

R(n)
k,p

 , (17)
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FIGURE 2. Proposed DCPM framework.

where B is the total system bandwidth, which is divided
equally among all the APs and their device clusters. The total
achievable sum rate of the m-th AP is obtained as:

R(m)
total =

N∑
n=1

R(m)
Cn . (18)

D. PROBLEM FORMULATION
The joint clustering and transmit PA optimization problem
is formulated as (19), shown at the bottom of the next page.
Constraints (C1) and (C2) imply that the transmit power of the
common and private messages must be bounded by Pmin and
Pmax , which represent the minimum and maximum transmit
power limits of an IIoT device, respectively. Constraint (C3)
implies that the total power provided by an AP must be less
than the total power an AP can achieve. Constraint (C4)
implies that each device cluster can support amaximumofKD
IIoT devices. Constraint (C5) ensures that the device clusters
belonging to the same AP do not overlap.
Proposition 1: P0 is an NP-hard optimization problem.
Proof: The proof is provided in Appendix.

Since P0 is an NP-hard and mixed-integer non-linear pro-
gramming problem, it is computationally intractable to obtain
its global optimal solution using standard optimization tech-
niques. Therefore, we propose to mitigate this computational
intractability with a sequential optimization framework. The
framework involves fixing one block of optimization vari-
ables so that P0 can be decomposed into two sub-problems,
namely, a device clustering one and a PA one. If we assume
the PA is fixed, i.e., P(m)c,n = P0 and P(m)p,k,n = P0, the device
clustering sub-problem can be formulated as:

P1: max
{C(m)n }

M∑
m=1

R(m)total

s.t. C4, C5. (20)

Meanwhile, if we consider that each AP has a given set of
device clusters, the PA sub-problem can be formulated as:

P2: max
P

M∑
m=1

R(m)total

s.t. C1, C2, C3. (21)

We propose to use a distributed optimization framework enti-
tled the DCPM framework, which is illustrated in Fig. 2,

to sequentially solve P1 and P2. Each AP consists of a
database that stores the instantaneous local CSI and past
SINRs of its associated devices. Each AP obtains its set of
device clusters by solving P1 using the local CSI extracted
from its database. Then, each AP obtains its device clus-
ters’ transmit PA by solving P2. We built this optimization
framework by first developing a greedy clustering algorithm
to solve P1 (see Section III). We then developed a multi-
agent DRL approach to solve P2 (see Section IV). The overall
DCPM algorithm leverages the greedy clustering and DRL
approaches to solve P0 and is presented in Section V.
Remark 1: The motivation for using the DRL approach

to solve P2 is as follows. P2 is a non-convex and com-
putationally intractable optimization problem that becomes
maximizing a sum-of-function-ratios, which is NP-complete.
Solving P2 using a conventional optimization technique that
relies on satisfying the Karush-Khun-Tucker (KKT) condi-
tions is practically challenging. Conventional optimization
techniques require precise knowledge of devices’ instan-
taneous SINRs to derive the KKT conditions. However,
it is practically unfeasible to know the exact value of
HWI-induced signal distortions at the devices, as these dis-
tortions vary randomly from device to device.We specifically
consider a practical setting in which the devices’ exact non-
linearity models are unknown to the network controller. The
SIC error coefficients and the interference caused by imper-
fect SIC at the receivers are also unknown to the network
controller. Therefore, even though the instantaneous CSI is
assumed to be available, the devices’ exact instantaneous
SINR values are not available to the network controller
in practice. Such a fact renders conventional optimization
techniques ineffective at solving P2. In contrast, the DRL
approach learns a suitable policy for allocating transmit
power based on the devices’ historical SINRs and current
CSI.4 The DRL approach neither requires precise knowledge
of the devices’ instantaneous SINRs nor the exact value of
HWI-induced signal distortions to do this. Moreover, once
the DRL agent is fully trained, it can also quickly solve P2
and thus converges in much less time than the conventional
optimizationmethod considered, which requires several itera-
tions to converge. This efficiency is particularly advantageous
in dynamic environments where quick decision-making is
crucial. Therefore, the DRL approach is a robust and scalable
means of solving P2.
Remark 2: The optimality of the overall solution can be

improved by alternately optimizing P1 and P2 instead of
solving them only once sequentially. However, this iterative
optimization approach increases the computational complex-
ity, signaling overhead, and solution time. In this approach,
device clusters need to be updated at each iteration based
on the transmit powers obtained in the previous iteration.
Afterward, the SINRs (with HWI-induced distortions) must

4We assume that the IIoT devices provide accurate received SINR feed-
back at the end of each TS. Hence, the AP knows the SINRs of the common
and private streams of the associated IIoT devices from the previous TS.
AP needs to compute PA decisions for the current TS using that information.
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be estimated for the newly formed device clusters. Finally, the
PA needs to be updated based on the new SINR values. It is
practically non-trivial to perform these three steps iteratively
several times within the channel coherence time. A sequential
optimization approach is therefore adopted to solve P0 in a
computationally efficient manner.

III. SOLUTION TO P1: DEVICE CLUSTERING
ALGORITHM
A. ALGORITHM DEVELOPMENT
Since there is no interference among the APs, P1 can be
decomposed into a total ofM independent optimization prob-
lems, one for each AP. The device clustering sub-problem for
the m-th AP, ∀m ∈M, is formulated as:

P1.1: max
{C(m)n }

N∑
n=1

R(m)Cn

s.t. C4, C5. (22)

The computational complexity involved in solving P1.1 opti-
mally can be obtained from the Stirling number of the second
kind, which is defined as the number of ways K differ-
ent objects (i.e., IIoT devices) can be partitioned into N
non-overlapping device clusters. The Stirling number of the
second kind is expressed as:{

K
N

}
≜

1
N !

N∑
j=0

(−1)N−j
(
N
j

)
jK . (23)

For K ≫ N , the Stirling number of the second kind is
approximated as O(NK−N ) [35]. Clearly, the computational
complexity involved in solving P1.1 optimally increases
exponentially with the number of IIoT devices, and, as a
result, arriving at a theoretically optimal solution to P1.1
is computationally intractable for practical IIoT networks.
However, it is possible to develop a sub-optimal yet efficient
algorithm to solve P1.1 by exploiting the problem’s charac-
teristics. To this end, we assume that certain clusters of K ′ ≥
1 devices are known.5 Doing so reduces P1.1 to an optimiza-
tion problem that involves assigning the remaining (K − K ′)
devices toN RRBs in such a way as to maximize the total sum
rate. The optimal device–RRB assignment needs to maximize
(a) the device’s SINR and (b) the minimum channel gain of

5One can obtain initial set device clusters by assigning K ′ devices to their
most suitable RRBs such that each device is associated with only one RRB
and each RRB is associated with only one device.

the devices in the cluster. An efficient device–RRB assign-
ment can be obtained by selecting the remaining (K − K ′)
devices in a suitable order and sequentially assigning them to
their most appropriate device cluster.6

In light of the above discussion, P1.1 can be alternatively
solved by finding the clusters of IIoT devices that maximize
the clustered devices’ total SINRs, which are the sum of the
SINRs of their common and private messages. Without loss
of generality, we assume that the k-th IIoT device is part of the
n-th cluster. The total SINR of the k-th IIoT device is obtained

as γ
(n)
k = γ

(n)
c,k + γ

(n)
p,k , where

γ
(n)
c,k =



Po

|C(m)n |Po + σ 2

min{min
k′∈C(m)n

g(m)
k′,n

,g(m)k,n}

if |C(m)n | ≥ 1

Po
σ 2

g(m)k,n

if |C(m)n | = 0

(24)

and

γ
(n)
p,k =



Po(
|C(m)n | − 1+ θc

)
Po + σ 2

g(m)k,n

if |C(m)n | ≥ 1

Po
σ 2

g(m)k,n

if |C(m)n | = 0,

(25)

where Po is the fixed transmit power of both the device’s
common and all its private messages.7 Let us introduce the
variable z(m)k,n , which equals 1 if k ∈ C

(m)
n and 0 otherwise. The

modified device clustering sub-problem can be formulated as:

P1.2: max
{z(m)k,n∈{0,1}

N∑
n=1

K∑
k=1

z(m)k,n

(
γ
(n)
c,k + γ

(n)
p,k

)

s.t.


