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Abstract: Wide-bandgap tin oxide (SnO2) thin-films are frequently used as an electron-transporting
layers in perovskite solar cells due to their superior thermal and environmental stabilities. However,
its crystallization by conventional thermal methods typically requires high temperatures and long
periods of time. These post-processing conditions severely limit the choice of substrates and reduce
the large-scale manufacturing capabilities. This work describes the intense-pulsed-light-induced
crystallization of SnO2 thin-films using only 500 µs of exposure time. The thin-films’ properties are
investigated using both impedance spectroscopy and photoconductivity characteristic measurements.
A Nyquist plot analysis establishes that the process parameters have a significant impact on the
electronic and ionic behaviors of the SnO2 films. Most importantly, we demonstrate that light-induced
crystallization yields improved topography and excellent electrical properties through enhanced
charge transfer, improved interfacial morphology, and better ohmic contact compared to thermally
annealed (TA) SnO2 films.

Keywords: impedance spectroscopy; photonic curing; SnO2; dark injection current transient;
photo-Celiv

1. Introduction

Electron-transporting layers (ETLs) are critical components in most optoelectronic
device architectures, including perovskite solar cells (PSCs). These PSC devices rely on
organic–inorganic perovskite materials to efficiently absorb light and generate charge
carriers [1–3]. ETL layers are essential for promoting efficient electron transport, block
holes, align energy levels, and ultimately enhance the efficiency and stability of perovskite
solar cells. Choosing appropriate ETL materials is essential for the performance of PSCs.
Typical ETL materials require processing between 150 and 500 ◦C, resulting in higher
processing times and energy costs. Most importantly, this prevents their integration on
most low-cost substrates that require processing temperatures below 150 ◦C [4,5]. In this
context, intense pulsed light annealing, also sometimes referred to as photonic curing
(PC) [6], is an emerging technique that is ideally suited for large-scale manufacturing as is
relies on short, high-intensity light pulses to anneal materials selectively and rapidly [7,8].
In this process, the optical energy absorbed by the active material can sustain carefully
controlled light-induced annealing with minimal substrate damage. As a result, even
metals with relatively high melting points can be successfully sintered on low-cost plastic-
or paper-based substrates [9–11]. As such, this technique is also especially well-suited for
roll-to-roll (R2R) manufacturing [12]. SnO2 metal-oxide thin-films were first utilized as
ETLs for perovskite-based solar cells nearly a decade ago [13,14]. They have since emerged
as the preferred material for PSCs over TiO2 and ZnO due to their large band gaps, higher
charge mobilities, and better stabilities under ambient conditions [15–17]. A few years
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later, SnO2 films were photonically annealed in just 20 ms, enabling the fabrication of
PSCs with reduced hysteresis and a 15% power conversion efficiency [9]. However, these
previous studies did not address the effect of photonic curing on the electronic properties
of SnO2 films. To investigate this, we used impedance spectroscopy (IS), which is a rapid
technique for evaluating these properties. IS is a powerful tool to shed light on the kinetic
processes taking place within electrochemical systems [18,19]. During measurement, a small
alternating current (AC) signal is coupled with a direct current (DC) voltage and is applied
to the device. The phase difference between the DC voltage and AC current is measured
over a wide frequency range to identify the various physical effects in the device. As a
result, IS measurements can assess the physical and chemical processes of various types
of devices, including optoelectronic devices, fuel cells, and solid-state batteries [20]. IS is
a non-destructive [14,21,22] tool that can be effectively used to optimize the stability and
performance of these devices by characterizing their charge transport properties [18,23].
Typically, the IS measurements exhibit two arcs corresponding to low-frequency (LF) and
high-frequency (HF) responses, respectively [24,25]. The series resistance (Rs), charge-
transfer resistance (RCT), and parallel capacitance can be determined from the HF and
LF responses.

This work explores the impact of the photonic curing parameters on thin-film SnO2
properties using IS and photocurrent characteristic analysis to unveil and control the ionic
and electronic kinetics within the treated SnO2 layer. As we demonstrate, this improved
understanding and control leads to enhanced electronic properties with great potential for
improved perovskite solar cell manufacturability.

