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Abstract: Energy consumption analysis has often faced challenges such as limited model accuracy
and inadequate consideration of the complex interactions between energy usage and meteorological
data. This study is presented as a solution to these challenges through a detailed analysis of energy
consumption across UBC Campus buildings using a variety of machine learning models, including
Neural Networks, Decision Trees, Random Forests, Gradient Boosting, AdaBoost, Linear Regression,
Ridge Regression, Lasso Regression, Support Vector Regression, and K-Neighbors. The primary
objective is to uncover the complex relationships between energy usage and meteorological data,
addressing gaps in understanding how these variables impact consumption patterns in different
campus buildings by considering factors such as seasons, hours of the day, and weather conditions.
Significant interdependencies among electricity usage, hot water power, gas, and steam volume
are revealed, highlighting the need for integrated energy management strategies. Strong negative
correlations between Vancouver’s temperature and energy consumption metrics are identified,
suggesting opportunities for energy savings through temperature-responsive strategies, especially
during warmer periods. Among the regression models evaluated, deep neural networks are found
to excel in capturing complex patterns and achieve high predictive accuracy. Valuable insights
for improving energy efficiency and sustainability practices are offered, aiding informed decision-
making for energy resource management in educational campuses and similar urban environments.
Applying advanced machine learning techniques underscores the potential of data-driven energy
optimization strategies. Future research could investigate causal relationships between energy
consumption and external factors, assess the impact of specific operational interventions, and explore
integrating renewable energy sources into the campus energy mix. UBC can advance sustainable
energy management through these efforts and can serve as a model for other institutions that aim to
reduce their environmental impact.

Keywords: energy consumption; machine learning; meteorological data; regression models; energy
efficiency; UBC Campus; neural networks; electricity usage

1. Introduction

In 2018, global building emissions increased by 2% for the second consecutive year,
reaching 9.7 gigatons of carbon dioxide (GtCO2) [1]. This marks a shift from the trend
observed between 2013 and 2016, when emissions stabilized. Floor space and population
growth have led to a 1% rise in energy consumption in buildings, reaching 125 exajoules
(EJ), which constitutes 36% of the global energy use [1]. Academic buildings on a typical
UK university campus cover about 42% of the total area and are responsible for nearly 50%
of the campus’s energy consumption and carbon emissions [2]. Predicting energy usage
in these buildings has become increasingly important for facility managers, aiding energy
planning and regulation [2]. Accurate forecasting can reveal potential energy savings
and support energy conservation efforts on campuses [3]. However, energy consumption
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is influenced by various factors, including meteorological conditions, electromechanical
system operations, and holiday schedules, making predictions challenging due to the
inherent nonlinearity and uncertainty [3].

There are two main approaches for predicting building energy consumption: physical
and data-driven models [4]. Physical models analyze buildings based on physical principles,
but require extensive data and long simulation times, making them complex and less
efficient. In contrast, data-driven models use historical data to predict energy consumption,
and are known for their flexibility, ease of data acquisition, and accuracy [5].

This study evaluates different data-driven models, including machine learning and
deep learning techniques, to assess their effectiveness in predicting the energy consumption
of campus buildings. Specifically, it compares various machine learning models (e.g.,
Decision Tree, Random Forest, Gradient Boosting) and neural networks (ANN) across
167 buildings on the UBC Campus. The analysis examines the prediction accuracy using
metrics such as MAE and R2 scores, providing insights into the performance of these
models.

The goal of this article is to conduct a detailed analysis of energy consumption within
UBC Campus buildings using a range of machine learning models, including Neural Net-
work, Decision Tree, Random Forest, Gradient Boosting, AdaBoost, Linear Regression,
Ridge Regression, Lasso Regression, Support Vector Regression, and K-Neighbors. This
study explores how different factors—such as season, time of day, and meteorological
conditions—affect energy consumption patterns. This research uses sophisticated analyti-
cal methods to uncover and quantify the complex relationships between energy demand
and environmental factors. The findings of this research offer valuable insights for improv-
ing energy efficiency, sustainability practices, and informed decision-making for energy
management in educational campuses and similar urban settings.

A fundamental knowledge gap in energy consumption analysis lies in the limited
accuracy of traditional models and their inability to fully capture complex interactions
between energy usage and meteorological data. Conventional approaches often fail to
account for the intricate, nonlinear relationships between environmental factors and energy
demand, leading to suboptimal predictions and reduced effectiveness of energy manage-
ment strategies. Addressing this gap requires the application of more advanced models
that can better understand these dynamic interactions, ultimately improving forecasting
accuracy and energy optimization efforts.

To conduct a detailed analysis of the energy consumption within UBC Campus build-
ings using various machine learning models, it is crucial to examine the challenges faced
in previous studies and highlight the need for more advanced techniques. One of the
primary issues identified in earlier research is the reliance on relatively simple statistical
models, which, while more straightforward to implement, often fall short of capturing the
full complexity of energy consumption dynamics. For instance, Khuram Pervez Amber
et al. [6] developed a forecasting model using Multiple Regression (MR) to predict the
daily electricity consumption in university buildings based on six explanatory variables,
including ambient temperature, solar radiation, and building type. Although the model
achieved promising results, with a Normalized Root Mean Square Error (NRMSE) of 12%
and 13% for two different building types, it struggled to account for the deeper nonlinear
interactions between these variables. The study emphasized the need for more reliable and
flexible models to accommodate a broader range of buildings and capture more complex
relationships between variables.

