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A B S T R A C T

The application of flow simulations on porous media, reconstructed through Computerized Tomography
(CT) scans, has emerged as a prevalent methodology for the computation of rock permeability. However,
constructing a proper 3D model of a rock sample is a real challenge, mainly due to the lack of a unified
procedure. Indeed, to ensure precise outcomes, specific prerequisites must be fulfilled. This paper proposes
a methodology to assess the convergence and accuracy of computed solutions from CT data to pore-scale
simulations. Starting from 3D volume data obtained by X-ray CT, we develop a workflow to investigate the
effects of the reconstructed shape on the permeability of a granular porous medium composed of glass beads.
Indeed, the choices of CT scan resolution and digital rock discretization can compromise the quality and
computational cost of numerical results. Especially in configurations of porous media with high solid volume
fractions and very narrow porous spaces, as observed in solid/solid contact zones, which can be either under
or over-resolved depending on the numerical tools used. Highly resolved Direct Numerical Simulations (DNS)
are conducted to solve incompressible Navier–Stokes equations through porous media. Body-fitted meshes
are employed to resolve irregular shapes accurately, ensuring precise results even with coarser meshes. The
methodology is validated with challenging simulations of flows through simple cubic close packing of particles,
incorporating various geometric surface modeling techniques. A convergence of the results with respect to
grid resolution is obtained for low- to moderate-Reynolds-number flows. The numerical results indicate that
permeability calculation strongly depends on surface processing. Finally, we apply these recommendations to
construct accurate digital replica models generated from CT data of our assembly of randomly arranged glass
beads in a tube. The study of the pressure drop convergence demonstrates an excellent agreement with the
empirical correlation.
1. Introduction

In a few decades, the study of multiphase transport processes in
porous media has acquired considerable attention, particularly in Dig-
ital Rock Physics (DRP). In geothermal energy, CO2 sequestration,
and oil and gas projects, utilizing digital replicas becomes crucial
for modeling fluid flows across scales, providing a fine-scale under-
standing of rock properties. This innovative approach builds on the
coupling between Computational Fluid Dynamics (CFD) software and
the application of non-destructive techniques, such as X-ray Computed
Tomography (CT) [1,2], thus offering the advantage of conducting
various numerical experiments on the same sample.

Thereby, authors [3,4] utilize DRP to evaluate the porosity and the
permeability of core samples under different configurations. A question
that remains open is understanding and evaluating the impact of the

∗ Corresponding author at: École de technologie supérieure, 1100, Notre-Dame Ouest, Montréal, H3C 1K3, QC, Canada.
E-mail address: abdelkader.hammouti@etsmtl.ca (A. Hammouti).

reconstructed 3D digital model’s quality on determining geomateri-
als’ geometrical and physical properties [5,6]. Indeed, DRP couples
the outcomes of digital image processing with pore-scale simulations.
Consequently, the final model encompasses the uncertainties inherent
in each process involved in the workflow. The absence of standard
procedures poses challenges in accurately assessing porosity and per-
meability, making it difficult to distinguish between errors in data
acquisition, geometrical modeling, and numerical modeling. Working
with rock samples adds another difficulty because benchmarking with
an analytical solution is impossible.

The detection of measurement errors is continuously enhanced to
assess geometrical characteristics [7]. Depending on the CT instru-
ments, measurement uncertainties can be mitigated using hardware or
software compensation. Besides, benchmarking conventional and accu-
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rate experimental measurements against CT image-based analysis on
the same core sample provides opportunities to develop new method-
ologies for assessing measurement accuracy and refining methods for
reliably estimating porosity using CT scans [5,8].

For permeability calculation, Andrä et al. [9] provide benchmark
atasets with several digital images of porous rock microstructures,
nabling digital rock simulations at low-Reynolds-numbers. In Andrä
t al. [10], results with different numerical methods are compared, re-
ealing variations in permeability values of up to 38% for natural rock
amples and approximately 10% for a sample composed of a random
phere pack generated with a Discrete Element Method. Moreover, the
rregular shape of convex particles, as studied by Kerimov et al. [11],

leads to variations in porosity by 14–25% and corresponding variations
in absolute permeability by 45–76%.

A controlled study with reference solutions is crucial to assess gaps
n porous media modeling. We propose a methodology using a porous

medium with known geometric characteristics to create digital replicas
for accurately estimating deviations. Porous media, represented by
randomly stacked spherical particles, are deemed ‘‘reasonable proxies
for sedimentary granular geomaterials’’ [9]. Additionally, the scien-
ific literature abounds with analytical [12,13], empirical [14,15], and
umerical [16,17] studies, often employing monodisperse spheres.

To model porous media flows, we distinguish two numerical meth-
ods: boundary-fitted and non-boundary-fitted. The latter includes pop-
ular techniques such as lattice-Boltzmann methods [18,19], Immersed
Boundary methods [20,21], and Fictitious Domain methods [17,22].
Regardless of methods, a structured Cartesian grid is typically em-
ployed. Challenges arise in accurately imposing boundary conditions,
necessitating high-order interpolation techniques with sufficient com-
putational points within the pore space to prevent the introduction of
numerical errors and ensure local mass conservation [23,24]. Conse-
quently, structured local mesh refinement strategies [25,26] have been
explored to automatically enhance refinement in areas of interest, such
as narrow regions.

The grid densification in narrow regions originates from boundary-
fitted methods, which are especially effective for small pore spaces
with well-defined surface boundaries [27,28]. Unstructured hexahe-
ral meshes offer better numerical efficiency, but no general robust

automatic mesh generation algorithm exists for porous media studies.
Consequently, automated tetrahedral mesh generators are commonly
used, as they can produce relatively high-quality meshes with good
computational accuracy. However, tetrahedral meshes require more
cells to achieve the same computational accuracy as hexahedral grids
to ensure good mesh quality and prevent the degradation of computed
solution accuracy, especially when flows go through solid particles in
contact [29]. Therefore, the best compromise is using hybrid grids com-
bining hexahedral and tetrahedral cells, which are also more suitable
or quantifying errors and spatial convergences of solutions

Generating digital replica or twin models from CT data is a gen-
uine challenge, especially to guarantee a high fidelity between the
measurement and the sample. Thus, using particles whose geometric
characteristics are known a priori allows the direct comparison of the
effects of binarization and segmentation on geometric characteristics
and the deformations due to image processing and tessellation. The
novelty of this study lies in assessing discrepancies generated by a re-
constructed 3D digital model, extending from raw CT data to numerical
simulations, thanks to the availability of reference solutions that enable
convergence studies. Our primary objective is to scrutinize the accuracy
in assorted flow regimes by quantifying errors and assessing the spatial
convergence of computed solutions.

In Section 2, we recall the main features of our methodology by
pecifying our modeling workflow, including choices and limitations.
n Section 3, we validate our methodology using a well-established con-

figuration with known analytical solutions and numerical extrapolated
solutions. Convergence studies are conducted on flows through periodic
arrays of spherical particles with different surface treatments to assess
2 
the discrepancy of the computed solution. Eventually, in Section 4, we
perform numerical simulations of flows through two distinct digital
replica models of randomly packed glass beads in a tube generated from
CT data.

2. Methodology

To address the methodology accuracy, each process step is split,
from CT data to numerical simulations, to determine uncertainty es-
timations. As described in Fig. 1, four sequences define the framework
of this study: (i) Data acquisition and image processing, (ii) geometric
modeling, (iii) computational meshing, and (iv) numerical simulation.

