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ABSTRACT The Pediatric Intensive Care Unit (PICU) receives critically ill patients with shortness of breath
and poor body oxygenation. Various respiratory parameters, such as respiratory rate, oxygen saturation level,
and heart rate, are continuously monitored to timely adapt their management. With the advancement in
technology, measurements of most parameters are carried out bymedical instruments. However, some crucial
parameters are still measured via visual examination, particularly the assessment of chest deformation, which
is vital in assessing acute respiratory distress (ARD) conditions. However, visual examination is subjective
and intermittent, prone to human error, and challenging to monitor patients round the clock. This subjectivity
becomes problematic, especially in areas with a shortage of specialists, such as remote locations, developing
countries, or during pandemics. In this paper, we propose an automated acute respiratory distress condition
detection system, to address challenges associated with visual examination. The proposed approach utilizes a
high-definition camera to capture patient temporal visual information and employs advanced deep-learning
models to detect ARD condition. In order to test the feasibility, we collected video data of 153 patients,
including both with and without ARD in the PICU. As the deep learning models require substantial
amounts of data, and collecting data in the medical domain, particularly in the PICU, poses challenges.
To overcome data limited problem, we utilized the problem-specific information, opted transfer learning
and data augmentation techniques. Additionally, we compute baseline results of various video analysis
algorithms for ARD detection task. Experimental results illustrate that the deep learning base video analysis
algorithms have the potential to automate the visual examination process for the ARD detection task,
by achieving an accuracy of 0.82, precision of 0.80, recall of 0.89, and F1 score of 0.84.

INDEX TERMS Acute respiratory distress, deep convolution neural networks, retraction signs, silver-man
scoring, transfer learning, video classification.

I. INTRODUCTION
The primary objective of the respiratory system is to ensure
effective gas exchange in the bloodstream through inhalation
and exhalation process. During inhalation, the contraction
of the diaphragm and intercostals muscles increases the
volume of the thoracic cavity, resulting in decreased pressure

The associate editor coordinating the review of this manuscript and

approving it for publication was Sandra Costanzo .

within the lungs. This pressure difference causes air to
flow from the atmosphere into the lungs. Simultaneously,
oxygen is transferred to the bloodstream, and carbon dioxide
is transported from the bloodstream into the lungs. Under
normal conditions, the lungs provide oxygen to vital organs
and remove carbon dioxide. However, in the case of lung
injuries or viral infections, either an adequate amount of
oxygen cannot reach the bloodstream, or carbon dioxide
cannot be effectively removed. As a result, the brain activates
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FIGURE 1. Examples of chest retraction signs and their potential
locations.

accessory respiratory muscles to assist and maintain proper
gas exchange. This condition is widely known as Acute
Respiratory Distress (ARD). One of the most common
reasons for an infant’s admission to the pediatric intensive
care unit (PICU) [1]. In severe cases, ARD has a high
mortality rate, with about 40% of patient deaths resulting
from the condition [2].

ARD is a life-threatening condition, as prolonged and
excessive use of accessory muscles may progress to res-
piratory failure and subsequent cardiopulmonary arrest [3].
Hence, early-stage diagnosis of ARD is of paramount
significance in the PICU, because prompt detection and diag-
nosis facilitate timely intervention and treatment, markedly
enhancing patient survival rates and preventing severe
damage to vital organs [4]. Patients with ARD exhibit
a range of visual and auditory indicators, including an
increased breathing rate, an agitated or frightened look,
abdominal breathing, chest retractions, and wheezing or
grunting sounds [5]. Among these indicators, the identifi-
cation of chest retraction is a crucial, frequently utilized,
non-invasive method for evaluating the severity of ARD,
especially in the PICU [6]. Figure 1 depicts four types of
chest retractions and their potential locations. These include
intercostal retractions situated between the ribs, substernal
retractions at the bottom of the sternum bone, suprasternal
retractions above the sternum bone, and subcostal retractions
below the rib margin. Retraction signs are categorized into
two groups: mild and severe. Mild retraction signs are subtle
and may require careful observation for accurate detection,
relying significantly on the expertise of doctors or healthcare
professionals.

Unfortunately, relying solely on visual examination to
identify these signs introduces various challenges. This
method requires a substantial healthcare workforce, demand-
ing significant time and effort. It is also prone to human
error, as the examiner’s subjective interpretation can result
in inconsistencies when detecting and quantifying retraction
signs. Continuous visual monitoring of patients around
the clock presents logistical challenges. On top of that,
the subtle nature of mild retraction signs makes them
challenging to discern with the naked eye, increasing the
likelihood of oversight. These subjective limitations pose
even more significant problems, particularly in remote areas,
developing countries, and during pandemics, where the
availability of healthcare professionals is already constrained.
Researchers have tackled the aforementioned challenges by

creating medical instruments for various purposes, including
respiratory rate estimation [7], [8], [9], [10], [11], [12],
sleep apnea event detection [13], [14], [15], [16], tidal
volume estimation [17], [18], [19], and chest deformation
assessment [20], [21], [22].