Similarly, Sadeghian Broujeny et al. [7] outlined the challenges in forecasting building
energy consumption due to the intricate management of multiple influencing parameters.
Their work demonstrated the effectiveness of artificial intelligence (AI) models, such as
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), achieving an RMSE of
0.23. However, they also highlighted the need to select optimal time lags and exogenous
data to enhance the model performance. While these AI models provide superior predictive
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accuracy, challenges remain in managing model complexity and extracting meaningful
historical knowledge from a wide range of features.

These studies underscore the knowledge gap in developing models that can accurately
forecast energy consumption while capturing the complex nonlinear interactions between
meteorological variables and energy usage. To explore these interdependencies more effec-
tively, this article aims to bridge this gap by employing various machine learning models,
including Neural Networks, Decision Trees, Random Forests, and Gradient Boosting. In
doing so, this study sets out to establish new baseline accuracy levels and address the
limitations of prior work, where simpler models or narrowly focused AI techniques may
have missed critical patterns in energy consumption. Applying these advanced models
will provide a more comprehensive understanding of how factors, such as temperature,
time of day, and seasonal variations, influence energy use in campus environments, thereby
establishing a new benchmark for future research.

2. Literature Review and Background

Lei et al. [8] developed a prediction model for building energy consumption by inte-
grating rough sets with deep learning, utilizing a data-driven and adaptive control scheme.
Their model combines the rough set theory, which uses a genetic algorithm-based attribute
reduction method to eliminate redundant factors, with a deep belief network (DBN) for in-
formation recognition. This hybrid approach significantly improves the prediction accuracy
for both short-term and medium-term energy consumption compared to traditional neural
networks like BP, Elman, and fuzzy neural networks. The use of rough set theory reduces
the number of inputs, thereby enhancing the performance of the DBN. This advancement
highlights the potential of machine learning to create accurate building energy simula-
tions, thereby enabling more effective real-time power supply scheduling and demand
management.

Fan et al. [9] explored the effectiveness of deep learning techniques for predicting
building cooling loads, comparing them with state-of-the-art prediction methods and fea-
ture extraction techniques. They found that deep learning methods, particularly nonlinear
techniques like extreme gradient boosting (XGB), outperformed linear methods. The best
performance was achieved using XGB models with features extracted by unsupervised
deep learning models such as deep autoencoders. Interestingly, supervised deep learning
models did not require complex architectures; a shallow model with two hidden layers
sufficed, likely due to dataset size and inherent patterns. This study underscores the value
of unsupervised deep learning in feature extraction, which consistently improves the pre-
diction accuracy over conventional methods. The proposed deep learning-based techniques
offer precise 24-h-ahead cooling load predictions, which help build operation management,
demand-side management, optimal control strategies, and fault detection. Future research
should explore diverse data sources to validate and expand on these methods.

Jui-Sheng Chou et al. [10] reviewed machine learning techniques for energy con-
sumption forecasting in buildings using real-time smart grid data. They highlighted the
effectiveness of hybrid models that combine forecasting and optimization techniques,
demonstrating improved accuracy and usability for energy management planning. This
review contributes to advancing energy efficiency and sustainable development efforts.

Carla Sahori Seefoo Jarquin et al. [11] examined five university buildings to create day-
ahead load forecasts using feed-forward neural networks trained with a similar day method.
They classified data into low, medium, and high consumption categories and evaluated
ten models per category against benchmarks. Most models exceeded benchmarks and
met ASHRAE accuracy standards, with notable improvements from incorporating features
like seasonal shifts, day-night cycles, and recency effects. Models M3, M9, and M10 were
remarkably accurate. Despite the robust point forecasts, the prediction intervals from the
dynamic ensemble approach were too narrow, suggesting the need for alternative methods.
This research indicates the potential for extending forecasts to include heat demand, various
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facility types, smart cities, and energy communities, emphasizing hierarchical forecasting
for better collective energy management.

Bo Han et al. [3] analyzed the use of support vector machine (SVM), Gaussian process
regression (GPR), and decision tree (DT) models for predicting campus building energy
consumption. Their comparative study found that the SVM model achieved the highest
prediction accuracy, outperforming the GPR model by 5.79% and the DT model by 13.93%.
This study demonstrated the feasibility and effectiveness of the SVM model in accurately
predicting the electricity consumption in campus buildings, highlighting its superiority
over other prediction methods.

Bilal Akbar et al. [2] investigated two data-driven forecasting techniques, artificial
neural networks (ANN) and multiple regression (MR), to estimate daily electricity usage at
London South Bank University. Using historical data from 2007 to 2011, they analyzed the
impact of five different climate factors on energy consumption. They found that energy
consumption is highly influenced by the Weekday Index, a proxy for building occupancy,
and Dry Bulb Temperature. ANN outperformed MR, achieving mean absolute percentage
error (MAPE) values of 2.44% for working days and 4.59% for non-working days. Both
techniques performed well; however, the ANN demonstrated a slight advantage. This
research provides a foundation for predictive studies in other building categories and offers
valuable insights for energy managers seeking to accurately forecast building energy usage
patterns. The findings suggest that predictions remain reliable over time if the building
operates under the same schedule.

Linas Gelažanskas et al. [12] analyze hot water power data from residential build-
ings to develop and test various forecasting models, including exponential smoothing,
SARIMA, and seasonal decomposition. The results show that these models outperform
simpler benchmarks, with seasonal decomposition being the most effective at improving
forecast accuracy. This work highlights the significance of advanced predictive techniques
for enhancing demand-side management and supporting grid stability in the context of
increasing renewable energy integration.

