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ABSTRACT In recent years, numerous studies have investigated the development of methods for video
quality assessment (VQA). These studies have predominantly focused on specific types of video degradation
tailored to the application of interest. However, natural videos or recent videos generated by users (UGC)
present complex distortions that are not easy to model. Consequently, most current VQA approaches
struggle to achieve high performance when applied to these videos. In this paper, we propose a novel
Transformer-based architecture that extracts spatial distortion features and spatio-temporal features from
videos in two specialized branches. The spatial distortion branch leverages a transfer learning strategy where
a standard ViT is pre-trained using a masked autoencoder (MAE) self-supervised learning task, and then
fine-tuned to predict the distortion type of corrupted images from the CSIQ database. The features from this
branch capture degradation at the level of individual frames. On the other hand, the second branch employs a
3D ShiftedWindows Transformer (Swin-T) to extract spatio-temporal features across multiple frames. Once
again, we use transfer learning to extract rich features by pre-training this 3D Swin-T model on a video
dataset for human action recognition. Finally, a temporal memory block hinged on an attention recurrent
neural networks is proposed to predict the final video quality score from the spatio-temporal sequence of
features. We evaluate the performance of our method on two popular UGC databases, namely KoNViD-1k
and LIVE-VQC. Results show it outperforms state-of-the-art models on the KoNViD-1k database, achieving
a SROCC performance of 0.927 and a PLCC of 0.925, while also delivering highly competitive results on
the LIVE-VQC database.

INDEX TERMS CNN, distortion, Swin-Transformers, UGC, video quality assessment, vision Transformers,
ViT, NLP.

I. INTRODUCTION
As predicted by Cisco, video consumption has rapidly
increased in the last years [1]. The recent rise of flex office
and telework has further accelerated this trend, especially in
the consumption of user-generated content (UGC) videos.
This type of video, which can be used for employee training,
skill acquisition, and providing leisure activities to name a
few, has become prominent in today’s video landscape, with
individuals capturing and streaming their own content on
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popular social media platforms such as YouTube, Facebook,
TikTok, and Twitter [2].

For video and telecommunication service providers, the
billions of videos flowing over the Internet and their
infrastructure need to be monitored and analyzed in order
to increase customer satisfaction and maximize profits.
However, an important problem with UGC videos is that they
do not have any pristine reference available. Furthermore,
such videos are captured using a variety of cameras and
smartphones, each introducing its own set of combined
distortions, such as defocus blur, color saturation, and noise.
Given their diverse content and the presence of complex
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distortions, predicting the quality of UCG videos becomes
increasingly challenging.

In recent years, No-Reference Video Quality Assessment
(NR-VQA) has emerged as a field of intense research,
with computer vision researchers predominantly relying on
deep learning algorithms for their models. Convolutional
Neural Networks (CNNs) have so far stood as the dominant
deep learning architecture for this task. However the recent
success of Transformers in Natural Language Processing
(NLP) has prompted researchers to explore their application
in NR-VQA. To enhance the performance of NR-VQA
models, researchers have begun integrating the key element
of Transformers, namely the self-attention mechanism, into
CNNs [3], or even replacing the CNN backbone entirely with
Transformers [4].

In this paper, we introduce a novel NR-VQAmethod based
on Transformers to predict the quality of UGC videos. The
main contributions of this work are as follows:

• We propose a two-branch network for video quality
assessment (VQA) exploiting specialized Transformer
architectures and transfer learning to extract features
modeling distortion within individual frames and
spatial-temporal information across multiple frames.
The first branch, which is based on a standard Visual
Transformer (ViT), is pre-trained from IQA data con-
taining diverse types of spatial distortions to learn a
robust representation of these distortions. In contrast, the
second branch leverages a 3D-Swin Transformer, pre-
trained on a human action recognition dataset, to capture
spatio-temporal features at different scales. An attention
Gated Recurrent Unit (GRU)-based temporal-memory
block, taking both types of features as input, is also pro-
posed to capture long-range dependencies influencing
the final perceptual quality score.

• Our work is among the first to study and compare the
performance of distortion networks based on CNNs and
ViTs in the context of video quality prediction.

To demonstrate the superiority of our method, we conduct
experiments on two popular and publicly available video
databases namely KoNViD-1k [5] and LIVE VQC [6]
which contain respectively natural videos and videos with
complex in-capture distortions. Our method outperforms
state-of-the-art (SOTA) models on the KoNViD-1k database
while delivering competitive results on the LIVE-VQC
database.

