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ABSTRACT The rapid expansion of Internet of Things (IoT) networks has paved the way for their
integration into mission-critical applications requiring secure and reliable monitoring, such as smart grid
utilities. However, these advanced power grids face significant challenges in maintaining reliable wireless
communication, particularly in hostile environments like high-voltage substations and power plants. These
environments are characterized by intense bursts of interference, known as impulsive noise with memory. To
address this problem, in this study, we introduce a two-process receiver design. The first process is a multi-
step receiver parameter estimation process. The second process is a novel memory-aware log-likelihood
ratio (LLR) calculation method designed to mitigate the effects of impulsive noise with memory using
the parameters estimated from the first process. This method is computationally efficient, which makes it
suitable for IoT devices with limited computational capabilities. Simulation results obtained show that the
proposed method achieves a bit error rate (BER) similar to the corresponding BERs of the best-performing
algorithms with perfect noise parameters. Furthermore, it outperforms the Viterbi algorithm amid imperfect
noise parameters. Notably, it method achieves these benchmarks while substantially improving execution
time.

INDEX TERMS Bursty impulsive noise, log-likelihood ratio, receiver design, machine learning, BCJR
algorithm, Viterbi algorithm.

I. INTRODUCTION

THE INTERNET of Things (IoT) networks have grown
rapidly during the past decade and started to be incorpo-

rated into several critical applications that require secure and
reliable monitoring. For instance, several power producers
are taking steps to modernize their grids by leveraging
IoT networks for power substation and transmission line
monitoring and control [1]. This approach not only enhances
the efficiency and reliability of the grid but also helps to
prevent potential blackouts and failures [1], [2], [3], [4]. Such
incidents can result in serious risks for modern societies such
as negative impacts on the economy, health and safety, etc.
By implementing IoT-based solutions, power producers can

mitigate these risks and ensure the safe and uninterrupted
delivery of electricity to consumers. This example, and many
others, are considered critical tasks without room for failure
and highlight the importance of establishing robust wireless
communications techniques for IoT devices.
These IoT-based solutions must consider radio frequency

(RF) interference and realistic noise behavior in the design-
ing process. In this vein, many noise level measurement
campaigns have concluded that the additive white Gaussian
noise (AWGN) assumption is far from reality in many envi-
ronments, such as around high-voltage equipment [1], [3],
[4], [5], [6], [7], [8], [9], [10], [11]. This type of equipment
is nearly everywhere, from home and indoor appliances
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TABLE 1. Summary of the LLR-based approaches for bursty impulsive noise mitigation in SC systems.

(like microwaves, ovens, and printers) to power substation
devices (such as circuit breakers and transformers). They are
characterized as emitting impulsive noise, which refers to
short and intense bursts of high-energy interference that can
occur in the RF spectrum [1], [9], [10], [11].
Impulsive noise can be present in indoor and outdoor

environments and will severely impact the performance of
wireless communication systems. For example, it will cause
errors in data transmission, disrupt signal quality, and lead
to poor connections [1], [2], [3], [4], [7], [12], [13]. In some
cases, impulsive noise can even cause permanent damage to
wireless communication equipment [14]. Therefore, ensuring
reliable wireless communication for IoT devices in the
presence of impulsive noise is a crucial challenge that
needs to be addressed, particularly for smart grids. In the
majority of impulsive noise mitigation studies, single-carrier
(SC) communication systems are preferred over orthogonal
frequency-division multiplexing (OFDM)-based ones in IoT
devices for two main reasons [2]. First, most IoT devices
operate in low signal-to-noise ratio (SNR) regions, and SC
modulation performs better than multicarrier modulation in
the presence of impulsive noise at low SNR [15]. Second, SC
modulation outperforms OFDM when impulses are frequent
or intense [16]. Therefore, SC modulation is a better choice
for reliable communication between IoT devices in impulsive
noise environments.

A. RELATED WORK
Numerous studies, including [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], have proposed various wireless
receivers to mitigate the impact of impulsive noise on wire-
less communication systems. However, they are limited by
their memoryless assumption, which assumes that all noise
samples are independent. The time correlation between noise
samples, also known as the memory effect, is a fundamental
characteristic that divides noise models into two categories:
memoryless models and models with memory. The latter

are also known as bursty impulsive noise models [2], [35].
Moreover, as the degree of correlation increases, mitigat-
ing the noise’s effect becomes increasingly challenging.
Several studies [1], [2], [3], [36] have highlighted that, like
the AWGN assumption, the memoryless impulsive noise
assumption is also far from reality, especially around electric
grid installations. Furthermore, the authors of [2] showed
that memoryless receivers perform poorly in scenarios where
impulsive noise has a memory.
To the best of our knowledge, systems with low-density

parity-check (LDPC) coding combined with memory-aware
log-likelihood ratio (LLR)-based decoding are the most
effective methods for mitigating bursty impulsive noise,
and they exhibit reliable bit error rate (BER) performance
in low SNR regions. The principle behind their improved
performance is based on three components:

1) An LDPC encoder that provides information redun-
dancy in case a symbol is lost after being impaired by
an impulse.