Jinyuan Liu et al. [13] review 70 years of gas consumption forecasting, categorizing
the evolution into four stages: initial, conventional, AI, and all-round. They highlight that
time series models excel in long-term forecasting with a mean absolute percentage error
of 1.90%, and support vector regression models (4.98%) are more suitable for short-term
forecasting. This review emphasizes the impact of computer science and AI advancements
on forecasting performance and proposes a framework for model selection along with
future research directions.

Predicting gas volume, electricity, and hot water power consumption on campuses
poses several challenges that Machine Learning (ML) and Artificial Neural Networks
(ANN) can address effectively. Regarding gas volume consumption, issues include the
impact of seasonality and weather, varying usage patterns across buildings, and data
sparsity. ML and ANN models can address these challenges by integrating weather
data and using regression techniques to correlate consumption with the relevant features.
Electricity consumption prediction is complicated by complex load patterns, demand
fluctuations, and the need to account for multiple factors, such as HVAC systems and
lighting. Advanced ML models, including ANN, can enhance the prediction accuracy.
Similarly, predicting hot water power consumption involves addressing the challenges
related to temperature variability, usage patterns, and system dynamics. Employing
predictive models, making seasonal adjustments, and incorporating system performance
data can improve the accuracy. Overall, effective data preprocessing, feature selection, and
model evaluation are crucial for developing robust and accurate consumption predictions.

3. Research Methodology
3.1. Data Collection

The data collection for this study utilizes the UBC Energy & Water Services’ online live
data, accessible through the SkySpark platform [14]. This platform is part of the campus as
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a Living Lab initiative, and offers valuable insights into building energy and performance
metrics. SkySpark, developed by Skyfoundry, is an Internet of Things (IoT) platform
that leverages heating, ventilation, air conditioning (HVAC), and energy data to enhance
building performance [15].

Since 2017, the Energy & Water Services’ Energy Conservation team has used SkySpark
to monitor and optimize building control systems and identify energy and greenhouse gas
(GHG) savings opportunities. The platform supports the long-term storage of a substantial
amount of data, including 68,000 data streams, 370 energy meters across 167 campus
buildings, 5000 pieces of HVAC equipment, and 3 Building Management Systems (BMS)
vendors [16].

For this study, data from 2023 were collected, encompassing hourly profiles from 1
January to 31 December. This comprehensive dataset provides a detailed view of energy
consumption and performance metrics across various building types and functions on the
UBC campus, as illustrated in Figure 1.

1 
 

Universidade Federal da Fronteira Sul, Campus Chapecó, SC-484, Km 02 - Fronteira Sul, Chapecó - 
SC, 89815-899, Brazil 
 

 

Figure 1. UBC campus building map [17].

3.2. Data Pre-Processing

The initial phase of the study involves collecting a diverse range of data frames crucial
for analyzing energy consumption:

• Time-Dependent Data Frames: Capturing temporal patterns in energy usage.
• Non-Time-Dependent Data Frames: Providing static information about building

characteristics.
• Weather Data Frames: Offering environmental context, including meteorological

conditions.
• Electricity Energy Data Frames: Detailing power usage across the campus.
• Gas Volume Data Frames: Indicating gas consumption patterns.
• Hot Water Energy Data Frames: Tracking hot water usage.
• Steam Volume Data Frames: Recording steam consumption.
• Water Volume Data Frames: Monitoring general water usage.
• Total Data Frames: Consolidating comprehensive building energy data for each build-

ing in the target year 2023.

This extensive dataset establishes the foundation for subsequent analysis.
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Following data collection, rigorous data cleaning procedures ensure data integrity and
reliability. Figure 2 illustrates the total electricity energy and hot water power consumption
across the campus for 2023. Outliers for Electrical Energy and Hot Water Power are
identified and removed from crucial data frames to prevent skewed results and enhance
predictive accuracy. Data quality checks are also performed on weather and electrical
energy data frames to eliminate any NaN (Not a Number) values, ensuring the dataset is
complete and reliable.
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The decision not to use pipelines and transformers for preprocessing was based on
the specific requirements of this study, which focused primarily on energy consumption
forecasting. While pipelines and transformers can streamline preprocessing tasks and
ensure a consistent workflow, this study employed a more targeted approach for data
cleaning and outlier removal using tailored procedures such as the Interquartile Range
(IQR) method to ensure the reliability of the dataset.

Outliers were estimated using the IQR method, which is a robust statistical approach
commonly applied to detect and remove extreme values from a dataset. The IQR method
calculates the difference between the third quartile (Q3) and the first quartile (Q1), iden-
tifying outliers as any data points lying below Q1—1.5 * IQR or above Q3 + 1.5 * IQR.
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This method was chosen because of its simplicity and effectiveness in dealing with en-
ergy consumption data, where occasional extreme values can significantly distort model
performance.

Before outlier deletion, the dataset comprised 8760 rows, representing hourly data
for the entire year. After applying the IQR method, 31 outliers were removed, resulting
in a final dataset of 8729 rows. This minimal reduction in data ensures that the dataset
remains comprehensive while improving the overall quality and accuracy of the subse-
quent machine learning models. By focusing on high-quality data, the models developed
in this study can capture the energy consumption patterns and their dependencies on
meteorological variables more accurately.

A total value column is added to each data frame to view the energy consumption
comprehensively. This column aggregates the energy consumption for each hour by
summing the values across all buildings, thereby providing a consolidated overview of
energy usage patterns.

Following preprocessing, a range of machine learning models, including Neural
Network, Decision Tree, Random Forest, Gradient Boosting, AdaBoost, Linear Regression,
Ridge Regression, Lasso Regression, Support Vector Regression, and K-Neighbors, are
applied to the cleaned dataset.

