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Industrial robotic systems (IRS) consist of industrial robots that automate
industrial processes. They accurately perform repetitive tasks, replacing or
assisting with dangerous jobs like assembly in the automotive and chemical
industries. Failures in these systems can be catastrophic, so it is important to
ensure their quality and safety before using them. One way to do this is by
applying a software testing process to find faults before they become failures.
However, software testing in industrial robotic systems has some challenges.
These include differences in perspectives on software testing from people
with diverse backgrounds, coordinating and collaborating with diverse teams,
and performing software testing within the complex integration inherent in
industrial environments. In traditional systems, a well-known development
process uses simple, structured sentences in English to facilitate communication
between project team members and business stakeholders. This process is
called behavior-driven development (BDD), and one of its pillars is the use of
templates to write user stories, scenarios, and automated acceptance tests.
We propose a software testing (ST) approach called automated acceptance
testing for industrial robotic systems (AAT4IRS) that uses natural language to
write the features and scenarios to be tested. We evaluated our ST approach
through a proof-of-concept, performing a pick-and-place process and applying
mutation testing to measure its effectiveness. The results show that the test
suites implemented using AAT4IRS were highly effective, with 79% of the
generated mutants detected, thus instilling confidence in the robustness of
our approach.

KEYWORDS
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1 Introduction

According to the International Federation of Robotics, the operational stock of
industrial robotic systems (IRS) is increasing. In 2022, the number of robot installations
hit a record high, reaching 553,052 units. This marked the second consecutive year with
over 500,000 units, reflecting a 5% increase from the previous year and a compound annual
growth rate (CAGR) of 7% from 2017 to 2022. The operational stock of industrial robots
also experienced significant growth, reaching 3,903,633 units—an increase of 12%—with
an average annual growth of 13% over the past 5 years. Despite a slowing global economy,
the forecast for 2023 predicts over 590,000 global robot installations (IFR, 2024). The
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increase in the number of industrial robotic systems
operating in the most diverse environments also increases
the necessity for these systems to handle failures and meet
quality aspects.

Conventional software systems can be defined as “failing”
when customers’ expectations have not been met and/or
when the software does not help the customer (Chillarege,
1996). To prevent this, developers and stakeholders must use
automated software testing to improve fault detection in the
system, which will be reflected in improved software quality
(Naik and Tripathy, 2018).

Our aim is to improve fault detection in IRS by applying a
specific software testing approach. Some research has applied
software testing in robotic systems (Bretl and Lall, 2008; Estivill-
Castro et al., 2018; Mossige et al., 2015; Chung and Hwang,
2007; Erich et al., 2019; Nguyen et al., 2023). In addition, there
are some systematic literature reviews and surveys on related
topics that we used to clarify the issues and challenge to
apply software testing to robotic systems (Afzal et al., 2020;
Afzal et al., 2021).

Afzal et al. (2020) conducted a qualitative study on the
challenges of testing robotics systems. They identified five
testing challenges to writing and designing for robotic systems:
unpredictable corner cases, engineering complexity, culture of
testing and coordination, collaboration, and documentation.
The coordination, collaboration, and documentation challenge
according to the authors is “…the lack of proper channels for
coordination and collaboration among multiple teams and a lack
of documentation.”

According to Afzal et al. (2020), one of the significant challenges
in coordination, collaboration, and documentation stems from
the need for adequate channels for coordination and collaboration
among multiple teams and for more documentation. Coordination
within many robotics companies often requires bridging gaps
between teams with diverse backgrounds, such as software and
hardware teams. Additionally, it is common to encounter the need
to integrate and write tests for third-party components without
any accompanying documentation. More standards and guidelines
for writing and designing tests for robotic systems must also be
developed.

Another challenge identified based on participants’ responses
concerns the culture of testing. One defining feature of the
robotics community is its ability to bring together individuals
from various disciplines, such as electrical and mechanical
engineering. This diversity not only drives significant advances
in robotics but also poses certain challenges. For example, a
representative quote from one of the respondents is, “The world
of robotics unites folks from different backgrounds. Folks from a
software background might observe testing differently from those
who are not.”

Behavior-driven development (BDD) is a software development
approach that promotes collaboration between technical and
non-technical stakeholders during the development process.
It introduces a common language made up of structured
sentences expressed in natural language. This language aims to
improve communication and understanding between project
team members and business stakeholders, resulting in more

effective software development and clearer alignment with business
objectives (Irshad et al., 2021).