2) A memory-aware LLR calculation module that com-
putes the LLR of each symbol by utilizing a sequence
instead of the corresponding symbol to take advantage
of the time correlation between noise samples and
use it to improve performance. The amplitude of the
LLR characterizes the reliability of the bit. Higher
noise amplitudes correspond to lower LLR absolute
values [2].

3) An LDPC decoder that takes advantage of the LLR
values and the bit reliability information they provide
and decodes the bits accordingly.

The same principle is followed in numerous works, such
as [2], [30], [31], [32], and [34], where the memory-aware
LLR calculation is performed using an adapted version
of the maximum a posteriori (MAP) algorithm, which is
also known as the Bahl, Cocke, Jelinek, and Raviv (BCJR)
algorithm [37]. Table 1 summarizes the existing LLR-based
impulsive noise mitigation techniques in SC communication
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systems. Nevertheless, none of these mentioned techniques
are optimized for IoT devices in real-life scenarios for several
reasons:
• Firstly, memoryless receivers are unable to incorporate
noise memory, which is essential for optimal and near-
optimal BER performance [2], [35].

• Secondly, current memory-aware receivers are based on
the BCJR algorithm and the Viterbi algorithm, which
suffer from expensive time complexity because of their
recursive operations. Therefore, they are unsuitable for
IoT devices with low computational capabilities and
minimal battery consumption [2], [35], and [32].

• Finally, noise is non-stationary in real-life scenarios,
meaning that its distribution changes constantly due to
a variety of environmental factors, such as the voltage
of nearby electrical equipment and humidity levels [1].
Therefore, reliable noise parameter estimation methods
must be incorporated for impulsive noise with memory
to mitigate the effect of changing noise characteristics.

In light of considering these aspects, in [35], we proposed
a neural network framework called BCJR-mimicking neural
network (BNET) to approximate the output of the BCJR
algorithm. However, that study was limited to a simple two-
state Markov-Gaussian (TSMG) noise model that performed
poorly in more complex noise environments.

B. CONTRIBUTIONS
To overcome the limitations of the approaches mentioned
in Table 1, in this article, we consider a more practical
impulsive noise model with a larger number of states and
propose a robust and computationally efficient alternative to
the BCJR and Viterbi algorithms that works with any bursty
impulsive noise distribution. The paper’s contributions are
presented as follows:
1) We propose a novel memory-aware LLR calculation

method to mitigate the harmful effects of bursty
impulsive noise. It is based on noise state detection
using a dedicated neural network. Simulation results
demonstrate that the proposed method performs as well
as the BCJR and the Viterbi algorithms in terms of
BER when the noise parameters are perfectly known.
Moreover, it outperforms the Viterbi algorithm in
scenarios with bursty impulsive noise, where the noise
parameters are imperfect and its behavior is complex,
involving multiple noise states. This improvement
is due to the neural network’s ability to recognize
patterns.

2) We optimize the LLR calculation process to minimize
its time complexity. As a result, the proposed approach
is significantly faster than the BCJR algorithm. For
example, it can process a one-Mbit sequence 500 times
faster. This computational efficiency is crucial for
low-latency communication. We propose to optimize
the neural network by using a memory quantification
method to estimate the minimal number of neu-
rons required and applying Gaussian mixture models

TABLE 2. Notations used in the article.

(GMMs) to estimate the noise parameters. We then use
the GMMs’ predictions to train the neural network as
detailed in Section IV.

C. ORGANIZATION
The rest of the article is structured as follows: Section II
introduces the system model and provides an overview of
the noise model considered. In Section III, we delve into
the methods that can be used to calculate the LLR in the
presence of both memoryless and bursty impulsive noise.
Additionally, we present the proposed receiver architecture
in Section IV. In Section V, we discuss the computational
advantages of using the proposed LLR calculation method.
All the simulation results and interpretations are discussed in
Section VI. Finally, we conclude the article in Section VII.

D. NOTATIONS
See Table 2.
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FIGURE 1. Block diagram of the system model considered for impulsive noise
mitigation in an LDPC-coded M-PSK transmission scheme.

II. SYSTEM MODEL
The system model considered in this paper is represented in
Fig. 1. It consists of an M-ary phase shift keying (M-PSK)
modulated transmission that is LDPC-coded and affected by
Rayleigh fading and impulsive noise with memory. An S-
state Markov-Gaussian model is used to represent the noise.

A. SIGNAL MODEL
The signal received at each timestep k ∈ {1, . . . ,K} is
expressed as:

yk = hkxk + nk, (1)

where xk is the transmitted symbol, nk is the noise term, and
hk is the fading channel coefficient modeled as a zero-mean,
circularly symmetric complex Gaussian random variable with
variance σ 2

h . It is assumed that hk varies every Tc symbol.
During the rest of the study, yK and nK refer to the sequences
(y1, . . . , yK) and (n1, . . . , nK), respectively.