2.1. Material

We consider 𝑁𝑝 = 100 glass beads with a volumetric mass density
𝑝 = 2500 kg/m3 and diameter 𝑑𝑝 = 16 mm with a tolerance 𝜀𝑡𝑜𝑙 =
0.3 mm, contained in a tube of height 𝐿𝑡 = 205 mm and diameter

𝐷𝑡 = 51 mm. Given the low measurable polydispersity of beads, we
introduce the notion of equivalent sphere diameter by volume, defined
as:

𝑑𝑒𝑞 =
( 6
𝜋
𝑉𝑝

)1∕3
(1)

Bead diameter distribution was assessed through two techniques to
establish reference values: (i) 𝑑𝑚𝑐 , measured using a Mitutoyo Absolute
AOS Digimatic caliper (accuracy: ±0.02 mm). This method is limited
to measuring a single diameter in one direction. Additionally, (ii)
𝑑𝑣𝑏, representing equivalent sphere diameters by volume 𝑉𝑝, measured
with a Sartorius CP124S balance (accuracy: ±0.1 mg). Both 𝑑𝑚𝑐 and
𝑑𝑣𝑏 distributions exhibit similar characteristics, with nearly identical
average values (⟨𝑑𝑚𝑐⟩ = 15.96 mm, ⟨𝑑𝑣𝑏⟩ = 15.97 mm) and standard
deviations of the same order of magnitude (𝜎𝑚𝑐 = 0.13, 𝜎𝑣𝑏 = 0.15),
elow the diameter tolerance 𝜀𝑡𝑜𝑙. This indicates minimal dispersity,

suggesting an imperfectly spherical geometry of beads. Hereafter, the
𝑑𝑚𝑐 distribution is considered the reference measurement. In the follow-
ing, the ensemble-averaging operator ⟨𝜙⟩ and the standard deviation 𝜎𝜙
are defined for a field 𝜙 as follows:

⟨𝜙⟩ = 1
𝑁𝑝

𝑁𝑝
∑

𝑖=1
𝜙𝑖 (2)

𝜎𝜙 =

√

√

√

√

√

1
𝑁𝑝

𝑁𝑝
∑

𝑖=1
(𝜙𝑖 − ⟨𝜙⟩)2 (3)

2.2. Data acquisition and image processing

Data acquisition was conducted at the INRS laboratory using a
Siemens Somatom Definition AS CT scanner operating at a voltage
of 140 kV and a current of 180 mA. The primary acquisition was
performed with a 55 cm field of view, resulting in an image resolution
of ℎ𝑣𝑜𝑥 = 𝛥𝑥 = 𝛥𝑦 = 0.1074 mm. The reconstructed slice thickness
was set to 𝛥𝑧 = 0.1 mm to maintain an isotropic resolution. This
approach provides a sharper slice profile in all three directions, thereby
enhancing image quality for surface extraction and segmentation. The
image reconstruction (IR) was conducted using a Sinogram Affirmed
Iterative Reconstruction (SAFIRE, Siemens Healthineers) with a sharp
edge-enhancing reconstruction kernel. This IR algorithm is considered
as more effective regarding image quality, reducing noise and arti-
acts [31,32]. Unfortunately, publications related to this commercial
oftware, mainly used as a ‘black box’, offer minimal information on

algorithmic details [33]. While CT metrology can significantly im-
pact accuracy and measurement uncertainty [34,35], it is not within
the scope of this paper. This paper only discusses metrics accessed
from the volumetric image recorded in DICOM (Digital Imaging and
Communications in Medicine) format.
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Fig. 1. Workflow for validating our digital rock modeling applied to a glass bead assembly sample.
Source: Adapted from [30].
Fig. 2. Various configurations in contact management from a binary image (c): (a) and (b) illustrate segmentation and discretization for bead/wall (B/W) contacts, while (d) and
(e) represent bead/bead (B/B) contacts.
2.3. Geometric modeling

Using DICOM files, a segmentation method [36] is applied to con-
vert the Hounsfield Unit (HU)-based volume into a binary-based vol-
ume (Fig. 2c). This thresholding technique produces stair-step meshes,
introducing an error of the order of ℎ𝑣𝑜𝑥 on each interface. This initial
step is crucial, involving the extraction of a separating surface to
build an accurate 3D reconstruction of the original scanned shape
in a Standard Triangle Language (STL) format. Segmentation without
prior knowledge of the shape is challenging, especially with objects in
contact. Therefore, a watershed transform algorithm [37] is utilized to
segment contiguous regions into distinct objects (Fig. 2a and d).

Applying the sharpest filter at the level of image acquisition does
not necessarily avoid image processing operations, such as using local
pre-filtering to overcome aliasing artifacts or erosion/dilation opera-
tions to prevent over-segmentation. Therefore, retaining the original
geometrical form of scanned objects is a non-trivial task. Using nearly
spherical glass beads as a proxy for porous media offers the advantage
of individually studying the surface processing applied to each bead
to determine and calibrate the deviation margin with reference experi-
mental measurements. Fig. 3 illustrates the various stages of processing
the surface to enhance coarsening accuracy, applied to a single scanned
bead:

(a) the 3D image segmentation method produces results in binary
volumes, and each volume is converted into a surface represen-
tation in an STL format (Fig. 3a).

(b) Subsequently, a smoothing filter is applied on the polygonal data
set by iteratively adjusting the position of the points (Fig. 3b).

(c) Finally, a decimation filter is added to the previous step to
reduce the number of triangles from the original polygonal set
(Fig. 3c).
3 
In Fig. 4a, the distribution of diameters 𝑑𝑚𝑐 measured with a caliper
is compared with the distribution of equivalent diameters of binary
(or voxel-based) segmented beads, denoted as 𝑑𝑏𝑖𝑛 and referred to as
‘‘binarized beads’’ in the rest of this study. Additionally, it is com-
pared with the distribution of equivalent diameters of smoothed and
decimated surfaces applied to the binarized beads, denoted as 𝑑𝑏𝑠𝑑 and
succinctly termed ‘‘BSD beads’’ – an acronym representing Binarization,
Smoothing, and Decimation. The binarized and BSD beads’ mean and
standard deviation values are identical. The deviation of the global
average porosity for the 100 binarized and BSD beads is only 0.09%.
Additionally, the average values ⟨𝑑𝑏𝑖𝑛⟩ and ⟨𝑑𝑏𝑠𝑑⟩ are slightly lower to
⟨𝑑𝑚𝑐⟩. This discrepancy arises from the resolution of contact sizes and
segmentation operations. Consequently, the beads’ spherical shape is
slightly distorted by flattening in the contact areas, as illustrated in
Fig. 3. In this assembly, some beads may have up to eight contacts
(Fig. 4b). Accordingly, the resolution of contact sizes may signifi-
cantly influence the discrepancy between binarized and true geometric
porosity [11].

To control mesh surface differences after segmentation, smooth-
ing and decimation operations, the Hausdorff distance 𝑑𝐻 is used to
measure the distance between two meshes X and Y as follows:

𝑑𝐻 (𝑋 , 𝑌 ) = max{ sup
𝑥∈𝑋

inf
𝑦∈𝑌

𝑑(𝑥, 𝑦), sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)} (4)

Minimizing 𝑑𝐻 is a relevant criterion for controlling deviations, com-
monly used in segmentation and image processing assessments [38]
and for training machine learning models as a loss function [39]. In this
study, we employ the Hausdorff RMS-distance 𝑑𝑟𝑚𝑠𝐻 [40], representing
the sum of squared distances between pairs of points normalized by the
equivalent diameter 𝑑 .
𝑒𝑞
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Fig. 3. The surface processing consists of three stages: (a) an initial binarization process using 223 540 triangles, (b) followed by a smoothing process also employing 223 540
triangles, and (c) concluding with a decimation process resulting in 6704 triangles — showcasing a 97% reduction compared to (b).
Fig. 4. (a) Comparison of diameter distributions: 𝑑𝑚𝑐 measured with a caliper, 𝑑𝑏𝑖𝑛 equivalent diameters of base-binary segmented beads, and 𝑑𝑏𝑠𝑑 equivalent diameters of smoothed
and decimated surfaces applied to binarized beads. (b) Number of contacts per particle.
2.4. Computational meshing

The efficient computational mesh corresponds to the porous domain
whose limits are precisely defined at the surfaces of the glass beads as
well as those of the tube. Alongside geometric modeling considerations
discussed earlier, numerical constraints play a crucial role in ensuring
solution accuracy and convergence. This includes decisions regarding
fluid-solid interaction modeling strategies and treatment of contact
points.

