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Abstract
Echocardiography is one themost commonly used imagingmodalities for the diagnosis of congenital
heart disease. Echocardiographic image analysis is crucial to obtaining accurate cardiac anatomy
information. Semantic segmentationmodels can be used to precisely delimit the borders of the left
ventricle, and allow an accurate and automatic identification of the region of interest, which can be
extremely useful for cardiologists. In the field of computer vision, convolutional neural network
(CNN) architectures remain dominant. ExistingCNNapproaches have proved highly efficient for the
segmentation of variousmedical images over the past decade.However, these solutions usually
struggle to capture long-range dependencies, especially when it comes to imageswith objects of
different scales and complex structures. In this study, we present an efficientmethod for semantic
segmentation of echocardiographic images that overcomes these challenges by leveraging the self-
attentionmechanismof the Transformer architecture. The proposed solution extracts long-range
dependencies and efficiently processes objects at different scales, improving performance in a variety
of tasks.We introduce ShiftedWindows Transformermodels (Swin Transformers), which encode
both the content of anatomical structures and the relationship between them.Our solution combines
the Swin Transformer andU-Net architectures, producing aU-shaped variant. The validation of the
proposedmethod is performedwith the EchoNet-Dynamic dataset used to train ourmodel. The
results show an accuracy of 0.97, aDice coefficient of 0.87, and an Intersection over union (IoU) of
0.78. Swin Transformermodels are promising for semantically segmenting echocardiographic images
andmay help assist cardiologists in automatically analyzing andmeasuring complex echocardio-
graphic images.

1. Introduction

Congenital Heart Disease (CHD) is the most common
type of birth defect among humans, occurring in 0.5-
0.8% of all live births, and affecting 1.5 million
children worldwide [1, 2]. CHD prevalence is esti-
mated to be 8 cases per 10,000 live births in the
population. A major challenge when diagnosing a
complexCHD is visualizing anatomical structures.

Echocardiography is an imaging method generally
used to acquire anatomical data from the heart. It is a
very simple technology used by cardiologists to visua-
lize the heartʼs 4 chambers. It provides a representa-
tion of the heartʼs movements, producing images of

the heartʼs valves and chambers, without the need for
radiation. It allows the cardiologist to visualize the
heart and assess its contraction and relaxation, as well
as the valve function. The type of echocardiography
the patient undergoes may vary as a function of the
information needed by the clinician. The left ven-
tricular volume and ejection fraction are two essential
volumetric analyses that provide a detailed under-
standing of cardiac contractility, which leads to better
cardiac function diagnosis.

Echocardiographic image segmentation can play a
significant role in the automatic analysis and diagnosis
of cardiac function. Precise segmentation of anatomi-
cal structures in medical images is an essential task for
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the clinical treatment of certain cardiac diseases. Some
cardiac parameters such as the volumes of end systolic
and end diastolic, ejection fraction and myocardium
mass are good indicators of cardiac health, represent-
ing reliable diagnostic value. Clinicians can benefit
from the advantages of segmentation to calculate these
clinical measurements which are essential for any sur-
gical intervention and treatment follow-up. Recent
studies have shown segmentation to be essential and
useful for extracting anatomical structures, facilitating
the study of medical phenomena and the discovery of
new treatments. Inmost clinical settings, the cardiolo-
gist or a trained operator still performs the segmenta-
tion step manually, which is laborious and time-
consuming, as well as being subject to inter- and
intra-observer variability. So automatic segmentation
would help physicians in their decisionmaking.

Some research efforts have focused on deep learn-
ing to study left ventricular segmentation and to calcu-
late clinical measures for heart disease diagnosis. In
particular, the Multi-attention Efficient Feature
Fusion Network has been used for automatic segmen-
tation in echocardiography. It incorporates a deep
supervision mechanism and spatial pyramid feature
fusion to improve feature extraction [3]. Similarly, the
calculation of the left ventricular volume (LVEF)
represents an effective measure for assessing cardiac
health in children, with the deep learning model being
adapted to pediatric data. In this context, physiological
variations in children are taken into account, and con-
sequently, the model provides an acceptable clinical
error and supports the independent assessment of
LVEF [4]. Similarly, various projects have been pro-
posed using the U-Net model and its variants, and
have achieved good results. The DPS-Net algorithm,
based on the U-Net architecture, has shown effective-
ness in left ventricle segmentation and ejection frac-
tion measurement across different heart disease
phenotypes [5]. However, thesemethods often require
a large number of ground-truth labels, which is time-
consuming. To address this, researchers proposed a
method that combinesmulti-level andmulti-type self-
generated knowledge, using a superpixel approach
and various pretext tasks [6].