∑K

k=1
z(m)k,n ≤ KD, ∀n ∈ N∑N

n=1
z(m)k,n = 1, ∀k ∈ K.

(26)

6This idea is inspired by the greedy approach used to solve the generalized
assignment problem (GAP) and exploits the similarity that exists between
P1.1 and a GAP [36].

7Recall that instantaneous information about HWI-induced signal distor-
tions and SIC error coefficients is not available at the devices. Consequently,
interference caused by HWI-induced signal distortions and imperfect SIC is
ignored in (24) and (25), i.e., during the device clustering stage.

P0: max
P,{C(m)n }

M∑
m=1

R(m)total

s.t.



C1: Pmin ≤ P(m)c,n ≤ Pmax , ∀n ∈ N ,m ∈M
C2: Pmin ≤ P

(m)
p,k,n ≤ Pmax , ∀k ∈ C(m)n , n ∈ N ,m ∈M

C3:
∑N

n=1

∑
k∈C(m)n

(P(m)p,k,n + P
(m)
c,n ) ≤ Pt , ∀k ∈ C(m)n , n ∈ N ,m ∈M

C4: |C(m)n | ≤ KD, ∀n ∈ N ,m ∈M
C5: C(m)n ∩ C

(m)
t = ∅, ∀n, t ∈ N , n ̸= t,m ∈M

(19)
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We develop a greedy clustering algorithm, which is sum-
marized in Algorithm 1, to solve P1.2. Algorithm 1 iteratively
selects a device and assigns it to an RRB (i.e., device cluster).
It maintains two sets – (i) UMU , the set of unassigned IIoT
devices; and (ii)UMR, the set of RRBs that can accommodate
at least one IIoT device. Furthermore, it keeps track of the
number of IIoT devices that are assigned to the n-th RRB,
which is denoted by Dn. When a device is associated with an
RRB, it simultaneously obtains a profit by increasing its own
SINR gain and incurs a cost by either reducing the minimum
channel gain of its cluster (and thereby, reducing the com-
mon message rate) or reducing the SINRs of other devices’
private messages. Hence, attention must be paid to the order
in which devices are selected and assigned to their most
suitable clusters, as it can enhance the net profit. To select
the most suitable device cluster for a given IIoT device at
each iteration of Algorithm 1, we consider the following
score

1k = γ
(n∗k )
k − max

n∈UMR
n ̸=n∗k

γ
(n)
k , (27)

where n∗k denotes the index of the k-th IIoT device’smost suit-
able cluster, and the first and second terms of (27) provide the
k-th IIoT device’s highest and second-highest SINRs, respec-
tively, obtained from the available device clusters in UMR.
This score captures the net profit that would be obtained
from assigning the k-th IIoT device to its most suitable
device cluster. In other words, it provides a measure of the
importance of including the IIoT device in its most suitable
cluster.

The key steps in Algorithm 1 are summarized as follows.
Step 2 initializes the set UMU , the variable Dn and the
device cluster sets {Cn}, ∀n ∈ N . Steps 4-11 iteratively
compute the score defined in (27) for each unassigned device
in UMU when it is paired with each available device cluster
in UMR. Step 12 selects the device that achieves the highest
score. Step 13 assigns the selected device to its most suitable
device cluster in UMR, and updates UMU and {Dn}. The
aforementioned steps continue until either UMU or UMR is
empty.

B. COMPUTATIONAL COMPLEXITY
Wefirst determine the computational complexity of executing
a single loop iteration of Algorithm 1, i.e., Steps 3-13. The
worst-case computational complexity of executing Steps 5-
11 is O (|UMU |N ), where |UMU | denotes the cardinality
of UMU . The computational complexity of executing Step
12 is O (|UMU |), and that of the remaining steps is O(1).
The total computational complexity of a single loop iteration
of Algorithm 1 is therefore O (|UMU |N + |UMU |). Note
that since Algorithm 1 sequentially clusters a device and
removes it from UMU , the variable |UMU | is reduced by
1 at each iteration. In the end, the overall computational com-
plexity of Algorithm 1 is obtained as O

(∑K
l=1(Nl + l)

)
≈

O
(
K 2N

)
.

Algorithm 1 Proposed IIoT Device Clustering Algorithm for
the m-th AP
1: Input: Number of IIoT devices K , number of RRBs
N , channel gains {g(m)k,n}, fixed PAs P

(m)
c,n = P0 and

P(m)p,k,n = P0, ∀k ∈ C
(m)
n n ∈ N ,m ∈M.

2: Initialize: UMU = {1, 2, · · · ,K }, Dn = 0,
∀n ∈ {1, 2, · · · ,N }; IIoT device clusters Cn = ∅,
∀n ∈ {1, 2, · · · ,N }.

3: repeat
4: Find UMR = {n ∈ {1, 2, · · · ,N }|Dn < KD}.
5: for k = 1 : |UMU | do
6: for n = 1 : |UMR| do

7: Calculate γ
(n)
k = γ

(n)
c,k + γ

(n)
p,k using (24) and (25).

8: end for
9: Find n∗k = argmaxn∈UMR γ

(n)
k .

10: Calculate 1k = γ
(n∗k )
k −maxn∈UMR

n ̸=n∗k

γ
(n)
k .

11: end for
12: Find k∗ = argmaxk∈UMU 1k .
13: Assign Cn∗k

→ Cn∗k
∪ {k∗}; update Dn∗k

= Dn∗k
+ 1 and

UMU → UMU \ {k∗}.
14: until UMU = ∅ or UMR = ∅
15: Output: IIoT device clusters C1,C2, · · · ,CN .

IV. SOLUTION TO P2: DRL-EMPOWERED PA
ALGORITHM
A. DEEP Q-NETWORK OVERVIEW
We develop a DRL-empowered PA algorithm by utilizing
the deep Q-network (DQN), which is a single-agent RL
algorithm that performs Q-learning in high-dimensional state
spaces and complex environments. The fundamental building
block of DQN is a deep neural network (DNN) that serves
to approximate the agent’s optimal action value function
in a given environment. DQN learns to make decisions by
iteratively updating the Q-values of state–action pairs based
on the rewards that are received from the environment [37].

We first provide a brief overview of the Q-learning scheme.
Let S denote a set of possible states and A denote a set of
discrete actions. At TS t , the RL agent observes the state of
its environment (st ∈ S) and takes an action (at ∈ A) based
on a certain policy π (s/a). Once the agent takes an action,
the environment moves to the next state, st+1. The agent
then receives a reward rt+1 that describes how beneficial
the action taken at state st was. The tuple (st , at , rt+1, st+1)
forms an experience that describes the agent’s interaction
with the environment. The agent’s main goal is to maximize
the discounted accumulated reward, which is expressed as
Rt =

∑
∞

τ=1 γ τ rt+τ , where γ is the discount factor, and rt+τ

is the value of the reward at TS t + τ . The agent needs to
learn an optimal policy, π∗(s, a), that maps the state space
to the action space. Q-learning is based on the action value
function, which represents the return that is expected for
taking action a in state s using policy π . It is defined as
Qπ (s, a) = E(Rt |st = s, at = a, π). The optimal action
value function satisfies the Bellman optimality equation as
follows:

Q∗(s, a) = E(rt+1 + γ max
a′

Q∗(st+1, a′)|st = s, at = a),

(28)
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where Q∗(s, a) = maxπ Qπ (s, a) represents the maximum
action value that can be obtained by following any policy.
Clearly, the optimal action selection policy in a given state
s is defined as:

π∗(s, a) =

{
1, a = argmax

a∈A
Q∗(s, a)

0, otherwise.
(29)

Q-learning based on (30) is guaranteed to converge as long
as the Markov state transition property holds. However,
for a complex environment with a continuous state space,
Q-learning requires a large amount of storage capacity to
store the action value functions of a large number of states
and an (infinitely) long time to visit all the states. As a result,
despite the fact that it converges, Q-learning is impractical for
complex environments.

