
SPEEDING UP MOTION ESTIMATION IN MODERN VIDEO ENCODERS
USING APPROXIMATE METRICS AND SIMD PROCESSORS

Steven Pigeon and Stéphane Coulombe

Department of Software and
Information Technology Engineering

École de Technologie Supérieure
1100 Notre-Dame Ouest, Montréal, Qc, H3C 1K3

ABSTRACT

In the past, efforts have been devoted to the amelioration
of motion estimation algorithms to speed up motion com-
pensated video coding. Now, efforts are increasingly being
directed at exploiting the underlying architecture, in particu-
lar, single instruction, multiple data (SIMD) instruction sets.
The resilience of motion estimation algorithms to various
error metrics allows us to propose new high performance
approximate metrics based on the sum of absolute differences
(SAD). These new approximate metrics are amenable to
efficient branch-free SIMD implementations which yield
impressive speed-ups, up to 11:1 in some cases, while
sacrificing image quality for less than 0.1 dB on average.

Index Terms— Video coding, SIMD, motion estimation,
motion compensation, error metric, approximate metric, SSE,
SSE2

1. INTRODUCTION

Modern video codecs, such as MPEG-2, MPEG-4, and
H.264, rely on motion compensated predictive coding to
achieve high compression ratios, which, in turn, implies
the use of motion estimation, a process that is quite com-
putationally intensive, even with the best algorithms. The
high computational cost of motion estimation makes it
an obvious target for optimization. While increasingly
clever and efficient motion estimation algorithms have
been devised [1–17] and contribute algorithmic speed-ups,
implementation-specific speed-ups must rely on the astute
use of the underlying machine’s instruction set architecture
(ISA). Today, this means exploiting data parallelism through
single instruction, multiple data (SIMD) ISA extensions.

While efforts have been devoted to the study of fast

This work was funded by Vantrix Corporation and by the Natural Sci-
ences and Engineering Research Council of Canada under the Collaborative
Research and Development Program (NSERC-CRD 326637-05). E-mails:
{steven.pigeon,stephane.coulombe}@etsmtl.ca)

motion estimation algorithms—finding algorithms that could
locate the best matching block faster, principally through
a gradient descent type search guided by a predictive al-
gorithm that estimates the general vicinity of the optimal
solution—the effects of the metrics used for error estimation
have received less attention. The merics available in most
codec implementations are limited to the mean squared
error (MSE) and the sum of absolute differences (SAD).
The MSE metric assesses the goodness of match between
two image blocks by computing the mean squared error of
corresponding pixels. However, doing so involves the use of
multiply instructions which are generally considered to be
computationally expensive. For this reason, it was proposed
that the SAD be used instead, as it uses the supposedly less
expensive sum of absolute differences to assess goodness
of match [10]. However, this hypothesis only holds if the
processor has instructions to compute the absolute values
efficiently; if it does not, it is likely that a single multiply
operation compares well to the series of instructions needed
to compute the absolute value.

To speed up the computation of the metrics, whether
using the MSE or the SAD, itechniques such as early
termination, progressive or hierarchical sampling have been
proposed, but without really considering the effects of the
proposed solution on the underlying machine [6, 18–20]. In
many cases, the proposed solutions result in highly branching
code which mitigates speed-ups as they interfere greatly with
the processor’s branching and memory prefetching prediction
units, yielding suboptimal results.

In this paper, we propose ways to estimate the metric that
yield a good approximation of the SAD while being amenable
to branch-free, high-performance SIMD implementations.
The paper is organized as follows. In section 2, we outline the
proposed solution and the assumptions on which it is based.
In section 3, we describe our implementation and simulations.
Quality and speed-up results are presented in section 4 and
discussed in section 5. We close with concluding remarks.

mstewart
Texte tapé à la machine
© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine



2. PROPOSED APPROXIMATE METRICS

Fast motion estimation algorithms are based on the assump-
tion that the block matching error function is approximately
concave with its minimum located at the position of the best
match. Motion estimation algorithms are therefore gradient
descent-type heuristics. However, no special assumptions
are made on the nature of the error function, except that it
is approximately concave and the algorithms merely seek to
minimize the error by exploring the error surface. If it can be
shown that the best motion estimation algorithms are capable
of finding good minima regardless of the specific metric, it
would imply that it is possible to use this resilience to modify
the way the error is computed. One possible way to reduce
the cost of computing the error function is to use sampling.