Fig. 5 presents typical strategies for modeling fluid/solid bound-
aries. In configurations with narrow regions from solid/solid contacts,
most of the methods (Fig. 5a-b-c) lack sufficient points (blue nodes)
to depict the pore space properly and to define the hydrodynamic
boundary accurately. These limitations stem from their unfitted bound-
ary nature, relying on interpolation techniques to precisely capture
fluid/solid interfaces [17,41].

Achieving mesh convergence in simulations using structured Carte-
sian meshes often requires mesh sizes as fine as or finer than the orig-
inal image resolution. According to Guibert et al. [42], even doubling
the resolution of a Cartesian mesh may not ensure convergence for per-
meability. The number of cells discretizing small pore spaces can affect
the numerical error in permeability determination. However, increasing
the resolution of CT images and meshes to capture finer microstructural
details leads to highly computationally demanding simulations.

Unstructured meshes (Fig. 5e) are popular for addressing porous
flow in narrow areas, but conducting convergence studies with constant
-resolution unstructured meshes is challenging. Automatic mesh gener-
ation can result in poorly formed cells in narrow regions, degrading
solution quality or causing calculation failures. To our knowledge, no
meshing tool efficiently generates complex meshes without producing
poor-quality cells within a reasonable time.
4 
Thus, the most effective strategies involve coupling a fluid solver
with either a local grid refinement (Fig. 5d) or a hybrid grid (Fig. 5f).
Appendix A provides a detailed comparison of numerical results in a
configuration with a single particle in a 3-periodic cubic box to evaluate
disparities in convergence and accuracy between these meshes. These
strategies exhibit at least 2nd-order convergence orders in space for low
and high solid volume fractions for diffusive (Fig. A.3) and convective
regimes (Fig. A.4). Employing hybrid grids, especially for high solid
volume fractions, offers a twofold advantage: it enables a coarser, com-
plex computational domain (other than cuboid in three dimensions)
and directs all memory and computational resources exclusively to the
cells where the physical processes occur, namely, the pore space.

This study selects a hybrid grid strategy and moderately sized com-
putational domains to ensure that the computational cost associated
with grid convergence studies remains tractable. The Body Fitting
3D meshing algorithm, developed in SALOME-platform [43], is uti-
lized here. Similar to a cut-cell-like approach, this algorithm generates
regular hexahedrons in the computational fluid part and employs poly-
hedrons and other types of elements at the intersection of Cartesian
cells with geometrical solid boundaries (schematized in Fig. 5f and
illustrated with a mesh with a resolution of 36 cells per sphere diameter
in Fig. 2b and e). Besides, for the very small cells, a threshold 𝛿 is de-
fined to constrain the minimal size of a cell truncated by the geometry
boundary; thus, if the size of a truncated grid cell is 𝛿 times less than
the initial cell size, then the mesh element is not created. In this study,
this threshold 𝛿 is always larger than 10. Code_Saturne software pre-
calculates various mesh quality criteria, enabling manual cell repairs
if needed in post-processing. These criteria measure cell properties
like non-orthogonality angles, internal face offset, cell distortion, and
volume ratios.
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Fig. 5. Strategies for modeling fluid/solid interactions: (a) 9-point Q2 outwards-oriented interpolation stencil boxed in the red line, (b) centered 3-point regularized delta function
in the green circle, (c) boundary handling in lattice-Bolzmann methods, (d) octree interpolation, (e) unstructured grid and (f) hybrid grid. Pore space is shown in white and solid
in gray. Blue points are computational nodes in the pore space, and black points are in the solid phase.
The management of these mesh criteria is essential in treating
contact points. Indeed, their treatments present significant numerical
challenges in porous flows. Achieving a three-dimensional mesh of
a closely-packed bed of spheres without geometry modifications is
rare [29]. Maintaining mesh quality near contact points is crucial to
avoid skewness. Nevertheless, minor changes in sphere or tube wall
diameter can notably impact porosity, leading to pressure drop errors.
In Appendix B, we demonstrate that a ±1% diameter modification
results in approximately 3% void fraction error, leading to pressure
drop calculation errors of 7−10% (see Table B.1), consistent with Bai
et al. [44].

2.5. Numerical model

Let us consider a domain 𝛺 composed of fluid and solid particles
 , of boundary 𝜕 𝛺. The governing equations are non-dimensionalized
using the following scales: 𝐿𝑐 for length, 𝑈𝑐 for velocity, 𝑇𝑐 = 𝐿𝑐∕𝑈𝑐 for
time and 𝜌𝑓𝑈2

𝑐 for pressure, where 𝜌𝑓 denotes the fluid density. For this
study, we denote dimensionless quantities with a ‘‘∗’’ superscript. Thus,
the dimensionless incompressible fluid flow problem reads as follows:
𝜕𝒖∗
𝜕 𝑡 + 𝒖∗ ⋅ ∇𝒖∗ = −∇𝑝∗ + 1

𝑒
∇2𝒖∗, over𝛺 (5)

∇ ⋅ 𝒖∗ = 0, over𝛺 (6)

𝒖∗ = 𝟎, over (7)

where 𝒖∗ and 𝑝∗ represent the dimensionless fluid velocity and pressure,
respectively. The particle Reynolds number is defined as follows:

𝑒 =
𝜌𝑓𝑈𝑐𝐿𝑐

𝜇𝑓
(8)

where 𝜇𝑓 denotes the fluid viscosity. In the following, the choice for
𝑈𝑐 is the far field inlet velocity 𝑢𝑖𝑛. We choose 𝐿𝑐 = 𝑑𝑝 where 𝑑𝑝 is
the particle diameter. Finally, we represent the solid volume fraction
by 𝛼𝑠 ∈ [0, 1] and the fluid volume fraction or porosity by 𝛼𝑓 = 1 − 𝛼𝑠.

The numerical methods employed in Code_Saturne are extensively
detailed by Archambeau et al. [45], thus only briefly outlined here.
Code_Saturne solves the Navier–Stokes equations for 3D incompressible
5 
flows across various mesh types. A fractional step scheme (SIMPLEC)
is used to solve the mass and momentum Eqs. (5)–(6)–(7), and relies
on a finite volume discretization. The advective terms are treated using
a second-order linear upwind scheme and an implicit first order Euler
scheme is employed. Finally, incompressibility is satisfied by solving
a Poisson equation for pressure correction with a conjugate gradient
method preconditioned with K-cycle AMG. The computed error 𝑒 will
be evaluated in terms of the relative deviation of a physical quantity 𝜉
as follows:

𝑒(𝜉) = 𝜉(ℎ) − 𝜉𝑟𝑒𝑓
𝜉𝑟𝑒𝑓

(9)

where 𝜉𝑟𝑒𝑓 represents the reference solution. If no known solution is
available, one can establish the solution through numerical consistency
by applying the Richardson extrapolation [46] as follows:

𝜉(ℎ) = 𝜉ℎ→0 + 𝛽 ℎ𝛼 (10)

where 𝜉ℎ→0 = limℎ→0 𝜉(ℎ) is the converged solution, 𝛼 the convergence
rate and 𝛽 the pre-factor of the relative error; ℎ being the grid size. The
error 𝑒ℎ→0 is defined as the deviation from the extrapolated solution
𝜉ℎ→0:

𝑒ℎ→0(𝜉) =
𝜉(ℎ) − 𝜉ℎ→0

𝜉ℎ→0
(11)