The selection of machine learning models for this study was driven by the need
to address the complex and nonlinear relationships between energy consumption and
meteorological variables as well as to compare a range of model types to determine the
most effective approach. Each model was chosen based on its ability to handle different
aspects of the data and the challenges of energy consumption forecasting.

The Neural Network (ANN) was selected for its ability to model intricate, nonlinear
relationships between energy consumption and environmental factors like temperature
and wind speed. ANN flexibility, especially with multiple layers and the use of nonlinear
activation functions such as tanh, makes it particularly effective for datasets with both
positive and negative inputs, capturing complex patterns in the data. Decision Trees were
chosen for their interpretability and capability to manage nonlinear interactions between
features, making them useful for understanding how variables such as time of day and
seasonal changes impact energy usage.

Building on Decision Trees, Random Forest was included for its ability to reduce
overfitting by averaging predictions across multiple trees, resulting in more accurate and
stable forecasts across buildings with varying consumption patterns. Gradient Boosting and
AdaBoost, both ensemble methods, were chosen for their superior performance through
the iterative improvement of weak learners. Gradient Boosting is particularly well-suited
for regression tasks, providing high accuracy in predicting energy consumption, while
AdaBoost focuses on difficult-to-predict instances, helping to refine predictions.

To compare against more complex models, Linear Regression, Ridge Regression, and
Lasso Regression were selected as simpler models. Linear Regression serves as a baseline,
while Ridge and Lasso offer regularization techniques to prevent overfitting by penalizing
large coefficients, providing insights into how well linear assumptions hold in this context.
Support Vector Regression (SVR) was chosen for its ability to handle both linear and
nonlinear relationships by applying the kernel trick, making it suitable for capturing the
dependencies between energy usage and meteorological factors in high-dimensional spaces.
SVR is also robust to outliers, and generalizes well to smaller datasets.

Lastly, K-Neighbors Regression was selected as a non-parametric model that predicts
energy consumption based on the behavior of nearby data points, offering a simple yet
effective method for capturing local patterns in energy usage. By employing this diverse set
of machine learning models, this study seeks to identify the most effective approaches for
accurately forecasting energy consumption while accounting for the complex interactions
between variables, ultimately providing a more comprehensive understanding of energy
patterns in campus environments.
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In the training process, the database consists of 8760 rows, representing hourly data
for the entire year of 2023. The measurements were recorded on an hourly basis throughout
this period. The dataset was initially cleaned and preprocessed, and then divided into three
subsets: 70% for training, 15% for validation, and 15% for testing. The training set was used
to fit the models, allowing each algorithm—Neural Network, Decision Tree, Random Forest,
Gradient Boosting, AdaBoost, Linear Regression, Ridge Regression, Lasso Regression,
Support Vector Regression, and K-Neighbors—to learn patterns and relationships within
the data by adjusting their internal parameters to minimize training error. During the
training, a portion of the training data was set aside as a validation dataset to fine-tune the
hyperparameters and prevent overfitting. This validation process involved assessing the
model performance on this subset and making adjustments to improve the generalization.
After training and validation, the models were evaluated on a 15% testing set, which
remained unseen during the training and validation phases. This evaluation assessed the
models’ ability to generalize to new, unseen data, with performance metrics such as MAE,
MSE, RMSE, and R2 being calculated to determine their accuracy and effectiveness. This
method ensures that the models’ predictive performance is realistically measured against
the data they have not been exposed to during training and validation.

All hyperparameters utilized for the ML models in this project are detailed in Table 1.

Table 1. HyperParameters for the ML models.

Model Best Parameters

Decision Tree Regressor
{‘max_depth’: 20, ‘min_samples_split’:
5, ‘min_samples_leaf’: 2,
‘max_features’: ‘sqrt’}

Random Forest Regressor

{‘n_estimators’: 100, ‘max_depth’:
20, ‘min_samples_split’: 2,
‘min_samples_leaf’: 4, ‘max_features’:
‘auto’}

Gradient Boosting Regressor
{‘n_estimators’: 100, ‘learning_rate’:
0.1, ‘max_depth’: 5, ‘subsample’:
0.9}

AdaBoost Regressor {‘n_estimators’: 100, ‘learning_rate’:
0.1, ‘loss’: ‘linear’}

Linear Regression {‘fit_intercept’: True, ‘normalize’:
False}

Ridge Regression {‘alpha’: 1.0, ‘solver’: ‘auto’}

Lasso Regression {‘alpha’: 0.1, ‘selection’: ‘cyclic’}

Support Vector Regression {‘C’: 1.0, ‘epsilon’: 0.1, ‘kernel’:
‘rbf’, ‘degree’: 3}

K-Neighbors Regressor
{‘n_neighbors’: 5, ‘weights’:
‘uniform’, ‘p’: 2, ‘algorithm’:
‘auto’}

Special attention is given to the Artificial Neural Network (ANN) hyperparameters,
which significantly impact the model accuracy. The ANN used in this study features
multiple layers: an initial Dense layer with 128 neurons and a tanh activation function,
followed by layers with 64, 64, and 32 neurons, all of which utilize the tanh function. The
output layer consists of a single neuron for regression purposes. The ‘tanh’ activation
function was chosen for its ability to introduce nonlinearity into the model, which is
crucial for capturing complex patterns in energy consumption data. It outputs values
between −1 and 1, centering the data and helping to address the vanishing gradient
problem. Additionally, ‘tanh’ handles negative inputs effectively, which aligns with the
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characteristics of our dataset. This choice helps improve the model’s learning dynamics
and performance. All the hyperparameters utilized in this project are detailed in Table 2.