The rest of our paper is organized as follows. In Section II,
we present the related works. We then describe our proposed
NR-VQA method in section III. Afterwards, we present
and discuss our experimental results in section IV. Finally,
in Section V, we conclude and suggest some future works.

II. RELATED WORKS
In this section, we organize NR-VQA approaches from the
literature into two groups based on whether deep learning
techniques are used to extract features. We provide an
overview of relevant studies within each group.

A. NON-DEEP LEARNING METHODS
Non-deep learning methods do not automatically extract
features from images or sequences of frames in videos.
The most dominant ones are based on the theory of
natural scene statistics (NSS) and were originally developed
for image quality assessment (IQA). Later, these meth-
ods were modified for use in VQA by combining the
quality scores of individual frames to generate an overall
quality rating for the entire video. Given the multitude
of extracted features, machine learning algorithms are
commonly employed to predict frame quality based on these
handcrafted features. Examples of these techniques include
NIQE [7], BRISQUE [8], CORNIA [9], V-BLIINDS [10],
VIIDEO [11], SACONVA [12] and others [13], [14]. For
instance, in V-CORNIA [15], the authors utilized the Support
Vector Regression (SVR) algorithm to predict frame-level
quality scores. They subsequently aggregated these scores
using temporal pooling to derive the overall quality score
for the entire video. Recent popular handcrafted methods
include ChipQA [16], TLVQM [17] and VIDEVAL [18].
The TLVQM method extracts low complexity and high
complexity features such as spatial activity, exposure or
sharpness by handcrafted means and predict the video quality
for each video by applying SVR and Random Forest (RF)
algorithms on these features. In the same way, VIDEVAL
ensembles different handcrafted features to model the diverse
authentic distortions for predicting the UGC video quality.
However, the distortions typically found in natural videos are
quite complex and cannot be well captured with handcrafted
methods.

B. DEEP LEARNING METHODS
In the past decade, deep learning has revolutionized various
scientific fields and most of recent NR-VQAs methods are
based on this powerful approach. Considering the latest
developments in computer vision, we can classify these deep
learning-based methods into two categories depending on
the main algorithm used when automatically extracting the
features in the video: CNN-based and Transformers-based
methods.

1) CNN-BASED METHODS
With the outstanding performance of CNNs in computer
vision, researchers have adopted them as the main back-
bone for their models. Compared to previous approaches,
CNNs offer an automated way to extract image fea-
tures and generally outperform classical or handcrafted
methods. For example, TLVQM, which was primarily
designed as a handcrafted method, obtained a significant
performance gain when their authors replaced manually
extracted features by automatic extraction performed with
CNNs [19]. In the realm of VQA models that leverage CNN,
we can mention VSFA [20], RAPIQUE [21], HEKE [22],
PVQ [23], MLSP [24], RIRNet [25], and others [26], [27],
[28], [29], [30].
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FIGURE 1. The architecture of the proposed method. Our proposed model is composed of two blocks namely the features extraction block and the
temporal modeling block. The features extraction block extracts both the spatial distortion characteristics (per frame with the ViT encoder) and the
spatio-temporal characteristics (per group of M = 3 frames with the 3D Swin Transformers) in the videos. These features are sent to a temporal modeling
block consisting essentially of an attention GRU network coupled with mean pooling (embedded in the temporal memory block), for predicting the
quality of the entire video. Note that before combining these two characteristics, a temporal sampling operation is applied to the frames from the spatial
distortion features.

Due to the multitude of features extracted by CNNs,
machine learning algorithms such as SVR can be used for
predicting the overall quality. Deep learning algorithms such
as recurrent neural networks can also be employed with CNN
features to predict frame per frame quality. For instance, the
authors of VSFA [20] extract content-aware features from a
pre-trained CNN and introduce them into a GRU network
which models the long-term dependencies between different
frames. In the same way, the work in [30] presents a deep
learning model where distortion and content features are first
extracted by CNNs and then fed to a recurrent neural network
coupled to predict the video quality. Moreover, to capture
more diverse representations, the author in [31] extracted and
combined features from seven different pre-trained CNNs.