Convolutional neural network (CNN) models
have been the most commonly used models in many
applications [7]. In the field of computer vision, CNN
architectures remain dominant. They have become
the cornerstone of a lot of tasks due to their ability to
learn themost important features fromour input data.
Existing CNN approaches have even proved highly
efficient for the segmentation of various medical ima-
ges over the past decade. Recently, Vision Transfor-
mers (ViT) have seen their interest grow significantly
in the field of computer vision [8]. The reliance on
CNN is not even necessary and a pure transformer
applied directly to sequences of image patches can per-
form very well on images. CNN usually struggle to
capture long-range dependencies, especially when it

comes to images with objects of different scales and
complex structures.

The basic ViT model takes the input image and
divides it into several fixed size patches, which are
inputted into a neural network. This task is straight-
forward for small images, but can be computationally
intensive for larger ones, such asmedical images.With
the latter, the basic ViTmight fail to capture the spatial
information between patches, whichmay have a nega-
tive impact on its ability to accurately perform seg-
mentation. To tackle this limitation, the Shifted
Windows (Swin) is proposed to better handle the seg-
mentation of larger images while maintaining a high
accuracy. Its hierarchical architecture, which is based
on the Swin concept [9], processes high-resolution
images by analyzing them in a series of stages at differ-
ent levels of abstraction. The Swin Transformerʼs
architecture is founded on the ShiftedWindow Atten-
tion (SWA) concept. It groups neighboring patches
into a set of overlapping windows. In this context, the
algorithm does not apply attention mechanism in a
standard fashion; rather, the SWA allows each patch to
focusmore on patches that are spatially close to it. Pat-
ches that resemble each other or are spatially close to
one another will have stronger relationships thanks to
SWA. These stronger relationships are then used in the
U-Net part to perform semantic segmentation.

The SWA of the Swin Transformer thus ensures a
better detection of local relationships between pat-
ches, which is beneficial for the image segmentation
task. The features extracted by the Swin Transformer
can then be used by the U-Net part of the Swin U-Net
to perform semantic segmentation. This method deli-
vers excellent results in complex image segmentation
tasks. The goal of this study is to evaluate a SwinU-Net
architecture for the segmentation of echocardio-
graphic images. The study is organized as follows: first,
the methodology and the datasets used to validate the
proposed approach are described, followed by a pre-
sentation of the evaluation of the model. Finally, a dis-
cussion and conclusion is provided.

2.Methodology

2.1.Database
Two public datasets were used to evaluate the perfor-
mance of our proposed approach. The first was the
Echonet Dynamic dataset [10], a database designed
specifically for the interpretation and analysis of
echocardiographic images. Its information allows to
visualize the structure of the human heart, while
evaluating its function. It contains around 10,030
apical four-chamber echocardiography videos. This
dataset was collected at Stanford University Hospital
between 2016 and 2018 from medical examinations
performed on patients. Each video features a four-
chamber apical view of the heart, as shown infigure 1.

2

Biomed. Phys. Eng. Express 10 (2024) 065017 SNemri and LDuong



For each video sequence, a wide range of informa-
tion is available, which is useful for diagnostics and
follow-up of different cardiac diseases. For example :

i Number of frames: This indicates the total num-
ber of frames in each video.

ii Split: Assigning video to Train or Valid or Test
datasets

iii Frame: Frame number on which left ventricular
segmentation tracingwas performed

Next, we used the EchoNet-Pediatric dataset [11].
It consists of a set of echocardiogram videos labeled by
human experts such as to give us idea of the assess-
ment of left ventricular function. It was obtained at
Lucile Packard Childrenʼs Hospital Stanford in the
context of routine clinical care, from2014 to 2021, and
from children aged between 0 and 18 years of age, and
of different sizes. It contains two-dimensional grays-
cale clips of A4C (apical four-chamber) and PSAX

(parasternal short-axis) views. For our case, however,
we focus only on the four-chamber view in order to
perform a comparative analysis with the results
obtained with the EchoNet-Dynamic dataset. This
dataset contains both anatomically normal hearts with
normal ejection fraction and patients. Figure 2 pro-
vides a sample fromour EchoNet-Pediatric dataset.

For both databases, the image sequence consists of
a series of 112 by 112 pixel grayscale images. In order
to delimit the boundary of the left ventricular cavity
wall, it was essential to generate the ground truth
masks for our images. To this end, we used the coordi-
nates X1, Y1, X2 and Y2 of the EchoNet-Dynamic
dataset.