Table 2. Hyperparameters of the ANN model.

Category Hyperparameter Value/Description

Layer Structure First Layer Dense layer with 128 neurons, ‘tanh’ activation function

Second Layer Dense layer with 64 neurons, ‘tanh’ activation function

Third Layer Dense layer with 64 neurons, ‘tanh’ activation function

Fourth Layer Dense layer with 32 neurons, ‘tanh’ activation function

Output Layer Dense layer with 1 neuron for regression output

Activation Function Activation Function

‘tanh’ (used in all hidden layers)
The ‘tanh’ activation function was chosen for its ability
to introduce nonlinearity into the model, which is
crucial for capturing complex patterns in energy
consumption data. It outputs values between −1 and 1,
centering the data and helping to address the vanishing
gradient problem. Additionally, ‘tanh’ handles negative
inputs effectively, which aligns with the characteristics
of our dataset. This choice helps improve the model’s
learning dynamics and performance.

Regularization Dropout Rate 0.4 (applied after each BatchNormalization layer)

Kernel Regularizer L2 regularization with factor 0.01 (applied to the
weights of the second, third, and fourth Dense layers)

Optimization Optimizer Nadam

Learning Rate 0.0005

Learning Rate Scheduler
ReduceLROnPlateau (reduces learning rate by 0.5 if
validation loss does not improve for 10 epochs,
minimum learning rate set to 1 × 10−6)

Training Configuration Batch Size 16

Epochs 100

Callbacks Custom Callback TestLossCallback (tracks test loss at the end of each
epoch)

A dropout rate of 0.4 was implemented following each BatchNormalization layer to
mitigate overfitting. This technique randomly sets a fraction of input units to 0 during
training updates, enhancing model robustness. Additionally, L2 regularization with a
factor of 0.01 was applied to the weights of the second, third, and fourth Dense layers. This
penalizes large weights and further reduces the risk of overfitting.

The Nadam optimizer was utilized, combining the advantages of Adam and Nesterov
momentum with a learning rate of 0.0005 to optimize the model’s performance. To fine-tune
the learning rate, the ReduceLROnPlateau callback was employed. This callback reduces
the learning rate by half if the validation loss does not improve for 10 epochs, with the
minimum learning rate set to 10−6.

A batch size of 16 was chosen to provide a regularizing effect and improve gener-
alization. The model was trained for 10 epochs to balance the risks of overfitting and
underfitting. A custom callback, TestLossCallback, was used to monitor the test loss at
the end of each epoch, offering additional insight into the model’s performance on the
test set. Through careful selection and tuning of these hyperparameters, the ANN was
optimized for better performance and generalization, with each hyperparameter playing a
crucial role in enhancing the model’s predictive capabilities.
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Applying machine learning models and meticulous tuning of ANN hyperparameters
are vital for capturing complex relationships within the dataset, thus providing valuable
insights for optimizing energy systems.

Additionally, data preparation included Decomposition Analysis to uncover the under-
lying trends, seasonality, and residual patterns in energy consumption data. Decomposition
involves breaking data into three components: trend, seasonality, and residuals [18]. The
trend component shows long-term changes in the energy consumption, such as increases
or decreases. Seasonality captures recurring patterns, such as daily or monthly fluctuations
due to weather or operational schedules. Residuals represent random fluctuations or noise
not explained by the trend or seasonality [19].

Figure 3 illustrates the trend of electricity energy, seasonal, and residual components.
Analyzing these residuals helps identify unpredictable elements in energy consumption
and informs strategic decision-making, including peak consumption periods, resource
optimization, and accurate future energy demand predictions.
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3.3. Model Testing and Evaluation

The methodology involves extensive testing and evaluation of various forecasting
models to assess their performance in predicting the energy consumption. This includes
applying different regression methods, such as decision tree regression, to test the models
across multiple years. This approach allows for a thorough evaluation of the predictive
accuracy over different time frames.



Energies 2024, 17, 4714 11 of 22

To determine the effectiveness and reliability of each model, several performance
metrics are used:

• R-squared (R2): This statistic measures the proportion of variance in the dependent
variable (energy consumption) explained by the independent variables (features) in
the model. It ranges from 0 to 1, with higher values indicating a better fit between
the model and data. A higher R-squared value means that the model accounts for
a more significant proportion of the variance in the target variable, reflecting better
explanatory power. Despite its benefits, R2 should be interpreted cautiously and in
conjunction with other metrics to avoid overestimating model performance. Similar
studies, including [7], have employed R2 to understand the model’s ability to capture
the variability in energy consumption.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1)

yi is the actual value of the dependent variable.
ŷi is the predicted value of the dependent variable.
y is the mean of the actual values of the dependent variable.
n is the number of observations.

• Mean Absolute Error (MAE): MAE quantifies the average magnitude of errors between
actual and predicted values, providing a clear indication of model accuracy. For
instance, similar studies by [3,20] utilized MAE to benchmark model performance
in energy forecasting tasks. Lower MAE values signify more accurate predictions,
indicating that the model predictions are closer to the actual values. The advantages of
MAE are its simplicity and ease of interpretation; however, it does not penalize larger
errors more than smaller ones.

MAE =
1
n∑n

i=1|yi − ŷi| (2)

• Root Mean Square Error (RMSE): RMSE measures the square root of the average
squared difference between actual and predicted values. This metric emphasizes
more significant errors than MAE, as it penalizes larger discrepancies more heavily.
Lower RMSE values indicate better model performance, with minor deviations from
the actual values. Its application in previous works, such as [21], underscores its
effectiveness in evaluating model accuracy, although it shares the disadvantage of
sensitivity to outliers.