2) TRANSFORMERS-BASED METHODS
While CNN-based methods are still dominant in computer
vision, Transformers have become the standard architec-
ture for sequence-to-sequence modeling thanks to their
self-attention mechanism that can capture long-range depen-
dencies in the data. Initially proposed for Natural Language
Processing (NLP) tasks, researchers started to integrate the
self-attention mechanisms found in Transformers into CNN
layers [32]. In their seminal work introducing the Vision
Transformer (ViT) [33], Dosovitskiy et al. successfully
adapted Transformers to computer vision tasks. Since then,
a backbone shift has been underway for vision models, with

ViTs replacing CNNs in a broad range of computer vision
studies [34].

The work in [4] showed that a pure Transformer
architecture, similar to those employed in NLP, could
achieve SOTA results for image classification. In the field
of IQA, Yang et al. proposed a multi-dimension attention
network called MANIQA which combines a standard ViT
for feature extraction with Swin Transformer blocks mod-
eling spatial attention hierarchically [35]. Their approach
achieved impressive performance on popular image databases
such as KADID-10k [36] and TID2013 [37]. Recently,
methods utilizing ViTs, namely MaxVQA [38] and FAST-
VQA [39], have significantly surpassed SOTA NR-VQA
methods employing CNNs.

III. PROPOSED METHOD
In this work, we exploit two categories of Transformers to
solve the VQA problem. Our model utilizes both a ViT
encoder and Swin Transformer models to extract spatial
distortion and spatio-temporal features, respectively. These
features are combined and fed into a temporal-memory block,
which consists of an attention GRU network and mean
pooling layers. This block helps capture interdependencies
among frames, allowing for the prediction of the entire
video’s quality. The architecture of our proposed method is
illustrated in Figure 1, with further details provided in the
following subsections.
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A. FEATURES EXTRACTION
1) SPATIAL DISTORTION FEATURES
In studies concerning IQA and VQA, it is widely acknowl-
edged that distortions have a considerable impact on visual
quality. Researchers, whether employing handcrafted or
deep-learning models, aim to incorporate spatial distortion
features into their models. This is achieved either by
extracting such features from specific databases or by
fine-tuning models across various databases. Consequently,
numerous studies in NR-VQA emphasize the importance
of spatial distortion features when evaluating image and
video quality. Furthermore, researchers have demonstrated
that features extracted by deep learning networks, particularly
CNNs, are highly sensitive to distortions. For instance,
in [30], [40], and [41], CNNs are used for spatial distortion
feature extraction.

In a recent study, Paul and Chen [42], showed how
ViTs offer improved robustness against semantic shifts,
common corruptions, and perturbations. Building upon these
findings, our work uses ViTs for learning spatial distortion
characteristics. We adopt a shallow network with few
Transformer layers (L = 2) and increase the encoder’s
robustness using a self-supervised pre-training based on a
Masked Auto-Encoder (MAE) with a masked patch ratio
of 75%. The motivation for using this pre-training step is
that, by reconstructing masked patches from visible ones,
the learned features will encode information on the spatial
relationships between different regions in the image. The
human vision system being very sensitive to changes in these
spatial relationships (e.g., a ‘‘normal looking’’ region that is
out of place will be instantly spotted by a human), the learned
features may capture useful information for predicting the
perceived visual quality.

After pre-training our spatial distortion encoder with the
MAE, we fine-tune it to predict the type of distortion in the
input image or frame. As in our previous work [30], we select
the CSIQ image database [43] for this task. This database
contains 866 images obtained from 30 reference images dis-
torted with six types of distortions. The distortions contained
in the CISQ image database are: additive pinkGaussian noise,
additive white Gaussian noise, global contrast decrements,
JPEG compression, JPEG-2000 compression, and Gaussian
blurring. Each video is decomposed into frames or images
and each image is decomposed into patches (see more details
in Section IV-B). In this work, the convolution projection
approach, namely Conv2D, is used for the patchification
where the kernel size and stride of the convolution layer are
equal to the patch size.

Figure 2 details the components of our distortion network.
Let xi be the i-th patch of the input image, the final outputs
of our ViT encoder are obtained by:

z0 = [ xcls; x1E; x2E; . . . ; xnE] + Epos (1)

ẑl = MSA(LN(zl−1)) + zl−1, l = 1 . . . L (2)

zl = MLP(LN(ẑl)) + ẑl, l = 1 . . . L (3)

FIGURE 2. The architecture of our spatial distortion encoder based on ViT.
The encoder is composed of alternating blocks of Multi-head Self
Attention (MSA) and multi-layer perceptron (MLP). Norm (LN): Layer
Normalization is applied to the input of each block.