DQN overcomes Q-learning’s limitations by employing
a DNN, which inputs the state and outputs the Q-function
q(s, a; θ ) for each possible action, where θ denotes the weight
of the DNN. Essentially, DQN learns to predict the action
values of an unseen state using the DNN’s inference capabil-
ity. When training a DQN, the agent takes actions according
to the ϵ-greedy policy for dealing with the exploration-
exploitation dilemma [38]. Exploration refers to trying out
different actions to learn more about the environment. In con-
trast, exploitation refers to using the learned policy to make
decisions that maximize the reward. Like the Q-learning
algorithm, the Q-function’s values are obtained through trial
and error and are updated as:

q(st , at ; θ )← (1− α)q(st , at ; θ )+ α[rt+1
+ γ max

a′
q(st+1, a′; θ )], (30)

where α represents the learning rate. DQN is an off-policy
RL algorithm that stores the previous experience in a replay
memory D. Then, a mini-batch from this memory is sampled
to train the DQN by minimizing the mean square loss func-
tion. If the same DQN network is used to provide the ground
truth for the loss function and update parameters, then the
training of DQN becomes highly unstable. We address this
by using a quasi-static target Q-network with parameter θ− to
predict the Q-function’s target value (i.e., the ground truth).
The loss function for training the DQN is constructed as:

Loss =
1
2

∑
(s,a,r,s′)∈D

(r ′ − q(s, a; θ ))2, (31)

where r ′ = r + γ max
a′

q(s′, a′; θ−) is the Q-function’s target

value. To minimize (31), we iteratively update θ by sampling
a mini-batch of experiences from D and using stochastic
gradient descent as follows:

θ ← θ − [r ′ − q(s, a; θ )]▽ q(s, a; θ ). (32)

The target Q-network is periodically updated by copying
parameters from the trained DQN. The DQN rapidly con-
verges to a suitable parameterized policy for a Markov
decision process with a continuous state space [29].

B. THE PROPOSED SOLUTION
In this work, we develop a DQN-based multi-agent DRL
algorithm to optimize PA at each AP. The main constituents
of our proposed DRL scheme are defined as follows:
1) Agents: Each device cluster is a learning agent. The

set of learning agents associated with the m-th AP is
denoted by Z (m)

= {1, 2, · · · , n}, and thus Z =

∪
M
m=1Z

(m) represents an overall set of learning agents.
2) States: The state space refers to the set of all possible

states that can apply to the environment during the learn-
ing process. In our context, the state space of the
n-th agent in the m-th AP comprises three key compo-
nents:
(i) The set of local CSI at the t-th TS (g(m)1,n, . . . , g

(m)

|C(m)n |,n
),

(ii) The set of SINRs of the common streams at the (t−1)-
th TS (γ (n)

c,1 , γ
(n)
c,2 , . . . , γ

(n)

c,|C(m)n |
),

(iii) The set of SINRs of the private streams at the (t−1)-th
TS (γ (n)

p,1, γ
(n)
p,2, . . . , γ

(n)

p,|C(m)n |
).

Therefore, the state space of the n-th agent in the m-th
AP, ∀n ∈ Z (m), at the t-th TS is formally defined as:

s(m)n,t = {(g
(m)
1,n, . . . , g

(m)

|C(m)n |,n
), (γ (n)

c,1 , γ
(n)
c,2 , . . . , γ

(n)

c,|C(m)n |
),

(γ (n)
p,1, γ

(n)
p,2, . . . , γ

(n)

p,|C(m)n |
)}. (33)

At every TS, the state space provides information about
the current state of the environment, including the
instantaneous channel gains. Additionally, feedback is
provided on the outcome of previous actions through the
SINRs of the previous TS(s). This information helps the
agents learn a suitable policy while also keeping track
of the history of the effectiveness of their chosen actions
over the fading channels.

3) Actions: Each action taken by each agent represents a
set of discrete power levels between Pmin and Pmax for
the agent’s associated IIoT devices. The action space of
the u-th UD in the n-th device cluster is defined as:

A(n)
u = {Pmin,

Pmax
NP− 1

,
2Pmax
NP− 1

, . . . ,Pmax}, (34)

where NP is the total number of discrete power levels.
Note that for a device cluster of KD IIoT devices, a total
of (KD + 1) discrete power levels (i.e., one level for the
common message and KD levels for the private mes-
sages) are selected. Thus, the action space of the n-th
agent in them-th AP, ∀n ∈ Z (m) and ∀m ∈M, is defined
as An = A(n)

1 × A(n)
2 × · · ·A

(n)
KD × A(n)

KD+1
, where

A(n)
i , i = 1 · · ·KD, denotes the set of discrete power

levels for the i-th private message and A(n)
KD+1

denotes
the discrete power level for the common message.

4) Reward: The agents (i.e., device clusters) select trans-
mit power levels for the IIoT devices to maximize the
sum rate. We consider a collaborative learning frame-
work in which all the agents jointly maximize the AP’s
total sum capacity. Accordingly, the reward function of
the n-th agent associated with the m-th AP, ∀m ∈ M,

1328 VOLUME 2, 2024



Mohamed et al.: RSMA-Enabled Interference Management for IIoT Networks

FIGURE 3. Illustration of the proposed multi-agent DRL algorithm with centralized training and distributed execution.

is defined as R̂(m)n = R(m)
total , ∀n ∈ Z (m), where R(m)

total is
defined in (18).

Fig. 3 shows the architecture of our proposed multi-agent
DRL framework. The environment comprises M APs that
each host K IIoT devices randomly distributed within their
converge area. The position of each IIoT device changes from
one TS to the next. Therefore, in each TS, the proposed
solution begins by clustering the devices associated with each
AP using Algorithm 1 to obtain, for example, the set of
clusters {C (m)

1 ,C (m)
2 , · · · ,C (m)

N } for the m-th AP, ∀m ∈ M.
These device clusters are our multi-agent DRL framework’s
learning agents. In each TS, these RL agents observe the
states of the clustered IIoT devices and then allocate the AP’s
transmit power levels to the clustered devices. The RL agents
can be considered independent DQN agents and trained by
employing the DQN framework discussed in Section IV. A.
However, extending the single-agent DRL framework to a
multi-agent scenario in such a straightforward way entails
the following two challenges. First, due to the total transmit
power constraint C3, an agent’s state transition depends on
the policies adopted by the other agents belonging to the same
AP. Since the agents continuously update their policies during
training, the learning environment becomes non-stationary
and violates the Markov properties of state transitions, which
results in instability in DQN training. Second, a total of
MN DQNs need to be trained simultaneously since each
agent’s policy is provided by an independent DQN, and this
significantly limits the scalability of the learning framework.
We overcome these challenges by employing a central-
ized training and distributed execution (CTDE) approach
with parameter sharing [29]. In this approach, each agent

maintains an identical DQN. The DQN is centrally trained
by a centralized controller based on the experiences collected
by all the agents and shared with all the agents. Unlike in [39],
the CTDE approach significantly reduces the computational
complexity involved and the amount of memory required,
as only a single DQN needs to be trained. Furthermore,
since all the agents use the same DQN simultaneously, the
action space (i.e., DQN size) does not increase with the
number of agents. Consequently, this approach is scalable
and suitable for large-scale networks. Moreover, the CTDE
approach trains the DQNmodel based on the collective expe-
rience of all the agents. This not only ensures better stability
(and avoids biased training), but also enables collaborative
learning so the agents can select suitable actions. As a result,
the system reward (i.e., the network sum rate) improves. The
CTDE approach is empirically shown to converge for multi-
agent RL with homogeneous agents [40].