Solis Pineda and Wang (2011) identified six key characteristics
of BDD: (i) the use of ubiquitous language based on business
terminology; (ii) an iterative decomposition process for high-
level specifications; (iii) templates to write user stories and
scenarios; (iv) automated acceptance tests; (v) readable specification
code; (vi) elaboration of behaviors based on the needs of the
development phase. The software testing applied in BDD is
automated acceptance testing that emphasizes the validation
of a system’s performance within the context for which
it is intended.

Our objective is to streamline the software testing
process for IRS through the introduction of a specialized
approach we have developed known as AAT4IRS (Automated
Acceptance Testing for Industrial Robotic Systems). This ST
approach entails customizing and implementing automated
acceptance templates derived from the principles of BDD.
By leveraging this approach, we aim to enhance IRS fault
detection.

To evaluate our methodology in an industrial setting, we
developed a test suite to apply our approach. The scenario
involved an industrial robot picking items and placing them into a
designated box based on color. Pick-and-place behavior is utilized
in almost all industrial environments that use industrial robotics
to automate processes. This scenario is similar to that (and the
requirements) used in robotics competitions and benchmarks.
Our decision to use as our inspiration the requirement used
in a robotics competition was because of the absence of public
repositories of more real requirements (used in industry) available
(Nguyen et al., 2023).

The effectiveness of our approach was evaluated through
mutation testing. The mutation score serves as a reliable metric for
assessing the efficacy of a test set in identifying faults. Research
indicates that achieving a higher mutation score markedly improves
the detection of faults (Jia and Harman, 2011; Papadakis et al.,
2018). As robotic systems interact with the real world, we created
“mutants” to simulate these interactions. Thus, we implemented
mutation testing to evaluate our test suite in the context of
robotic systems.

The initial results show that the test suite implemented
using AAT4IRS was able to kill 79% of the mutants. These
results show the effectiveness of a test suite implemented by
following AAT4IRS. Despite the benefits observed in the proposed
approach, it is still open to improvement. We detail such future
possibilities in Section 8.

The main contributions of this study are (i) a software testing
approach to apply automated acceptance testing in IRS (Section 3),
(ii) an empirical study to evaluate our approach (Section 4),
and (iii) an initial guideline to create mutants for industrial
robotic systems (Section 5).

The remainder of this paper is organized as follows:
Section 2 provides background on the core concepts for our
study (industrial robotics systems, acceptance and mutation
testing) and related work. Section 6 discusses our results
and highlights the observed benefits. Section 7 discusses the
threats to validity. Section 8 synthesizes final remarks and
future work.
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This paper is an extended version of a demo paper
(Santos et al., 2022), with the following changes: (i) expanded
explanations for the proposal approach; (ii) mutation
testing to evaluate it; (iii) initial guideline to create
mutants for IRS.

2 Background and related work

2.1 Industrial robotic systems

An “industrial robotic system” (IRS) is a system composed
of industrial robots, end-effectors (grippers, magnets, vacuum
heads), sensors (visual, torque, collision detection, 3D vision), and
equipment (belt conveyors). As with any robot in general, an
industrial robot is a complex system comprising both hardware
and software; as such, it can be subject to failure in any of
these components. The scope of our study is on the software
component, which is composed of two parts. First, the control
layer is responsible for translating commands so that the IRS can
understand and execute them; thus, it is essentially a collection
of drivers interacting with the hardware. Second, the application
layer is composed of a software script which defines the robot’s
desired behavior according to business requirements (Ahmad and
Babar, 2016; ISO/IEC 8373, 2012).

According to Heimann and Guhl (2020), the methods
of programming industrial robots can be classified based on
the interaction between the operator (who is responsible for
programming and operating the industrial robot) and the
robot. These methods can be online, offline, or hybrid. In
the first online method, the operator programs the robot on
the shop floor, using either the “lead through” method (the
operator takes the robot manually and guides it through a
trajectory) or the “teach-pendant” method (the operator guides
the manipulator to specific points, records these points to
compose a trajectory, and the manipulator executes the trajectory).
The shop floor must stop its production from having the IRS
programmed in both.

In contrast, in the off-line mode the operator uses an
environment composed of industrial robot programming
languages (IRPLs) and/or simulation software. IRPLs are purpose-
built, domain-specific programming languages that include
special instructions to move the robot’s arm(s), as well as
standard control-flow instructions and APIs to access low-level
resources (Pogliani et al., 2020).

Finally, in the hybrid method, the operator works offline to
create the flow and calibrate and validate the physical system
(online). The hybrid method thus utilizes the benefits of online and
offline methods.