B. NOISE MODEL
The Markov-Gaussian noise model is a statistical repre-
sentation that captures the dependencies of noise samples
in a time series. Unlike white Gaussian noise, which is
characterized as being independent and identically distributed
(i.i.d.) across samples, Markov-Gaussian noise introduces a
state-dependent correlation structure governed by a hidden
Markov model (HMM). Therefore it can effectively replicate
the bursty impulsive noise’s behavior [2], [3], [27], [30],
[35], [36], [38]. In this system model, the noise term nk at
each discrete time index k is a Gaussian random variable
with state-dependent mean μs and variance σ 2

s . The subscript
s denotes the current state of the Markov process, which
can range from 1 to S, where S is the total number of
states in the Markov model. Each state s is associated with a
Gaussian distribution, which is denoted by N (μs, σs), with
mean μs and variance σ 2

s . The state transitions are governed
by a stochastic matrix T, where each element Tij represents
the probability of transitioning from state i to state j. To
generate the noise sequence nK, we first generate a state
sequence sK = (s1, .., sK) using the transition probabilities,
and then generate a noise sample nk from N (nk|μs, σs) for
each sk = s.

III. LLR CALCULATION
A. LLR CALCULATION FOR MEMORYLESS IMPULSIVE
NOISE
Assuming that we know hk, the LLR value of ci,k (the
ith encoded bit carried by the kth symbol) is calculated as
follows:

L(i)
k = log

{
p
(
ci,k = 1 | yk, hk

)
p
(
ci,k = 0 | yk, hk

)
}

(2)

= log

{∑
x∈χ(1) p(xk = x | yk, hk)∑
x∈χ(0) p(xk = x | yk, hk)

}
(3)

= log

{∑
x∈χ(1) fn(yk − x · hk)∑
x∈χ(0) fn(yk − x · hk)

}
, (4)

where fn is the noise PDF, and χ(c) = χ(ci,k = c) is the
set of all symbol hypotheses x that would result in the i-th
encoded bit equaling c ∈ {0, 1}.

To obtain a closed-form expression of L(i)
k , we need to find

the closed-form expression of the noise PDF fn. However,
this is optimal only in some cases where the noise samples
are assumed to be i.i.d. This assumption holds for the AWGN
model and some memoryless impulsive noise models, such
as Middleton Class A [18], [25], [26], and the memoryless
Gaussian mixture (GM) model. For instance, the PDF of
GM-modeled noise composed of S Gaussian distributions
can be computed as:

fGM(n) =
S∑
s=1

πs ·N (n | μs, σs), (5)

where
S∑
s=1

πs = 1 and πs ≥ 0 ∀s ∈ {1, . . . , S}.

It is worth mentioning that under the memoryless assump-
tion, the Markov-Gaussian models are reduced to a GM
model with πs equals the steady-state probability of the state
s (also called the stationary probability). Therefore, in this
study, the memoryless LLR receiver refers to the following
LLR calculation:

L(i)
GM,k = log

{∑
x∈χ(1)

∑
s πs ·N (yk − x · hk | μs, σs)∑

x∈χ(0)

∑
s πs ·N (yk − x · hk | μs, σs)

}
. (6)

To summarize, relying on the closed-form PDF is known
to achieve optimal BER performance when the noise is
assumed to be memoryless, and its statistics are known.
However, the authors of [2] demonstrate that assuming the
same when the noise has a persistent memory leads to poor
BER performance.

B. LLR CALCULATION FOR IMPULSIVE NOISE WITH
MEMORY
To achieve optimal BER performance when impulsive noise
exhibits memory, it is crucial to employ detection criteria
that can handle the temporal dependencies within the noise,
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FIGURE 2. The receiver architecture proposed for bursty impulsive noise mitigation.

such as the MAP detection criterion used in the BCJR
algorithm. In [2], the authors highlighted the optimality of the
BCJR algorithm in tracking noise variations and calculating
accurate LLR values. As outlined in [2], the BCJR algorithm
calculates the a posteriori probabilities p(xk = x | yk, hk) ∀
x. Then, we get the LLRs using (3).

Conversely, the Viterbi algorithm, commonly used for its
computational efficiency, estimates the noise state sequence
(ŝ1, ŝ2, . . . , ŝK) using the maximum likelihood estimation
through a similar trellis representation [28]. This estimated
sequence is then used to compute the LLRs, conditioned on
ŝk, as follows:

L(i)
Viterbi,k

(
ŝk

) = log

{∑
x∈χ(1) p

(
xk = x | yk, hk, ŝk

)
∑

x∈χ(0) p
(
xk = x | yk, hk, ŝk

)
}

(7)

= log

{∑
x∈χ(1) N

(
yk − x · hk | μŝk , σŝk

)
∑

x∈χ(0) N
(
yk − x · hk | μŝk , σŝk

)
}

. (8)

Although both the Viterbi and BCJR algorithms are
integral to systems’ ability to combat impulsive noise
with memory, the Viterbi algorithm is frequently favored
for its computational efficiency while the BCJR is a
preferred option for its high precision. In addition, the
BNET framework [35] is designed to approximate the BCJR
algorithm’s output. However, BNET works only in slow-
fading environments and demonstrates poor performance in
fast-fading scenarios and complex noise models.