2. Experimental Section

Commercial patterned fluorine-doped tin Oxide (FTO) substrates (Shenzhen Huayu
Union Technology, Shenzhen, China, resistance: 7 Ohm/sq) doped with fluorine are cleaned
using a sequential process of 10 min each in an ultrasonic bath with DI water, acetone,
and isopropyl alcohol (IPA). After drying with a nitrogen spray gun, residual organic
contaminants are removed by performing a 15 min O2 plasma treatment (Plasma Etch,
Carson City, NV, USA, PE-100LF). To prepare the SnO2 solution, a colloidal precursor
of SnO2 obtained from Alfa Aesar (15% in H2O colloidal dispersion CN: 044592.A3) is
diluted with DI water to a concentration of 3% by volume. The SnO2 solution is spin-
coated onto the clean FTO substrate in one step in air 3000 rpm for 30 s. The edges of
the FTO electrodes are then cleaned with a dry cotton swab to enable electrical and IS
measurements (Figure 1). For TA, SnO2 films are annealed using a hot plate at 150 ◦C for
30 min under ambient air. For photonic curing, each sample is treated using a Novacentrix
PulseForge system (500 V/3 A) power supply with 3 capacitors providing radiant energy
greater than 20 J.cm−2 using a lamp system (7.6 cm × 60.8 cm) with an illumination
area of 300 mm × 75 mm. The light source ensures uniform curing over a large area and
delivers short (20 µs to 100 ms) but intense light pulses from a broadband xenon flash lamp
(200–1500 nm). A Paois (Fluxim AG, SN:20121 Winterthur, Switzerland) tool is used for all
electrical and IS measurements. SEM (SU8230 Hitachi) and AFM (Bruker, MultiMode8,
Billerica, MA, USA ) are used for topography inspection. For impedance spectroscopy,
the FTO edges that are used as electrodes are connected to the Paois to measure the
impedance over a range of frequencies (10 Hz to 10 MHz) in the dark at 0.07 V perturbation
at room temperature. Impedance data can be analyzed using Nyquist and Bode plots to
interpret electrochemical properties such as the charge transfer resistance, capacitance,
and dielectric properties. The temperature is simulated using NovaCentrix SimPulse
software, this simulation package is standard on the PulseForge Version 3, Austin, TX, USA.
The configuration is modeled as follows (from bottom to top): aluminum chuck, 6 mm;
glass, 2.2 mm; and FTO, 600 nm. The thicknesses of the glass and FTO layers are taken from
the manufacturers. X-ray diffraction (XRD) is done using a Bruker D8 Advance (Billerica,
MA, USA), and optical absorbance is done using a UV–Vis–NIR spectrophotometer from
Perkin Elmer (Waltham, MA, USA).
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Figure 1. Illustration of the SnO2 sample fabrication process.

3. Results and Discussion

After deposition of colloidal SnO2 films using the protocol, samples are post-processed
using varying pulse durations and energy densities using the methodology described in
the Experimental Section. To investigate the impact of PC on the electrical properties of
SnO2 films, we conduct flash annealing for pulse durations of 500, 1500, 2500, and 3500 µs,
followed by photocurrent measurements. This allows us to optimize our photonic annealing
parameters and define the high photoconductivity range for SnO2 films. Photocurrent
analysis is used to map the different zones’ photoconductivity. Pulses ranging from
500 to 3500 µs are utilized to complete the photo-responsivity characterization. Figure 2a
shows the I-V responses in the dark and under illumination for two samples photonically
treated using a pulse duration of 2500 µs and, respectively, 2 J.cm−2 and 4 J.cm−2. A low
photo-responsivity indicates that the illumination and dark curves approach the overlap
limit, while a high photo-responsivity indicates a clear offset (more than 0.5 order of
magnitude) between the I–V characteristics in the dark and under illumination. Based on
such measurements, Figure 2b displays a photo-responsivity map for samples photonically
treated using different pulse durations vs. energy densities. To shed light on these results,
IS and SEM characterizations are conducted. SnO2 is highly transparent, which makes
photonic curing difficult [26]. To mitigate this problem, we use substrates with FTO patterns
that act as a structural support and a stable base for the growth of SnO2 nanoparticles.
This helps promote the transmission of the heat generated when light is absorbed by the
nanoparticles [27], which can increase the local temperature around the nanoparticles
and promote the recrystallization process. FTO substrates exhibit rougher surfaces than
glass [28], promoting superior adhesion and growth of SnO2 nanoparticles [29]. Their
conductivity enhances the electrical properties of the resulting SnO2 films. The FTO
substrate’s roughness directly influences both the diameter and alignment of the SnO2
nanoparticles [30]. Areas with FTO patterns acting as a blanket allow for changes in
nanoparticle recrystallization depending on the energy density used.