Validation in IRS depends on themethod used.When the online
method is applied, the operator must stop the shop floor, program
the robot, and make it execute the program. The robot is then
evaluated to determine whether it had the expected behavior by
visual checking and/or with a reading sensor (if some are available
in the environment).

In the offline method, the validation process takes place
in a simulator; only if the robot behavior fits the business

requirement (BR) can the program (i.e., the application layer)
be sent to the robot on the shop floor. The validation process
uses the operator’s knowledge and experience with the expected
robot behavior.

In the hybrid method, the validation also used the
simulators, after the operator fine-tunes the program using
the online method to make real-time adjustments based
on the robot’s behavior interacting with the physical
environment.

In summary, although these are different methods of
programming IRS, they have the same aspect concerning validation,
which uses the operator’s knowledge and expertise about the
expected robot behavior. Furthermore, the validation process is
manual for each program written. Suppose that there are changes
to the BR (modification or addition of a feature). In that case, the
operator must change and validate the program again, even if they
validated part of the program before the modification. This manual
aspect of code validation in an industrial environment increases
project time and cost; automated software testing is thus needed for
industrial robots.

2.2 Automated acceptance testing (AAT)

There are various levels of software testing, one of which
is the acceptance test. This type of testing aims to check
if the system meets a set of acceptance criteria (AC) that
guarantee that its quality is suitable for the particular business
requirements.

As with other forms of testing, acceptance testing can be applied
manually or using automation tools. The benefits of test automation
are increased test productivity, better coverage of regression tests,
reduced duration of testing phases, reduced cost of software
maintenance, and increased effectiveness of test cases. With test
automation, an organization can create a rich library of reusable test
cases, facilitating the execution of a consistent set of test cases (Naik
and Tripathy, 2018).

However, introducing automation creates a gap between
the business requirements and technical aspects of software
testing. On the one hand, business teams write the BRs and
use them in the definition of AC; on the other hand, these
requirements must result in the generation and execution
of test cases.

To align the business and technical needs of software,
behavior-driven development (BDD) can be a good choice
(Irshad et al., 2021). In BDD, one typically uses a high-level
human-readable language, such as Gherkin (Wynne and Hellesoy,
2012), to bridge the gap between BRs and technical aspects.
On the one hand, the document describing the requirements
is easily readable by developers, QA teams and business
teams. On the other hand, the development team uses the
same document to automate the execution of acceptance tests
(Nicieja, 2017).

In BDD, the AC for each business requirement is described in
two parts: the feature and the scenario. The feature is a deliverable
piece of functionality to allow the business to achieve its goals.
It is described using the user story format: “As a [description of
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FIGURE 1
Proposed approach to applying automated acceptance testing for IRS.

FIGURE 2
Pick-and-place task performed using a Gazebo simulator.

the user], I want [functionality] so that [benefit].” The template
to describe scenarios in BDD is: “Given [pre condition for
the scenario and test environment], when [action under test],
then [expected outcomes]” (Smart, 2014). A scenario is itself
composed of step definitions responsible for interacting directly
with the system.

2.3 Mutation testing

Mutation testing is a software testing technique in which the
original code suffers some changes called “mutated versions” or
“mutants”. These mutants represent different potential defects
that are modifications in the source code. These modifications
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FIGURE 3
Simple robot program.

TABLE 1 Original X mutant command for robotic systems.

Original Mutant

rotateleftbyX rotaterightbyX

rotaterightbyX rotateleftbyX

translateforwardbyX translatebackwardsbyX

translatebackwardsbyX translateforwardbyX

translateforwardbyX translateforwardtoX

translatebackwardsbyX translatebackwardstoX

docommandX donothing

docommandX docommandXtwice

distancevalueisX distancevalueis−X(reversedirection)

distancevalueisX distancevalueisX+ noise

include changing a mathematical operator, swapping the
order of two statements, or replacing a conditional with
the opposite. The mutation score is the percentage of killed
mutants (detected by the test suite) with the total number
of mutants.

In order to apply mutation testing, we used the test suite against
each mutant. If the tests detect the changes made to create the
mutants, the mutants die. If the test suite does not detect the error,
the mutants survive. The number of mutants killed and that survive
is used as a metric to evaluate the effectiveness of the test suite (Jia
and Harman, 2011).

According to Jia and Harman (2011), mutation testing can
measure the effectiveness of a test suite in terms of its ability to detect
faults. ISO/IEC 25010 defines “effectiveness” as the “…accuracy and
completeness with which users achieve specified goals” (ISO/IEC
25010 2011).