C. LLR CALCULATION UNDER THE GENIE CONDITION:
A LOWER BER BOUND
The genie condition assumes perfect knowledge of the noise
state information (NSI) at each timestep k. In other words,
we have precise information about the Gaussian distribution
that the noise sample nk belongs to. Therefore, the genie
condition provides the LLRs that achieve the lower bound
of the BER for any Markov-Gaussian noise model. Given
the exact noise state sk, the LLR is expressed as:

L(i)
genie,k(sk) = log

{∑
x∈χ(1) N

(
yk − x · hk | μsk , σsk

)
∑

x∈χ(0) N
(
yk − x · hk | μsk , σsk

)
}

. (9)

IV. THE PROPOSED LLR-BASED RECEIVER FOR
IMPULSIVE NOISE WITH MEMORY
The proposed architecture is illustrated in Fig. 2 and
comprises several parts. However, our main contribution is
divided into two processes–the LLR calculation process and
the receiver parameter estimation process–that are detailed
in Sections IV-A and IV-B.

A. THE PROPOSED LLR CALCULATION PROCESS
In reality, having perfect knowledge of the NSI is impossible;
therefore, the genie condition is used only for benchmarking
purposes. We propose to approximate the genie condition
using a new LLR calculation method based on the principle
of determining the probability of each possible LLR value.
We suggest using a neural network, illustrated by Fig. 3, to
estimate the probabilities. The desired LLR value is then
calculated by summing all possible LLR values multiplied
by their respective probabilities. These possible LLR values
are none other than the Gaussian LLR values conditioned
on the noise state. Thus, the novel LLR formula can be
expressed as follows:

L(i)
�,k =

S∑
s=1

p(sk = s|Ik,�) (10)

× log

{∑
x∈χ(1) N (yk − x · hk | μs, σs)∑
x∈χ(0) N (yk − x · hk | μs, σs)

}
, (11)

where p(sk = s|Ik,�) denotes the probability that the
noise sample nk belongs to state s given a preprocessed
input vector Ik. The estimation of p(sk = s|Ik,�) requires
a neural network and is done in four phases as detailed
in Algorithm 1. First, for each yk, we consider the input
sequence (yk−ξ//2, . . . , yk, . . . , yk+ξ//2), where ξ is the noise
memory and quantifies the degree to which the impulses
are correlated in time. Then we create a preprocessed vector
Ik of size NI = 3 × ξ + 1, which consists of the essential
components influenced by the noise (amplitude, real, and
imaginary parts) of all symbols in the input sequence plus
a bias term (also called offset). The input is then rescaled
using normalization and forwarded to the neural network’s
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FIGURE 3. The light neural network architecture proposed for noise state detection. �(.) and �(.) denote the real and imaginary parts, respectively.

Algorithm 1 Summary of the Proposed LLR Calculation
Process

Input: yK, �, γ , and (μs, σs)∀s ∈ {1, . . . , S}.
Output: L(i)

�,k ∀i ∈ {1, . . . , log2(M)} ∀k ∈ {1, . . . ,K}.
for yk in yK do

1. Prepare an input vector:

Ik← [1, |yk−ξ//2|,�{yk−ξ//2},�{yk−ξ//2}, ..,
|yk+ξ//2|,�{yk+ξ//2},�{yk+ξ//2}],

2. Rescale Ik using normalization.
3. Calculate p(sk = s|Ik,�)∀s ∈ {1, . . . , S} using:

p(sk = s|Ik,�)← exp(−�s · Ik)∑S
j=1 exp(−�j · Ik)

,

where �s is the sth line of the matrix �.

4. Calculate L(i)
�,k ∀i ∈ {1, . . . , log2(M)} using:

L(i)
�,k ←

∑S
s=1 p(sk = s|Ik,�)×

log

⎧⎨
⎩

∑
x∈χ(1) exp

(
− (yk−x·hk −μs)2

2σ2
s

)
∑

x∈χ(0) exp

(
− (yk−x·hk −μs)2

2σ2
s

)
⎫⎬
⎭.

end for

output layer, which has parameters � ∈ R
S×NI . We refer

to this neural network as the noise state detection model
because its goal is to compute the probabilities p(sk =
s|Ik,�) for all s ∈ {1, . . . , S} by performing S linear
combinations in the form of �sIk = ∑NI

i=1 �s,iIk,i. The
normalized exponential function (softmax) is then applied to
these linear combinations to predict a multi-class probability
distribution with

∑
s p(sk = s|Ik,�) = 1. This neural

network architecture is selected to create a balance between
accuracy and computational complexity. Finally, we calculate
the LLRs using (10) and forward them to the LDPC decoder.
It is worth mentioning that L(i)

�,k converges to L(i)
genie,k when

p(sk = s|Ik,�) is accurately estimated.
Unlike other algorithms such as BCJR and Viterbi, the

proposed LLR calculation process does not involve recursive

and time-consuming loops. Instead, to calculate the LLRs, it
uses short sequences of size γ , matrix multiplications, and
element-wise operations. Accordingly, its execution time is
much shorter than that of the other algorithms. The enhanced
BER performance is attributed to the neural network-
based pattern recognition ability and the receiver parameter
estimation process, as detailed in the next subsection.