3. Flow through periodic arrays of spheres

To assess the uncertainty of our methodology across various flow
scenarios, we perform a stepwise validation, progressing from a geo-
metric representation using parametric equations to a complex geome-
try described by an STL file obtained from CT data. Flows through an
infinite particle packing offer convenient configurations for studying
the spatial convergence of computed solutions with mesh refinement.
Results are primarily analyzed regarding pressure drop through the
porous domain along the streamwise direction or equivalently in terms
of friction coefficient 𝐾 exerted on the solid phase surface (inversely
proportional to the permeability coefficient). This investigation spans
both viscous and inertial regimes.
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3.1. Description

The relation between the mean velocity 𝑢𝑚, the imposed pressure
drop 𝛥𝑝 in the streamwise direction, and the friction coefficient 𝐾 for
an infinite structured simple cubic array of spheres, modeled as a single
sphere centered within a 3-periodic cubic box, is expressed as:
𝛥𝑝
𝐿

= 18𝜇𝑓𝛼𝑠
𝑑2

𝐾(𝛼𝑠,𝑒) 𝑢𝑚 (12)

where 𝐿 represent the cubic box edge length and 𝑑 the sphere diameter.
n Stokes regime, Zick and Homsy [13] provided an analytical devel-
pment depicting 𝐾 as a function of the solid volume fraction 𝛼𝑠. This
olution lies in its valid domain, up to 𝛼𝑚𝑎𝑥𝑠 = 𝜋∕6 ≃ 0.524, enabling the

investigation of configurations with high solid volume fractions, such
as in a close-packed simple cubic (CSC) array case,

for 𝛼𝑠 = 𝜋∕6 and 𝑒 ≪ 1, 𝐾𝑟𝑒𝑓 = 42.1 (13)

For finite-Reynolds-number flows, achieving the maximum solid
olume fraction 𝛼𝑚𝑎𝑥𝑠 also poses challenges for various numerical meth-
ds (see Section 2.4). However, no analytical solution is available.

In Appendix A, the spatial convergence of the computed solution
with grid size is assessed using a reference solution 𝐾𝑟𝑒𝑓 obtained by
xtrapolation to zero grid size [46], as follows:

for 𝛼𝑠 = 𝜋∕6 and 𝑒 = 54, 𝐾𝑟𝑒𝑓 = 54.3 (14)

In all simulations, spheres are enclosed in a 3-periodic cubic box
uch as 𝐿 = 𝑑𝑝 = 1. The spatial resolution is uniform in all directions,
ith 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧, resulting in a grid size ℎ∗ = 1∕𝑁𝑥. The fluid

viscosity is set to 𝜇𝑓 = 1.25 × 10−2 Pa s and the imposed pressure drop
𝛥𝑝 is adjusted to achieve 𝑒 ∼ 0.01 and 𝑒 = 54.

3.2. Ideal sphere generated by parametric equations

Ideal spheres are commonly used for validating and assessing the
convergence and accuracy of numerical methods [47,48]. This section
outlines two approaches for surface representation: parametric shape
and parametric mesh.

3.2.1. Ideal sphere surface described by a parametric shape
In computational geometry, parametric shapes are fundamental ge-

ometric primitives that utilize mathematical representations to describe
geometric objects’ form and features with a minimal set of parameters.
Ideal spheres are chosen as parametric shapes due to their analytically
defined surfaces, minimizing additional approximations. This setup
enables us to assess how high solid volume fractions and particle–
article contact points impact the numerical resolution. As discussed in

Appendix A, practical configurations like densely concentrated spheres
ith multiple contacts can adversely impact the expected convergence
rder (see Fig. A.3b). Employing a hybrid mesh with an efficient

fluid solver ensures constant convergence rates and relatively stable
ccuracy across varying solid volume fractions 𝛼𝑠 (see Fig. A.2b).

In a CSC array of spheres, our numerical results in the Stokes regime
converge towards a friction coefficient 𝐾ℎ→0 = 42.1. The agreement
with the analytical solution Eq. (13), proposed by Zick and Homsy
13], is very satisfactory. For moderate-Reynolds numbers, we conduct

simulations with varying Reynolds numbers (up to 𝑒 = 54) and
grid resolutions (up to ℎ∗ = 1∕128) to establish the coefficient 𝐾 as
ℎ approaches zero. The comparison of our computed solutions with
highly accurate numerical solutions shows a good agreement (details
in Appendix A.2).

In Fig. 6, we investigate the configuration of a CSC array of spheres
y examining the accuracy and convergence of our computed solutions
or 𝑒 ≪ 1 and 𝑒 = 54. For 𝑒 ≪ 1, we observe a clean spatial 2nd-
rder convergence with a rate 𝛼 = 1.8, even in the near-contact region
here the mesh can be strongly non-orthogonal. For 𝑒 = 54, the grid
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Fig. 6. Convergence study of computed solutions for flows through an infinite
structured cubic-centered array of ideal spheres defined by a primitive surface in
the configuration of CSC array of spheres: Variation of relative deviations 𝑒 with the
analytical solution Eq. (13) proposed by Zick and Homsy [13] for 𝑒 ≪ 1 and with
the reference solution for 𝑒 = 54 defined by Eq. (14).

resolution affects convective flux reconstruction. The convergence rate
𝛼 falls to 1.6, deemed satisfactory for a second-order accurate scheme.
The deviations 𝑒 between computed and reference solutions remain
below 4% for grid resolutions ℎ∗ ≤ 1∕32.

3.2.2. Ideal sphere surface described by a STL file
This section explores the impact of tessellation on a spherical

urface to assess the computed solution’s convergence and accuracy.
chieving an even distribution of points on a sphere is a challenging

problem in geometry [49]. The uniformity of point distribution on the
phere’s boundary significantly influences convergence outcomes [17,

50]. Two configurations are presented to generate a discrete set of
points on the sphere’s surface and reconstruct a surface mesh:

1 An uneven distribution of points, termed the (𝜃 , 𝜑)-distribution,
is characterized by the 𝜃-resolution, 𝑁𝜃 , representing the num-
ber of points on cross sections of the sphere in the XY plane. The
𝜑-resolution, 𝑁𝜑, corresponds to the number of points (exclud-
ing the poles) on the cross sections of the sphere in the XZ plane.
Four resolutions are considered 𝑁𝜃 = 𝑁𝜑 = 𝑁𝜃 ,𝜑 = {8, 16, 32, 64}
corresponding to the quantities of triangles defining the surface
mesh 𝑁𝑢

𝑡𝑟𝑖 = {96, 448, 1920, 7936}.
2 An even distribution of points, known as the Fekete distribu-

tion [51], is achieved by configuring points to minimize the total
repulsive energy in a system of charged particles. Physically, this
energy corresponds to the interactions of 𝑁𝑒

𝑝𝑡𝑠 charged point-
particles as they repel each other according to Coulomb’s law.
Subsequently, the Ball Pivoting algorithm [52] is applied to
generate a triangle mesh using the provided point cloud 𝑁𝑒

𝑝𝑡𝑠
such as 𝑁𝑒

𝑡𝑟𝑖 = 𝑁𝑢
𝑡𝑟𝑖.

Four surface resolutions are generated in an STL format with two
ifferent point distributions: (𝜃 , 𝜑)-distribution in Fig. 7-top and Fekete
istribution in Fig. 7-bottom. The Hausdorff RMS-distance is computed

for each configuration compared to a highly resolved surface sphere.
For uneven and even point distributions, maximum deviations are mea-
ured at 𝑁𝑢

𝑡𝑟𝑖 = 𝑁𝑒
𝑡𝑟𝑖 = 96 with a value of 2.4%, and 1.9% respectively.

onversely, minimum deviations are observed at 𝑁𝑢
𝑡𝑟𝑖 = 𝑁𝑒

𝑡𝑟𝑖 = 7936
with 0.02% and 0.01% respectively.