The computational cost of estimating the error metric by
sampling depends on several factors. One is the number and
arrangement of points sampled. Another is the mathematical
operations needed to formulate the estimate from the sampled
absolute differences or squared error. Finally, the underlying
machine’s ISA plays a major role in the efficient imple-
mentation of any such method. We consider safe to assume
that the target processor sports efficient SIMD instructions
and, accordingly, machine-specific optimizations must be
considered [21–24].

The SAD computed on 16 × 16 pixels serves as the
reference against which we will test the proposed metrics. The
SAD between two image patches I and J is given by:

SAD(I, J) =
16∑

x=1

16∑

y=1

∣∣ Ix,y − Jx,y

∣∣ (1)

The SAD given by eq. (1) can be transformed to take
into account a 16 × 16 binary matrix M used as a mask
that conditionally enables or disables pixels considered in the
sum. Transforming eq. (1) to include such a matrix M yields

SADM (I, J) =
16∑

x=1

16∑

y=1

Mx,y

∣∣ Ix,y − Jx,y

∣∣ (2)

which may be further scaled by 256/
∑16,16

i=1,j=1 Mij should it
be necessary to obtain a value of the same order of magnitude
as the full SAD.

The matrix M allows us to construct arbitrary arrange-
ments. The first sampling arrangement considered, hereafter
referred to as the sparse metric, is shown in Fig. 1(a). This
metric uses only 64 pixels to formulate an estimate of
eq. (1). The second approximate metric considered arranges
the points in a quincunx pattern and is referred to as the
quincunx, shown in Fig. 1(b). This second pattern is much
denser and evaluates 128 points. The proposed metrics, the
“deinterlaced” SAD, are shown in Fig. 1(c) and (d). In (d),

(a) (b) (c)

(d) (e) (f)

Fig. 1. Approximate metrics. (a) Sparse; (b) Quincunx;
(c) Subsampled deinterlaced; (d) Deinterlaced; (e) Interlaced;
(f) Full SAD. Shaded squares represent non zero elements in
matrix M .

the metric is sampled in rows of 8 contiguous pixels, the rows
being evenly spread over the macro-block. In (c), we propose
a similar arrangement where the numbers of rows examined
is only 14, but now the sampled lines are spread as evenly
as possible over the macro-block. In (d), 50% of the pixels
are used while the variant in (c) uses slightly fewer, at 44%.
The fifth variant, shown in Fig. 1(e) shows the interlaced
pattern that considers only even offset rows (with the first
row numbered 0). Finally, in (f), we have the full SAD where
all the points are considered.

The proposed approximate metrics, the deinterlaced
SADs, are structured to sample the macro-block efficiently,
prioritizing horizontal movement, which we know is the
dominant motion in most scenes. They are also structured
to take advantage of fast, machine-specific implementations
using SIMD instructions—-provided that the ISA considered
sports efficient instructions to compute the SAD on a series
of eight contiguous pixels.

3. SIMULATIONS

To confirm the hypothesis that motion estimation algorithms
are resilient to approximate metrics, we proceeded in two
steps. The first step was to gather standard CIF and QCIF
video sequences such as Akiyo, Bus, Foreman, etc. The
second step was to implement motion estimation algorithms
that allow different metrics to be plugged in. While there
is a large number of motion estimation algorithms, only
a few are still of interest. Of those, EPZS [10], PMV-
FAST [14], UMHexS [11] and the Full Search are amongst
the most efficient and most commonly implemented methods.



The quality assessment experiments consisted of perform-
ing motion estimation and compensation at the macro-block
level on the chosen standard video test sequences, using the
selected algorithms and approximate metrics, and computing
the resulting image quality. In our experiments, we used
H.263/MPEG-4 half pixel interpolation with a H.263 search
window of -31 to +31.5 pixels in both directions, centered on
the macro-block.

The second part of the experiment consisted of measuring
the speed-ups in metric evaluation obtained from the various
approximate metrics and their efficient implementations,
independently of specific motion-estimation algorithms or
codecs.

Amongst the many SIMD-capable processors, the x86
ISA processors are by far the most common, dominating
both the workstation and server spaces. The x86 ISA sports a
series of SIMD extensions, of which MMX, SSE, and SSE2
are the most widely available. We considered it realistic to
focus our implementations efforts on the x86 ISA with the
SSE and SSE2 SIMD extensions.