Figure 2c displays SEM images of the bare FTO substrate, and Figure 2d–f show SnO2
films deposited on FTO and photonically treated using energy densities of 0.15, 2.06, and
2.46 J.cm−2, respectively. As the energy density is increased from 0.15 to 2.06 to 2.46 J.cm−2

while using 1500 µs pulse durations, the SnO2-covered films appear increasingly granular,
while the distinct grain boundaries that were clearly observed in the FTO/glass film are
less apparent. The recrystallization of the SnO2 film follows the substrate topography
well, revealing the underlying FTO grain profile. This process indicates that higher energy
densities lead to improved film–substrate adhesion and more pronounced exposure of
the underlying grain structure. The photonic curing of SnO2 wet films enables water
evaporation and subsequent crystallization of SnO2 nanoparticles [31]. The degree of
crystallization greatly affects the photoconductivity of SnO2 films and their ability to carry
charge carriers [32,33]. A film’s properties largely depend on two independent parameters:
the energy density and the pulse duration of the pulsed light.

To obtain quantitative information and to better understand the surface morphology
and roughness, we also conduct AFM analyses on samples subjected to different types
of annealing treatments. Figure 2g shows the surface roughness of the film samples for a
scan area of 5 × 5 µm2. It highlights the improvement in surface topography after optimal
photonic treatment with SnO2, with a root-mean-square roughness of 14.01 nm, compared
to 45.57 nm for the thermally annealed sample. Roughness is defined as the microscopic
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and macroscopic variations on a material’s surface [34]. It measures the irregularities
present on the surface. These variations can have a significant impact on the physical
and chemical properties of materials, such as the recombination rates in ETL films for
solar cells. Low-roughness films can reduce the recombination rate and thus improve
performance [35]. The morphological effect of PC processing can be beneficial in terms
of device performance. This significant improvement underscores another important
advantage of photonic treatment for enhancing the quality of SnO2 as an electron transport
layer (ETL) in perovskite solar cells.

PC

TA

a                                     b

c                                     d

e                                     f

  g

0.15 J.cm-2

2.06 J.cm-2 2.46 J.cm-2

Figure 2. (a) I−V responses in the dark and under illumination for two samples photonically
treated using a pulse duration of 2500 µs and, respectively, 2 and 4 J.cm−2. (b) Photo-response map
for samples photonically treated using different pulse durations vs. energy densities based on the
criterion in Figure 2a. (c) SEM images of FTO/glass. (d–f) SEM images of PC of SnO2 samples on
FTO/glass. (g) Atomic force microscopy (AFM) images in 2D and 3D of thermally and photonically
annealed samples.
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This section focuses on the variation of IS results for SnO2 films treated with different
energy densities and pulse durations of 500, 1500, 2500, and 3500 µs. For these measure-
ments, the SnO2 film is deposited onto FTO glass, and its electrochemical behavior can be
represented by an equivalent circuit that produces a semicircle on the Nyquist diagram.
Figure 3a–d displays IS results for SnO2 samples treated using these different pulse du-
rations and energy densities. When the pulse duration is fixed and the energy density is
increased, the semicircle decreases until it reaches its minimum, and then the arc widens.
The frequency response exhibits two distinct behaviors. At high frequencies (HF), it is
dominated by the resistance attributed to electronic transport (RCT). At low frequencies
(LF), it is dominated by the recombination resistance (Rrec) related to ionic diffusion and
charge accumulation at the contacts [36,37]. In Figure 3, it corresponds to the second
semicircle inclined at 45° to the real axis in the Nyquist graph [38]. The semi-circle in the
high-frequency region is generally related to the counter-electrode and its interface [39]. A
smaller half-circle suggests a lower RCT and better photoconductivity of the device. These
Nyquist plots suggest that our devices’ equivalent circuits can be accurately modeled by a
resistor–capacitor (RC) pair in the dark AC regime [40]. As such, the interface contribution
can be derived from the equivalent circuit’s parameters [41]. The series resistance (Rs) can
be obtained by measuring the shift of the semi-circle from the origin along the horizontal
axis [42]. However, the time constant related to the physical phenomena dominating at
both the low and high frequencies is described by τHF .ωHF = 1 and τLF .ωLF = 1, with
ωHF,LF = 2π · fmax,HF,LF [40]. The time constants can be deduced from the IS results by
identifying the peak of the semicircle, which corresponds to the maximum frequency, or by
calculating τ = Req.Ceq, as shown in Table 1.
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Figure 3. Imaginary versus real components of impedance for photonically annealed films with pulse
durations of 500, 1500, 2500, and 3500 µs, respectively.
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Table 1. IS parameters extracted from the Nyquist plots for thermally annealed and photonically
treated samples at 0 V in dark conditions with 0.07 V perturbations. Photonic treatment is performed
using a 3500 µs pulse duration at 3.55 J.cm−2 energy density.