B. THE RECEIVER PARAMETER ESTIMATION PROCESS
To ensure the reliability of the proposed LLR calculation
method, several parameters should be estimated. The param-
eter estimation process is summarized in Algorithm 2 and
is only executed whenever a reduction in the desired quality
of service (QoS) metric, such as the BER, is observed.
The process consists of the following two steps. First, we
estimate the impulsive noise parameters (the number of states
S, (μs, σs) ∀ s ∈ {1, . . . , S}, and the noise memory parameter,
ξ). The second step consists of constructing a dataset and
training the neural network (the noise state detection model)
by iteratively updating � using a gradient descent optimizer.
Step 1: Estimating the impulsive noise parameters (S,

(μs, σs) ∀ s ∈ {1, . . . , S}, and ξ): This operation can be
challenging, especially for impulsive noise with memory.
Furthermore, these parameters change over time. Therefore,
an online parameter estimation technique is needed.
As a solution, we propose a clustering-based method that

uses unsupervised GMMs. GMMs have a reputation for
being universal approximators, given enough Gaussians [39].
As previously discussed, these Gaussians represent the noise
states in the context of impulsive noise modeling. To
estimate the parameters for each state, we have adopted an
expectation-maximization (EM) algorithm [40], detailed in
Algorithm 2. It involves clustering a noise sequence nK and
estimating the parameters (μs, σs) for each state s, as well
as the probability of each noise sample nk belonging to the
state γ ks . A sample output from this operation is shown in
Fig. 4, with the different colors indicating different noise
states. The number of states S can be the subject of an
optimization problem, in which we minimize the Bayesian
information criterion (BIC):

S∗ = arg min
S
S · log(K)− 2 log(LL(S)), (12)
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Algorithm 2 The Receiver Parameter Estimation Process

Input: Captured noise sequence nK = (n1, n2, . . . , nK),
convergence threshold δ = 10−4, and the maximum number
of noise states Smax.

Output: The optimal number of noise states S∗ and
parameters (μs, σs)∀s ∈ {1, . . . , S∗} in addition to the trained
neural network parameters �.

I. First step: Noise parameters estimation
I.0. Initialize μs, σs, πs, the log-likelihood LL and LLold.
I.1. Estimate (μs, σs)∀s using the EM algorithm:

for S ∈ [2, Smax] do
while | LL(S)− LLold |< δ do

for k ∈ {1, . . . ,K} do

γ ks = p
(
sk = s | nK

)
← πs ·N (nk | μs, σs)∑S

j=1 πj ·N
(
nk | μj, σj

) .

end for
for s ∈ {1, . . . , S} do

μs← 1
Ns

∑K
k=1 γ ks nk,

σs← 1
Ns

∑K
k=1 γ ks (nk − μs)(nk − μs)

T ,

πs← Ns
K , with Ns =∑K

k=1 γ ks .

end for
LLold ← LL(S)
LL(S)←∑K

k=1 log
(∑S

s=1 πsN (nk | μs, σs)
)
.

end while
end for

I.2. S∗ ← argmin
S

(S · log(K)− 2 log(LL(S)).

I.3. Repeat the previous while loop using S = S∗ to get
the final (μs, σs) ∀ s ∈ {1, . . . , S}.

I.4. Estimate the noise memory parameter:

ξ∗ ← argmin
ξ

(log(ξ) · K · σ 2
|nK| −∑ξ

τ=1

∑K
k=τ+1(|nk| − E[|nk|])(|nk−τ | − E[|nk|])).

II. Second step: Neural network training
II.1.Dataset generation process:

for k ∈ {1, . . . ,K} do
i. Generate a pair (xk, hk).
ii. yk ← xk · hk + nk.
iii.

Ik← [1, |yk−ξ∗//2|,�{yk−ξ∗//2},�{yk−ξ∗//2}, ..,
|yk+ξ∗//2|,�{yk+ξ∗//2},�{yk+ξ∗//2}],

iv. Normalize Ik.
v. γ k ← [γ k1 , .., γ kS ].

end for
II.2. Balance the dataset (Ib, γ b)∀b ∈ {1, . . . ,B} using
under-sampling.
II.3. Optimize �:
while ‖∇J(�)‖ < δ do

J(�)←∑
b
∑

s γ
b
s · log

{
exp(−�s·Ik)∑S
j=1 exp(−�j·Ik)

}
,

� ← �− u(∇J(�)),

where u(.) depends on the optimizer and ∇ is the gradient
operator.
end while

where LL is the log-likelihood function presented in
Algorithm 2.

Now, we need to estimate the value of ξ . In our case, the
optimal value of ξ allows for maximum average temporal
correlation between the elements of the input sequence
(yk−ξ//2, .., yk, .., yk+ξ//2). To estimate ξ , we propose using
the autocorrelation function AC(|nK|, τ ), which characterizes
the degree of correlation between the noise amplitudes of
the sequence nK over a time lag τ . AC is given by:

AC(|nK|, τ ) =
∑K

k=τ+1(|nk| − E[|nk|])(|nk−τ | − E[|nk|])∑K
k=1(|nk| − E[|nk|])2

,

(13)

where E [|nk|] = 1
K

∑K
k=1 |nk| is the expectation value

of |nk|. As the noise samples follow a Markov process,
the temporal correlation between them–and consequently,
the AC function–decreases as the time lag between them
increases. Thus, we deduce and observe that the function

g(ξ) =∑ξ
τ=1 AC(|nK|, τ ) increases logarithmically with

respect to ξ . Therefore, we can propose an objective function
to determine the optimal value of ξ that maximizes g.