Here, xiE the i-th embedded patch, xcls (or z00) the class
token and Epos the matrix of position embeddings. ẑl and zl
are respectively the output of the Multi-head Self Attention
(MSA)module and the final output of layer l of the ViT. LN is
the layer normalization, which is performed before and after
eachMSA operation. MLP is a multi-layer perceptron, which
is a fully connected neural network.

As illustrated in Figure 2, instead of employing the class
token, our model applies mean pooling on patch features of
the last ViT layer to obtain the spatial distortion features f(t)dist
for each frame t . The main purpose of these features is to
enhance the learning process of the downstream NR-VQA
task, following a transfer learning strategy. Hence, during
inference we freeze the ViT encoder and, discarding the
Multi-layer Perceptron (MLP) head for distortion prediction,
use the pooled features f(t)dist as additional input to the NR-
VQA network.

2) SPATIO-TEMPORAL FEATURES
To take into account the temporal dimension of videos,
we select the 3D version of the Swin Transformers [44]
which is built with ViT layers that globally connect patches
across the spatial and temporal dimensions. Unlike standard
ViTs which compute self-attention weights between all
pairs of patches, Swin Transformers restrict self-attention
computations to local windows forming a hierarchy across
multiple layers. Due to this, Swin Transformers can better
handle larger image or, as in our case, 3D information [45].

The major components of the Swin Transformers are
their Shifted Window MSA (SW-MSA) and Window MSA
(W-MSA), which replace the MSA module in the standard
ViT. Each SW-MSA module is positioned after the W-MSA.
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Similar to the spatial distortion encoder’s definition, let x(t)i
be the i-th 3D patch of frame t . The final output, zl , of our
Swin Transformers is obtained by:

z0 = [ x(t)cls; x
(t)
1 E; x(t)2 E; . . . ; x(t)n E] + Epos (4)

ẑl = W-MSA3D
(
LN(zl−1)

)
+ zl−1, (5)

z′
l = MLP

(
LN(ẑl)

)
+ ẑl, (6)

ẑ′
l = SW-MSA3D

(
LN(z′

l)
)

+ z′
l, (7)

zl = MLP
(
LN(ẑ′

l)
)

+ ẑ′
l, (8)

In these equations, x(t)i E and x(t)cls are, respectively, the i-th
embedded 3D patch and the class token of frame t . Epos is
the corresponding matrix of position embeddings. Moreover,
ẑl and ẑ′

l respectively denote the outputs of theW-MSA3D and
SW-MSA3D (3D version ofW-MSA and SW-MSAmodules).

We consider that each video contains T frames. While
the spatial distortion features are extracted for each frame
t ∈ {1, . . . ,T }, the spatio-temporal features are instead
computed for groups of M frames. Therefore, M represents
the frame subsampling factor. Denoting as z(s) the output
of the transformer for the s-th group of M frames, with
s ∈ {1, . . . , ⌊T/M⌋}, we obtain the spatio-temporal features
via a 3D mean pooling operation:

f(s)3D = Mean-Pooling3D(z(s)) (9)

3) TEMPORAL SAMPLING AND FEATURE CONCATENATION
As the spatio-temporal features f(s)3D are computed for groups
of frames s, they cannot be directly combined with the
per-frame spatial distortion features f(t)dist. To address this
issue, we perform a temporal sampling on the output of the
distortion network:

f(s)dist = Temporal-Sampling(f(t)dist) (10)

with f(t)dist obtained from Figure 2 and the Temporal-Sampling
operation for selecting one frame in each group ofM frames.
In our study, we select the first frame in each group of
M frames for spatial distortion feature extraction. In other
words, t ∈ {1, (1+M ), (1+2M ), . . . , (1+ (⌊T/M⌋−1)M )}.
As we only need to compute the features for these sampled
frames, the overall cost of running the ViT encoder is reduced
by a factor ofM . In our experiments, we setM = 3. Note that,
in general, we can select the n-th frame in each group, with
n ∈ {1, 2, 3, . . . ,M}.

In the end, the final features f(s)final are obtained by
concatenating the sampled spatial distortion features and
spatio-temporal features for each group s ∈ {1, . . . , ⌊T/M⌋},

f(s)final = f(s)dist ⊕ f(s)3D (11)

where ⊕ is the concatenation operator. The dimension of the
concatenated features f(s)final is 2,048.