In this paper, we have presented a novel approach that
mimics the visual examination procedure conducted by
doctors. The overview of the proposed ARD detection
system is depicted in Figure 2. Initially, a high-definition
camera captures the patient’s temporal visual information,
ensuring the inclusion of at least one complete cycle of
either inspiration or expiration. Subsequently, it extracts the
potential region of interest encompassing the patient’s torso,
which is then fed into the ARD detection block. The ARD
detection block employs advanced video analysis algorithms
for decision-making. Our primary objective is to explore
the feasibility of replacing the traditional visual examination
conducted by doctors with an automated approach. Through
extensive experimentation, we have identified that narrowing
down the input information and leveraging state-of-the-art
deep learning-based video analysis techniques allows for
the successful automation of the visual examination process.
These findings mark a significant advancement in the field,
opening new avenues for more efficient and accurate ARD
assessment. In summary, this paper makes the following
contributions:

1) We present an end-to-end automated system for
detecting ARD conditions, leveraging temporal visual
information from patients with the aid of an advanced
deep learning model.

2) We designed a mechanism to capture temporal visual
information for the Pediatric Intensive Care Units.

3) We collected video data from a wide range of
patients (from 0 to 18 years old) experiencing ARD
and computed the baseline results of video analysis
algorithms.

4) Additionally, we proposed solutions to address the
limited data problem by utilizing problem-specific
information, such as the selection of region of interest
(ROI).

The rest of the paper is organized as follows. Section II
presents the related work and identifies the research gap.
Section III details the data acquisition and labeling process.
Section IV outlines the proposed methodology, including
data processing steps such as temporal and spatial region
of interest extraction, and the ARD detection system
architecture. Section V covers the implementation details,
experimental results, cross-model evaluation, and qualitative
analysis. Section VI, discusses the results and limitations
of the work. Finally, Section VII concludes the paper and
outlines potential future work.

II. LITERATURE REVIEW
Traditionally, the respiratory rate was estimated by counting
the respiration cycles (inspiration and expiration) for one
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FIGURE 2. High level overview of our proposed acute respiratory distress detection system. 1). High-definition camera captures the temporal visual
information and 2). ROI is extracted within the video then 3). fed into the ARD detection block.

minute. However, with the advancement of technology,
Bai et al. [7] developed a contactless respiratory rate (RR)
estimation device that can calculate the RR (whether too low
or too fast) and generate an alarm if respiration stops for more
than 10 seconds. Their system utilizes two color cameras
to capture the patient’s torso information and temporal
differencing image processing to estimate RR. Likewise, Xia
and Siochi [8] developed a contactless respiratory monitoring
system employing a structured-light (SL) camera. The SL
camera captures temporal torso color information and depth
information, then estimates the RR by calculating the distance
of the thoracic region over time. Benetazzo et al. [9] advanced
the work of Xia and Siochi [8] by automating the thoracic
region extraction step. They employed the OPEN-AI library
to extract the thoracic region and compute its distance for
each frame, and the distance-to-time graph peaks depict the
RR.

In another study, Lee et al. [10] employed a Microwave
Doppler Radar (MDR) sensor to estimate the distance-to-time
graph for respiratory rate estimation. Mateu-Mateus et al.
[23] designed a respiratory rate estimation device using
an inexpensive camera. It captures the lateral perspective
of the patient and estimates the motion between two
consecutive frames using dense optical flow. Cheng et al.
[12] introduced a motion-robust noncontact method for res-
piratory rate measurement, employing two-level fusion. This
approach enhances RR estimation and improves reliability
by considering the signal-to-noise ratio (SNR). Experimental
findings indicate the method’s superiority, offering potential
advancements in video-based RR measurement.

Harte et al. [24] and Transue et al. [17] extended previous
work to estimate another respiratory parameter, such as
tidal volume. They employed a Microsoft Kinect camera to
capture the point cloud information of the thoracic region
and, with the help of a surface reconstruction algorithm,
reconstructed the 3D surface. They then calculated the
volume of each frame and used the volume-to-time graph and
subtraction approach to measure the tidal volume. Similarly,
Rehouma et al. [18] also proposed a contactless 3D imaging
approach to estimate tidal volume and respiratory rate in
the case of natural breathing. It employs 2× Time-of-Flight

cameras to capture point cloud torso information from both
lateral sides and register the point clouds into common world
coordinates. After that, they employed a Poisson surface
reconstruction [25] method to reconstruct the 3D surface of
the thoracic region. The volume of the reconstructed surface
was thenmeasured using the Octree algorithm for each frame.
Finally, the min-max subtraction technique was employed to
measure the tidal volume. They tested their technique on an
artificial mannequin with different settings (newborn, infant,
and adult) and on two actual patient datasets [11].
Rehouma et al. [20] proposed a contactless 3D imaging-