Algorithm 2 provides the overall steps for training our
proposed multi-agent DRL framework using the CTDE
approach. We consider episodic learning with Z RL episodes
and T steps per RL episode, each of which represents a TS.
Thus, the channel gains and user positions vary at each step.
At each TS of an episode, Algorithm 2 randomly generates
each device’s location and channel gain, and clusters the
devices using the proposed Algorithm 1. The inclusion of
device clustering in DRL model training enables the DQN
model to learn the inherent relationship that exists between
power control and device clustering for decision-making.

Algorithm 2 is summarized as follows. Algorithm 2 ini-
tializes the replay memory, the PA agent (i.e., the DQN to be
trained), and the target DQN.At each step in eachRL episode,
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the channel gains and device locations vary (Line 8). A set
of device clusters (i.e., agents) is formed for each AP using
Algorithm 1 (Line 10). Each agent collects state information
from the environment (Line 12). The clustered devices’ trans-
mit power levels are selected using the ϵ-greedy approach
(Lines 13-22). Note that although each agent uses the same
DQN, the actions they select are different since their observed
states are different. Line 23 normalizes the transmit power
of all the devices associated with an AP so that constraint
C3 is satisfied. The updated transmit power values are used
to determine the agent’s rewards and next states (Line 24).
Each agent’s experience, such as (s(m)n,t , a

(m)
n,t , r

(m)
n,t+1, s

(m)
n,t+1),

is stored in the replay memory D (Line 25). A mini-batch
of experiences is randomly sampled from the replay memory
to train the DQN agent (Line 27). This makes it possible to
train the DQN agent based on previous experiences instead
of the most recent ones, which are potentially correlated and
may introduce bias in the training. The DQN’s parameters
are updated by applying the backpropagation technique and
(32) (Line 28). Finally, the target DQN’s weights are updated
with the new weights of the trained DQN after every Tstep
number of steps (Line 29). Lines 6-29 are iteratively repeated
for all the steps and RL episodes. Algorithm 2’s convergence
is confirmed via simulations (see Fig. 8).
Remark 3: In practice, the number of devices associated

with an AP and the number of devices per cluster can vary.
We fix the dimensions of the trained DQN’s input and output
layers to make it robust in all scenarios. Since the maximum
number of devices per cluster is KD consistent with the state
space description, the dimension of the DQN’s input layer is
set to 3KD. The dimension of the DQN’s output layer is set to
NP (i.e., the total number of discrete power levels). If an AP
has more IIoT devices than the total number device clusters
are allowed, Algorithm 1 selects the best KD devices for each
cluster at each TS. Meanwhile, a device cluster’s state space
is padded with zeros when the cluster has fewer than KD
devices [41].

V. OVERALL DCPM ALGORITHM
A. DESCRIPTION OF DCPM ALGORITHM
All the steps of the proposed DCPM framework are set out
in Algorithm 3, which is summarized as follows. Each AP
is considered to have a copy of the trained DQN-enabled
PA agent. At each TS, the APs first collect the instanta-
neous channel gains of their associated IIoT devices (Line 5).
Next, they form N device clusters by executing Algorithm 1.
Then, they determine the transmit power levels of the com-
mon and private messages in their associated device clusters
by executing Lines 7-16 using the trained DQN. Finally,
they transmit data to the devices in each cluster using the
optimized PA. Note that Lines 5-16 can be executed simul-
taneously and independently at each AP without needing to
exchange any information. Consequently, Algorithm 3 can be
implemented in a distributed manner at each AP. Distributed
implementation enables rapid algorithm execution, which

Algorithm 2 Algorithm for Training DQN-Enabled PA
Agent
1: Input:Maximum number of episodes Z and maximum number of steps
per episode T .

2: Initialize: the replay memory D to zero.
3: Create a DQN-enabled PA agent, q(:, :; θ ) with random weights θ .
4: Create a target DQN q(:, :; θ−) with θ− = θ .
5: for episode← 1 : Z do
6: Initializes channel fading gains for all the devices and APs.
7: for t ← 1 : T do
8: Vary the devices’ locations within APs’ coverage zone and

channel fading gains using (1).
9: for m← 1 : M do
10: Update N IIoT device clusters

{
C(m)1 ,C(m)2 , · · · ,C(m)N

}
using Algorithm 1.

11: for n← 1 : |Z(m)
| do

12: Observe the state of the environment, s(m)n,t . Initialize

a(m)n,t ← ∅.

13: for u← 1 : |C(m)
n | + 1 do

14: Generate a random number z.
15: if z ≥ ϵ then
16: Determine i =

argmax
a∈A(n)

u
q(s(m)n,t , a, θ).

17: else
18: Select i ∈ {1, 2, · · · , |A(n)

u |} randomly.
19: end if
20: Assign a(m)n,t ← a(m)n,t ∪A

(n)
u [i].

21: end for
22: end for
23: Normalize the common and private messages’ transmit

power over all the clusters so that
|a(m)n,t |1
Pt
= 1 is satisfied.

24: Transmit using the normalized transmit
power and measure the instantaneous SINRs at the devices. Determine the
immediate reward r (m)n,t+1 = R(m)

total and the next state s
(m)
n,t+1, ∀n ∈ Z

(m).

25: Save the experience
(
s(m)n , a(m)n,t , r

(m)
n,t+1, s

(m)
n,t+1

)
,

∀n ∈ Z(m), in replay memory D.
26: end for
27: Sample a random mini-batch of experience from D.
28: Update the weight of PA agent, θ , by applying (32) and the

backpropagation method.
29: After every Tstep time step, update θ− = θ .
30: end for
31: end for
32: Output: Trained PA agent q∗(s, a; θ ).

makes Algorithm 3 particularly advantageous for delay-
sensitive IIoT applications.

B. COMPUTATIONAL COMPLEXITY OF DCPM
ALGORITHM
Wefirst determine the computational complexity of executing
Lines 5-16. Line 6’s computational complexity is O(K 2N ).
Note that each device cluster can accommodate a maximum
of KD devices. Hence, the worst-case computational com-
plexity of executing Lines 7-12 is O(NKDNP), where NP
is the number of available discrete power levels. The com-
putational complexity of the remaining lines is O(1). Thus,
the computational complexity of making clustering and PA
decisions for a single AP is O(N (K 2

+ KDNP)). Since there
are a total of M APs in the system, the overall computa-
tional complexity of executing Algorithm 3 in a single TS
is O(MN (K 2

+ KDNP)).
Remark 4: For the optimal performance of Algorithm 3,

the environment used to train the DQN agent in Algorithm 2
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Algorithm 3 Distributed Clustering and Power Management
(DCPM) Algorithm
1: Input: Number of APs M ; number of IIoT devices K and RRBs N per
AP; maximum number of devices per cluster KD; trained DQN for PA
q∗(s, a; θ ); total number of TSs Ts.

2: Initialize: TS index t = 1.
3: repeat
4: for m← 1 : M do
5: Collect the instantaneous channel gains {g(m)k,n}, for the

associated IIoT devices.
6: Determine N device clusters

{
C(m)1 ,C(m)2 , · · · ,C(m)N

}
using

Algorithm 1.
7: for n← 1 : N do
8: Acquire the state information s(m)n,t described in Section
IV-B.

9: for u← 1 : |C(m)n | + 1 do
10: Determine the optimal PA action

a∗u = argmax
a∈A(n)

u
q∗(s(m)n,t , a; θ ).