Our decision to use a mutation-based approach for
evaluating the testing campaign is based on its ability
to replicate a wide range of scenarios, surpassing the
limitations of variations in environmental descriptions found

within scenario files from BDD alone. Our methodology
intentionally integrates non-deterministic mutants to emulate
unpredictable behaviors commonly encountered in simulation
and robotic systems, such as sensor noise and fluctuations in
simulation speed.

Additionally, we drew inspiration from previous studies where
mutation testing has been successfully applied to assess cyber-
physical systems. For instance, Leotta et al. (2018) conducted a
thorough investigation into automated acceptance testing for IoT
systems, including sensors/actuators, smartphones, and remote
cloud-based infrastructure. They evaluated their approach using
mutation testing and demonstrated its practical application.
Similarly, Afzal (2021) presented an innovative automated testing
framework using software-in-the-loop simulation for cyber-
physical systems. Their use of mutation testing showcased the
effectiveness of their approach in evaluating system performance
and robustness.

2.4 Related research

We consider related research for our study, a primary
study that performed software testing activity (design and
generate test cases) at different levels (unit, integration,
acceptance, system) for a type of robotic system (mobile,
industrial).

In this study, Nguyen et al. (2023) analyzed robotic application
requirements and acceptance criteria, explicitly focusing on
robotic competitions and benchmarks. They aimed to address
the challenges of representing and managing requirements in
the context of robotic applications’ increasing complexity and
diversity. We consider this research to be complementary to
ours. In both studies, the authors applied BDD to rewrite the
requirements for IRS. However, Nguyen et al. (2023) highlighted
the application of BDD to express and manage requirements for
robotic applications, emphasizing the potential for introducing
automation into verifying and validating these requirements in
robotics. Our study used BDD to rewrite the requirements for
industrial robotic systems and implement executable tests using
a simulator.

Ashraf et al. (2020) proposed coverage criteria for white-
box testing to test industrial robot tasks and a framework to
automatically generate the test cases to achieve the coverage
criteria defined by them. However, our research does not aim to
automatically generate test cases.

Breitenhuber (2020) proposed an application-level testing
framework for robot software applications that uses known robotic
software to describe the expected behavior of an application or
its components. They focus on evaluating the component behavior
in robotics systems that use the ROS framework in application-
level testing. They apply the testing tools available in the ROS
environment to test the components. In our study, we aimed to apply
automated acceptance for industrial robotic systems in general,
not just in ROS-based systems. Furthermore, in our approach,
acceptance testing is automated, and the BR is translated to the BDD
template for AC.

Erich et al. (2019) presented a framework for automatically
testing applications for collaborative robots and demonstrated the
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FIGURE 4
Localization and operation that we applied to the mutation.

proposal in a case study for automatically testing a pick-and-place
application. Their proposal was a framework applied in a physical
environment and at the level of integration testing. Ours focuses on
acceptance testing, leading us to consider their research and ours to
be complementary.

Estivill-Castro et al. (2018) proposed a robot simulator
following the model-view-controller software pattern. They
use simulators with the stripped GUI under a continuous
integration paradigm for robots to scale up the testing integration
with robot behavior. The simulator was an environment
to be applied in our approach and was not developed
in our study.

Mossige et al. (2015) presented cost-effective automated testing
techniques to validate complex industrial robot control systems
in an industrial context and employed their methodology in
continuous integration and constraint-based testing techniques.
Although our research was also focused on industrial robotic
systems, we focused on automated acceptance testing, so our studies
are complementary.

Alexander et al. (2015) proposed the concept of situation
coverage. They empirically evaluated situation coverage by testing
a simple simulated autonomous road vehicle and comparing its
effectiveness with random test generation. We highlight that the
challenges in testing autonomous robots, as summarized by them,
are similar to those for testing industrial robots, making our study
and theirs complementary. However, they proposed the concept of
situation coverage, which measures the proportion of all possible
situations tested by a given test set as a potential solution. For
them, situations are starting states and rules for projecting future
states; they do not commit to a linear sequence of events. Our
approach uses features and scenarios written in natural language
to guide the test generation. The scenario coverage approach aims

to cover a representative set of scenarios described by linear
sequences. Therefore, the goal of both approaches is the same
(improving software in robotics through software testing), but they
use different methods.

Chung and Hwang (2007) presented a testing process and
evaluation elements to test the software of intelligent robots.
They proposed a test case design methodology based on user
requirements and ISO standards for software testing. However,
they did not perform acceptance testing using the BRs as
input. Our study aims to apply AAT using acceptance criteria
defined by BRs.