These coordinates are connecting the most distant
points on the ventricle surface to create our line seg-
ment, whereas for EchoNet-Pediatric, we used the X
and Y columns to generate the corresponding masks.
Overlaying the original image with our ground truth
mask allows to see the visual results, as illustrated
in figures 3 and 4. We have further displayed the

Figure 1. Sample of our database (EchoNet-Dynamic).

Figure 2. Sample of our database (EchoNet-Pediatric).
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contours of the segmentation mask to better visualize
the results. This step is intended to validate that the
mask we generated corresponds perfectly to the origi-
nal image and that the predicted segmentation after
training also corresponds to the original images.

2.2. Preprocessing
For each of our databases, there is a total of 15,000
images for the Echonet Dynamic dataset and 6415 for
the Echonet Pediatrics dataset. For each of these, we
opted to split the data as follows : 70% for training our
model, 20% for validation and 10% for testing. All our
data loaders were resized to match the input of our
Swin Unet model. Our dataʼs dimensions were
(256,256,3), while the size of the masks was set fixed at
(256,256,1). We then proceeded to normalize our
entire database. This step is crucial for any deep
learning problem. In this case, all our images were on a
similar scale, standing between 0 and 1.Normalization
was necessary to allow the neural networks to more

easily ensure that the features were on a similar scale.
This would guarantee the stabilization of the descent
gradient and allow the optimization algorithm to
converge much faster and more reliably, avoiding
oscillation and slow convergence due to non-normal-
ized or differently scaled features. We used the Min-
max normalization (feature scaling) method, which
performs a linear transformation on the original data.
This is a common technique used to transform data
into a range generally between 0 and 1. This transfor-
mation proceeds through the following formula:

=
-
-

NormalizedImage

ResizedImage min ResizedImage

max ResizedImage min ResizedImage
1

( )
( ( ))

( )

Following this operation, we calculated the mini-
mum value of our resized image, as well as its max-
imum value. The result was then subtracted and
divided by the data range, giving values between 0
and 1.

Figure 3.Masked images of EchoNet-Dynamic dataset.

4

Biomed. Phys. Eng. Express 10 (2024) 065017 SNemri and LDuong



Our images and masks were then transformed to a
common range, simplifying the learning process for
the models to be trained. This ensured that features
with high values would not dominate during the train-
ing process, thus improving themodel stability.

2.3. SwinU-Net architecture
A new deep learning model concept is proposed for
the segmentation of echocardiographic images,
through the Swin U-Net algorithm, which combines
the architecture of a CNN encoder-decoder with the
structure of a transformer [12]. This U-shaped variant
combines the advantages of the Swin Transformer and
of U-Net architectures for semantic segmentation
tasks. It allows to capture long-term dependencies
using the Swin Transformerʼs self-attention mech-
anism, while preserving the high-resolution feature
representation offered byU-Net.

The original image is initially divided into a set of
patches, each of which is processed independently in
the transform blocks. Thanks to the auto-attention
mechanism, these blocks capture the local relationships

within each patch. First, the Swin Transformer encoder
processes the input image. Its role is to capture global
dependencies and extract high-level features and trans-
mit them to the decoder. Once the decoder has extrac-
ted the spatial details, it generates thefinal segmentation
mask.The encoder processes the input image in a series
of convolution and pooling operations, progressively
reducing the spatial resolution. This process allows the
model to capture patterns and more complex semantic
information, as well as to extract abstract features. After
training, we obtain a rich representation of image fea-
tures. These feature maps have a much smaller spatial
dimension and are transmitted to the decoder part of
SwinU-Net,where spatial detail is restored.

These low-resolution feature maps, which have
been generated at various stages, are nowmerged toge-
ther. This process combines information from differ-
ent scales, thus improving the modelʼs ability to
capture both global and local contexts. This fusion
enables Swin U-Netʼs architecture to efficiently cap-
ture both global contextual information and the finest

Figure 4.Masked images of EchoNet-Pediatric Dataset.
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details. This is known as the Patch Merging
Layer step.

Afterwards, Swin U-Net employs the U-Net struc-
tureʼs decoder, which performs upsampling opera-
tions. The aim is to increase the spatial resolution of the
feature maps received by the encoder. Also, the pre-
sence of the skip connections in our model is essential,
as they link the encoder to the corresponding decoder
layers. These connections are responsible for merging
the multi-scale features from the encoder with the
upsampled features. This action is necessary in order to
reduce the loss of spatial information caused by the
downsampling in the first part.With these connections,
the decoder can simultaneously combine high-level,
context-rich information from the encoder with fine,
spatially-detailed information from previous layers.