To analyze the simultaneous influence of surface mesh resolution
∗
𝑡𝑟𝑖 = 1∕√𝑁𝑡𝑟𝑖 and the volume mesh resolution ℎ∗ on the friction

coefficient 𝐾, the convergence of the computed solution is plotted for
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Fig. 7. Comparison of two surface triangulations: on top, generated from the uneven (𝜃 , 𝜑)-distribution, and on the bottom, generated from the even Fekete distribution. Four grid
resolutions are shown with: (a)–(e) 96 triangles, (b)–(f) 448 triangles, (c)–(g) 1920 triangles, and (d)–(h) 7936 triangles.
Fig. 8. Convergence and evolution study of computed solutions for flows through an infinite structured cubic-centered array of spheres, exploring the influence of the number
of triangles on unevenly distributed points 𝑁𝑢

𝑡𝑟𝑖 and evenly distributed points 𝑁𝑒
𝑡𝑟𝑖 on the surface of an ideal sphere. The numerical results are compared with (a) the analytical

solution Eq. (13) for 𝑒 ≪ 1 and (b) the reference solution defined by Eq. (14) for 𝑒 = 54.
𝑒 = 0.01 and 𝑒 = 54 in Fig. 8. The overall trend indicates that as
the number of triangles increases from 96 (i.e. ℎ∗𝑡𝑟𝑖 ∼ 10−1) to 7936
(i.e. ℎ∗𝑡𝑟𝑖 ∼ 10−2), the convergence rate 𝛼 also increases. This result
demonstrates the very significant influence of the size of the surface
mesh triangles, i.e. when ℎ∗𝑡𝑟𝑖 is larger or similar to ℎ∗, it dominates the
deviation.

The discretization of a simple geometry like a sphere can be influ-
enced by various choices, leading to significant deviations in conver-
gence and accuracy. An even distribution of points on an extracted
surface yields the best results. Higher resolution brings the approxi-
mation closer to an ideal sphere but comes with an increased com-
putational cost. Therefore, a significant challenge in DRP is finding
the optimal trade-off between grid size and the minimum number of
triangles required for satisfactory numerical accuracy while managing
computational cost. Hereafter, a minimum of 6000 triangles describe
particle surfaces.
7 
3.3. Binarization, Smoothing and Decimation (BSD) of an ideal sphere

To closely replicate the geometric modeling applied on a surface
extracted from CT-scan imaging (Fig. 3), we begin by evaluating devi-
ations with an ideal sphere that undergoes a process of binarization,
followed by smoothing and decimation. Computational runs are con-
ducted at each phase to compute the friction coefficient 𝐾 and assess
resulting discrepancies.

To evaluate the effects of spatial resolution anisotropy on 𝐾, a
convergence analysis is achieved at 𝑒 ≪ 1 and 𝑒 = 54, using a
binarized ideal sphere with a 100 × 100 × 25 voxel mesh resolution (a
standard resolution for medical CT-scan detectors). The analysis reveals
a deviation on 𝐾 of approximately 1% for a 𝑧-direction flow and a
discrepancy ranging from 4% to 5% in the x- and 𝑦-direction flows.
Therefore, isotropic spatial resolutions are strongly recommended to
minimize the uncertainties. Subsequently, we examine the binarization
of an ideal sphere with a 100 × 100 × 100 voxel mesh resolution. The
convergence with respect to ℎ∗ is depicted in Fig. 9 for both regimes,
showing almost second-order convergence. It is worth noting that the
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Fig. 9. Convergence study of the friction coefficient 𝐾 as a function of grid size ℎ∗ and applied processes on the surface of an ideal sphere: Binarization with a 100 × 100 × 100
voxel mesh resolution (B), Binarization and Smoothing (BS) and Binarization, Smoothing and Decimation (BSD). The numerical results are compared with (a) the analytical solution
Eq. (13) for 𝑒 ≪ 1 and (b) the solution reference defined by Eq. (14) at 𝑒 = 54 for the case of the flow through an infinite structured cubic-centered array of spheres.
Table 1
Geometric features resulting from various surface processing techniques.

nb triangles Surface Volume 𝑑𝑒𝑞 𝑑𝑟𝑚𝑠
𝐻 (%)

Ideal sphere – 𝜋 𝜋∕6 1.000 –
Binarization (B) 94 320 4.716 0.524 1.000 0.439
B+Smoothing (S) 94 320 3.148 0.525 1.000 0.083
B+S+Decimation (D) 6000 3.140 0.525 1.000 0.097

binarized sphere surface is about 50% larger than that of an ideal
sphere (Table 1). While binarized surfaces exhibit the potential for
direct use as a surface mesh, particularly in microtomography [53], a
drawback is the substantial memory allocation it demands.

Consequently, to enhance coarsening accuracy, we initially apply a
smoothing filter [54]. This filter adjusts point coordinates using Lapla-
cian smoothing, relaxing the mesh and resulting in better-fitted cells
with a more evenly distributed point distribution. Finally, a decimation
filter [55] is applied on the smoothed surface, reducing the number
of triangles from 94 320 to 6000. This algorithm preserves the topology
with an excellent approximation, yielding 𝑑𝑟𝑚𝑠𝐻 ∼ 0.1% (Table 1). As a
result, it leads to nearly identical convergence between an ideal sphere
and a sphere subjected to BSD processes.

3.4. Glass bead generated from CT data

We randomly select a single bead reconstructed from CT data.
This bead results from binarization and segmentation of the 100-bead
assembly detailed in Section 2.3. Then, we apply surface processing
techniques (Section 3.3). The segmentation operation induces geomet-
ric deformations, resulting in a slightly anisotropic shape with flattened
areas on the surface, especially in the contact point regions (Fig. 10).
The Hausdorff distance between the surface mesh of this bead and an
ideal sphere is 𝑑𝑟𝑚𝑠𝐻 = 0.4%.

We study the convergence of the computed solutions for flows
through an infinite structured cubic-centered array of a single bead
reconstructed from CT data for two different regimes as illustrated
in Fig. 11. By successively imposing three flow directions, we com-
pare the friction coefficients (𝐾𝑥, 𝐾𝑦, 𝐾𝑧) with the analytical solution
𝐾𝑟𝑒𝑓 = 42.1 at 𝑒 ≪ 1 (Fig. 12a) and with the numerical reference
solution 𝐾𝑟𝑒𝑓 = 54.3 at 𝑒 = 54 (Fig. 12b). The convergence is not
entirely smooth, mainly attributed to the anisotropic nature of the
tested bead, significantly influencing the friction coefficient in the x,
y, and z flow directions. The extrapolation values of (𝐾𝑥, 𝐾𝑦, 𝐾𝑧) as
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the grid size ℎ approaches zero (Fig. 12c and d) show deviations of
(−2.4%, 0.7%,−0.2%) for 𝑒 ≪ 1 and (−2.2%, 1.1%,−0.4%) for 𝑒 = 54
compared to the friction coefficient of an ideal sphere.

4. Flow through random arrays of glass beads

In this section, we transition from a theoretical case of an infinite
domain with identical particles to a practical scenario involving a finite
domain with real geometry reconstructed from CT data. The focus is
on fluid flow through a random packing of glass beads, considering the
influence of confining walls on the permeability.

4.1. Description of digital replica models

Two digital replica models are built to accurately reflect the assem-
bly of 100 randomly distributed glass beads, as follows:

• The first digital replica model, DRM1, is generated from geo-
metrical data (gravity center positions and equivalent diameters)
extracted from CT data to model an assembly of 100 ideal spheres.
To ensure mesh quality, a 0.2% reduction in the diameter of each
sphere is applied to prevent highly skewed cells. For all spherical
particles 𝑖 ∈  , diameters are set as 𝑑1[𝑖] = 0.998𝑑𝑏𝑠𝑑 [𝑖].

• The second digital replica model, DRM2, is constructed from the
surfaces of each bead extracted from CT data in STL files. These
surfaces are binarized, segmented, and smoothed, outlined in
Section 3.3. Bead surfaces are then decimated to approximately
6000 triangles. No further size adjustments are made, i.e. ∀𝑖 ∈  ,
we set 𝑑2[𝑖] = 𝑑𝑏𝑠𝑑 [𝑖].