11: end for
12: end for
13: for n← 1 : N do
14: Determine the transmit power of the common message as

P(m)c,n =

a∗
|C(m)n |+1∑N

n=1
∑|C(m)n |+1

u=1 a∗u

× Pt

15: Determine the transmit power of the k-th device’s private
message as

P(m)p,k,n =
a∗k∑N

n=1
∑|C(m)n |+1

u=1 a∗u

× Pt ,∀k ∈ C(m)n

16: end for
17: end for
18: Perform downlink data transmission at all cells using the optimized

device clusters and PA; increase the TS index t = t + 1.
19: until t > Ts
20: Output: Device clusters and transmit PA solution to P0 at each TS.

and the environment observed during online inference need
to be similar. Nevertheless, in practice, an IIoT network
usually exhibits several dynamic factors that make it difficult
to keep the environment identical throughout model training
and online inference. This challenge can be addressed by
periodically updating the trained DQN as follows. Train the
initial DQN model using Algorithm 2 and a realistic network
simulator or digital twin.8 Then, deploy the trainedmodel in a
live network (i.e., in Algorithm 3), and periodically collect the
experiences of the agents (i.e., device clusters) from the APs
and send them to a replay buffer. Once a sufficient number
of sample experiences have been collected, the weights of
the DQN model can be updated by executing Lines 27-29 of
Algorithm 2. Periodically updating the DQN in this way will
enable Algorithm 3 to maintain its adaptability to dynamic
IIoT networks. It is worth noting that the following two types
of communication overhead are required at each TS for DQN
model training: (1) APs send their experiences (i.e., observed
states, actions, and rewards) to the central server, and (2) the

8Note that Algorithm 2 requires several rounds of exploration (i.e., trial
and error) to collect sufficient samples and optimize the DQN network.
However, conducting exploration in a live network is expensive. Algorithm 2
can be executed in a virtual domain while considering the realistic network
simulator as the environment to reduce costs.

updated DQN model is sent back to the APs by the central
server. While the amount of information exchanged increases
with the number of APs, TSs, and RL episodes, we assume
that the APs are connected to the server via high-speed wired
(e.g., Ethernet or optical fiber) links. As a result, the overhead
can be afforded. Additionally, it is important to note that
training is a one-time data-intensive process. Once the model
has been trained, deploying it does not require significant
communication overhead, as each AP can make distributed
decisions independently using the trained model.

VI. SIMULATION RESULTS
A. BENCHMARK SCHEMES
This section presents our numerical simulation results and
evaluates the performance of the proposed scheme for down-
link RSMA-enabled IIoT networks that considers both FBL
and HWI-induced distortions. In the subsequent numerical
results, unless specified, our DCPM algorithm considers per-
fect SIC at the IIoT devices. For performance comparison,
we consider the following benchmark schemes.

1) Clustering algorithms: To demonstrate the superior-
ity of our proposed clustering algorithm, we compare
its performance to that of the following clustering
algorithms.

• Random clustering: This scheme allocated
devices to clusters in a purely random fashion, with
no specific pattern or criteria governing allocation.

• Clustering using channel gain: In this case,
device clusters are obtained by assigning the IIoT
devices to their most suitable RRBs from the per-
spective of channel gain. This clustering scheme
follows the same steps that are mentioned in
Algorithm 1 except for when it comes to calculating
the score1k for the k-th device, ∀k . In this scheme,
the score is calculated as the difference between
the highest and second-highest channel gains of
the k-th device obtained from the RRBs, which
implies the importance of assigning the k-th device
to its most suitable RRB. The pseudocode of the
channel gain-based device clustering algorithm is
summarized in Algorithm 4.

Once the IIoT devices have been clustered, the transmit
PA is selected using the trained DQN from Algorithm 2.

2) Interference management schemes: We compare the
performance of the proposed DCPM algorithm (i.e.
Algorithm 3) to that of the following interference man-
agement schemes.

• Treat interference as noise (TIN): In this scheme,
no common message is transmitted only the private
messages are. Each device decodes its intended
message by treating the interference from other
devices in the same cluster as pure noise.

• RSMA with imperfect SIC (ImpSIC): This
scheme considers that the receivers’ SIC process
is imperfect. Consequently, residual interference
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from the common message is encountered when
decoding private messages. We take this interfer-
ence into account by considering θc > 0 in (12).

Since both the TIN and RSMA with ImpSIC schemes
employ the DCPM framework, they are denoted by
DCPM-TIN and DCPM-ImpSIC, respectively, in the
ensuing discussion.

3) PA algorithms: We compare the performance of the
proposed DCPM algorithm to that of the following
benchmark PA algorithms. Note that the benchmark PA
algorithms are applied only after Algorithm 1 has been
executed to obtain each AP’s device clusters.

• Weighted minimum mean square error
(WMMSE): The conventional WMMSE algori-
thm, which is given in [42], is used to optimize the
transmit PA of the clustered devices.

• Random power (RP): Each IIoT device’s transmit
power level at each TS is chosen randomly between
0 and Pmax .

• Maximum power (MaxP): The IIoT devices in
each cluster are given the maximum power level
Pmax at each TS.

Algorithm 4 IIoT Device Clustering Algorithm for the m-th
AP Based on the Channel Gain
1: Input: Number of IIoT devices K , number of RRBs N , channel gains
{g(m)k,n}.

2: Initialize: UMU = {1, 2, · · · ,K }, Dn = 0, ∀n ∈ {1, 2, · · · ,N }; IIoT
device clusters Cn = ∅, ∀n ∈ {1, 2, · · · ,N }.

3: repeat
4: Find UMR = {n ∈ {1, 2, · · · ,N }|Dn < KD}.
5: for k = 1 : |UMU | do
6: Calculate n∗k = argmaxn∈UMR g

(m)
k,n .

7: Calculate 1k = g(m)k,n∗k
−maxn∈UMR

n ̸=n∗k

g(m)k,n .

8: end for
9: Find k∗ = argmaxk∈UMU 1k .
10: Assign Cn∗k

→ Cn∗k
∪ {k∗}; update Dn∗k

= Dn∗k
+ 1 and

UMU → UMU \ {k∗}.
11: until UMU = ∅ or UMR = ∅
12: Output: IIoT device clusters C1,C2, · · · ,CN .

B. SIMULATION SETTINGS
Our simulation model comprises four IIoT cells that each
contain one AP and K IIoT devices placed randomly around
the AP. To ensure that the position of the devices and the
AP do not overlap, a small device-free region of radius rs
is maintained around each AP. Fig. 4(a) shows an example
of a network configuration for 4 APs and 48 IIoT devices
without clustering. When the IIoT devices are clustered using
Algorithm 1 in such a way that the SINR is maximized, the
network configuration becomes as depicted in Fig 4(b). Note
that the devices shown in the same color in the figure are
part of the same cluster. In our specific setup, we consider
that each AP can have N = 4 clusters, and each cluster can
support amaximum ofKD = 3 devices. The fixed power level
used to execute Algorithm 1 is obtained as P0 =

Pt
(KD+1)N

.

FIGURE 4. Network configuration for 4 APs and 48 IIoT devices.

Our network simulation settings are shown in Table 2.
The path loss parameter values provided in Table 2 were
selected in accordance with [31, Table 7.2-4]. We use a linear

distortionmodel to simulate HWIs and consider
√

σ 2
t + σ 2

r =

0.1 in accordance with [43].
In our proposed solution, each agent trains the DQN with

one input layer, two fully connected hidden layers, and one
output layer. The input layer N1 contains the state elements
described in Section IV-B.1. The number of neurons in the
two hidden layers (N2, N3) is (64, 32). Finally, we set the
output layer N4 = NP = 20 outputs. The hyperparameters
adopted to train the DQN are listed in Table 3. The weight-
update time step, Tstep, is set to 100. This indicates that every
100 time steps, the weights of the trained DQN, which are
denoted by θ , are aligned with the weights of the target DQN,
which are represented by θ−. When updating θ , we employ
an RMSprop optimizer with an adaptive learning rate α(t),
where α(t) = (1 − λ)α(t − 1). The initial learning rate was
set to α(0) = 5e − 3, and λ, to 10−3. This initial learning
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TABLE 2. Simulation settings: IIoT network’s parameters.

TABLE 3. Simulation setting: Hyper-parameters of DQN-based
PA.

rate was determined through experimentation and was found
to improve learning performance in our simulation results.
Furthermore, we utilize the adaptive ϵ-greedy algorithm to
balance exploration and exploitation during the learning pro-
cess. This algorithm adjusts the exploration rate ϵ over time
to ensure the agent gradually transitions from exploration to
exploitation as it learns more about the environment. The
formula used to update ϵ is ϵ(t) = max{ϵmin, (1−λϵ)ϵ(t−1)},
where ϵmin represents the minimum exploration probability
and λϵ is the decay rate. In our implementation, we initialize
ϵ(0) at 0.7 and set ϵmin to 10−2 and λϵ to 10−3.