B. TEMPORAL MODELING
After the features have been extracted and combined, they
are sent to the temporal-memory block which performs three
important operations, illustrated in Figure 3.

FIGURE 3. The operations performed by the temporal modeling block.
GRU: Gated Recurrent Unit.

Firstly, a dimension reduction step is performed on the
concatenated features using a fully-connected (linear) layer:

x(s) = Wxf f
(s)
final (12)

where Wxf are the learned parameters of the linear model.
This reduction step is necessary to make the input more
manageable for the temporal modeling block.

The features x(s) of dimensionality P = 512 are sent to
the attention GRU network whose task is predicting the final
perceived quality. By considering the hidden states of the
GRU as the integrated features, where the initial state is given
by h(0) and the previous state by h(s−1), the quality score of
each group of frames is predicted as:

q(s) = σ (Wqhh(s) + bq) ∈ [0, 1]. (13)

with h(s) = Attention
(
GRU(h(s−1))

)
(14)

where Wqh and bq are respectively the weights and bias
parameters, which are jointly learned with the other param-
eters of our system. To limit computations and memory,
we use the standard GRU with a single layer and, similar to
Transformers models [34], compute the attention based on a
query (Q), key (K ) and value (V ) as follows:

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V (15)

Here, dk is the dimension of key (K ).
Finally, the overall video quality score qpred is obtained by

mean pooling:

qpred =
1

⌊T/M⌋

⌊T/M⌋∑
s=1

q(s) (16)

IV. EXPERIMENTAL STUDY
This section describes our experimental setup and implemen-
tation details along with the selected VQA databases and the
evaluation criteria used. To confirm the advantages of our
proposed method, we then conduct three experiments: com-
parison on individual databases, cross databases evaluation,
ablation study and computational complexity.

A. DATABASES AND PERFORMANCE MEASURES
In this study, we selected two publicly available and widely
used video databases for UGC studies: KoNViD-1k and
LIVE-VQC. These databases respectively contain natural
videos and real-world mobile photography.
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1) KoNViD-1k (KONSTANZ NATURAL VIDEO DATABASE)
Reference [5] is a collection of 1,200 videos of resolution
960× 540 sampled according to six specific attributes
from the Yahoo Flickr Creative Commons 100 Million
(YFCC100M) dataset. The resulting database contains video
sequences that are representative of a wide variety of contents
and authentic distortions. The duration of each video is
8 seconds at 24/25/30 fps. Their mean opinion scores (MOSs)
have been collected through a crowdsourcing experiment and
range from 1.22 to 4.64.

2) LIVE-VQC (LIVE VIDEO QUALITY CHALLENGE)
Reference [6] is a database containing 585 videos of unique
content, captured by 101 different devices (the majority of
these were smartphones), with a wide range of complex
authentic distortions. Predominant resolutions are 404× 720,
1024× 720, and 1920× 1080. The average duration of these
videos is 10 seconds. Similar to KoNViD-1k, the subjective
scores were collected via crowdsourcing and a total of 4,776
unique participants produced more than 205,000 opinion
scores. The scores span between 0 and 100.

The performance of our proposed model is evaluated
on these two datasets. Similar to the SOTA methods, the
performances are evaluated in terms of Spearman Rank Order
Correlation Coefficient (SROCC), and Pearson’s Linear
Correlation Coefficient (PLCC). Note that our PLCC is cal-
culated after performing a non-linear logistic fitting between
MOS or subjective scores (s) and objective scores (o) [46]:

f (o) =
α1 − α2

1 + e−
o−α3
α4

+ α2. (17)

The parameters α1 to α4 are adjustment parameters initialized
with α1 = smax, α2 = smin, α3 = µo, α4 = σo/4, smin, smax
are the minimum and maximum subjective scores, andµo, σo
are the mean and standard deviation of the objective scores.

B. EXPERIMENTAL SETUP
Ourmodel is implemented using the PyTorch [47] framework
and comprises two blocks: a feature extraction block and a
temporal modeling block.

The feature extraction block extracts the spatial distortion
and spatio-temporal features from two different vision
Transformers, namely Encoder ViT (distortion network) and
3D Swin-T (see Figure 1). The distortion encoder is designed
and trained from end to end to predict the type of distortion
within the input image, while the 3D Swin-T is a pre-trained
networkwhich extracts the spatio-temporal features in groups
of frames.