To set up the CFD simulations, the tube wall is modeled as a
bounding cylinder with a diameter of 𝐷, enclosing all beads. This
constraint ensures that the averaged solid volume fractions in each
computational mesh closely match those derived from the original
geometric data after binarization and BSD processing. It also prevents
skipping too many cells in the Bead/Wall contact areas, detailed in
Appendix B. The tube-to-particle diameter ratio is set at 𝐷∕𝑑𝑝 = 3.23.
The tube length is 𝐿 = 12.81𝑑𝑝, and both the inlet and outlet zones are
kept free of beads, each having a length of 𝐿𝑖𝑛 = 𝐿𝑜𝑢𝑡 = 𝑑𝑝 as presented
in Fig. 13a. To mitigate entrance effects [56], the first two layers and
the last layer of particles in the bed along the streamwise direction are
consistently excluded in our analysis. The boundary conditions are set
as follows: no-slip conditions on the cylinder wall and bead surfaces,
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Fig. 10. Three views of a selected glass bead reconstructed from CT data (normalized by the equivalent diameter 𝑑𝑒𝑞) following binarization, segmentation, smoothing and
decimation processing with 6704 triangles: (a) YZ-plan, (b) XZ-plan, and (c) XY-plan.
Fig. 11. Streamlines and velocity contours as the fluid flows from left to right through a YZ-plane (refer to Fig. 10(a)) for a selected glass bead reconstructed from CT-scan data
after binarization, segmentation, smoothing, and decimation processes with 6704 triangles at (a) 𝑒 ≪ 1 and (b) 𝑒 = 54.
a uniform upward inlet velocity 𝑢𝑖𝑛 at the bottom of the tube, and a
zero-pressure outlet condition at the top.

We compare our numerical results with an empirical correlation
introduced by Reichelt [15]. Specifically designed for the configuration
of a monodisperse sphere assembly with a tube-to-particle diameter
ratio 𝐷∕𝑑𝑝 < 10, the correlation is expressed in dimensionless form as
follows:
𝛥𝑝∗

𝐿∗ =
𝛼𝑠

(1 − 𝛼𝑠)3
𝑓𝐾 (𝛼𝑠,𝑒) (15)

where

𝑓𝐾 (𝛼𝑠,𝑒) =
(

𝐾1𝐴
2
𝑤
𝛼𝑠
𝑒

+
𝐴𝑤
𝐵𝑤

)

(16)

with the wall correction terms 𝐴𝑤 = 1 + 2∕(3(𝐷∕𝑑𝑝)𝛼𝑠), 𝐵𝑤 =
[

𝑘1(𝑑𝑝∕𝐷)2

+𝑘2
]2 and in the case of spheres, (𝐾1, 𝑘1, 𝑘2) = (154, 1.15, 0.87).

4.2. Results

To study the convergence and accuracy of our two digital replica
models, we conduct numerical simulations at 𝑒 = 0.01, 32, 64, and
96 (examples illustrated in Fig. 14). For each 𝑒 case, we assess the
spatial convergence of the computed solution 𝑓𝐾 by analyzing the
pressure drop convergence with mesh refinement, varying from ℎ∗ =
1∕8 to 1∕50. To accurately determine the pressure drop, we discretize
the domain into layers spanning the entire tube in the xy-direction,
each with a height of 𝛥𝑧 in the 𝑧-direction. For each simulation, we
ensure that the axial profile of the pressure ⟨𝑝∗⟩𝑧 exhibits no inlet-
outlet boundary effects as shown in Fig. 13b. Additionally, we compute
the deviation 𝜀 between the overall averaged solid volume fractions
𝛼𝑠
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for each ℎ∗-size mesh and the corresponding values obtained for the
binarized beads (similar results with the BSD beads). Except for the
coarsest grid size ℎ∗ = 1∕8 where 𝜀𝛼𝑠 ≃ 4%, we observe a reasonable
deviation 𝜀𝛼𝑠 ranging approximatively between 0.2% and 1.2% for
DRM1 and 0.3% and 0.7% for DRM2.

In Fig. 15a and b, we observe nearly identical convergence for both
cases, DRM1 and DRM2. This outcome highlights the efficiency of the
surface reconstruction technique, including smoothing and quadratic
decimation with approximately 6000 triangles per bead in the DRM2. A
stable convergence is reached from ℎ∗ = 1∕16. For the grid size ℎ∗ =
1∕50, the deviations are within the range of 1% to 3% for DRM1 and
DRM2. In Table 2, we compare the deviation between the extrapolated
numerical solutions 𝑓𝐾 ,ℎ→0, obtained using Richardson extrapolation,
for the two digital replica models DRM1 and DRM2 with Reichelt
[15]’s empirical correlation (Eq. (15)). The deviations range between
−1.2% and 1.7% for DRM1 and between −0.8% and 2.8% for DRM2.
These minimal discrepancies in friction coefficients between DRM1 and
DRM2, are likely due to the 0.02% shrinkage of sphere diameters in
DRM1. Furthermore, these results suggest that in configurations with
minimal size dispersity and particle deformations, using ideal spheres
to mimic a real packed bed is entirely relevant.

5. Conclusions

In this study focusing on the uncertainty assessment of Digital Rock
Physics, we introduced a methodology with a qualitative framework.
Reference solutions were employed to evaluate deviations from CT data
in pore-scale simulations. We accomplished this goal by providing a
precise representation of the pore-particle geometry through an inves-
tigation into the influence of surface extraction on geometric modeling
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Fig. 12. Convergence study of computed solutions for flows through an infinite structured cubic-centered array of beads reconstructed from CT data, in x-, y- and 𝑧-directions
(illustrated in Fig. 10). The friction coefficient 𝐾 is compared with (a) the analytical solution 𝐾𝑟𝑒𝑓 = 42.1 for 𝑒 ≪ 1, (b) the numerical reference solution from Eq. (14) 𝐾𝑟𝑒𝑓 = 54.3
for 𝑒 = 54. Then as ℎ∗ approaches zero with (𝐾𝑥

ℎ→0 , 𝐾𝑦
ℎ→0 , 𝐾𝑧

ℎ→0) equal to (c) (43.1, 41.8, 42.2) for 𝑒 ≪ 1 and (d) (55.6, 53.8, 54.6) for 𝑒 = 54.

Fig. 13. Schematic overview of (a) the digital replica model (DRM2) and boundary definitions used in Code_Saturne and (b) post-processing numerical data, including the
decomposition of the domain into 𝛥𝑧-layers and an example of output resulting from averaging on the digital replica.

Computers and Fluids 285 (2024) 106450 
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Fig. 14. Different section views of 3D flow fields using streamlines of normalized velocity with the digital replica model DRM2 and a resolution ℎ∗ = 1∕50 at (a) 𝑅𝑒 ≪ 1 and (b)
𝑒 = 96.
Fig. 15. Study of convergence of the computed solution from Code_Saturne results compared with the correlation Eq. (15) by Reichelt [15] for 𝑒 ≪ 1, 𝑒 = 32, 𝑒 = 64 and
𝑒 = 96 for flows through a random packing structure of spheres confined in a cylindrical tube for (a) the digital replica model with ideal spheres (DRM1) and (b) the digital
replica model with glass beads generated from CT data via STL files (DRM2).
Table 2
Comparison of the deviation between the Reichelt [15]’s empirical correlation (Eq. (15))
with the extrapolated numerical solution 𝑓𝐾 ,ℎ→0 for the two digital replica models with
100 ideal spheres (DRM1) and 100 reconstructed glass beads (DRM2).