We performed training using Algorithm 2 for 1000
episodes to help the agent learn the optimal PA policy for
different channel conditions. To train the DQN of the DCPM
framework, experiences (i.e., datasets) were collected by
iteratively interacting the DQN with a simulated IIoT envi-
ronment having the parameters indicated in Table 2. The
experiences, which take the form of (state, action, reward,
and next state) tuples, are stored in a reply buffer of size
(5,000) and randomly sampled in a mini-batch to iteratively
train the DQN model. Note that the experiences generated
include a wide range of states and actions that reflect var-
ious network conditions, devices’ HWI configurations, and

TABLE 4. Jain fairness index for RSMA and OFDMA
technologies.

dynamic channel gains. This ensures that the DQN agent is
exposed to a wide variety of scenarios during training, which
enhances its ability to generalize and perform well in real-
world situations. Once the DQN was trained, it was deployed
in each AP and Algorithm 3 was executed. The sum rate of
the ensuing numerical results is from the online execution of
Algorithm 3 in different channel conditions. For simplicity,
we consider a similar networking environment for bothmodel
training and online inference. We implemented our program
in Python 3 and ran it on a 64-bit Windows 10 machine
with an Intel Core i7-6700 CPU with a 3.40 GHz processor
and 8 GB of RAM.

C. RSMA VERSUS OFDMA: NUMBER OF CLUSTERS
VERSUS JAIN FAIRNESS INDEX
The Jain fairness index quantifies the fairness of resource
allocation among multiple devices in a network or system.
From [44], we obtain Jain’s fairness index as:

J (x) =
(
∑KD

k=1 xk )
2

KD
∑KD

k=1 x
2
k

, (35)

where xk is the achievable rate of the k-th device andKD is the
total number of devices allowed per RRB (i.e., device cluster).
The Jain fairness index measures how fairly the bandwidth
of an RRB is allocated among its associated devices, on a
scale from 0 to 1 [44], with 1 representing perfect fairness
and indicating that all users receive an equitable share of
the available resources. Conversely, a Jain index value that
approaches 0 indicates substantial unfairness, meaning that
some users receive disproportionately more resources, while
others are given comparatively less resources. Essentially, the
Jain fairness index quantitatively measures how resources are
distributed and is a valuable tool for evaluating fairness in
different network and resource-sharing scenarios. Note that
each AP has 4 RRBs in the setup considered. Hence, at any
given time, OFDMA can support one device per RRB and
a maximum of 4 devices per AP. In contrast, RSMA can
support 12 devices per AP with intra-cluster interference.
As a result, the sum rate is not a rational metric for comparing
the two schemes. We therefore use the Jain fairness index to
assess and compare the RSMA andOFDMA schemes’ ability
to fairly allocate resources.

In Table 4, we evaluate the number of clusters (i.e., RRBs)
per AP and the fairness index for the OFDMA and RSMA
schemes. It is evident from the table that increasing the
number of clusters per AP decreases the fairness index.When
it comes to the OFDMA scheme, each RRB (or cluster) can
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FIGURE 5. Average sum rate for different blocklengths and
clustering algorithms.

support only one user at a time. Hence, its fairness index is
always 1/KD. Meanwhile, the RSMA scheme simultaneously
supports all the clustered devices with certain data rates by
effectively mitigating intra-cluster interference. Accordingly,
for a given number of RRBs, RSMA outperforms OFDMA
when it comes to the fairness index, as Table 4 shows. For
example, in the third scenario, where N = 6 and KD = 2,
RSMA and OFDMA achieve Jain fairness index values of
0.603 and 0.5, respectively.
In the last scenario, we consider 12 RRBs and thus 12 clus-

ters per AP, with each cluster supporting only one device.
In this context, the RSMAandOFDMA schemes align, which
means they both obtain same fairness index.We conclude that
the RSMA scheme allocates resources more fairly than the
OFDMA scheme in scenarios where there are fewer RRBs
than devices.

D. AVERAGE SUM RATE FOR DIFFERENT
BLOCKLENGTHS AND CLUSTERING ALGORITHMS
Fig. 5 plots our proposed solution’ average sum rate for
various blocklengths and clustering algorithms. We consider
that ϵ = 10−5 and nb ∈ {64, 128, 256, 512, 1024}. It is
evident from the figure that the average sum rate increases
as the blocklength value increases. For instance, the pro-
posed DCPM framework9 achieves an average sum rate of
48.86 Mbps and 70.4 Mbps when nb = 64 and nb =
1024, respectively. This observation is logically intuitive,
as larger blocklengths bring the average data rate closer to
the near-Shannon channel capacity. It is worth noting that
our proposed DCPM framework achieves a non-negligible
average rate in the short blocklength regime, which makes
it a compelling scheme for URLLC scenarios.

Fig. 5 also highlights that our proposed clustering
algorithm outperforms the benchmark clustering algorithms
for both short and long blocklengths. For example, when

9In Fig. 5, the legend entry ‘‘Clustering using SINR’’ implies with the
DCPM framework.

the blocklength is nb = 256, the proposed DCPM frame-
work achieves an average sum rate that is 1.29 Mbps higher
than the average sum rate of the DQN-based PA with clus-
tering using channel gain algorithm and 5.23 Mbps higher
than the average rate of the DQN-based PA with random
clustering algorithm. These outcomes are anticipated, given
that our proposed clustering algorithm (i.e., Algorithm 1)
is designed to cluster IIoT devices with the objective of
improving the SINR and, consequently, enhancing system
capacity. In contrast, Algorithm 4 assigns IIoT devices to
the most suitable RRBs without considering interference.
Hence, it does not necessarily maximize the SINR(s) and
thus reduces the system capacity. Both Algorithms 1 and 4
have the same computational complexity. Meanwhile, the
random clustering scheme can result in severe intra-cluster
interference and consequently achieve the lowest sum rate.
We therefore conclude that our proposed SINR-based device
clustering algorithm has clear merit over both the channel
gain-based and random device clustering schemes.

E. AVERAGE SUM RATE FOR DIFFERENT BLOCK ERROR
PROBABILITY AND INTERFERENCE MANAGEMENT
SCHEMES
Figs. 6(a)-(b) plot the average sum rate with respect to
the block error probability considering nb = 256 and
ϵ ∈ {10−1, 10−2, 10−3, 10−5, 10−8}. The average sum rate
increases as ϵ increases. This is intuitively expected since
Q−1(ϵ) → 0 as ϵ → 1 in (16), and consequently, the
device’s average data rate approaches Shannon capacity as
the tolerable block error probability increases.

In Fig. 6(a), we also compare the average sum rate
of the proposed DCPM framework with that of different
interference management schemes without considering any
HWI-induced distortions. Fig. 6(a) clearly depicts that the
proposed DCPM framework outperforms both the DCPM-
TIN and DCPM-ImpSIC schemes. This observation can be
explained by the following arguments. First, for the imperfect
SIC scheme with θc = 10−4, the SINRs of the private streams
decrease in RSMA (12) due to uncancelled interference from
the common message. This leads to a reduction in the aver-
age sum rate of the DCPM-ImpSIC scheme. Meanwhile,
no interference cancellation is considered in the TIN scheme
for decoding the devices’ messages, and consequently, the
scheme usually exhibits less capacity than RSMA. Hence,
the proposed DCPM framework also outperforms the DCPM-
TIN scheme. For instance, Fig. 6(a) depicts that at ϵ = 10−3,
the DCPM framework achieves an average sum rate that is
2.93 Mbps higher than that of the DCPM-ImpSIC scheme
and 11.9 Mbps higher than that of the DCPM-TIN scheme.
In Fig. 6(b), we compare the average sum rate of the

proposed DCPM framework with that of different inter-
ference management schemes while taking into account
the impact of HWI-induced distortions. It is worth noting
that HWI-induced distortions have a detrimental effect on
the performance of all schemes. For example, when HWI-
induced distortions are considered, the average sum rate
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FIGURE 6. Average sum rate for different block error probability
and interference management schemes.

of the DCPM, DCPM-ImpSIC, and DCPM-TIN schemes
decreases approximately 2 to 6 Mbps, 2 to 4 Mbps, and
3 to 4 Mbps, respectively. Despite the reduction in capacity,
our proposed DCPM framework also consistently outper-
forms both the DCPM-TIN and DCPM-ImpSIC schemes
in the presence of HWI-induced distortions. Overall, our
proposed DCPM framework is better able to manage interfer-
ence than both the DCPM-TIN and DCPM-ImpSIC schemes
are.