The penalizing term must contain a logarithm of ξ because
g behaves logarithmically. Hence, the optimal value of ξ is
given by:

ξ∗ = argmin
ξ

(log(ξ)− g(ξ)) (14)

= argmin
ξ

(log(ξ)−
ξ∑

τ=1

AC(|nK|, τ )) (15)

= argmin
ξ

(
log(ξ)

−
ξ∑

τ=1

∑K
k=τ+1(|nk| − E [|nk|])(|nk−τ | − E [|nk|])∑K

k=1(|nk| − E [|nk|])2

)
(16)
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FIGURE 4. Illustration of the noise samples after clustering where every color
corresponds to a noise state.

FIGURE 5. Estimation performance of the noise memory ξ .

= argmin
ξ

(
log(ξ) · K · σ 2

|nK|

−
ξ∑

τ=1

K∑
k=τ+1

(|nk| − E[|nk|])(|nk−τ | − E[|nk|])
)

, (17)

where σ 2
|nK| represents the variance of the noise amplitudes.

As shown in Fig. 5, this method provides accurate estima-
tions of ξ . The results are further validated by the simple and
popular TSMG model for which the value of noise memory
ξ is well known. Details about the TSMG model can be
found in [2] and [35].
Step 2: Estimating the neural network’s parameters �:

The size of the matrix � depends on the noise scenario.

Specifically, � ∈ R
S∗×N∗I , where N∗I = 3ξ∗ + 1, S∗ is the

optimal number of noise states, and ξ∗ is the optimal noise
memory value obtained using the proposed noise memory
quantification method.
After the size of � has been estimated, we optimize its

elements. To do so, we begin by constructing a balanced
dataset of (Ib, γ b) for b ∈ {1, . . . ,B}, where the balance
is obtained by having the same number of samples for
each noise state. Next, we utilize this dataset to train the
noise state detection model that estimates γ bs = p(sb = s |
Ib,�) using a gradient-based optimizer, which minimizes
the cross-entropy loss function J(�). The fact that the dataset
is balanced ensures that the model is trained on an equal
number of samples for each noise state, thereby preventing
bias towards a particular state.

V. COMPUTATIONAL COMPLEXITY DISCUSSION
To comprehensively address the computational complexity of
the proposed ANN-based LLR calculation method compared
to the BCJR and the Viterbi algorithms, we derive the time
complexity as a function of the number of noise states (S),
modulation order (M), and sequence length (K). To this end,
we manually calculated the number of operations required by
each algorithm. The dominant terms in the simplified time
complexities in terms of required operation are expressed as
follows:
1) Cproposed = O(K · S · M), showing a linear increase

in complexity concerning the sequence length (K),
the modulation order (M), and the number of noise
states (S). This linear scaling implies that the method
is highly efficient and scalable. This characteris-
tic is particularly beneficial for systems with long
sequences and multiple noise states, where computa-
tional resources may be limited.

2) CViterbi = O(K ·M · S+ K · S2), reflecting a quadratic
growth with the number of states. This arises from the
need to evaluate and store path metrics for all state
transitions. Each state transition involves computations
dependent on both the modulation order (M) and the
number of noise states (S), leading to a significant
computational burden when S is large.

3) CBCJR = O(K ·M · S2), indicating that the complexity
scales quadratically with the number of states. The
BCJR algorithm requires more operations than the
Viterbi algorithm, primarily due to the necessity of
performing both forward and backward passes to
compute state probabilities. This high complexity
makes the BCJR algorithm the most computationally
demanding among the three, posing challenges for real-
time implementation in systems with numerous noise
states and complex modulation schemes.

Fig. 6 shows a detailed visual comparison. It illustrates
that while computational demands for Viterbi and BCJR
significantly scale with increasing S and K, the proposed
method maintains a lower and more stable operational foot-
print. This makes it a more efficient alternative, particularly
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FIGURE 6. Computational efficiency comparison of the proposed method against
the Viterbi and BCJR algorithms as functions of K and S for fixed M = 4.

attractive for modern communication systems requiring real-
time processing and efficient resource utilization.

VI. SIMULATION RESULTS
In this section, we present the simulation results of
the proposed LLR-based receiver and compare them
with the other methods discussed in Section III. We assume
that the channel coefficient varies every Tc symbols, and
we have perfect knowledge of the channel state information
(CSI). Note that the proposed method can work for any
value of Tc. For LDPC coding, we use the fifth-generation
(5G) standard with a code rate of 1/2 implemented using
the Sionna framework [41] in Python. We set the number of
iterations for decoding to 50, and we average the error rate
over 100 frames, each containing 40,000 symbols, to obtain
the BER performance values. The noise model’s parameters
are initialized based on the measurements campaign doc-
umented in [1], [8], and [36]. The remaining simulation
parameters, such as the initialization method of �, size
of the training dataset, learning rate, and optimizer, were
selected based on their performance in minimizing the cross-
entropy loss during neural network training (see Table 3).
We use the standard implementation of the BCJR algorithm,
which is presented in [2], and the Viterbi algorithm, which
is presented in [42].