Configurations Deviation 𝑒(𝑓𝐾 ,ℎ→0)

𝑒 ≪ 1 𝑒 = 32 𝑒 = 64 𝑒 = 96
DRM1 −0.012 −0.008 0.012 0.017
DRM2 −0.008 0.003 0.024 0.028

coupled with a hybrid mesh. The methodology has been validated
through an analytical solution for the Stokes regime and a numerical
reference solution for moderate-Reynolds numbers in the context of
flows through an infinite structured cubic-centered array of spherical
particles (Section 3). Finally, a mesh convergence study was conducted
on two digital samples of a glass beads assembly: the first, DRM1,
utilizes geometrical characteristics from CT data, assuming beads are
ideal spheres. The second, DRM2, involves extracting and processing
bead surfaces from CT data via STL files (Section 4).

This methodology enables the accurate assessment of uncertainties
during the construction of replica digital models. It is achieved by
investigating, at each stage, the effects of various modeling choices,
11 
including the parameters of segmentation, geometrical modeling, and
mesh computation. The precise definition of the geometric charac-
teristics of the porous medium plays a crucial role in calculating
porosity and, consequently, pressure drop. In investigating various
configurations of sphere surfaces within the context of flow through
a structured array of particles, we found that a minimum of 6000
uniformly tessellated triangles is required to accurately represent the
surface of a sphere defined in STL format, ensuring mesh convergence
for pressure drop calculations. Additionally, we demonstrated that a
mere 1% modification in particle diameter can induce a 3% deviation in
solid volume fraction, subsequently causing a 7−10% error in pressure
drop prediction for different flow regimes (𝑒 ≪ 1 and 𝑒 = 54).
Using a hybrid grid allows for the effective treatment of issues arising
from contact points by mitigating cell skewness or, in the worst-case
scenario, shrinking the particles’ diameters to a minimum. In a digital
replica model using surface geometry from CT data, segmentation im-
pacts particle shape by slightly flattening contact areas, benefiting mesh
generation and permeability computation. These findings on packings
of (nearly ideal) spheres will serve as guidelines or technical recom-
mendations to handle real geomaterials and reduce errors. Indeed,
with micro-CT data, this approach is applicable by gradually increasing
the complexity of rocks with microstructures primarily composed of
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convex grains, such as sand pack or sandstone. The non-convexity of the
grains can be challenging during segmentation but can be handled with
umerical simulations [57]. In these configurations, only experimental

data can assess the uncertainty of the digital rock model. This includes
porosity measurements (e.g., 3D porosity matrices [5]) for checking
he 3D geometry and permeability measurements for validating the

numerical simulations.
Eventually, this methodology is extensible to multi-physical pro-

esses such as heat transfer [56] or mass transfer [58]. In such cou-
lings, careful consideration of spatial resolution is crucial to capture

the thickness of mass and thermal boundary layers, especially in in-
ertial regimes, where these layers are finer than their hydrodynamic
ounterparts.
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Appendix A. Accuracy of numerical results for flows past a struc-
tured simple cubic array of spheres from dilute to maximum
acking

Uniform Cartesian grids have proven exceptionally successful for
over two decades with the simultaneous advancement of high-
performance computing (HPC) and sophisticated interface interpolation
algorithms considering fluid/solid interactions. Notable methods within
his framework include the Ghost Fluid method [59], Immersed Bound-

ary method [60], and Fictitious Domain [22]. However, implementing
a numerical method on a regular Cartesian grid, although having
numerous advantages associated with constructing its matrix opera-
ors (enabling accelerated convergence of iterative solvers, employing
ightweight data structures, and supporting straightforward domain
ecomposition for parallelization), entails certain limitations. A notice-
ble limitation pertains to the inherent simplicity of its computational
omain, typically a cuboid in three dimensions. Besides, these methods
re well suited in dilute and moderately dense configurations. Never-
heless, many are inefficient for high solid volume fractions [17,61].
 n
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Indeed, the higher the resolution in the porous space for accuracy
urposes, the greater the need for memory and computational re-
ources. Additionally, many computational cells are found within the
olid phase, allocating significant memory and computational resources
o these cells where no physical processes occur. Recent works on

structured Adaptative Mesh Refinement (AMR) strategies [62] attempt
to address these problems by increasing the level of refinement in
contact point regions (areas of interest for flows in porous medium)
and by decreasing it in the solid phase.

In Fig. A.1, three examples of meshes are compared for the case
f a single sphere in a 3-periodic cubic box, i.e., the solid particle has

six contact points with six other particles. Regarding the number of
elements 𝑁𝑒𝑙 𝑡𝑠 for a dense configuration where the particle represents
a solid volume fraction 𝛼𝑠 = 𝜋∕6 equivalent of 52.36% of the solid
volume occupied in the volume box. In this configuration, the hybrid
rid has ∼38% fewer elements than the uniform grid and ∼20% fewer
lements than the octree, as equivalent resolution.

A.1. Stokes flows

The study of Stokes flows through an infinite structured cubic-
centered array of spheres at 𝑒 < 1 is commonly used as a validation
test-case to assess the convergence and accuracy of an implemented
numerical method [17,48,63]. We first test the solution computed
by Code_Saturne using a hybrid grid with a dimensionless space step
∗ = 1∕32 and time step 𝛥𝑡∗ = 0.05. Fig. A.2a shows the evolution of
he computed friction coefficient 𝐾 as a function of the solid volume

fraction 𝛼𝑠 with the analytical solution supplied by Zick and Homsy
13] up to 𝑐𝑚𝑎𝑥𝑠 = 𝜋∕6. This plot demonstrates a satisfactory agreement

between the numerical results and the analytical solution, with a
deviation of less than 4%. We additionally assess the accuracy of our
computed solution in Fig. A.2b by depicting its convergence relative
to the dimensionless grid size ℎ∗. The results exhibit a clean spatial
onvergence for all 𝛼𝑠 with a rate convergence 𝛼 ∈ [1.7 ∶ 1.9], and the
rror 𝑒 increases slightly with the solid volume fraction 𝛼𝑠.

In Fig. A.3, we compare the computed solutions, ranging from dilute
to maximum packing, with the analytical solution proposed by Zick
and Homsy [13]. The comparisons are performed on four different
grids: uniform and octree grids using basilisk code [64] and hybrid
nd tetrahedral grids using Code_Saturne [45]. All computed solutions

exhibit clean spatial convergences. As expected, the uniform grid is
less accurate than octree or hybrid grids, especially at low resolution.
The convergence study of the tetrahedral grid is straightforward at a
low solid volume fraction, 𝛼𝑠 = 0.125, achieved by configuring surface
and volume mesh generation parameters to maintain a constant ℎ∗.
However, at maximum packing (𝛼𝑠 = 𝜋∕6), comparing its convergence
with other methods using a common grid size becomes challenging,
necessitating consideration of issues related to cell skewness.

A.2. Moderate-Reynolds-number flows

In contrast to the Stokes regime configuration, the effects of fluid
nertia at moderate Reynolds numbers in the configuration of flows
n ordered arrays of spheres are less studied [65,66], primarily due
o the absence of an analytical solution. For instance, Hill et al. [65]

approached 𝛼𝑠 = 0.514 < 𝛼𝑚𝑎𝑥𝑠 and proposed a numerical correlation
for 𝑒 ∈ [70, 160] using lattice-Boltzmann simulations. Up to the close-
packed limits of arrays, only a few numerical methods are capable
of accurately solving this problem within reasonable computational
resources and time constraints (see Section 2.4).

In the configuration of close-packed cubic array of spheres, i.e. 𝛼𝑠 =
𝛼𝑚𝑎𝑥𝑠 = 𝜋∕6, for various Reynolds numbers up to 𝑒 = 54, we compare
our numerical solutions provided by Code_Saturne on hybrid grids with
highly accurate numerical solutions provided by the basilisk code on
ctree grids. Fig. A.4a shows very good agreement between the two
umerical solutions with deviations inferior to 1.7% (the maximum
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Fig. A.1. 3D-mesh cross-section examples modeling a sphere in a tri-periodic cubic box: (a) Uniform grid with 𝑁𝑒𝑙 𝑡𝑠 = 163 = 4096, (b) an example of octree grid with 𝑁𝑒𝑙 𝑡𝑠 = 3144
demonstrating mesh refinement from 23 = 8 to a maximum of 24 = 16 points per dimension, and (c) hybrid grid with 𝑁𝑒𝑙 𝑡𝑠 = 2528 composed of 1584 hexahedrons, 656 polyhedrons,
168 prisms and 120 tetrahedrons.