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (3)

By analyzing these metrics, the methodology evaluates each model’s efficacy in cap-
turing energy consumption patterns and provides insights into their predictive accuracy.

4. Results
4.1. Correlation between the Parameters

The correlation analysis depicted in Figure 4 for the UBC University campus in
Vancouver reveals several significant relationships among various energy consumption
metrics. Notably, the correlation between electricity energy usage and hot water power
consumption is 0.38, indicating a moderate positive association where increases in electricity
use are moderately related to increases in hot water power consumption. In contrast, the
correlation between electricity energy and gas volume is weaker at 0.25, suggesting that
changes in one may not strongly impact the other. A moderate positive correlation of 0.31
between electricity energy and steam volume shows a notable relationship between these
two metrics.
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The analysis (Table 3) also highlights a strong positive correlation of 0.75 between the
hot water power and steam volume, which is likely attributed to the implementation of the
UBC’s medium-temperature hot water system in 2017 [22]. Furthermore, the correlation
between hot water power and gas volume is 0.34, indicating a moderate positive relation-
ship. Gas and steam volumes exhibit a moderate positive correlation of 0.49, suggesting a
considerable relationship between these variables.

Seasonal effects show a weak positive correlation of 0.19 with temperature, reflecting
a mild influence of seasonal variations on temperature fluctuations. Strong negative corre-
lations are observed between temperature and energy consumption, with values of −0.69
for hot water power and −0.60 for steam volume, indicating that warmer temperatures are
associated with reduced energy usage for these metrics. A moderate negative correlation
of −0.27 is noted between temperature and electricity energy consumption, suggesting a
less pronounced but noticeable reduction in electricity use during warmer periods. These
correlations offer valuable insights into how energy consumption patterns interact with
steam management and environmental factors at the UBC campus, aiding the development
of effective energy optimization and sustainability strategies.
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Table 3. Correlation analysis of energy consumption metrics and environmental factors at UBC
Campus.

Metric Pair Correlation Interpretation

Electricity Energy and Hot Water Power 0.38 (Moderate Positive)
Increases in electricity usage are moderately
associated with increases in hot water power

consumption.

Electricity Energy and Gas Volume 0.25 (Weaker Positive)
Weaker positive relationship; changes in

electricity usage have a less pronounced effect
on gas volume.

Electricity Energy and Steam Volume 0.31 (Moderate Positive)
Moderate positive correlation; notable

relationship between electricity usage and
steam volume.

Hot Water Power and Steam Volume 0.75 (Strong Positive)
Strong positive correlation and significant

relationship due to UBC’s
medium-temperature hot water system.

Hot Water Power and Gas Volume 0.34 (Moderate Positive) Moderate positive relationship between hot
water power consumption and gas volume.

Gas Volume and Steam Volume 0.49 (Moderate Positive) Moderate positive correlation; considerable
relationship between gas and steam volumes.

Seasonal Effects and Temperature 0.19 (Weak Positive)
Weak positive correlation; mild influence of

seasonal variations on temperature
fluctuations.

Temperature and Hot Water Power −0.69 (Strong Negative)
Strong negative correlation; warmer

temperatures are associated with reduced hot
water power usage.

Temperature and Steam Volume −0.60 (Strong Negative)
Strong negative correlation; warmer

temperatures are associated with reduced
steam volume.

Temperature and Electricity Energy −0.27 (Moderate Negative)
Moderate negative correlation; warmer

temperatures are associated with a noticeable
reduction in electricity use.

4.2. Electrical Energy

The analysis of various regression models for predicting electrical energy consumption
at the UBC Campus, shown in Figure 5, highlighted significant performance differences
and emphasized the critical role of model selection in optimizing energy usage. The
Deep Neural Networks (DNN) model demonstrated the highest accuracy with a Mean
Absolute Error (MAE) of 0.15, and a Coefficient of Determination (R2) of 0.98, indicating its
superior capability to capture complex patterns in the data. The Decision Tree Regressor
also performed well, achieving an MAE of 0.18 and an R2 of 0.92, reflecting good predictive
accuracy. The Random Forest Regressor showed competitive performance with an MAE of
0.20 and an R2 of 0.96, although slightly less accurate than the Decision Tree. In contrast, the
Gradient Boosting Regressor had a higher MAE of 1.03 and a lower R2 of 0.50, suggesting
less effective prediction capabilities. AdaBoost performed the least effectively, with an MAE
of 1.22 and an R2 of 0.34, indicating limited predictive accuracy. Linear Regression, Ridge
Regression, Lasso Regression, Support Vector Regression, and K-Neighbors Regressor
exhibited poorer performance overall, with MAE values above 1 and lower R2 scores. This
analysis underscores the advantage of employing advanced machine learning techniques
such as DNNs for accurate energy forecasting, which is crucial for optimizing energy
efficiency and resource management at the UBC Campus.

Table 4 provides a clear comparison of the performance metrics of the various regres-
sion models, enabling a direct assessment of their effectiveness in predicting electrical
energy consumption.
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Table 4. Performance comparison of regression models for predicting electrical energy consumption.