Our distortion network or ViT encoder is trained on the
CSIQ image database [43]. This image database contains
6 types of distortion and a total of 866 distorted images. Each
image is decomposed into patches of size 16× 16 pixels; the
projected features have a shape of [H/16,W/16,D], where
H , W and D denote respectively the image height, width
and embedding dimension. The patchification is performed
by Conv2D with the kernel size and stride of convolution

layer equal to 16 (patch size). The flattened image patches
or feature map is then fed into the encoder-Transformer
after adding the position embedding. The parameters of our
Transformer are D and H , the number of heads (set to 3).

Our distortion network is composed of only L=2 ViT lay-
ers (shallow network) and a mean pooling (Mean-Pooling2D)
is used to average the features of all patches for the
classification. To train the distortion encoder, a classification
head (MLP-Head) which consists of two fully connected (FC)
layers with a dropout layer in between, is used to predict
the type of distortion in each frame or image. To train the
network, we use the cross-entropy as loss function measuring
the distance between the predicted image quality distribution
and the ground-truth distribution; the Adam optimizer [48] is
used to minimize this loss function and the model is trained
on 100 epochs with a learning rate of 0.001.

For the spatio-temporal extraction, we select the
3D Swin-T, which is a pre-trained 3D Swin Transformers
on the Kinetics video database [49] for temporal features
extraction.

The temporal-memory block receives as input the concate-
nated features (f(s)final) and is trained to estimate the quality
score of the entire video. As mentioned earlier, before this
concatenation, a temporal sampling module is applied on the
outputs of the distortion encoder in order to select the first
frame in each group of M=3 frames for the concatenation.

Inside the temporal-memory block, a dimension reduction
step is first performed using a fully connected (FC) or
linear projection (the dimension of f(s)final is 2,048 since the
dimension of f(s)dist and f

(s)
3D is 1,024). The reduced-size features

are then fed to the attention GRU network for estimating the
quality score of each group of frames. In this study, we reduce
the features to P=512 and introduce them into the attention
GRU with a single layer and a hidden size of 64 (which
corresponds to the amount of information stored). Finally,
a mean pooling is applied to aggregate the scores predicted
for each group of frames. To train the temporal modeling
block, we use the L1 loss between the scores predicted for
the video and the ground-truth scores, and employ the Adam
optimizer with an initial learning rate of 0.001 and a batch size
of 16. Note that during the training, our ground-truth MOSs
are scaled in the range [0, 1] using the min–max scaling.

C. PERFORMANCE ON INDIVIDUAL DATABASE
For a fair comparison with recent SOTA work, such as
FAST-VQA [39] and MaxVQA [38] that also use the vision
Transformers, we performed 10 simulations using 10 random
splits and reported the average of the results. For each split,
80% of the data is used for training and the other 20% is
used for testing (split 80:20 for each simulation). Similar to
previous works, we evaluated the performance of our model
in terms of SROCC and PLCC. Additionally, we compared
our work with other popular and best performers works found
in the SOTA, namely TLVQM [17], VIDEVAL [18], CNN-
TLVQM [19], PVQ [23], RAPIQUE [21] and VSFA [20].
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The performance of all the methods are reported in Table 1.
We did not report the performance of methods such as
RIRNet [25], ChipQA [16] andHEKE [22] because they have
been shown [50], [51], [52] to be inferior to PVQ and CNN-
TLVQM on authentic VQA databases.

Since the code of FAST-VQA is publicly available,
we have re-simulated this method in our Pytorch environment
and reported the performance in Table 1. However, although
the code of MaxVQA is publicly available, we could not
reproduce their individual performance because it requires
their database, namely Maxwell, which is not yet publicly
available. Therefore, we just reported the performance from
their article [38].

TABLE 1. Performance results on KoNViD-1k and LIVE-VQC databases.
In each column, the best, and second-best values are respectively marked
in boldface, and underlined. Note that * are performances taken from
papers [38], [39].

As can be seen in Table 1, our proposed method achieves
the best performance in terms of SROCC and PLCC on
the KoNViD-1k database [5], while delivering competitive
performance with recent SOTA methods on the LIVE-VQC
database [6].