Fig. A.2. Comparison of numerical results from Code_Saturne computed on a hybrid grid with the Zick and Homsy [13]’s analytical solution for the case of the flow through an
infinite structured cubic-centered array of spheres at 𝑒 = 0.01: (a) Evolution of the friction coefficient 𝐾 as a function of the solid volume fraction 𝛼𝑠, and (b) convergence of the
𝐾 deviation as a function of the dimensionless grid size ℎ∗ for increasing solid volume fraction 𝛼𝑠.

Fig. A.3. Comparison of numerical results with the analytical solution of Zick and Homsy [13] for the case of Stokes flow through an infinite structured cubic-centered array
of spheres at 𝑒 = 0.01. These results are computed using two different codes: basilisk with uniform and octree grids and Code_Saturne with hybrid and tetrahedral grids. The
convergence of the computed solutions is plotted for two solid volume fractions (a) 𝛼𝑠 = 0.125 and (b) 𝛼𝑠 = 𝜋∕6.
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Fig. A.4. Comparison of numerical results from Code_Saturne computed on a hybrid grid and basilisk on a octree grid for the case of the flow through an infinite structured
cubic-centered array of spheres: (a) Evolution of the extrapolated friction coefficient 𝐾ℎ→0 as a function of the Reynolds numbers 𝑒, and (b) convergence of the deviation 𝑒ℎ→0(𝐾)
as a function of the dimensionless grid size ℎ∗ for 𝑒 = 54.
Fig. B.1. Schematic of two contact point modifications: (a) shrinking and (b) overlapping.
for 𝑒 = 54). In Fig. A.4b, we compare their respective convergences
with the same time step, 𝛥𝑡 = 5.10−3, and same Poisson and viscous
solver tolerance, 𝑡𝑜𝑙 = 10−7. Code_Saturne is 2nd-order accurate with
a convergence rate 𝛼 ∼ 1.6. In the basilisk case, the implemented
advection scheme [26] is 2nd to 3rd-order accurate, inline with the
computed rate 𝛼 ∼ 2.6.

Appendix B. Contact point strategy

The study of contact points is a complex and central subject in flows
through packed beds. The initial approaches involved shrinking the
diameter of spherical particles (to 99% of their nominal diameter), as
illustrated in Fig. B.1a to avoid contact and prevent cell skewness [27,
67]. Another approach suggested by Guardo et al. [68] involves enlarg-
ing sphere diameters to transform contact points into contact lines in
2D or contact surfaces in 3D, thereby reducing the skewness of cells
in this area, as depicted in Fig. B.1b. However, modifying the particle
sizes creates a subsequent deviation in the porosity and pressure drop
values.

In this section, we employ the test case of flow through a periodic
array of spheres, considering both Stokes and inertial regimes (as
described in Section 3), to assess the deviation 𝑒 of results generated
from Code_Saturne. Table B.1 presents the deviations analysis of the
numerical results for three shrinkage values, with a sphere diameter
decreasing by 0.5%, 1% and 2%. The deviations between the refer-
ence solutions and our extrapolated solutions as ℎ∗ approaches zero
are noted 𝑒−2%, 𝑒−1% and 𝑒−0.5%. Additionally, for two enlargement
values by increasing diameter sizes by 1% and 2%, the deviations are
represented as 𝑒+2% and 𝑒+1%.

The initial findings highlight slight discrepancies between the out-
comes in the two selected regimes (𝑒 = 0.01 and 𝑒 = 54). Besides,
a ±1% modification of the diameter results in about 3% deviation of
14 
Table B.1
Deviations 𝑒 of the friction coefficient 𝐾ℎ→0 with the analytical solution 𝐾𝑟𝑒𝑓 = 42.1
for 𝑒 ≪ 1 and the numerical solution 𝐾𝑟𝑒𝑓 = 54.3 for 𝑒 = 54, with variations in
sphere diameter: decreasing by 0.5%, 1% and 2%, and increasing by 1% and 2%.
The numerical results, obtained using Code_Saturne, for two different spherical surface
processing techniques: the surface 𝑆1 from an ideal sphere defined by a parametric
equation and the surface 𝑆2 from an ideal sphere after undergoing BSD processes.

Configurations Regimes Deviation 𝑒

𝑒−2% 𝑒−1% 𝑒−0.5% 𝑒+1% 𝑒+2%
𝛼𝑠 – −0.059 −0.030 −0.015 0.030 0.059

𝐾ℎ→0 𝑒 ≪ 1 −0.155 −0.082 −0.042 0.094 0.195
(𝑆1) 𝑒 = 54 −0.152 −0.079 −0.040 0.093 0.193

𝐾ℎ→0 𝑒 ≪ 1 −0.149 −0.074 −0.040 0.101 0.202
(𝑆2) 𝑒 = 54 −0.148 −0.071 −0.039 0.101 0.194

the solid volume fraction 𝛼𝑠. Examining the surface of an ideal sphere
defined by a parametric equation, denoted as 𝑆1 (details in Section 3.2),
this modification generates an approximate deviation of 8% − 9% in
the friction coefficient 𝐾, affecting the pressure drop and permeability
similarly. For the surface, termed 𝑆2, obtained from an ideal sphere
after BSD processes (details in Section 3.3), the friction coefficient 𝐾
deviation is approximately 7% − 10%. These results are in line with the
findings of Bai et al. [44] and confirm the ‘‘rule of thumb’’ identified
by Dixon et al. [29], which suggests that a 1% increase in voidage
corresponds to approximately a 3% increase in pressure drop error.

For a random array of spheres confined in a tube (low tube-to-
particle ratio 𝐷∕𝑑𝑝 < 4), Bai et al. [44] conducted coupled Discrete
Element Method (DEM) and Computational Fluid Dynamics (CFD) sim-
ulations, demonstrating that particle shrinkage leads to similar con-
clusions. They presented empirical laws representing the evolution, in
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Fig. B.2. Example of cell truncations in contact configurations: (a) for the Bead/Bead contact case: 4 mesh cells are truncated, represented with a red square, and (b) for the
Bead/Wall contact case with 15 truncated mesh cells, represented in white.
percentage, of pressure drop deviation (𝜀𝛥𝑝) as a function of porosity
deviation (𝜀𝛼𝑓 ) such as:

𝜀𝛥𝑝 = 3.385𝜀𝛼𝑓 − 0.045𝜀2𝛼𝑓 (B.1)

In the case of 3D digital rock reconstruction, controlling porosity
requires a delicate balance in discretization. It should be fine enough
to achieve numerical convergence and accurate enough to preserve
geometric boundaries, all while remaining coarse enough to manage
computational costs. Unlike ideal spheres, there is no need for bead
shrinkage or enlargement methods. The segmentation and geometric
modeling processes naturally flatten glass bead shapes locally near
contact points, as depicted in Figs. 2(d) and 2(e). Methods proposed
by Eppinger et al. [69] and Dixon et al. [29] address local flattening
on spheres by removing spherical caps at contact points, demonstrating
a significantly lower impact on porosity and pressure drop compared
to sphere shrinkage or enlargement methods.

Depending on the mesh resolution, there are configurations where
the mesh size ℎ is significantly larger than the voxel size ℎvox near con-
tact points. To avoid skewness in cells in the proximity of these regions
and to guarantee mesh quality, the meshing algorithm is allowed to skip
these cells. Examples of cell truncations are illustrated in Fig. B.2a for
the Bead/Bead contact case, and in Fig. B.2b for the Bead/Wall contact
case. Particular attention is given to mesh joinings between concave
(wall tube) and convex (beads) surfaces, which generate larger contact
surfaces than convex/convex mesh joinings.
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