Device Rs (kΩ) RCT (MΩ) Ceq (pF) τHF (µs)

Thermally annealed 1.96 0.99 0.88 0.87
Photonically treated 3.06 0.49 0.78 0.38

Figure 4a compares the Cole–Cole plots for films that are photonically treated using
500, 1500, 2500, and 3500 µs pulses with respective energy densities of 0.52, 2.45, 3.44,
and 3.55 J.cm−2 with a typical film sample crystallized using standard thermal anneal-
ing.Clearly, the physical and chemical properties of the resulting SnO2 films appear greatly
affected by the pulse duration and energy density. When the pulse duration is 3500 µs
and the energy density is 3.55 J.cm−2, the high-frequency arc is smallest, suggesting that
the film is less resistive and facilitating charge transfer. In comparison, the thermally
annealed sample exhibits a larger semicircle than all of the photonically treated samples.
This suggests increased imaginary impedance associated with a decrease in charge transfer.
Figure 4b–d compare the imaginary impedance, capacitance, and conductance versus the
frequency for the best thermally annealed and the best photonically treated films for the
conditions 3.55 J.cm−2 and 3500 µs. In Figure 4b, the high-frequency (HF) peaks appear
between 105–106 Hz for both samples. The response time can be obtained by taking the
inverse of the peak frequency from the imaginary impedance graph. Table 1 presents the IS
parameters extracted from the spectra. There, the RCT value for the thermally annealed
sample is roughly twice the value achieved using optimal photonic curing conditions. This
suggests that the SnO2/FTO interface provides a low RCT under the effect of photonic
annealing, which facilitates charge carrier transport. The resulting time constant is 0.8 µs for
the thermally annealed film, compared to 0.38 µs for the optimal photonic curing conditions.
This suggest that photonically induced crystallization promotes a faster response time,
resulting in low recombination and more dominant ionic diffusion behavior [43,44]. At low
frequencies, the thermally annealed device does not exhibit any measurable peak, which is
consistent with the presence of the single semicircle in Figure 4b. In contrast, the impedance
plot of the photonically treated device is curved at low frequencies, explaining the start of
the second semicircle in this region. Frequency, time constant, and conductivity values are
good indicators of process kinetics [45,46]. Indeed, the dark IS can be directly related to the
carrier density, mobility, and conductivity [38]. The temperature simulation results using
the photonic annealing parameters shown in Figure 4e reveal a relationship between the
energy density, pulse duration, and resulting temperature of the SnO2 film. As the energy
density increases from 0.52 to 3.55 J.cm−2, the temperature increases from 122 to 364 ◦C
then decreases to 329 ◦C for the film treated with an energy density of 3.55 J.cm−2 and a
pulse duration of 3500 µs. These parameters are crucial to determine the energy transferred
to the SnO2 film, but they show a non-linear trend with temperature. Figure 4f shows
X-ray diffraction (XRD) measurements of the thermally and photonically annealed SnO2
films. The prominent peaks are determined to correspond to (110), (101), (200), (211), (220),
and (002), confirming the tetragonal crystal structure of SnO2 for both the TA and PC
films [47–49].