based system to recognize and quantify thoraco-abdominal
asynchrony, a vital sign of respiratory distress in patients.
Their system used a single RGB-D camera to capture torso
information and calculate 3D scene flow [26] to segment
the thoracic-abdominal region. They then used the Euclidean
distance method to measure the thoracic and abdominal
distances and plot the time vs. distance graph. They tested
their methods on artificial mannequin simulations, not on
actual patients. Di Tocco et al. [21] developed smart garments
and examined thoracoabdominal asynchronies by analyzing
time shifts between rib cage and abdomen movements.
The smart garment comprises three elastic bands, each
incorporating two conductive sensing elements that capture
the motion of thoracic and abdominal regions. Ottaviani et al.
[22] developed a contactless method for monitoring infants’
breathing patterns and thoracoabdominal asynchronies using
depth cameras. They employed depth cameras for precise
depth analysis, which is essential for monitoring breathing
patterns and thoracoabdominal asynchronies, making them
a suitable choice for this specific medical application. They
assessed their method for thoracoabdominal asynchronies on
12 patients with non-invasive respiratory support, evaluating
its feasibility in clinical settings.

To our knowledge, no study has employed visual informa-
tion for acute respiratory distress quantification. Most pro-
posed methods address respiratory rate signals [7], [8], [9],
[10], [11], [12] and tidal volume estimation [17], [18], [19],
while very few discuss thoraco-abdominal asynchrony [20],
[21], [22]. Additionally, these techniques do not report
clinical experiments, deployment feasibility, or significant
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constraints. In contrast to the aforementioned developments
in the clinical field, our focus is to provide an end-to-end
solution for ARD detection tasks under the constraints of
PICU.

III. DATA ACQUISITION
Data acquisition for patients with Acute Respiratory Distress
(ARD) is a challenging process. During the data collection
phase, we faced two primary challenges: 1) patient body
movements and occlusion due to hand movements and
clothing, and 2) camera position. Doctors mitigate these
problems by intervening during the visual examination to
minimize their impact. However, to address these issues,
we proposed recording the temporal-visual information for
30 seconds to predict whether the patient is experiencing
ARD or not. This strategy aims to capture at least one
static and unoccluded temporal region of the thoracic area
for the ARD detection system. This longer-duration strategy
allows us to mitigate the effects of the patient’s body and
hand movements and improve the accuracy of our approach.
The second major challenge is the availability of camera
positioning in the Pediatric Intensive Care Unit (PICU).
After discussions with doctors, we identified four potential
camera positions: the top right and left corners and the
bottom right and left corners of the bed, as shown in
Figure 3. However, we decided to dismiss the top left (a) and
right (b) corner camera positions due to the occlusion of the
suprasternal retraction sign from these two viewpoints. As a
result, we selected the bottom camera positions for further
experiments. The main position of the video acquisition
tool was (d) bottom right, where there was no caregiver
intervention, and sometimes (c). This decision was made
in consultation with medical professionals to maximize the
visibility of relevant visual information.

After review ethic board (REB) approval of the study
(Ste-Justine REB number 2016-1242) and parent consent
obtained, we employed a Microsoft Azure RGB-D sensor
color camera (ultra-HD 12 megapixel RGB camera) to record
patients’ temporal-visual information at the CHU-Sainte-
Justine Hospital’s PICU. The recordings were primarily
conducted during the patients’ sleep periods to minimize
unnecessary movements. However, it is worth noting that
in many cases, patients showed noticeable movements
involving their head, hands, and legs, ranging from slight to
significant. During the data collection, we selected patients
with respiratory conditions or potential candidates. This
strategy ensured that our dataset encompassed a diverse range
of cases related to respiratory conditions. By addressing
the challenges, we aimed to create a comprehensive dataset
that accurately represents various scenarios encountered in
the PICU. The dataset contains individuals with diverse
characteristics, including skin color and ethnicity, and a wide
age range from 0 to 18. By incorporating this diversity, our
dataset represents a broad population of patients in terms of
skin color, gender, and age groups, enhancing the inclusivity
and applicability of our proposed approach.

FIGURE 3. Available camera position in the pediatric intensive care units:
top a). left and b). right, and bottom c). left and d). right.

A. DATA LABELING
In this study, 210 potential and respiratory distress patients
participated. One video was recorded per patient. The
videos were labeled by two professionals through visual and
video analysis, utilizing the Silverman scoring method [27],
considered the gold standard. The scoring method indicates
mild respiratory distress in the presence of at least one mild
retraction sign, while the presence of at least one severe
retraction sign indicates severe respiratory distress. In the
absence of any retraction sign, it indicates no respiratory
distress. We asked two professionals to label the data in two
different ways to demonstrate that videos can also be used
for examination. Professional 1 labeled the videos during the
recording process, while Professional 2 labeled the videos
based on their analysis of the recorded footage. We compared
the labels provided by the two professionals and removed
cases with disagreements from the dataset to ensure its
validity. As clinical evaluation is subjective, the scoring was
done by two clinicians to achieve validated labeling.