F. AVERAGE SUM RATE FOR DIFFERENT TOTAL POWER
VALUES PER AP AND POWER MANAGEMENT SCHEMES
Fig. 7 compares the average sum rate of the proposed
DCPM scheme with that of three benchmark schemes,
namely WMMSE, RP, and MaxP, for an IIoT network with

FIGURE 7. Average sum rate for different total power values per
AP and power management schemes.

nb = 256 and ϵ = 10−5. It is evident from Fig. 7 that the
average sum rates of all the PA schemes gradually increase as
the total power available at each AP increases. For instance,
when the total power Pt = 20 dBm, the DCPM scheme
achieves an average sum rate of 57.9 Mbps. However, when
the total power is increased to Pt = 42 dBm, the DCPM
algorithm’s average sum rate increases to 63.44 Mbps.
Fig. 7 shows that our proposed DCPM algorithm achieves

a higher average sum rate than the state-of-the-art transmit
PA schemes for both small and large transmit power limits.
For instance, when Pt = 30 dBm, the DCPM scheme’s
average sum rate exceeds that of the WWMSE, RP, and
MaxP schemes by 5.46 Mbps, 25.61 Mbps, and 52.22 Mbps,
respectively. We emphasize that the WMMSE scheme (i)
is more time-consuming/computationally complex due to
iterative optimization, especially in the context of large-
scale networks, (ii) is primarily optimized for interference
channels in the infinite blocklength regime and (iii) does
not take into consideration any HWI-induced signal distor-
tions. Due to these limitations, it not only is sub-optimal
for interference channels in FBL-coded IIoT networks but
also suffers from high computational and implementation
complexity. Meanwhile, the RP scheme does not guaran-
tee any performance gain over fading channels, and the
MaxP scheme generates severe intra-cell interference in the
network. In contrast to these PA schemes, the proposed
DCPM algorithm can learn and adapt to dynamic wireless
channel conditions. When the devices’ wireless channel con-
ditions vary over time, the optimal PA strategy also changes.
The DQN-based approach is able to effectively solve this
problem by learning to adapt the PA strategy based on
past experiences. Furthermore, it can choose suitable power
levels to jointly mitigate interference and HWI-induced sig-
nal distortions. In essence, the proposed DCPM approach’s
resilience to intra-cell interference and HWI-induced signal
distortions gives it clear merit over the existing transmit PA
methods.
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FIGURE 8. Average sum rate for different numbers of IIoT
devices and numbers of training episodes.

G. CONVERGENCE AND SCALABILITY OF THE DCPM
ALGORITHM
1) CONVERGENCE OF THE DCPM
Fig. 8 plots the DCPM algorithm’s average sum rate with
respect to the number of training episodes considered in
the PA scheme for different numbers of IIoT devices in the
network. Fig. 8 shows that the DCPM algorithm converges to
a stable system capacity in approximately 200 episodes for
the device quantities considered. As a result, its convergence
is guaranteed. Fig. 8 also shows that the average sum rate
increases as the number of devices increases. This observa-
tion is expected since each AP’s average rate (which is given
by (18)) is equal to the sum of the rates of all the devices
in its associated clusters. However, intra-cluster interference
also increases as the number of devices per cluster increases.
We emphasize that the proposed DCPM algorithm efficiently
conducts device clustering and PA, and thereby mitigates
intra-cluster interference and achieves multi-user capacity
gain. Note that we consider N = 4 and kD = 3 for each AP,
and consequently, each AP can accommodate a maximum of
12 devices. As a result, the system can support a total of 48
IoT devices at any given time. The DCPM algorithm selects
the top 12 devices per AP that have the highest SINRs when
there are 20 IIoT devices per AP. Hence, the DCPM scheme
achieves a nearly identical system capacity in the scenarios
with 48 and 80 devices. For instance, its average sum rate is
62.07 Mbps and 63.93 Mbps for the scenarios with 48 and 80
IIoT devices, respectively.

2) RUN TIME DURATION OF THE TRAINED DCPM
ALGORITHM
In our proposed DCPM framework, the DQN model is
saved after training for 1000 episodes, and the subsequent
evaluations are conducted by applying the trained model in
Algorithm 3 across various network configurations. Note that
this algorithm runs in parallel in a distributed manner at each
AP.

TABLE 5. Required time versus different numbers of IIoT
devices.

FIGURE 9. Average sum rate of DCPM and other interference
management schemes for different numbers of IIoT devices.

Table 5 shows the average amount of time required to
obtain the optimal decision variables (i.e., device clustering
and transmit PA) for a single AP and a single TS. We observe
that the DCPM framework’s execution time increases with
the number of devices. This observation is logically intuitive,
as the computational complexity of Algorithm 3 increases
(quadratically) with the number of devices. For instance, the
DCPM framework’s execution time for 4 and 20 IIoT devices
per AP is 16 ms and 150 ms, respectively. Note that this
duration includes the time it takes to obtain all the required
information (e.g., instantaneous CSI and device positions),
compute the SINRs, cluster all the IIoT devices, and apply
PA strategy. We note that all the evaluations presented in
this section were conducted on a personal machine. The
run time duration of the trained DCPM algorithm could be
further reduced by using hardware with powerful computa-
tional capabilities, such as graphic processor units (GPUs)
and cloud computing.

3) SCALABILITY OF THE DCPM ALGORITHM
To assess the scalability of our proposed solution, we con-
ducted simulations using the DCPM algorithm and bench-
mark schemes with different numbers of IIoT devices. Fig. 9
plots the average sum rate of different benchmark schemes
with respect to the number of IoT devices while taking into
account the impact of HWI-induced distortions. It is evi-
dent that our proposed algorithm outperforms the benchmark
schemes in terms of average sum rate for all the device counts
considered. For example, when the number of devices is set
to 80, the proposed algorithm achieves an average sum rate
that exceeds that of the DCPM-TINwith HWI, RP, andMaxP
schemes by 13.99 Mbps, 29.8 Mbps, and 56.4 Mbps, respec-
tively. Thus, the proposed DCPM algorithm is scalable and
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FIGURE 10. Average sum rate for different numbers of IIoT
devices and different SIC capabilities.

has a clear advantage over the benchmark schemes when it
comes tomitigating interference in large-scale IIoT networks.

4) IMPACT OF SIC ON THE DCPM FRAMEWORK’S
PERFORMANCE
Fig. 10 plots the DCPM algorithm’s average sum rate with
imperfect SIC and HWI-induced signal distortions with
respect to the total number of IIoT devices considered.

It is expected that the DCPM algorithm’s average sum rate
would decrease as the SIC error coefficient θc increases. This
is because as the SIC error coefficient θc increases, the resid-
ual interference from the common message also increases
during private message decoding at the devices. However,
we observe that the imperfect SIC does not significantly
deteriorate the DCPM algorithm’s performance. For instance,
if 80 IIoT devices are considered, the DCPM-ImpSIC with
HWI scheme’s average sum rate is 58.98 Mbps, 59.82 Mbps,
and 61.18 Mbps when θc is set to 10−2, 10−3, and 10−4,
respectively. Furthermore, even when the DCPM algorithm
has imperfect SIC, its average sum rate increases as the
number of IIoT devices increases. Based on these observa-
tions, we can conclude that our proposed DCPM algorithm is
robust to different SIC capabilities, which makes it a practical
solution for RSMA-based IIoT networks.