A. BER PERFORMANCE COMPARISON CONSIDERING
PERFECT KNOWLEDGE OF THE NOISE PARAMETERS
The results of LDPC-coded quadrature phase shift keying
(QPSK)-modulated transmission in the noise scenario con-
sidered and Rayleigh fading are presented in Fig. 7. We
used extensive simulation to demonstrate that the proposed
method is equally as reliable as the BCJR algorithm and

TABLE 3. The simulation settings.

the Viterbi algorithm, which are renowned for their optimal
and near-optimal performance, respectively. The fact that
the method performs as well as these well-established
algorithms substantiates its potential as a viable alternative
in practical communication systems. This is particularly
noteworthy given that both reference algorithms have been
shown to closely approach the genie condition representing a
theoretical performance lower bound, which assumes perfect
knowledge of the noise state information. This result is
indicative of efficient channel information utilization, which
is crucial for high data rates and reliability in modern
communication systems.
Additionally, the empirical evidence presented in Fig. 7

underscores the limitations of the memoryless noise assump-
tion, which states that successive noise samples are i.i.d.
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FIGURE 7. BER performance comparison for an LDPC-coded transmission
employing QPSK modulation. We assume that we have perfect knowledge of the noise
parameters.

These results contest this commonly adopted simplifica-
tion and highlight its suboptimality and the need for
memory-aware LLR calculation techniques for more accurate
decoding.
Furthermore, the analysis presented also evaluates other

receivers, such as the BNET and Gaussian receivers, with
Markov-Gaussian noise models. When the BNET and
Gaussian receivers are used with noise models that have
more than two states, they exhibit a pronounced decline in
reliability, as evidenced by their elevated BER in Fig. 7.
This finding is critical, as it delineates the limit of these
receivers’ applicability and cautions against using them in
scenarios where the noise model exhibits memory and has
multiple states. It is worth noting that for SNR values
below 4 dB, it is not feasible for any of the tested
methods–including the BCJR receiver, Viterbi receiver, and
the proposed receiver–to be reliable using QPSK modulation
due to the combined effect of impulsive noise and Rayleigh
fading.

B. BER PERFORMANCE COMPARISON WITHOUT THE
KNOWLEDGE OF THE NOISE PARAMETERS
In practical communication scenarios, exact noise charac-
teristics cannot be accurately measured. We address this
challenge by adopting a probabilistic approach using a GMM
to estimate the noise parameters, as detailed in Algorithm 2.
Implementing this algorithm was both computationally fea-
sible and efficient as it required only about one minute on
an Intel R© CoreTM i7-11800H CPU. This rapid estimation
process meets the needs of real-time communication systems,
where the speed of adaptation to changing conditions is
critical.

FIGURE 8. BER performance comparison for an LDPC-coded transmission
employing QPSK modulation. The noise parameters are obtained using the EM
algorithm presented in Algorithm 2.

Fig. 8 shows the BER performance of various receivers
under these estimated noise conditions. This figure’s results
lead to several important observations:
1) The BCJR receiver maintains its optimal performance

even with the estimated noise parameters. This
resilience to parameter imperfections suggests that
the BCJR algorithm’s inherent design can inherently
withstand uncertainty in the noise model, which is a
desirable trait in fluctuating communication environ-
ments.

2) the proposed neural network-based method is better
able to exploit noise behavior patterns than the Viterbi
receiver. Applying neural network techniques intro-
duces a pattern recognition component that traditional
statistical models lack. This advantage enables the
proposed method to achieve a lower BER by compen-
sating for the imperfect noise modeling, whereas the
Viterbi algorithm’s structure is limited in this regard.

Our method’s performance advantage over the Viterbi
receiver is indicative of the benefits that may be made
possible by integrating machine learning methodologies into
receiver design. This integration could enhance receivers’
capability to adapt to and interpret complex noise patterns
in the absence of perfect knowledge of the noise parameters,
which is common in real-world communication channels.

C. EFFECT OF IMPERFECT CSI
Accurate CSI is pivotal for optimal receiver operation. To
quantify the impact of inaccurate CSI, we modeled CSI error
as a Gaussian perturbation added to the perfect CSI, which is
expressed as ĥk = hk + εk, with εk ∼ N (0, σε) representing
the error term. This model captures the practical scenario
in which the channel estimation process is prone to error
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FIGURE 9. Illustration of the effect of imperfect CSI. We consider exact noise
parameters, and the SNR = 8 dB.

and reflects a realistic and challenging condition for receiver
performance.
We evaluated the robustness of the top four receivers–the

proposed receiver, the BCJR receiver, the Viterbi receiver,
and the memoryless receiver–in terms of BER with an SNR
of 8 dB, as depicted in Fig. 9. The analysis revealed that the
top three receivers are commendably tolerant to imperfect
CSI, closely matching the genie condition up to a margin of
σε

σh
= 0.3. This level of tolerance indicates that these receivers

are resilient and capable of compensating for a certain
amount of CSI inaccuracy without substantial performance
loss. This resilience is particularly crucial in environments
where perfect CSI acquisition is challenging or infeasible.
In contrast, the memoryless receiver was highly sensitive

to CSI imperfections, and its performance remained within
acceptable bounds only when the error margin was limited
to σε