To assess speed-ups, we compared the implementations
of the approximate metrics, ranging from standard, non
vectorized C to the constant-propagated SSE2 assembly
code. To ensure a fair comparison, all implementations were
optimized equally carefully, within the constraints imposed
by the type of implementation. We included results from a
third-party library, namely the Intel Integrated Performance
Primitives v 6.0 (IPP), to allow the reader to compare our
results with what can be expected from an otherwise efficient
implementation [25].

The test processor was an Intel Core Duo at 2.0 GHz,
a fairly typical processor. The C compiler used was Intel’s
C Compiler, version 11.0, under Linux Ubuntu 8.04 LTS.
Timings were obtained by a system-specific high resolution
timer accurate to the µs.

4. RESULTS

Image quality results from the first experiment—the com-
bination of the motion estimation algorithms and the
approximate metrics—are summarized in Tables 1 to 6.
Figs. 2 to 4 compare the approximate metrics given a motion
estimation method on the Foreman CIF sequence. The PSNR
for a sequence is the average PSNR between frames and the
motion-compensated prediction for those frames. The results
are sorted from best to worst, the first number being the
PSNR in dB obtained from the full SAD. Other results are
shown relative to the full SAD and are expressed as dB loss.
The results are shown for CIF and QCIF sequences, using
the Full Search, EPZS and PMVFAST motion estimation

70 80 90 100 110 120
Frames

24

26

28

30

32

34

36

38

dB

Sparse

Int.

S�Deint

Deint

Quin.

Full

Fig. 2. Approximate metrics results for the Foreman CIF
sequence using Full Search.

70 80 90 100 110 120
Frames

24

26

28

30

32

34

36

38

dB

Sparse

Int.

S�Deint

Deint

Quin.

Full

Fig. 3. Approximate metrics results for the Foreman CIF
sequence using EPZS.

algorithms.

Tables 7 and 8 show the timing results obtained by the
efficient implementations of the approximate metrics during
the second phase of the experiments. The timing results are
presented in number of completed calls to the SAD per µs,
indicative of the absolute speeds of each implementation.
The number of processed pixels per µs is also given, so that
the raw processing speed versus the cost of complexification
for alternate implementations can be assessed. In all cases,
the full non-vectorized C SAD implementation (using the
basic x86 ISA integer instructions only) is the standard
against which speed-ups were compared. The qualifier ’vect.’
attached to the implementation names indicates that the
compiler auto-vectorization optimizations were enabled.
’SSE2’ indicates that the implementations used manually
generated SSE2 assembly language, which implies careful
vectorization.

5. DISCUSSION

The speed-ups obtained from the proposed approximate
metrics, ranging from 4.3 to 11.4:1, are all very interesting.
The deinterlaced and sampled deinterlaced metrics yield 9.9
and 11.4:1 speed-ups for the QCIF sequences, and 6.3 and
7.4:1 speed-ups for the CIF sequences.



70 80 90 100 110 120
Frames

24

26

28

30

32

34

36

38
dB

Sparse

Int.

S�Deint

Deint

Quin.

Full

Fig. 4. Approximate metrics results for the Foreman CIF
sequence using PMVFAST.

QCIF Full Quin. Deint S-Deint Int. Sparse
Akiyo 43.3 -0.01 -0.03 -0.03 -0.05 -0.07

Bus 24.1 -0.03 -0.07 -0.10 -0.11 -0.28
Foreman 31.5 -0.05 -0.06 -0.09 -0.13 -0.18

News 35.9 -0.03 -0.06 -0.07 -0.06 -0.19
Mobile 25.4 -0.04 -0.03 -0.04 -0.04 -0.16
Stefan 25.1 -0.04 -0.07 -0.11 -0.09 -0.22

Tempete 27.2 -0.02 -0.03 -0.03 -0.03 -0.07

Table 1. PSNR (dB) for selected QCIF sequences using
full search. SAD, Deint., S-Deint, Int., Quin. stand for the
full SAD, the deinterlaced, the subsampled deinterlaced,
interlaced, and quincunx patterns, respectively.