Figure 4c,d show capacitance and conductivity evolutions as a function of the opera-
tion frequency. Figure 4c illustrates two distinct capacitance behaviors, each corresponding
to a specific polarization process. This distinction makes it possible to identify specific
capacitive processes directly from the plot [50,51]. The high-frequency capacitance CHF
(above 100 kHz) exhibits a plateau in the order of 1 pF for both thermally and photonically
treated devices and is rather similar for both annealing processes. This region represents
the geometric capacitance and is due to the intrinsic dielectric polarization of the SnO2
layer [50]. However, photonic treatment achieves higher capacitance values at low frequen-
cies (below 1 KHz) compared to the thermally annealed device. This is primarily due to
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the accumulation of charges or ions [52,53] resulting from the polarization of the interfaces
between the SnO2 layer and the electrodes. At low frequencies, the increase in capacitance
is dominated by ionic movement in the dark and electronic movement in the light [54,55].
In circuits that exhibit capacitive behavior, the capacitor offers less resistance to the flow of
alternating current as the frequency increases. Accordingly, Figure 4d shows increases in
conductance for both devices in the high-frequency region. This behavior is consistent with
that of semiconductors, where capacitance and conductance vary inversely [56–58].
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Figure 4. (a) Cole–Cole plot for films thermally and photonically treated using 500, 1500, 2500,
and 3500 µs with energy densities of 0.52, 2.45, 3.44, and 3.55 J.cm−2, respectively. (b–d) Comparison
of imaginary impedance, capacitance, and conductance vs. frequency for typical thermally annealed
and photonically treated samples. (e) SimPulse simulations of temperature profiles of photonically
annealed SnO2 film Cole–Cole plots for films photonically treated using 500, 1500, 2500, and 3500 µs
with energy densities of 0.52, 2.45, 3.44, and 3.55 J.cm−2, respectively. (f) XRD spectra of thermally
and photonically annealed SnO2 films at 3.55 J.cm−2 and 3500 µs.
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The optical properties of the prepared samples are characterized by UV–Vis absorp-
tion spectra. As shown in Figure 5a, the transmittance of PC-treated films is higher than
that of TA-treated films, which is desirable for solar cell applications. SnO2 is a direct
bandgap (BG) semiconductor; its BG can be calculated using a Tauc plot [59], as shown in
Figure 5b. The calculated BGs are 3.45 eV and 3.43 eV for the TA- and PC-treated films,
respectively, which explains why the TA film is slightly more transparent than the PC film.
Measurements in Figure 5c,d compare the dark injection transients for the photocurrent rise
and decay for the thermally and photonically treated (3.55 J.cm−2, 3500 µs) samples. This
time-of-flight technique is useful for determining majority carrier mobility and trapping,
especially in thin-films [60]. Figure 5c illustrates that the current for the photonically treated
film rises to 2.7 mA, compared to 2.3 mA for the thermally annealed film. The current also
increases more rapidly in the photonically treated sample, reflecting the interrelationship
between charge carrier generation and recombination. Therefore, the rapid increase in
current for the PC sample can be attributed to the fast accumulation of photogenerated
carriers [61]. Figure 5d compares the decay of the transient current. After reaching its
maximum, the current decay depends on the charge capture coefficient [62]. The decay
graph illustrates the speed of charge recombination after being excited by a 1.2 V pulse
voltage. A shorter carrier lifetime suggests faster recombination and a high carrier capture
rate, which implies more rapid current decay for the thermally annealed sample. In con-
trast, photonic curing yields a lower recombination rate, resulting in slower decay and
longer current holding times. The photogeneration and recombination processes have a
significant impact on the density and mobility of charge carriers. Figure 5e compares the
charge mobility using the photo-CELIV technique using the following expression [63–65]:

µ =
2d2

3A.t2
max(1 + 0.36 ∆

Jmax
)

(1)

where d is the SnO2 film thickness, A is the slope of the extraction voltage ramp, tmax
is the time related to the current peak, and ∆ is the difference between the maximum
current and the displacement current plateau. Photo-CELIV is a technique used to extract
the charge mobility by illuminating the device. The measurement displays the current
overshoot and the time at which the current reaches its maximum, which is an essential
parameter for quantifying mobility. However, it should be noted that Photo-CELIV only
measures fast carriers and cannot distinguish between the mobility of electrons and holes.
The Photo-CELIV measurements for the film after optimized photonic treatment yield
4.56× 10−2 V cm2 s−1, compared with 3.66× 10−2 V cm2 s−1 for the thermally annealed film.
This measurement does not precisely reflect the mobility of the SnO2 material. However,
it serves as a characterization for comparing the fastest or maximum carrier mobility
values. This higher maximum mobility compared to thermal annealing is consistent with
previous results.
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Figure 5. (a,b) Transmittance spectra and Tauc plots of thermally and photonically annealed SnO2

samples. (c,d) Dark injection transients for the photocurrent rise and decay for the thermally and
photonically treated samples. (e) Charge mobility using the photo-CELIV technique for the thermally
and photonically treated samples.

4. Conclusions

In summary, we propose an optimized photonic annealing approach to improve
the electrical properties of SnO2 thin-films compared to standard annealing. SnO2 thin-
films play an essential role in emerging device architectures, especially as the electron-
transporting layer (ETL) for perovskite-based solar cells. We use impedance spectroscopy
to analyze the electrical behavior of SnO2 films in the dark. The results indicate that the
impedance spectroscopy response depends significantly on both the energy density and the
pulse duration and shed light on the resulting ionic and electronic transfer. Additionally,
we demonstrate that photonic treatment yields SnO2 layers with enhanced electrical per-
formance and a significantly reduced manufacturing time compared to standard thermal
annealing. This would be a great advantage for large-scale manufacturing of better and
cheaper perovskite-based solar cells.
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