This allows the network to carry out more precise pre-
dictions and accurately capture complex details in the
output. Ultimately, we will be able to recover the finest
spatial details that have been lost.

Finally, we add the Patch Expanding Layer, which
will restore the resolution of the feature maps to the
input level. The Linear Projection Layer, for its part,
will produce segmentation predictions at the pixel
level. Figure 5 illustrates the architecture of the pro-
posed model, highlighting the key components and
flowof data through the network.

From figure 6, it can be seen that the Swin Transfor-
merblock is thebasicunit of a symmetricEncoder-Deco-
der architecture with skip connections, named Swin
U-Net. We note the presence of two consecutive Swin
Transformer blocks, each composed of a LayerNorm

Figure 5. SwinU-net architecture.

Figure 6. Swin transformer block.
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(LN) layer, a multi-headed self-attention module, a resi-
dual connection and a two-layer MLP with GELU non-
linearity. The two transformer blocks that follow imple-
ment themultiheadwindow-based self-attentionmodule
(W-MSA) and the multihead offset window-based self-
attentionmodule (SW-MSA), respectively.

= - +- -z z zW MSA LN 2l l l1 1ˆ ( ( )) ( )
= +z z zMLP LN 3l l l( ( ˆ )) ˆ ( )

= - ++z z zSW MSA LN 4l l l1ˆ ( ( )) ( )

= ++ + +z z zMLP LN 5l l l1 1 1( ( ˆ )) ˆ ( )

Given that zl̂ is the output of W-MSA and SW-MSA,
while zl is the result ofMLPmodule.

2.4. Implementation details
To define our architecture and make it suitable for the
segmentation task, we opted for a value of 1 for the
variable n-labels, since this is a binary segmentation and
ourmodel will predict a singlemask. Our patch size used
by Swin Transformers was set to (4, 4), meaning that the
input image would be divided into 4x4 patches for initial
processing. Prior to the start of our training, various loss
functions commonly used for segmentation tasks were
available, allowing to compile the model with an appro-
priate loss function. We chose Binary cross entropy,
which is commonly used for binary segmentation. In our
case, the goal was to delineate the left ventricle of the
human heart. This option is robust to imbalance, as the
background pixels far outnumber the foreground pixels.
BCE manages this imbalance reasonably well and pena-
lizes false positives and false negatives effectively, thus
promoting balanced segmentation. To be able to evaluate
the performance of our model at the end of the training,

we had to define commonmetrics for semantic segmen-
tation throughout the process.DiceCoefficient (DSC) or
F1 is the score most widely used to measure model
performance for the medical image segmentation task.
Our aimwas toobserve theoverlapbetween thepredicted
segmentation and the ground truth. In other words, we
can simplifyDSC to the following equation:

=
*

DiceCoefficient
Area of Overlap

Total Area

2
6( )

We also used the IoU function, also known as the
Jaccard index, which is another evaluation measure
commonly used in segmentation tasks:

=IoU
Area of Overlap

Total of Union
7( )

Wehave incorporated theHausdorff distance ana-
lysis in order to provide a more comprehensive assess-
ment of segmentation accuracy by quantifying the
maximum discrepancy between two sets of points. In
this case, the sets A and B are respectively the ground
truth and the predicted values.

⎧
⎨⎩

⎫
⎬⎭

=
Î Î Î Î

H A B d a b d a b, max sup inf , , sup inf ,

8
a A b B b B a A

( ) ( ) ( )

( )

3. Results

In figure 7, it can be seen that Swin U-Net has
produced a predicted mask that approximates the
ground truth segmentation mask. From a visual
standpoint, there is a good overlap between the results

Figure 7.Representation of the segmentation of the left ventricle with SwinU-Net(blue) and its ground truth (red).
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of our model and the images in the test database. This
points to a good delimitation of the left ventricular
border achieved by SwinU-Net.

During the training phase, IoU and the Dice coeffi-
cient were our basic metrics. Our index provides a per-
spective on the quality of segmentation predictions and
complements theDice coefficient as a valuablemetric for
monitoring the performance of our model. Figure 8
shows the results obtained by the scores at the end of the
training phase. A progressive decrease can be seen in the
loss function, leading to a reduction in the error between
predictions and actual values. Towards the end, we were
able to reach a value equal to 0.04.On the other hand, we
cannot settle for the loss function reduction alone, as it is
not sufficient to guarantee ahigh-performancemodel.

Figure 9 indicates that the IoU andDice coefficient
scores continue to increase progressively. This indi-
cates a potential overlap between the predicted and the
truemasks. Our SwinUnetmodel accurately segments
the left ventricle with a Dice coefficient of 0.88 and an
IoU score of 0.78.