From Tables 7 and 8 we see a non negligible difference in
timings between the QCIF and CIF results. The QCIF results
are, on average, considerably faster—by about 20%—than
the CIF results. This can be due to a number of factors,
including locality of reference, address generation, and cache
replenishment policy: all of which are processor-specific
artifacts. Address generation, in our implementation, was
all but eliminated by systematic constant propagation, all
addresses being expressed relatively to the upper left corners
of the macro-blocks for comparison. It may be that an early
termination computation of addresses is responsible for the
differences as the offsets generated for QCIF are, on average,
one bit shorter than for CIF. The effects of CPU-specific

QCIF SAD Quin. Deint S-Deint Int. Sparse
Akiyo 43.3 -0.01 -0.03 -0.02 -0.05 -0.07

Bus 23.5 -0.01 -0.02 -0.06 -0.09 -0.20
Foreman 31.3 -0.08 -0.08 -0.11 -0.17 -0.28

News 35.9 -0.04 -0.05 -0.07 -0.05 -0.22
Mobile 25.4 -0.03 -0.02 -0.04 -0.04 -0.15
Stefan 24.8 -0.02 -0.02 -0.03 -0.04 -0.11

Tempete 27.0 -0.03 -0.04 -0.05 -0.03 -0.07

Table 2. PSNR (dB) for selected QCIF sequences using
EPZS. See Table 1 for legend.

QCIF SAD Quin. Deint S-Deint Int. Sparse
Akiyo 43.2 -0.00 -0.03 -0.03 -0.05 -0.07

Bus 23.5 -0.02 -0.03 -0.08 -0.12 -0.24
Foreman 31.1 -0.07 -0.09 -0.11 -0.20 -0.29

News 35.8 -0.06 -0.07 -0.08 -0.07 -0.22
Mobile 25.3 -0.04 -0.02 -0.04 -0.03 -0.14
Stefan 24.8 -0.03 -0.03 -0.05 -0.05 -0.15

Tempete 27.0 -0.02 -0.05 -0.05 -0.02 -0.09

Table 3. PSNR (dB) for selected QCIF sequences using
PMVFAST. See Table 1 for legend.

CIF SAD Quin. Deint S-Deint Int. Sparse
Akiyo 42.8 -0.02 -0.05 -0.07 -0.05 -0.11

Bus 25.1 -0.01 -0.06 -0.10 -0.13 -0.34
Foreman 32.2 -0.03 -0.10 -0.11 -0.76 -0.86

News 36.5 -0.03 -0.06 -0.09 -0.10 -0.23
Mobile 25.2 -0.04 -0.07 -0.08 -0.09 -0.26
Stefan 26.0 -0.01 -0.08 -0.10 -0.12 -0.25

Tempete 27.0 -0.01 -0.04 -0.06 -0.05 -0.12

Table 4. PSNR (dB) for selected CIF sequences using full
search. See Table 1 for legend.

behavior will be investigated in future work.

For the QCIF sequences, all metrics, save the sparse
variant, perform essentially equally well, leading to maxi-
mum losses of the order of 0.1 dB, which is, for all intents
and purposes, negligible. The interlaced approximate metric,
shown in Fig.1(e), appears to be sensitive to sequences
with vertical motion components, such as Foreman, and
accordingly performs considerably worse than the other
approximate metrics. The loss is relative, however. While it
may seem about twice as large as the loss assiociated with
other metrics, the difference is only 0.17 dB, which is still
quite small in absolute terms.

The same observation holds for the CIF sequences,
except that the maximum error produced from the interlaced
approximate metric is now much larger; from a mere 0.17
dB loss, it jumps to 0.76 dB, which is now considerable. If
the objective is to constrain the maximum loss, the interlaced

CIF SAD Quin. Deint S-Deint Int. Sparse
Akiyo 42.7 -0.02 -0.05 -0.07 -0.06 -0.11

Bus 24.3 -0.00 -0.05 -0.05 -0.17 -0.34
Foreman 31.9 -0.04 -0.11 -0.11 -0.73 -0.83

News 36.2 -0.03 -0.08 -0.12 -0.08 -0.24
Mobile 25.1 -0.03 -0.05 -0.06 -0.07 -0.23
Stefan 25.7 -0.01 -0.09 -0.09 -0.11 -0.22

Tempete 26.5 -0.02 -0.05 -0.07 -0.06 -0.13

Table 5. PSNR (dB) for selected CIF sequences using EPZS.
See Table 1 for legend.



CIF SAD Quin. Deint S-Deint Int. Sparse
Akiyo 42.6 -0.02 -0.05 -0.07 -0.06 -0.10

Bus 24.0 +0.03 +0.02 -0.03 -0.14 -0.34
Foreman 31.7 -0.07 -0.14 -0.16 -0.74 -0.85

News 36.1 -0.06 -0.09 -0.12 -0.15 -0.34
Mobile 24.9 -0.04 -0.06 -0.07 -0.08 -0.25
Stefan 25.6 -0.02 -0.08 -0.10 -0.09 -0.23

Tempete 26.4 -0.02 -0.04 -0.08 -0.05 -0.14

Table 6. PSNR (dB) for selected CIF sequences using PMV-
FAST. See Table 1 for legend.