σh
= 0.1. This heightened sensitivity underscores the

receiver’s limitations in scenarios where a better channel
state cannot be estimated.
Fig. 10 illustrates the impact of imperfect CSI on the

BER performance of the proposed LLR calculation process
against different SNR values. As shown in Fig. 10, in
the perfect CSI scenario where σε/σh = 0, the system
achieves the best performance. For σε/σh < 0.3, the system
maintains acceptable BER performance, particularly in lower
SNR regimes. However, when σε/σh ≥ 0.3, a significant
increase in transmit power is needed to reduce the impact
of impulsive noise and, therefore, compensate for inaccurate
CSI estimation.

D. EFFECT OF THE NUMBER OF STATES ON BER
PERFORMANCE
Fig. 11 shows the impact of varying the considered number
of states S in the EM algorithm used in Algorithm 2.
Although the original noise model consists of four states,

FIGURE 10. Illustration of the effect of imperfect CSI on BER performance for an
LDPC-coded transmission employing QPSK modulation using the proposed LLR
calculation process. The receiver is assumed to have perfect knowledge of the noise
parameters.

FIGURE 11. Illustration of the impact of the considered number of states on BER
performance for an LDPC-coded transmission employing QPSK modulation using the
proposed LLR calculation process. The noise parameters are obtained using the EM
algorithm presented in Algorithm 2; the SNR = 5 dB.

Fig. 11 shows that the optimal number of states is three for
all considered receivers. This outcome can be attributed to
the overlap among the distributions of the different noise
states (states s2 and s4), making it challenging to accurately
and precisely estimate all four original states. Nevertheless,
Algorithm 2 efficiently approximates the best number of
states–three in this case–without directly calculating any
BER, relying solely on the BIC criterion represented by
Eq. (12) in Section IV. By identifying the most statistically
significant number of states to provide the best BER
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FIGURE 12. BER performance comparison of different modulation orders for an
LDPC-coded transmission using the proposed LLR calculation process. The noise
parameters are assumed to be known.

performance, this approach underscores the utility of the BIC
criterion and facilitates a more robust receiver design.

E. EFFECT OF THE MODULATION ORDER ON BER
PERFORMANCE
In Fig. 12, we plot the BER performance for differ-
ent modulation schemes against the energy per bit to
noise power spectral density ratio (Eb/No) in dB. The
modulation schemes tested include Binary Phase Shift
Keying (BPSK), QPSK, 8PSK, 16-Quadrature Amplitude
Modulation (16QAM), and 64QAM. Notably, the proposed
receiver consistently demonstrates the capability to effec-
tively manage and maintain reliable BER levels, which shows
its versatility and flexibility and makes it suitable for diverse
communication scenarios and requirements.

F. EXECUTION TIME COMPARISON
In this subsection, we conducted a comparative study to
compare the average execution time of the top three methods,
as shown in Table 4 and Fig. 13. We measured how long it
took to calculate the LLR for a one-Mbit LDPC-coded and
QPSK-modulated sequence. The tests were run on a single
core of an Intel Core i7-11800H CPU using the Python
programming language and the scikit-learn library for the
simulation environment.
As indicated by Fig. 13, the proposed LLR receiver

required substantially less execution time than the BCJR and
Viterbi receivers. While the Viterbi receiver’s execution time
was moderate, the proposed receiver set a new benchmark
with an average execution time of just 1.7 seconds for the
one-Mbit sequence. This is a marked improvement over
the Viterbi receiver’s 162 seconds and the BCJR receiver’s
523 seconds.

TABLE 4. A comparison of the top three LLR calculation methods in terms of
average execution time for a one-Mbit sequence.

FIGURE 13. A comparison of the top three LLR calculation methods in terms of
average execution time versus sequence length using NumPy.

This drastic reduction in execution time is crucial. In the
era of 5G and beyond, where latency is vital, a receiver’s
ability to quickly process signals can make the difference
between a seamless user experience and a noticeable delay.
Low-latency LLR calculation enables faster data processing,
which is essential for upholding the stringent latency
requirements of emerging communication protocols.

VII. CONCLUSION
In this article, we have addressed the critical challenge of
ensuring reliable wireless communication for IoT devices
in the presence of bursty impulsive noise. To this end, we
proposed a multi-process receiver architecture. The study’s
contribution comprises a new computationally efficient LLR
calculation process and a multi-step receiver parameter
estimation process to enhance the performance amid non-
stationary bursty impulsive noise.
The results of extensive simulations confirmed that, in

terms of BER, the proposed LLR calculation method has a
similar performance as compared to that of the BCJR and
Viterbi algorithms, especially in scenarios with imperfect
noise parameters where the proposed approach outperforms
the Viterbi algorithm. Furthermore, the proposed approach
significantly reduces the computational complexity, making
it suitable for IoT devices with limited computational
capabilities and minimal battery consumption.
In future research, we aim to investigate and mitigate the

effects of this type of noise on the performance of OFDM
and NOMA systems.
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