On the KoNViD-1k database, our method shows an
improvement of 0.033 in terms of SROCC and of 0.03 in
PLCC compared to the SOTA method MaxVQA. The FAST-
VQA method ranks third with performances similar to
MaxVQA in terms of SROCC and PLCC. The CNN-TLVQM
method is ranked fourth and exhibits a large performance
drop compared to the top third methods.

On the LIVE-VQC database, our method presents com-
petitive performances in terms of SROCC when compared to
PVQ, CNN-TLVQM and FAST-VQA. The best performance
on this database is achieved by MaxVQA with differences in
terms of SROCC and PLCC of 0.024 and 0.033, respectively,
compared to our method which is ranked second in terms
of SROCC and third in terms of PLCC (FAST-VQA is the
second-best method in terms of PLCC on the LIVE-VQC
database).

The higher performance of our method on KoNViD-1k or
natural video database can be explained by the effectiveness
of Transformers in learning both spatial distortions and
spatio-temporal characteristics.

We also notice that the two methods that compete
closely with our method, i.e. FAST-VQA and MaxVQA,
are also based on the Transformers. However, the use of
two complementary branches of Transformers in our method
sets it apart. Moreover, while these methods apply some
preprocessing techniques on the input videos called frag-
mentation, our method does not require this pre-processing.
In our study, we have avoided any transformation on the
input videos because the preprocessing techniques such
as fragmentation can alter semantic information and even
distortion characteristics in the original videos.

D. PERFORMANCE ON CROSS-DATABASE
In addition to the individual performance study, we evaluated
the performance of our model in a cross-database setting.
We performed 10 simulations and reported the average
results in terms of SROCC and PLCC in Table 2. Moreover,
we compared the performance of our proposed method with
the three other best methods from Table 1, i.e. CNN-TLVQM,
MaxVQA and FAST-VQA [39].

TABLE 2. Performance results in terms of SROCC and PLCC for KoNViD-1k
and LIVE-VQC in cross-database scenarios. Note that † are performances
taken from original paper [38].

Globally, our method presents, for the two scenarios, the
third-best performance after MaxVQA and FAST-VQA. The
best performer is MaxVQA, exhibiting SROCC and PLCC
values that are more than 0.05 higher than those of the
second-best performer, FAST-VQA. Our proposed model
demonstrates performance nearly equivalent to FAST-VQA
when trained on KoNViD-1k and tested on LIVE-VQC.
However, FAST-VQA significantly outperforms our model in
terms of SROCC in the reverse scenario. We also note that
the top three methods are based on Transformers. The strong
performance of MaxVQA could be attributed to its use of
pre-trained parameters adopted from the FAST-VQAmethod.
Additionnally, MaxVQA is trained with more data than both
FAST-VQA and our proposed method. Transformers are
often described as ‘‘data-hungry’’ models, meaning that the
volume of data on which they are trained has a significant
impact on their performance.

E. ABLATION STUDY
We also performed an ablation study to verify the importance
of each component of our model. Since our model extracts
features from two different branches, we first studied their
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individual impact. Secondly, we investigated the impact of
some alternative distortion networks which are designed
based on CNN and Swin Transformers models. Finally,
we studied the advantages of our temporal memory block
based on attention recurrent networks (GRU).

Our ablation tests are also performed on the two UGC
databases selected in this work, the KoNViD-1k and LIVE-
VQC databases. The same split strategy was also adopted, i.e.
80:20 where 80% of the data are used for the training and the
20% for testing. Similar to previous sections, we performed
10 simulations and reported the average performance in terms
of SROCC and PLCC. Table 3 gives the performance of
our compared scenarios which are described in the following
paragraphs.

TABLE 3. Ablation Study: Performance in terms of SROCC and PLCC for
different settings.

1) STUDY OF THE EXTRACTION BRANCHES
In this scenario, we used only one category of features,
i.e. either the spatial distortion or the spatio-temporal
features extraction branch along with the temporal modeling
block to predict the video quality. The performance of
these methods referred to as Encoder ViT and 3D Swin-T
are reported in Table 3. We observe that the 3D Swin-T
(spatio-temporal features) branch performs well on both
KoNViD-1k and LIVE-VQC databases while the Encoder
ViT branch yields a low performance on the LIVE-VQC
database (SROCC= 0.575 and PLCC= 0.588). This could
be explained by the distortions contained in this database.
Actually, as mentioned in the literature review, the
LIVE-VQC database contains a wide range of complex
and authentic levels of distortions. Therefore our distortion
encoder trained on the CSIQ image database [43] did not
generalize well on all of these distortions.