Initially, the videos in the dataset were labeled into three
classes: mild respiratory distress, severe respiratory distress,
and no respiratory distress. For this study, we simplified
the problem into a binary classification task. Among the
210 patients, 57 had their torsos fully covered by clothing,
posing a challenge for detection and causing disagreements.
Therefore, we excluded these cases, resulting in a total of
153 patients. Of these, 88 were labeled as having acute
respiratory distress (ARD), while the remaining patients
were labeled as non-ARD. Out of 88, 57 patients had mild
respiratory distress, with the majority showingmild subcostal
(50) and intercostal (25) retractions. In contrast, 31 patients
were classified with severe respiratory distress, predomi-
nantly exhibiting severe subcostal (26) and substernal (7)
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TABLE 1. Statistics of acute respiratory distress patients and associated
retraction signs.

retractions. Table 1 shows the detailed statistics of acute
respiratory distress patients and the associated retraction
signs.

IV. METHODOLOGY
Our approach for detecting Acute Respiratory Distress
(ARD) involves a three-step process inspired by the visual
examination procedures conducted by medical professionals.
The first step entails using a high-resolution camera posi-
tioned on the bottom left or right side of the patient’s bed
in the pediatric intensive care unit. The camera, mounted
on a stand at a 45-degree angle and placed 2 meters above
the ground, captures temporal visual information. In the
second stage, our system spatially identifies potential regions
of interest in the acquired video. Lastly, we address ARD
detection by framing it as a video classification problem.
To ensure the self-contained nature and reproducibility of our
work, we comprehensively describe the proposed approach in
the following sections. We discuss the pre-possessing(spatial
& temporal region of interest detection), and ARD detection.
The pseudo code for the ARD detection system is presented
in Algorithm 1.

Algorithm 1 Pseudo Code of Acute Respiratory Distress
(ARD) Detection System

1 Input: Input video (V ), 3D-CNN model (M ) trained on
ARD hospital data

2 Output: 1 if ARD exists, 0 otherwise
3 Initialize: Input video available for 6.4 seconds
4 Repeat
5 Select the patient’s Thoracic-abdominal region
6 Spatially crop and resize the video to (256 × 256)
7 Temporally sub-sample the video to 10 FPS
8 Pass the pre-process video to the model (M )
9 If score ≥ 0.5:
10 Return 1 (patient has ARD)
11 Else:
12 Return 0 (patient has no ARD)
13 Until the input video is no longer available

A. TEMPORAL-SPATIAL REGION OF INTEREST
EXTRACTION
This step is crucial as it enables the isolation of spe-
cific areas containing vital information relevant to Acute

TABLE 2. Respiratory rates for different age groups.

Respiratory Distress (ARD). To accomplish this, we employ
a combination of spatial and temporal analysis techniques.
Initially, a spatial extraction step is conducted to identify
potential regions in the recorded video frames that are
relevant to the ARD detection task. This involves segmenting
the abdominal-thoracic regions, which are known to exhibit
crucial visual cues for ARD detection. By isolating these
specific regions, the system can concentrate on relevant areas,
thereby discarding unnecessary information and enhancing
both robustness and computational efficiency. Secondly,
we temporally crop the videos to ensure they contain at least
one complete inspiration/expiration cycle. This approach is
undertaken because retraction signs become more prominent
towards the end of the inspiration cycle.

1) SPATIAL SEGMENTATION
The recorded dataset consists of videos with a resolution of
1080 × 1920 and a frame rate of 30 FPS. Nonetheless, these
high-resolution videos include unnecessary information,
leading to computational inefficiency and overfitting issues,
especially given the limited data. Unfortunately, existing
video analysis techniques in the literature do not specifically
address such high-resolution videos. Therefore, resizing the
videos is necessary to improve computational efficiency
and transform the data into a suitable format for further
processing. However, simply resizing the videos without
considering the content can result in the loss of essential
information, particularly regarding the region of interest.
For example, with the original video size of 1080 ×

1920 and an ROI size of 256 × 256 (which varies from
patient to patient), resizing the video frames to fit the data
into the network can reduce the ROI size to 52 × 52.
This resizing process leads to a significant loss of spatial
information.

To overcome this problem, we propose spatially seg-
menting the videos by extracting the potential region of
interest. In our case, the thoracic-abdominal region is
identified as the potential ROI, as it primarily participates
in respiratory activities and the retraction signs related to
ARD predominantly appear in these areas. By extracting
the potential ROI, we allow the network to concentrate
exclusively on the relevant regions, helping it to learn more
distinct and low-level features. Computational efficiency is
also improved by narrowing down the videos, resulting in
faster processing times and reduced power consumption. For
now, wemanually perform spatial segmentation on the videos
to support our case studies.
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FIGURE 4. A 2D convolution neural network based respiratory distress (ARD) detection system. 1) Spatial Features
Extraction Block: This block focuses on extracting spatial features from each video frame independently. 2) Temporal
Feature Extraction Block: It extracts the temporal features that capture the relationships between frames. A recurrent
neural network, specifically LSTM (Long Short-Term Memory), is employed to extract the temporal features.