Model Mean Absolute Error (MAE) Coefficient of Determination
(R2)

Deep Neural Networks
(DNN) 0.15 0.98

Decision Tree Regressor 0.18 0.92

Random Forest Regressor 0.2 0.96

Gradient Boosting Regressor 1.03 0.5

AdaBoost Regressor 1.22 0.34

Linear Regression >1 Lower values

Ridge Regression >1 Lower values

Lasso Regression >1 Lower values

Support Vector Regression >1 Lower values

K-Neighbors Regressor >1 Lower values
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4.3. Hot Water Power

The analysis of various models for predicting hot water power consumption on
the UBC campus revealed significant differences in performance (Figure 6). The Neural
Network model demonstrated strong predictive performance, with a Mean Absolute Error
(MAE) of 3570.00 and a high R2 value of 0.88, indicating its effectiveness in accurately
estimating hot water power usage. The Decision Tree Regressor also performed well, with
an MAE of 2038.71 and an R2 of 0.89, reflecting its capability to capture patterns and trends
in hot water power consumption. The Random Forest Regressor achieved the lowest MAE
of 1852.85, and a high R2 value of 0.91, showing its effectiveness in predicting hot water
power consumption and managing heating systems efficiently.
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In contrast, the Gradient Boosting Regressor had a higher MAE of 2660.06 and a
moderate R2, suggesting that further optimization may be required for improved accuracy.
AdaBoost Regressor exhibited the highest MAE of 3986.78 and a moderate R2, indicating
less effectiveness compared to the top-performing models. The linear models, including
Linear Regression, Ridge Regression, and Lasso Regression, had an MAE of around 5298.00
and an R2 of approximately 0.51, providing a baseline with moderate performance but
not optimal for precise predictions. Support Vector Regression had the highest MAE of
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8222.55 and the lowest R2, indicating significant limitations in accurately modeling hot
water power consumption. The KNeighbors Regressor showed reasonable capabilities
with an MAE of 2413.37 and an R2 of 0.88, performing comparably to the Neural Network
model. Table 5 shows the performance comparison of models for predicting how water
power consumption.

Table 5. Performance comparison of models for predicting hot water power consumption.

Model MAE R2

Neural Network 3570 0.88

Decision Tree Regressor 2038.71 0.89

Random Forest Regressor 1852.85 0.91

Gradient Boosting Regressor 2660.06 Moderate

AdaBoost Regressor 3986.78 Moderate

Linear Regression ~5298.00 ~0.51

Ridge Regression ~5298.00 ~0.51

Lasso Regression ~5298.00 ~0.51

Support Vector Regression 8222.55 Lowest

KNeighbors Regressor 2413.37 0.88

In summary, the Neural Network model emerged as the most effective for predicting
hot water power consumption, followed closely by the Decision Tree and Random Forest
models. These findings underscore the benefits of using advanced machine learning
techniques for accurate hot water system management and optimization.

4.4. Gas Volume

The analysis of various models for predicting gas volume consumption on the UBC
campus revealed distinct differences in performance (Figure 7). The Neural Network model
emerged as the top performer, achieving a Mean Absolute Error (MAE) of 28.82 and a high
R2 value of 0.96. This indicates its exceptional ability to capture the underlying patterns
and variability in gas volume data, making it highly effective in optimizing gas usage. The
Random Forest Regressor also showed strong performance, with an MAE of 33.51 and
an R2 of 0.91, making it a reliable tool for accurate gas volume forecasting. The Decision
Tree Regressor demonstrated moderate predictive capabilities with an MAE of 37.17 and
an R2 of 0.86. While useful, it may need refinement to achieve the accuracy of the Neural
Network and Random Forest models.

In contrast, the Gradient Boosting Regressor exhibited a higher MAE of 57.84 and a
moderate R2 of 0.55, indicating some predictive power but also room for improvement.
AdaBoost Regressor had the highest MAE of 67.17 and the lowest R2 of 0.44, suggesting
limited effectiveness and a need for further optimization. The linear models, including
Linear Regression, Ridge Regression, and Lasso Regression, had a poor predictive perfor-
mance with an MAE of around 82.00 and an R2 of approximately 0.18, providing only a
baseline for comparison. Support Vector Regression showed the highest MAE of 88.39 and
the lowest R2 of 0.13, reflecting significant limitations in accurately modelling gas volume
consumption. The KNeighbors Regressor displayed reasonable performance with an MAE
of 54.32 and an R2 of 0.57, performing better than some models but not as effectively as
Neural Networks or Random Forest.

The Neural Network model emerged as the most effective for predicting gas volume
consumption, with the lowest MAE and highest R2. The Random Forest Regression Model
also performed well, and provided accurate forecasts. Other models, such as Decision Trees,
Gradient Boosting, AdaBoost, linear regression models, and Support Vector Regression,
showed varying degrees of performance, with some needing further refinement to enhance
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the accuracy. These findings underscore the effectiveness of advanced machine learning
techniques for precise gas consumption forecasting and efficient fuel management. Table 6
shows the performance comparison of models for predicting gas volume consumption.
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Table 6. Performance comparison of models for predicting gas volume consumption.

Model MAE R2

Neural Network 28.82 0.96

Random Forest Regressor 33.51 0.91

Decision Tree Regressor 37.17 0.86

Gradient Boosting Regressor 57.84 0.55

AdaBoost Regressor 67.17 0.44

Linear Regression ~82.00 ~0.18

Ridge Regression ~82.00 ~0.18

Lasso Regression ~82.00 ~0.18

Support Vector Regression 88.39 0.13

KNeighbors Regressor 54.32 0.57
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4.5. Synthesis of the Predictive Accuracy for the Different Data Sets

The analysis of the R2 values for various regression models applied to electrical energy,
hot water power, and gas volume at the UBC Campus reveals significant differences in the
predictive accuracy (Figure 8):
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1. Deep Neural Networks consistently demonstrate the highest R2 values across all
three energy forms, with an outstanding value of 0.98 for electrical energy, 0.88 for hot
water power, and 0.96 for gas volume, indicating solid predictive performance.