To our knowledge, our work is the first to apply automated
acceptance testing for industrial robotic systems using the BDD
template to reduce the effort in discovering faults and to ensure that
the application meets specific BRs.

3 Proposed approach

Our approach is to apply automated acceptance testing (AAT) to
evaluate whether the system meets the business requirement (BR).
The system under test (SUT) is the IRS performing the expected
behavior defined by the BR. We concentrate on the off-line method,
which makes use of simulation.

When testing software for IRS, it is important to consider their
unique features and needs. To ensure that the software meets the
specific requirements and expectations of the IRS, it is crucial
to involve domain experts, stakeholders, and end-users in the
testing process.

According to Afzal et al. (2020), robotic systems differ from
conventional software in several critical dimensions. Robots
are complex systems composed of software and hardware. The
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TABLE 2 List of mutants.

Mutant number Number Description

#1 Translation Change the y-value in translation

#2 Rotation Change the angle orientation in rotation

#3 Translation Change the z-value in translation

#4 Gripper operation Do not change the gripper status

#5 Gripper operation Change the gripper status twice

#6 Gripper operation Do not change the gripper status with the opposite expected operation

#7 Rotation Change the angle orientation in rotation

#8 Translation Change the x-value in translation

#9 Robot initial position Sensor reading with the opposite expected value for the x-component

#10 Robot initial position Sensor reading with the opposite expected value for the y-component

#11 Robot initial position Sensor reading with the opposite expected value for the z-component

#12 Robot initial position Sensor reading with noise in the x-component

#13 Robot initial position Sensor reading with noise in the y-component

#14 Robot initial position Sensor reading with noise in the z-component

#15 Box initial position Sensor reading with the opposite expected value for the x-component

#16 Box initial position Sensor reading with the opposite expected value for the y-component

#17 Box initial position Sensor reading with the opposite expected value for the z-component

#18 Box initial position Sensor reading with noise in the x-component

#19 Box initial position Sensor reading with noise in the y-component

#20 Box initial position Sensor reading with noise in the z-component

#21 Box initial position Sensor reading with the opposite expected value for the x-component

#22 Box initial position Sensor reading with the opposite expected value for y-component

#23 Box initial position Sensor reading with the opposite expected value for the x-component

#24 Box initial position Sensor reading with noise in the x-component

#25 Box initial position Sensor reading with noise in the y-component

#26 Box initial position Sensor reading with noise in the z-component

latter interacts with the physical world through sensors and
actuators, which can lead to errors that are challenging to predict.
Furthermore, the notion of correctness is hard to specify.

Thus, we propose an approach that considers the differences
between conventional and robotic systems by validating whether the
software meets the needs defined in the BRs. Figure 1 shows our
approach, which outlines the necessary activities and corresponding
input/output. Starting the AAT4IRS process requires a decisive
definition of BRs and acceptance criteria (AC) to ensure that the

features developed provide actual business value. Collaboration
with stakeholders, including robot operators, engineers, and other
relevant parties, is crucial to clearly define the AC for the
robot software.

As for conventional IRS systems, the BRs need to describe
the business need or problem that requires a solution. These
requirements should be measurable and actionable and include AC
to ensure that all stakeholders agree on what the system should
accomplish.
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FIGURE 5
Noise added to the sensor reading.

TABLE 3 Mutant score for each round.

Round MutantScore

#1 81%

#2 77%

#3 81%

#4 81%

#5 77%

In our approach, we can take two paths with the BR defined. One
starts with the development teamwriting themission (the application
layer defined in Section 2) —essentially the system under test. The
other path starts with the test using theGherkin language towrite the
feature. The feature in our approach will adapt the template defined
in BDD and will follow the following format: “As an operator, I
want [process to be automated] so that I can automate the [process]
using an IRS.”

The next step in AAT4IRS is writing scenarios, and we follow
the BDD template (Given–When–Then). The Given step involves
outlining the initial conditions for industrial processing using
robots, including robot setup, environment preparation, and sensor
calibration. We connect these procedures with the And connector
in the BDD template. TheWhen step outlines the system under test.
Lastly, in the Then step, we evaluate whether the system meets the
expected behavior using the AC defined in the first activity. For
example, we can use a sensor to evaluate the final position of a box.

Following the AAT4IRS approach, we implemented the test,
where we must implement a function for each sentence defined in
each scenario. For example, we will have a function linked with the
sentence Given defined in the scenario. When we implement the
tests, we create the link between the tests and the system under test.
For example, if we have the following sentence “Given that the robot
is in the initial position…”, we will need to implement a function to

put the robot in the initial position and also to assert whether the
robot achieves the expected position.