2) TEMPORAL SEGMENTATION
During data collection, we recorded videos with a maximum
duration of 30 seconds, capturing 30 frames per second
(FPS), resulting in approximately 900 frames per video.
However, processing such lengthy videos poses challenges
in terms of computational efficiency and a higher risk
of overfitting, particularly with a limited dataset size.
No existing models in the literature are explicitly designed to
handle such long-duration videos. Inspired by the temporal
sliding window method commonly used in histopathology
whole-slide image analysis [28], we applied a similar
approach to our data by temporally dividing the videos into
smaller segments. To determine the duration of these video
segments, we considered respiratory rate (RR) statistics.
Retraction signs, which are vital indicators of ARD, typically
manifest from the start to the end of inspiration/expiration.
The duration from the start to the end of inspiration/expiration
is crucial for ARD detection. However, RR varies depending
on the age and health condition of the patient. For example,
infants have an RR of around 30-60 breaths per minute,
which decreases to approximately 12-16 breaths per minute
for adolescents. Table 2 displays RR per minute for different
age groups. Extracting precise RR solely from RGB data is
challenging, especially when the patient is making unneces-
sary movements. Considering RR states, an adolescent takes
6.4 seconds to complete one respiratory cycle and 3.2 seconds
for inspiration/expiration. Therefore, a 3.2-second video clip
is deemed ideal for our tasks. However, due to a lack of
knowledge about the exact start of inspiration/expiration,
we chose 4.8 and 6.4-second video segments for analysis.

The longer duration video clip allows us to capture at
least one start and end of inspiration/expiration while
considering the variation in respiratory rates. By focusing
on this segment, we can effectively analyze the temporal
features associated with ARDwhile managing computational
resources efficiently.

B. ACUTE RESPIRATORY DISTRESS DETECTION NETWORK
Once we have spatially and temporally cropped and prepro-
cessed videos, they are fed into the ARD detection network.
We framed our ARD detection problem as a video classi-
fication or action recognition task. Traditionally, research
addressed action recognition problems using spatial-temporal
handcrafted features [29] and optical flow [30] techniques.
However, recent advancements in deep convolutional neural
networks (CNNs) have revolutionized vision-related tasks,
including image classification [31], object localization and
segmentation [32], and action recognition [33]. Therefore,
motivated by the success of deep CNN architectures in visual
tasks, we leverage their capabilities to address the respiratory
distress detection problem. By utilizing deep CNN architec-
tures, we aim to automatically learn discriminative features
from the preprocessed video data, enabling the network to
detect respiratory distress effectively.

Deep learning-based algorithms for video classification or
action recognition are categorized into two main categories:
2D-CNNs combined with recurrent neural networks (RNNs)
and 3D-CNNs.

1) 2D-CNNs & RNNs: Figure 4 shows the framework
of a 2D-CNN + RNN based ARD detection system.
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This approach combines the strengths of 2D-CNNs and
RNNs [34] to capture spatial and temporal information.
It employs 2D-CNNs to extract spatial features from
individual video frames. Then, the extracted spatial
features are fed into a RNNs, such as LSTM (Long
Short-Term Memory) [35] or GRU (gated recurrent
unit) [36]. Initially, RNNs were designed to deal with
time series data such text classification [37], sound
classification [38]. Later on, researcher employed it for
action recognition task [34], [39], [40] combining with
2D-CNNs. RNNs maintain an internal hidden state that
is updated over time, allowing the network to capture
the temporal evolution of actions or movements. As the
RNN processes the spatial features over time, it models
the temporal dependencies between frames, effectively
capturing the motion dynamics and temporal evolution
of actions in the video. Additionally, RNNs uses
shared weights to learn temporal features making
it computationally efficient during interfering time.
Combining the strengths of the 2D-CNNs and RNNs
allows the network to learn distinct spatial and temporal
features from the videos.

2) 3D-CNNs: Unlike the previous approaches,
3D-CNNs [41] capture spatial and temporal informa-
tion simultaneously. It employees 3D convolutional
filters, which consider video data’s width, height, and
time dimensions. It allows the network to learn joint
representations of appearance and motion features,
comprehensively understanding the video content.
By convolving 3D filters over the spatiotemporal
volume of the video, 3D-CNNs capture spatial and
temporal correlations. The spatial dimension captures
appearance-related features like shapes and textures,
while the temporal dimension encodes motion-related
features such as movement and dynamics. Learning
these joint representations enables the network to
recognize complex spatiotemporal patterns and dis-
tinguish different actions or activities based on their
characteristics. 3D-CNNs have demonstrated remark-
able success in various video-related applications,
including action recognition, video segmentation, and
anomaly detection [41], [42], [43], [44]. Figure 5 shows
3D convolutions neural networks based ARD detection
system.