2) STUDY OF THE SPATIAL DISTORTION NETWORK
To improve the performance of our Encoder ViT on the
LIVE-VQC database, we implemented two other alternative
distortion networks and compared their performance with
our method. Firstly, we designed a distortion network based
on CNN and, similar to our Encoder ViT, trained it on the
same image distortion database (CSIQ image database). The
performance of this method referred to asProposed with CNN
distortion is reported in Table 3. We observe that our method
perform slightly better than the CNN-based method on the

LIVE-VQC database (SROCC= 0.814 and PLCC= 0.823),
while on KoNViD-1k database our method yields larger
improvement of 0.096 and 0.092 in terms of SROCC and
PLCC, respectively.

Lastly, we designed another distortion network based
on Swin Transformers. Actually, the LIVE-VQC database
mostly contains videos with high resolutions and degraded by
capture or authentic distortions. To cover these two aspects
of the LIVE-VQC database, we built a distortion network
based on Swin Transformers and selected the CID2013
image database [53] which contains both high-resolution
images (1600× 1200) and authentic distortions (lightness,
saturation, graininess, and sharpness) to train the network.

In Table 3, we report the performance of the method
referred to as Proposed with Encoder Swin-T obtained by
replacing our Encoder ViT with the distortion network based
on Swin Transformers. We observe that this method does
not perform well on the KoNViD-1k database. This could be
explained by the fact that both the Encoder Swin-T (trained
on authentic distortion database) and 3D Swin-T (trained on
Kinetics database [49] which contains videos selected from
YouTube) extract similar characteristics in the videos frames,
and therefore this modification does not provide a major
improvement for the final model.

3) STUDY OF TEMPORAL MEMORY BLOCK
In this scenario, we study the impact of the attention GRU
network. Firstly, we removed the attention GRU network in
our method. The performance of the resulting variant, called
Proposed without GRU, is presented in Table 3. We note
that this variant shows lower performance on both databases
(KoNViD-1k and LIVE-VQC) compared to our proposed
method. This confirms the importance of the attention GRU
network for capturing the dependencies among the combined
features. Through these ablation studies, we confirm the
importance of each component of our method and its
superiority compared to other considered alternatives.

F. COMPUTATIONAL EFFICIENCY
Finally, we evaluate the computational performance of our
proposed method. Following the approach of the authors
in [17], we selected twenty representative video sequences
from the CVD2014 database, ten with low resolution (640 ×

480) and ten with high resolution (1280 × 720). The videos
have variable lengths ranging from 11 seconds to 28 seconds,
with frame rates from 9 fps to 30 fps. We simulated
our method and the three other top approaches, namely
MaxVQA, FAST-VQA, and CNN-TLVQM, on a desktop
computer equipped with an NVIDIA Quadro RTX 8000 with
4608 CUDA cores. In Table 4, we report the average
computational complexity in terms of frames per second for
these methods.

As shown in Table 4, our method achieves the second-best
runtime. The best performer, FAST-VQA is approximately
3.4 times and 9 times faster than our method for low and
high-resolution videos, respectively. Our method can process
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TABLE 4. Average computational complexity (frames per second) on
example videos.

33% more frames per second compared to CNN-TLVQM
and nearly three times as many frames as the MaxVQA
methods on low-resolution videos, while performing com-
parably to them on high-resolution videos. Our method
and CNN-TLVQM consider all the frames in the videos,
resulting in nearly the same complexity. In contrast, FAST-
VQA andMaxVQA process only 128 frames per video in the
considered databases (i.e. clip_len = 32 and num_clips = 4),
which may affect the robustness of their solutions on other
video material.

V. CONCLUSION
In this paper, we have proposed an objective NR-VQA
method for UGC videos. The main contribution of our work
is a new method based on two complementary categories
of vision Transformers and attention recurrent networks
to predict the video quality. Experiments on two UGC
databases containing natural and complex distortions videos
demonstrate the effectiveness of our proposed method.

Despite these promising results, the performance of our
model could be improved. In this study, we did not take
into consideration the motion-related distortion features in
the videos, which could further boost the performance of our
proposed method on databases such as LIVE-VQC. In future
work, we plan to investigate vision Transformers models
which could efficiently extract these video features.
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