Finally, we need to execute the tests. Running them will trigger
the functions that access the application layer. If the test passes,
the process starts again with another BR. However, if the test fails,
the process refactors the mission (application layer) start until the
test passes.

The output of the activity execute tests is a test report. We aim
to improve some important aspects of the software development
process for IRS. By following our approach, the software in industrial
robots can undergo thorough acceptance testing to ensure that
it meets the requirements and expectations of end users. It is
important to involve domain experts and stakeholders throughout
the acceptance testing process to ensure that the software aligns with
the specific needs of the industrial robot application.

Our proposed process draws similarities with applying
automated acceptance testing (AAT) to conventional systems.
However, crafting features, scenarios, and test cases requires
nuanced adaptation that aligns with the demands and objectives
of industrial processes. To achieve this, we incorporate
industry-specific language when formulating scenarios using the
Given–When–Then structure. For example, the Given statement
sets the initial conditions, such as the starting position of a robot.
Furthermore, we utilize instrumentation tailored to industrial
settings to establish AC. By employing positional sensors across
three axes, we validate positions and define AC based on sensor
characteristics, ensuring alignment with business objectives.
Ultimately, our approach entails integrating domain-specific
language to customize automated acceptance testing within the
BDD standards framework.

4 Applying AAT4IRS to pick-and-place
task

The use of industrial robots in pick-and-place scenarios is
common in competitions and benchmarking exercises. Our decision
to draw inspiration from a robotic competition is rooted in
the limited accessibility of real-world industrial requirements,
as noted by Nguyen et al. (2023). As such, we looked to the
Robotic Grasping and Manipulation Competition’s Task Pool for
direction. In particular, we turned to a specific task outlined in
their competition framework: “Pick Up and Place Using Tongs”
(Sun et al., 2018).

The robotmodel used was the Gen3 fromKinova Robots (2022),
and the end-effector is a gripper, the Robotiq-2f-85 from Robotiq
(2022). This model has the follow sensors: torque, position, current,
voltage, temperature, accelerometer, and gyroscope. We use the
position sensor that gives us the arm position for the three
axes (x, y, z).

The experiment took place in the esteemed Robot Operating
System (ROS) environment, which is highly regarded in the
robotics community for its adaptability and reliability. ROS is
widely accepted as an ideal platform for developing robotic software
due to its extensive range of libraries, tools, and conventions.
Its seamless communication between various components
simplifies the development of complex robot software systems. As
mentioned by Quigley et al. (2015), a ROS-based system involves
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numerous concurrent programs that exchange messages, enabling
effective collaboration and coordination.

For our experiment, we have an industrial environment with an
IRS performing a pick-and-place process (an industrial process in
which an industrial robot picks up an object from one location and
places it in another).

We implement the experiment within simulated environments,
which can lower testing expenses and expand opportunities for
test automation. Timperley et al. (2018) argue that many real-world
robotics bugs could be replicated and addressed in simulation
environments. Moreover, simulations mitigate the risk of damaging
equipment (Bossecker et al., 2023), eliminate the necessity for
physical prototypes (Roth et al., 2003) and offering a cost-effective
means to implement changes (Robert et al., 2020).

Therefore, we integrated a suitable simulator within the ROS
environment. Among the available options, Gazebo emerged
as the leading choice for robotic simulation due to its ability
to replicate diverse robotic platforms equipped with standard
sensors like cameras, GPS units, and IMUs. Despite operating
independently, Gazebo seamlessly integrates with ROS via the
“gazebo_ros” package, enabling bidirectional communication
(Quigley et al., 2015; Farley et al., 2022).

The robot’s mission performed in our experiment was to
transfer a box from its initial position (point A) on the conveyor
to its destination at the delivery table (point B) (Figure 2). The
robotic arm needed to precisely navigate to the target location
and use its gripper to securely grasp the object while ensuring
proper alignment. Upon successful pickup, the robotic arm was
to carefully place the box on the delivery table before returning
to its original position. The instrumentation necessary to run our
experiments, besides the IR, is sensors to read the IR, box color, and
the box positions.

Following the approach defined at Section 3, we write the
mission for the IR to meet the follow BR.

BOX 1 Business requirement.
We must move the box from the conveyor to the delivery point,

respecting the box color. The robot needs to be positioned
correctly before the pick-and-place process can begin. The final
position of the box should not exceed 0.02 cm in any of the
three axes.

We would like to highlight that the AC defined by the BR was
related to the box’s final position. However, to perform the pick-and-
place process, we also needed the robot’s and box’s initial position.
Therefore, we rewrote the BR to add these AC with the acceptable
threshold.