2. Decision Tree Regressor and Random Forest Regressor perform well, particularly
for hot water power (0.888 and 0.914, respectively) and gas volume (0.863 and 0.914,
respectively). However, their performance for electrical energy is somewhat lower (0.916
and 0.958, respectively).

3. Gradient Boosting Regressor and AdaBoost Regressor show moderate performance,
with R2 values around 0.50 for electrical energy and gas volume. Still, they perform better
for hot water power, with R2 values of 0.860 and 0.759, respectively.

4. Support Vector Regression (SVR) and K-Neighbors Regressor display the least
predictive accuracy, with R2 values significantly lower across all energy types, particularly
for electrical energy, where the values are 0.013 and 0.076, respectively. These models have
limitations in capturing the variability in the data.



Energies 2024, 17, 4714 19 of 22

5. Simpler models such as Linear Regression, Ridge Regression, and Lasso Regression
exhibit notably lower R2 values, particularly for electrical energy, with values approximately
0.124 for both Linear and Ridge Regression and even lower for Lasso Regression at 0.091.
Their performance is similarly suboptimal for hot water power and gas volume, where the
R2 values hover around 0.512 for both Linear and Ridge Regression, and are slightly lower
for Lasso Regression.

Overall, the results indicate that complex models, particularly ensemble methods and
deep learning, provide superior predictive accuracy for the energy consumption metrics
at the UBC Campus. In contrast, more straightforward regression techniques and some
specialized models like SVR and K-Neighbors struggle to effectively capture the data’s
variability.

4.6. Analysis of Training and Test Loss Graphs

Figure 9 illustrates the training and test loss graphs, showing the different predic-
tion model trends for different energy component data at the UBC Campus. The main
observations are as follows:

1. For the Electrical Energy Model:

Rapid Convergence: This model shows a quick decrease in both training and test
losses during the early epochs, indicating effective learning.

Strong Generalization: The close alignment of the training and test loss curves demon-
strates that the model generalizes well to unseen data, avoiding overfitting and underfitting.

Balanced Fit: The lack of a significant gap between training and test loss suggests that
the model accurately captures the complexity of electrical energy consumption without
fitting noise in the data.

2. Hot Water Model

Slower, Fluctuating Convergence: This model’s loss curves show more fluctuation and
a slower decrease, reflecting the challenges in stabilizing it.

Initial Overfitting: Early in training, the model performs better on the training data
than on the test data, indicating overfitting.

Improved Generalization: Over time, the gap between the training and test loss
narrows, suggesting that the model improves generalization. However, the final model still
shows some imbalance.

3. Gas Volume Model

Gradual Convergence: This model exhibits relatively slow convergence, with a gradual
decrease in loss throughout training, suggesting ongoing learning.

Overfitting: The persistent gap between training and test loss indicates that the
model may be memorizing training data rather than learning general patterns, pointing to
overfitting.

Potential for Improvement: To enhance generalization, the model could benefit from
adjustments, such as regularization, more data, or changes in the model architecture.

The strong performance and good generalization of the electrical energy model make
it suitable for predicting electrical energy consumption, and we recommend continuing to
use this model and monitoring its performance. For the hot water model, it is necessary to
address the initial overfitting by applying techniques like early stopping or regularization
and ensure that the model maintains balanced performance as it continues to learn. The
gas volume model can be improved by exploring regularization methods, expanding the
dataset, or adjusting the architecture to better capture patterns and reduce overfitting.

This analysis provides insights into each model’s performance and offers guidance
for refining approaches to achieve better predictive accuracy and more effective energy
management at the UBC campus.
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5. Conclusions

In conclusion, this comprehensive analysis of the energy consumption patterns at the
UBC campus in Vancouver has provided critical insights into the intricate relationships
among various energy sources, environmental factors, and operational strategies. Through
a robust correlation analysis, this study identified significant interdependencies between
electricity consumption, hot water power, gas volume, and steam volume, emphasizing the
need for an integrated system-wide approach to energy management. Notably, the strong
inverse correlations between Vancouver temperature and multiple energy consumption
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metrics suggest that temperature-responsive strategies could significantly enhance energy
efficiency, particularly during warmer periods, aligning with existing research on adaptive
energy management practices in temperate climates.

The evaluation of multiple regression models, particularly the superior performance
of deep neural networks, highlights their capacity to capture complex, nonlinear patterns in
energy consumption data. These models consistently outperformed the traditional methods,
demonstrating high predictive accuracy and offering valuable data-driven insights. The
effectiveness of these machine learning techniques underscores their potential to optimize
energy use, reduce waste, and lower environmental impact, contributing to the growing
body of literature that advocates for the application of advanced analytics in energy system
optimization.

These findings have substantial implications for energy management in the UBC and
similar institutions. By understanding the complex interplay between energy sources,
environmental variables, and operational conditions, stakeholders can implement targeted
and effective interventions that minimize energy consumption, promote sustainability,
and generate cost savings. Furthermore, the success of deep neural networks in this
study supports broader theoretical claims regarding the effectiveness of advanced machine
learning algorithms in dynamic, multi-source energy systems, aligning with contemporary
energy management and artificial intelligence research.

Looking ahead, future research should aim to further elucidate the causal relation-
ships between energy consumption and external factors, evaluate the specific impacts
of operational interventions, and explore the potential of integrating renewable energy
sources into the campus’s energy portfolio. By building upon the analytical framework and
methodologies developed in this study, UBC can continue to lead to sustainable energy
management while contributing to a growing body of work focused on reducing institu-
tional environmental footprints and advancing the theoretical understanding of energy
optimization.
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