V. EXPERIMENTAL RESULTS
We initiated experiments to examine the impact of spa-
tial segmentation, various frame sampling rates (2,3,4,5,6)
commonly used in action recognition task and temporal seg-
mentation (3.2,4.8 and 6.4 seconds). Then, we experimented
various types of deep learning based video-classification
algorithms.

A. IMPLEMENTATION DETAILS
For model training and testing, we divide 30-second-long
patient videos into smaller video clips, as discussed in

Section IV-A2. Each video is segmented into, for example,
6.4-second clips consisting of 192 frames. We temporally
sub-sample the videos at a rate of 2 (15 FPS), as per standard
practices. Then, we spatially crop the videos to the shorter
side of the frames to maintain the aspect ratio and resize them
to T × 3 × 256 × 256, where T is the number of frames.
Stochastic gradient descent with an initial learning rate of
0.0005 and a momentum of 0.9 is utilized to mitigate the
risk of converging to local minima. The optimization process
employs a binary cross-entropy loss function and a batch size
of 64, using gradient accumulation techniques.

To address small data and overfitting problems, several
strategies were implemented. Firstly, the training videos were
temporally divided into smaller chunks to increase the data
size. Secondly, problem-specific crops were applied to the
video to focus on the region of interest (ROI), specifically
the torso region. Thirdly, we chose to implement transfer
learning techniques rather than training the model from
scratch, drawing inspiration from the encouraging outcomes
reported in several studies that utilized smaller datasets.
Additionally, online data augmentation techniques, including
flipping, random cropping, rotating, temporally jittering, and
early stopping were used.

B. DATA PREPROCESSING AND EVALUATION METRICS
Primarily, we spatially crop the videos, centering on the
patients (whole body), as a prepossessing step for all
experiments. We split 153 videos (one 30-seconds video per
patient) into two disjoint sets (training - 70% and validation -
30%): T1, composed of 107 videos, is the training set, and T2,
composed of 43 videos, is the validation set for fine-tuning
model parameters. An iterative splitting method [45], based
on retraction signs information, is used to equally distribute
instances of each class into the training and validation sets.
We artificially increase the training data size by temporally
splitting videos (14 clips per video), resulting in a data
size of 1498 clips. While during testing, we used four
non-overlapping clips 6.4 seconds per video, to compute the
average classification scores. However, in case of 3.2 and
4.8 seconds clips, we select 8 and 6 clips per video clips per
video. Evaluation metrics include accuracy, precision, recall,
and F1 score were used to evaluate the performance of model.
We employ three-fold cross-validation test at the patient level
to ensure a reliable evaluation of the proposed approach’s
performance.

C. PRELIMINARIES RESULTS
In the experiments, we established baseline results and
proposed solutions to enhance model performance. We set
an initial benchmark by evaluating 3D-CNN-based video
analysis algorithms on our ARD dataset. To assess accuracy,
we employed the channel-separated 3D convolutional net-
work (CSN) [42], recognized for its superior performance in
human action recognition (HAR) tasks on the Kinetics-400
dataset. We fine-tuned the CSN − R101 originally trained
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FIGURE 5. 3D Convolution Neural Network Based Acute Respiratory Distress detection network.

TABLE 3. Experimental results of with and without torso selection.

on the Kinetics-400 HAR dataset on the ARD dataset by
modifying the classification head rather than training the
model from scratch.

1) BASELINE
Table 3 shows the results of the deep learning-based ARD
detection network on spatially cropped (full patient) videos
with a clip duration of 6.4 seconds and a frame sampling
rate of 2 (15 FPS). Our experimental results indicate that
the model trained on full patient videos suffers from severe
over-fitting problems. The model achieves an accuracy of
0.725, precision of 0.747, recall of 0.724, and an F1 score of
0.733. This is due to the limited data, which causes the model
to memorize high-level (background) information, such as
external respiratory support devices, and fail to generalize
during testing. Additionally, we experimented with and
without spatial resizing and obtained similar performance.

2) SPATIAL SEGMENTATION
Table 3 presents the results of the deep learning-based
ARD detection network with and without torso selection.
The experimental results indicate that selecting the ROI
significantly helps the model learn more distinct and
relevant features compared to not selecting the torso, thereby
enhancing the model’s performance. The model achieves an
accuracy of 0.812, precision of 0.809, recall of 0.849, and an
F1 score of 0.828 with torso selection. In contrast, without
torso (ROI) cropping, the model’s performance is noticeably
lower, with an accuracy of 0.725, precision of 0.747, recall of
0.724, and an F1 score of 0.733. This indicates that focusing
on the region of interest, especially in the case of limited data,
helps prevent overfitting and assists the model in learning

TABLE 4. Experimental results of different frame sampling rates.

distinct low-level features. In our subsequent experiments,
we utilized data that had undergone torso selection.