BOX 2 Business requirement.
We must move the box from the conveyor to the delivery point,

respecting the box color. The robot needs to be positioned
correctly before the pick-and-place process can begin within a
threshold of 0.02 cm in all three axes. For the box, the threshold is
0.01 cm, and also for the three axes. The final position of the box
should not exceed 0.02 cm in any of the three axes.

After writing the mission, we created the test suite following
AAT4IRS. We used the pytest-bdd library (Pidsadnyi and Bubenkov,
2022), the most popular framework in Python that implements a
subset of the Gherkin language to enable the automating of project
requirements testing.

To achieve this, we use Gerkin language to write a feature. The
first step was to establish the initial environment for our experiment,
which involved initializing both the robot and conveyor, moving
the robot to the home position, and placing the box in a specific
location. Given that each position has three axes, we composed a
Given statement for each axis, as shown in the Listing 1. The When
statement involved the pick-and-place automation system we are
testing, while the Then statement determined whether the box was
in the expected position with the maximum error as defined by the
AC in the BR.

In order to proceed, we needed to perform a test that created a
function for each statement in the scenario.The criteria for accepting
are related to the robot and box within specified position limits. The
next step was to use the feature to construct the scenario. As the
AC were based on data from sensors that monitor the positions of
the robot and box, we incorporated sensor readings into the test
script to create assertions (Listing 2 and 3). Once the test suite
was developed, we ran it against the original code and successfully
passed all tests.

5 Evaluation

We evaluated AAT4IRS through mutation testing.
The mutants defined took into account the fact that
the code for a robotic system is not just any piece of
procedural code but a specific type of program that
manipulates robotic components that interact with the
physical world.

Figure 3 shows a pseudo-code for a possible program in
which the IR performs the pick-and-place task. The robot
picks the box, lifts it from the ground by some amount,
and does the reverse operations after turning to two possible
angles, depending on the box’s color determined by a visual
sensor. The code is mostly a linear sequence of send and read
commands, which, in the context of ROS, give commands to
the robot and probe the state of the environment, respectively.
The program has few control structures, variables, or arithmetical
operations, which are the typical points where mutation operators
are applied. There are very few locations where mutations can
be injected.

In this context, one could understand that the numbers 90 and
−270 mean “left” and “right”, and that confusing one for the other
is probably more likely for a developer than providing an angular
value that is incorrect by a single degree, such as 90 and −90.
We also introduced mutants that replicated errors in the sensor
reading. Our goal was to create a comprehensive set of mutants
that accurately represent the solution space under examination,
and to provide an informative value related to the effectiveness
of our approach. Thus, we identified the high-level write/read
operations and defined appropriate ways of mutating them. Table 1
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Listing 1. Feature and scenario.

shows the possible transitions between the original code and
the mutant.

Our approach for assessing our methodology involved
following the guidelines specified in Table 1. It is worth
mentioning that we customized these to align with the
language and instrumentation utilized in robotics and
simulation. Our evaluation entailed generating mutants
that pertained to rotation (orientation modifications) and
translation (position adjustments) operations for the robot,
as well as variations in the initial and final positions for
both the robot and the box. Furthermore, we created
mutants for the gripper operations, comprising opening and
closing actions (Figure 4).

Table 2 shows the 26 mutants created using our guideline
and the adaptation needs for the specific robot used in our
experiment.

For the noise added to sensor readings, we added the
noise shown in Figure 5. This noise is a simulation of a Gaussian
noise normally distributed, often used tomodelmeasurement errors
or communication noise. As we can see, the lowest value for this
sign is around 0.053 and the biggest is around 0.39.

In order to guarantee the randomness of the noise added and
diversity of the boxes, we conducted the test suite for each of
the 26 mutants five times. The mutant scores for each round are
presented in Table 3.

6 Discussion

During our experiment, the industrial robot (IR) was tasked
with picking boxes from a conveyor and delivering them to
designated points. To thoroughly evaluate the effectiveness of our
methodology, we conducted a test suite that included the original
code and 26 carefully selected mutants, representing a wide range
of potential solutions. This comprehensive evaluation provided
valuable insights into the efficacy of our approach.

We obtained an average score of 79% effectiveness. Analyzing
the survivingmutants in all 130 executions, those that survived were
#5, #10, #14, #20, and #24 in different rounds.

The fifth mutation affects the gripper’s operation, causing it to
close twice instead of once. This change persisted as it did not
interfere with the robot’s mission. However, if time is a crucial factor
in meeting our acceptance criteria, the additional operation may
affect the overall mission execution time.