We have repeated the same process for our second
dataset Echonet Pediatric in order to perform a com-
parative analysis with the results obtained with the
EchoNet-Dynamic dataset. Figure 10 illustrates the
results of segmentation of ourmodel SwinUnet which
indicates the effectiveness of our model in pediatric
echocardiography. The model achieved a Dice coeffi-
cient of 80.94% which proves a good overlap between
the prediction of our model and the ground truth
mask. Additionally for our metric Intersection over
unit (IoU), with a score approximately equal to 70%, it
further confirms the ability of our model to perform a
good segmentation of the left ventricle. These metrics
show a high level of agreement betweenmodel predic-
tions and ground truth annotations, demonstrating
the model’s ability to accurately delimit left ventricle
structure. As illustrated in figure 11, the model train-
ing process was also effective, as reflected in the low
loss value of 5%, showing that the model has learned
to efficiently segment pediatric echocardiographic
imageswhileminimizing errors.

Figure 8. Swin-Unet results (EchoNet-Dynamic).

Figure 9. Swin-Unet results (EchoNet-Dynamic).
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To best highlight the robustness of our model in
both adult and pediatric databases, we set up the two
summary tables below. Indeed, our aimwas to empha-
size that the combination of convolutional neural net-
works with Transformers can improve the results
obtained by a CNN in a segmentation task. This is illu-
strated in table 1, where we compare the evaluation
metrics results for the two models, U-Net and Swin
U-Net, at the end of their training on the Echonet-
Dynamic and EchoNet-Pediatric datasets.

4. Conclusion

This study presents a new Swin Transformer U-Net
model for the segmentation of echocardiographic
images. Swin UNet model has offered several benefits
over traditional models for left ventricle segmentation
while integrating transformers. Our model leverages
the advantages of both convolutional neural networks
(CNNs) and transformers, providing a robust frame-
work for accurate segmentation tasks, particularly in

Figure 10. Swin-Unet results (EchoNet-Pediatric).

Table 1.Comparison of SwinU-Net andU-Net results.

Performancemetrics

Dice coefficient IoU (%) Binary accuracy (%) Value error (%) Hausdorff distance

U-Net Echonet-Dynamic 91.66 84.63 98.45 2.09 2.15

Echonet Pediatric 87.35 76.04 97.75 5.58 3.18

SwinU-Net Echonet-Dynamic 88.57 78.93 97.51 4.04 2.89

Echonet Pediatric 80.94 68.03 97.09 5.18 3.27

Figure 11. Swin-Unet results (EchoNet-Pediatric).
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challenging cases with varied heart phenotypes. The
hierarchical design enables it to process images at
multiple scales, ensuring that fine details and broader
structural information are captured effectively. This
leads to a robust model that can generalize across
various types of echocardiographic images and it could
be applied in diverse clinical settings, potentially
improving the diagnostic accuracy and consistency of
left ventricle segmentation. Similarly, our Swin UNet
model shows good segmentation accuracy, particu-
larly due to its ability to capture long-range dependen-
cies and contextual information in echocardiographic
images. For instance, unlike other models, which rely
on traditional CNN architectures, Swin UNet inte-
grates transformer-based mechanisms, enhancing its
ability to model complex spatial relationships and
improving segmentation performance. This provides
a greater understanding and better management of the
variability of echocardiographic images.

A validation was done using the EchoNet and Ech-
oNet-Pediatric databases, and indicated a very good
performance. The automatic evaluation of echo-
cardiography is very important for diagnosis of con-
genital heart disease, and it may pave the way for the
automatic analysis of clinical parameters such as ejec-
tion fraction measurements. The segmentation task
remains important since it outlines how ejection frac-
tion estimations are generated. This task generates the
equivalent of the manual tracing for each frame
between systole and diastole, and might provide vali-
dation information about the whole echocardio-
graphic sequence, for each beat. Moreover, since
echocardiography allows to visualize the heart motion
in real time, it might also provide a better under-
standing of cardiovascular dynamics and allow the
development of more comprehensive models which
incorporate the complexities of congenital heart dis-
ease [13, 14]. Such information could be integrated
into a virtual simulator modeling complex congenital
heart diseases. Future work will involve segmentation
evaluation on complex anatomies of CHD pediatric
datasets. Furthermore, we will investigate our Swin-
Unet segmentation model on other imaging mod-
alities such as cardiac MRI or CT scans. This would
extend the applicability of the Swin Transformer
U-Net model across different imaging techniques for
the study of CHD.
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