3) FRAME SAMPLING RATE
The optimal frame sampling rate (step size) depends on the
specific information the model aims to detect [46]. In our
ARD dataset, which involves newborn infants exhibiting
varying respiratory rates (30 - 60 breaths per minute), careful
selection of the frame sampling rate is crucial to avoid the
loss of critical information. To explore this, we conducted
experiments using five different frame sampling rates: 2, 3,
4, 5, and 6, which are commonly used in action recognition
tasks. Throughout these experiments, we maintained a fixed
6.4-second video clip length and trained and tested the model
with different frame sampling rates. The experimental results,
presented in Table 4, show the model performance for each
frame sampling rate setting and their computational cost
for one clip. The results indicate that a frame sampling
rate of 3 achieves the highest accuracy (0.819), precision
(0.798), recall (0.891), and F1 (0.840). However, as the frame

TABLE 5. Experimental results of different clip duration.
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TABLE 6. Experimental results of various video analysis algorithms and their computational time.

sampling rate increases beyond 3 (larger step size), there
is a gradual degradation in performance. The decrease in
performance with higher sampling rates is likely due to the
loss of essential temporal details for respiratory distress.
This leads to the generation of false positive samples during
training, causing the model to focus on irrelevant features.
In contrast, low frame sampling rates (smaller step size) may
introduce noise and add unnecessary information, making
the model overly sensitive to small changes and thus less
generalized.

4) TEMPORAL SEGMENTATION
In this experiment, we investigate the impact of varying the
duration of video clips on the training and testing of the
ARD detection model’s performance. For this experiment,
we use a fixed frame sampling rate of 3 (10 FPS). Table 5
presents the experimental results of the ARD detection model
using different video clip durations and their corresponding
computational time per clip. The clip lengths considered
are 3.2 seconds, 4.8 seconds, and 6.4 seconds, as discussed
in Section IV-A2. The results for a video clip duration of
3.2 seconds are presented in the first row of Table 5. The
model achieved an accuracy of 0.732. Due to the absence
of precise information regarding the start and end times
of inspiration/expiration cycles, this limitation causes the
training data loader to generate false positive examples,
leading the model to learn irrelevant information.

However, as the clip duration increases, the model’s
accuracy improves from 0.732 to 0.789 and 0.819, as shown
in the second and third rows of Table 5. This improvement
is because longer video clips provide the model with more
comprehensive temporal information, enabling it to better
capture distinct and relevant features. The 6.4-second clip
achieved the highest performance with the best F1 score of
0.840, emphasizing the importance of considering a longer
duration for effective ARD detection. In summary, a clip
duration of 6.4 seconds appears to be the most effective

for achieving optimal performance in detecting respiratory
distress based on the presented experimental results.

D. EXPERIMENTAL RESULTS OF VIDEO ANALYSIS
ALGORITHM
In this study, we explore two main types of video analysis
algorithms: 2D − CNNs with LSTM and 3D − CNNs
for acute respiratory distress (ARD) detection. We conduct
experiments using a 6.4-second video clip and a frame
sampling rate of 3 (10 FPS) because it outperforms other
settings. The rest of the configuration details are shown
in Table 6. For the first type of model, we use ResNet −

50 trained on the ImageNet dataset and train the LSTM layer
from scratch on the ARD dataset. On the other hand, we use
3D-CNN models trained on the action recognition video
dataset and fine-tune them on the hospital ARD database by
changing the classification head. Additionally, we use data
augmentation techniques to enhance the dataset and an early
stopping function to improve performance and avoid over-
fitting. Furthermore, we run a 3-fold cross-validation test to
assess the generalizability of the models, and the average
score across the folds is used to evaluate the performance
of various models. The results are summarized in Table 6,
providing insights into the performance of the video analysis
algorithm on our hospital’s ARD database. The table shows
the minimum, average, and maximum scores of each model
across the 3-fold cross-validation. 2D − CNNs + LSTM ,
employing ResNet-50 for spatial feature extraction and
a single-layer LSTM for temporal information extraction,
achieve an accuracy of 0.775. They demonstrate a reasonable
balance between precision (0.786) and recall (0.794), with an
F1 score of 0.789.

In the evaluation of 3D-CNNmodels for Acute Respiratory
Distress (ARD) detection, various architectures are explored,
such asR(2+1)D−R50, SlowFast−R101,X3D,CSN−R101,
and SWIM − VIT . The R(2 + 1)D, which uses the ResNet −

50 architecture, shows reasonable performance in ARD
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FIGURE 6. Qualitative results of an acute respiratory distress detection model using class activation maps (CAM) reveal that the model has learned
problem-specific features, concentrating exclusively on the torso region of the patients. Nevertheless, in some cases such as (a), (b), (f), and (g), it also
learns irrelevant features, focusing on non-interested regions.