5) IMPACT OF THE NUMBER OF TRAINING EPISODES
ON THE DCPM FRAMEWORK’S PERFORMANCE
In this section, we investigate how varying the number of
training episodes affects the DCPM framework’s perfor-
mance. We consider Z = {20, 50, 200, 1000, 5000} training
episodes. After each specified number of episodes, the DQN
model is saved and then tested in our environment. Fig. 11
illustrates the DCPM algorithm’s average sum rate corre-
sponding to the different numbers of training episodes. The
results clearly show that increasing the number of episodes
improves the proposed scheme’s performance. For instance,
when Z = 20 and Z = 100, the DCPM framework

FIGURE 11. Average sum rate for different numbers of training episodes.

achieves an average sum rate of 56.2 Mbps and 59.62 Mbps,
respectively. However, beyond 1000 episodes, the perfor-
mance gains plateau and the DCPM algorithm’s performance
changes very little. Therefore, based on these observations,
we limit our training episodes to Z = 1000 to balance train-
ing efficiency and performance improvement. This decision
ensures that we achieve efficient performance without unnec-
essary computational overhead from additional episodes that
provide diminishing returns.

H. COMPARISON OF DCPM USING THE SEQUENTIAL
TECHNIQUE AND DCPM USING ALTERNATING
OPTIMIZATION
In this section, we compare the performance of the proposed
sequential technique and the alternating optimization (AO)
method to evaluate their performance gap. AO is renowned
for iteratively refining solutions by optimizing different sets
of variables having the potential to improve performance.
In the AO approach, the device clusters are updated at each
iteration based on the transmit powers obtained in the pre-
vious iteration. Afterward, the SINRs (with HWI-induced
distortions) are estimated for the newly formed device clus-
ters. Finally, the PA is updated based on the new SINR values.
These three steps are iteratively repeated 1000 times for each
channel fading state. After each iteration, the solutions (i.e.,
device clusters and PA) and sum rates obtained are saved.
Once all the iterations have been completed, the best sum rate
and its corresponding cluster and PA are selected. As can be
seen in Table 6, the DCPM using the AO scheme achieves
a higher average sum rate than our proposed scheme for
the different values of Pmax considered. For instance, when
Pmax = 20 dBm, the DCPM using the sequential technique
scheme achieves an average sum rate of 45.51Mbps, whereas
the DCPM using AO scheme achieves an average sum rate
of 83.48 Mbps. However, AO requires significantly more
time to achieve its final solution. More specifically, the AO
approach took approximately 1000 times longer than the
sequential method did to obtain its average sum rates reported
in Table 6. Note that sequential optimization takes around
62ms when there are 12 devices per AP. For the same number
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TABLE 6. Average sum rate for different values of Pmax .

FIGURE 12. Average sum rate for different values of Pmax .

of devices, the AO approach takes around 60.54 s. Clearly,
this latter approach is not practically feasible for FBL-coded
IIoT networks, which require fast computation for latency-
sensitive control operations. Therefore, despite its improved
sum rate, the AO approach lacks scalability, which makes it
impractical for large-scale IIoT networks. Furthermore, it is
clear from our simulation results that the gap between the
approaches’ performance increases as Pmax increases. Thus,
our solution is particularly suitable for scenarios with low
Pmax values.

I. PERFORMANCE EVALUATION OF THE PROPOSED
ALGORITHM IN UNFAMILIAR HWI CONDITIONS
In this section, we evaluate the DCPM algorithm’s perfor-
mance in the presence of another HWI model outlined in the
literature [45]. To this end, we consider the following two
scenarios.

• DCPMModel 1: This model was trained using the HWI
model considered in this study.

• DCPMModel 2: This model was trained using the non-
linear distortion model outlined in [45].

After the training phase, both models were saved and subse-
quently tested in an environment where only the non-linear
distortion model outlined in [45] was present. The aim of this
analysis was to demonstrate that even when the DCPMmodel
has been trained in a different environment (with alternate
HWI models), it does not perform significantly worse than
models that have been trained specifically for the testing
environment in question. For instance, whenPmax = 10 dBm,
DCPMModel 1 and DCPMModel 2 achieve an average sum
rate of 11.53 Mbps and 11.78 Mbps, respectively. Fig. 12
underscores that the proposed scheme is more adaptable than
various HWI models considered in the literature. Based on

our findings, we conclude that our proposed algorithm is
generic in nature since it learns to achieve efficient resource
allocation while interacting with the system. Therefore, it can
effectively work with unfamiliar HWI models.

VII. CONCLUSION
In this paper, we proposed a resource optimization framework
to manage co-channel interference and maximize system
capacity in a downlink RSMA-enabled FBL-coded IIoT
network with dynamic channel variation and HWI-induced
signal distortions. The proposed resource optimization prob-
lem was proven to be NP-hard, and a distributed clustering
and power management (DCPM) algorithm was proposed to
address its computational intractability. The proposed DCPM
algorithm first divides the IIoT devices associated with each
AP into multiple non-overlapping RSMA clusters to enhance
the clustered devices’ SINRs. It then employs a trained DQN
(obtained via multi-agent RL) in each cluster to allocate the
AP’s transmit power to different devices in the presence of
realistic impairments (e.g., co-channel interference, HWI-
induced distortions, and FBL). The proposed DCPM scheme
does not require iterative optimization or instantaneous infor-
mation about signal distortions for transmit PA. Extensive
simulations confirm the DCPM algorithm can effectively
maximize the capacity of the FBL-coded IIoT network. The
simulation results confirm that the DCPM algorithm: (i)
is able to adapt to changes in channel condition, block-
length, block error probability, and IIoT device count; (ii) is
more resilient to co-channel interference and HWI-induced
signal distortions than existing PA and interference manage-
ment schemes; and (iii) converges and can be scaled up for
large-scale IIoT networks without a significant increase in
computation time.

APPENDIX
The completion of the proof for Proposition 1 involves reduc-
ing the optimal coalition structure (OCS) problem to P0.
To this end, we first describe the OCS problem as follows.
Let A denote a set of K distinct agents, which are denoted as
A = {a1, · · · , aK }. A coalition structure (CS) is defined as
the partitioning of agents into disjoint coalitions, with each
agent belonging to exactly one coalition. Given a CS denoted
as CS and value vs ≥ 0 assigned to each coalition, where s ∈
CS, the total value of CS is expressed asV (CS) =

∑
S∈CS vSn .

The objective of the OCS problem is to find the optimal CS∗,
where CS∗ = argmaxCS∈U V (CS), with U representing the
universal set of all possible CSs. In other words, the OCS
problem aims to find the CS with the highest value.

To reduce the OCS problem to an instance of P0, we make
the initial assumption that the transmit PA of all the APs
in P0 is known. In this scenario, P0 becomes a device-to-
cluster association problem. Each device is considered an
agent in set A. Thus, the set of devices associated with a
cluster forms a coalition, and these coalitions are disjoint
since a device can be associated with only one cluster. Each
AP in the IIoT network has a total of N clusters, and a
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CS consists of at most N disjoint coalitions, which can be
expressed as CS = {S1, S2, · · · , SN }, where Sn represents
the set of devices associated with the n-th cluster. The value
of coalition Sn is defined as vSn = R(m)Cn , with R(m)Cn given
by (17). Consequently, the total value of CS is determined
as V (CS) =

∑
Sn∈CS vSn =

∑N
n=1 R

(m)
Cn .

With this reduction, an optimal solution to P0 determines
the optimal set of device clusters (or optimal CS) that has
the maximum system capacity (or largest CS value). Clearly,
an optimal solution to P0 corresponds to an optimal solution
to the OCS problem. Stated differently, the ability to opti-
mally solve P0 in polynomial time implies it is possible to
solve the OCS problem optimally in polynomial time. As the
OCS problem is known to be NP-hard [46, Proposition 2],
it follows that P0 is also NP-hard. □
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