A reversal in the error value for the y-component is the transition
for Mutant #10. Although the expected value stands at 0.002 cm,
the acceptance criteria (AC) specifies 0.02 cm. Despite this, the
sensor reading remained within the acceptable threshold due to the
introduced error. This highlights the importance of aligning the
definition of acceptance criteria in the business requirement (BR)
with themagnitude order of variables utilized in the process. Such
alignment directly influences the resulting outcomes.
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Listing2. All the statements created at feature are contemplated by a test in the test file.

Listing3. An example for the test using the AC.

We utilized a randomized sorting method to introduce
variability into the noise added to sensor readings. However, we
discovered that for surviving mutants #14, #20, and #24, the noise
added was within the established error threshold of the acceptance
criteria. Consequently, we determined that aligning the acceptance
criteria in the BR with the physical attributes of the instrumentation
is crucial.This alignment directly impacts the outcomes.Thus, when

defining the acceptance criteria in our experiment, it is imperative
to consider the accuracy of the sensors.

Our analysis also revealed that adopting a natural language
approach to define AC in our methodology can provide significant
benefits for business analysts, developers, and testers throughout
the system development lifecycle since they are also observed
when application acceptance testing from BDD is applied in
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conventional systems. This approach generates a report through
the when application acceptance testing process that serves as
living documentation, accessible to the entire team. Importantly,
this living documentation is not just a snapshot but is consistently
updated to reflect the latest version of the application, making it
an invaluable resource for the team. As highlighted by Afzal et al.
(2020), the complexity of designing and crafting tests for software
systems requires effective channels for coordination, collaboration,
and documentation within robotic systems development teams.
Adopting AAT is an excellent strategy for addressing these
challenges. However, it needs qualitative studies with different
stakeholders.

7 Threats to validity

Validity threats usually occur in a mapping study, and it was no
different in our study. We highlight some of these threats and the
mechanism we applied to address them.

Mutant generation. We created mutants with just one transition
for each mutant. This was acceptable because of the nature of the
acceptance test for each scenario. The tests implementing each
sentence used in our approach (Given–Then–When) are executed
in sequence. Thus, when one test fails, the process is stopped—if the
test that implements the Given sentence fails, the process stops, and
the test report is generated. Furthermore, nomore tests are executed.
Therefore, the unique transition for each mutant was an acceptable
method for creating mutants to evaluate our approach.

Input data. As observed in the experiment, sensor characteristics
were the reason for the survived mutant. Our approach is not
concerned with the input data, but we strongly suggest that domain
experts must also choose the input data. Moreover, our experiment
performedawell-knownprocess in the roboticfield, andweusednear-
accurate data.Thus, further experimentswithmore realistic input data
will be necessary to confirm the effectiveness of our approach.

8 Conclusion

The present research outlines an approach to automated
acceptance testing (AAT) that aims to improve fault detection in
industrial robotic systems (IRS). However, one challenge to applying
software testing for robotic systems is related to communication and
collaboration: the culture of testing.

Our study utilized an approach based on behavior-driven
development (BDD); more specifically, AAT that uses natural
language. Our implementation used ROS, Gazebo, and pytest-bdd, a
Python library dedicated to BDD.To evaluate the effectiveness of our
software testing approach, we tested the generated test suites against
mutants created from the original code. The test suites produced
using AAT4IRS achieved an effectiveness score of 79%.

In our assessment, we utilized mutation testing to generate
mutants that accurately reflect the complexities of the robotic
landscape. Our thorough methodology entailed creating mutants
that focused on non-deterministic elements that are inherently
present in robotic systems, such as fluctuations in sensor readings, as
well asmutants that accounted for linguistic subtleties. By employing
this nuanced approach, we were able to gain valuable insights into

the robustness and flexibility of our proposed methodology within
the constantly evolving field of robotics.

When evaluating business requirements for industrial robotic
systems, it is crucial to consider both the robot’s physical attributes
and overall business objectives. Achieving alignment across all teams
involved in the project, which may include individuals from various
backgrounds, is essential when establishing acceptance criteria
(AC). Additionally, utilizing live documentation made possible
by AAT4IRS implementation can help foster collaboration among
teams, allowing for more effective problem-solving when facing the
complex challenges of these types of projects.

Our aim for future research is (i) to apply our approach by
performing controlled experimentswith a groupof roboticists, (ii) to
apply and evaluate AAT4IRS using physical IRS, (iii) and to perform
a qualitative evaluation with different stakeholders.
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