detection, achieving an accuracy of 0.775 and demonstrating
balanced precision and recall at 0.775 and 0.822, respectively.
The S3D model achieves an average accuracy of 0.75,
precision of 0.77, recall of 0.77, and an F1 Score of 0.77.
The SlowFast − ResNet − 101 architecture shows moderate
performance with an accuracy of 0.761. Notably, it displays
effective recall at 0.85, showcasing its ability to correctly
identify positive instances. The X3D model achieves an
accuracy of 0.804, precision of 0.833, recall of 0.80, and
an F1 score of 0.812. The SWIM − VIT model achieves an
accuracy of 0.812, precision of 0.821, recall of 0.849, and
an F1 Score of 0.831. The CSN − R101 model demonstrates
superior performance compared to other models, with an
accuracy of 0.819, a precision of 0.798, a recall of 0.891,
and an F1 score of 0.840. However, the performance variation
between different models is due to the design and complexity
of the model. The models such as R(2 + 1)D, Slow −

Fast − R101, and S3D are designed with a frame sampling
rate of 5. As a result, they learn the large motion features.
On the other hand, X3D, CSN − R101, and SWIM − VIT
are designed with a sampling rate of 2. Therefore, they are
able to learn the small spatial-temporal features effectively.
Because of this, they show optimal performance on the ARD
hospital dataset. Additionally, the 3D − CNNs trained on
an action recognition dataset naturally capture the temporal
information, leading to optimal performance compared to
2D − CNNs + LSTM . In terms of computational cost and
evaluation metrics, the CSN−R101 model outperforms other
models.

E. QUALITATIVE ANALYSIS
Figure 6 presents the qualitative results of an acute respiratory
distress detection model using class activation maps (CAM).
The findings reveal that the model has learned problem-
specific features, concentrating on the thoracic-abdominal
(torso) region of the patients, such as the rib cage and the area
between the abdominal and rib cage. Remarkably, the model
has also identified other important features, such as the
agitated and frightened look (facial features) and restlessness
(motion), which are additional symptoms of acute respiratory
distress conditions. This suggests that the model has the
potential to capture broader cues related to ARD beyond
the specific regions of interest initially targeted. However,
in some cases, such as (a), (b), (f), and (g), the model
has also partially focused on irrelevant features, examining
non-relevant regions that are not associated with ARD. These
findings show that the deep learning model has the potential
to automate acute respiratory distress detection.

VI. DISCUSSIONS
The experimental results emphasize the crucial role of
carefully selecting data pre-processing techniques to improve
the overall performance of acute respiratory distress (ARD)
detection. The first experiment shows that focusing on the
thoracic-abdominal area only when analyzing videos signifi-
cantly boosts the model’s performance, aiding in preventing
overfitting, particularly when dealing with limited data.
In contrast, the model trained on full patient videos suffers
from severe overfitting problems. This is due to limited
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data causing the model to memorize high-level (background)
information, such as external respiratory support devices.
Moreover, the exploration of different frame rates highlights
the influence of frame sampling rates on the model’s
performance in the ARD detection task. A higher frame
sampling rate results in the loss of essential temporal details
for respiratory distress detection, leading to the generation
of false positive samples during training and causing the
model to focus on irrelevant features. Therefore, the optimal
frame sampling rate is critical for effective respiratory rate
detection. Additionally, the choice of the right video clip
duration is crucial for effective ARD detection. Due to
the lack of precise information about the exact start and
end times of inspiration/expiration cycles, the training data
loader generates false positive examples, leading the model
to learn irrelevant features. On the other hand, longer video
clips provide the model with more comprehensive temporal
information during training and testing, enabling it to better
capture distinct and relevant features. The 3D − CNNs,
especially CSN − R101 and SWIM − VIT , outperform 2D−

CNNs + LSTM and other 3D − CNNs models, leveraging
their ability to capture both large and small temporal features.
However, our proposed approach faces challenges when
patients make movements due to coughing and crying. These
substantial movements make it challenging to accurately
assess retraction signs even through visual examination.
In summary, our model is sensitive to patient movements.

VII. CONCLUSION & FUTURE WORK
Acute respiratory distress is a life-threatening condition
caused by lung diseases or viral infections. Traditional ARD
detectionmethods are subjective, prone to human error, labor-
intensive, and challenging for continuous 24/7 monitoring.
To address these challenges, we have developed an innovative
automated acute respiratory distress detection system using
deep convolutional neural networks. We have demonstrated
that state-of-the-art deep convolutional neural networks can
effectively automate ARD detection tasks. Our proposed
system overcomes the limitations of visual examination
procedures and intermittent monitoring. If validated under
clinical conditions, this method could help alleviate the
shortage of medical specialists in remote areas, developing
countries, and during pandemics. As part of future work,
we plan to gather more data and automate the detection
of spatial and temporal regions of interest, which play a
significant role in the ARD detection model. We also intend
to expand our scope beyond ARD detection to include the
identification and quantification of retraction signs to assist
doctors in a more effective manner. To obtain access to the
data, please reach out to Philippe Jouvet. Note that specific
institutional review board rules will apply.
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