QCIF
Implementation pixels Calls/µs Pixels/µs Speed-up

SAD, C 100% 1.40 358.4 1:1
SAD, IPP 100% 7.14 1827.8 5.1:1

SAD, C, Vect. 100% 7.53 1927.7 5.4:1
MSE, C 100% 1.45 371.2 1:1

MSE, C, Vect. 100% 4.45 1139.2 3.2:1

Sparse, C, Vect. 25% 5.53 353.9 4:1
S-Deint, C, Vect. 44% 3.67 411.0 2.6:1

Quin., C, Vect. 50% 2.67 341.8 1.9:1
Int., C, Vect. 50% 3.46 442.9 2.5:1

Deint, C, Vect. 50% 3.20 409.6 2.3:1

SAD, SSE2 100% 8.27 2117.1 5.9:1
Sparse, SSE2 25% 13.13 850.3 9.4:1

S-Deint, SSE2 44% 15.98 1789.8 11.4:1
Quin., SSE2 50% 7.39 945.9 5.3:1

Int., SSE2 50% 14.50 1856.0 10.4:1
Deint, SSE2 50% 13.88 1776.6 9.9:1

Table 7. Timing results (accuracy within ±1%) for the
various implementations on QCIF images.

CIF
Implementation pixels Calls/µs Pixels/µs Speed-up

SAD, C 100% 1.30 332.8 1:1
SAD, IPP 100% 5.36 1372.2 4.1:1

SAD, C, Vect. 100% 5.71 1461.8 4.4:1
MSE, C 100% 1.41 361.0 1.1:1

MSE, C, Vect. 100% 3.93 1006.1 3.0:1

Sparse, C, Vect. 25% 4.87 311.7 3.7:1
S-Deint, C, Vect. 44% 3.40 380.8 2.6:1

Quin., C, Vect. 50% 2.42 309.8 1.9:1
Int., C, Vect. 50% 3.33 426.2 2.6:1

Deint, C, Vect. 50% 2.97 380.2 2.3:1

SAD, SSE2 100% 5.94 1520.6 4.6:1
Sparse, SSE2 25% 9.95 636.8 7.7:1

S-Deint, SSE2 44% 9.60 1075.2 7.4:1
Quin., SSE2 50% 5.63 720.6 4.3:1

Int., SSE2 50% 10.48 1341.4 8.1:1
Deint, SSE2 50% 8.14 1041.9 6.3:1

Table 8. Timing results (accuracy within ±1%) for the
various implementations on CIF images.

metric should be avoided, despite offering one of the high-
est speed-ups. The deinterlaced and sampled deinterlaced
metrics also offer high speed-ups, but without the sensitivity
of the interlaced metrics to scenes with high vertical motion
components; which makes them a very attractive way of
balancing speed and quality.

We can see from the timing results that the auto-
vectorizing compiler does not always recognize the possible
vectorization from the C code, despite being carefully written
to help the compiler as much as possible. For example,
the C quincunx metric yields a meager 1.9:1 speed-up,
while a carefully written SSE2 version yields a much more
respectable 5.3:1 for QCIF. It is therefore not sufficient
to delegate the generation of efficient SIMD code to the
compiler hoping that efficient auto-vectorization will occur.
Our experiment showed that it is, in fact, fairly difficult to
get the compiler to generate efficient SIMD code even given
quite carefully crafted C code using specific patterns that
should help the compiler to generate vectorized code.

We also note from the tables that even the proposed full
SAD implementation beats the IPP v6.0 implementation to
some degree. While the IPP implementation is no doubt quite
efficient, it is also generic, taking multiple factors into account
but without taking full advantage of the image geometry. This
allows us to beat the IPP implementation of the full SAD
by some 5% to 15%. The speed-up using the approximated
metrics are even more interesting, yielding speed-ups of 1.7
to 2.2:1 relative to the IPP implementation, again, with a
minimal loss in resulting image quality.

6. CONCLUSION

In this short paper, we have shown that the proposed dein-
terlaced and sampled deinterlaced approximate metrics yield
good image quality, showing a loss of less than 0.1 dB on av-
erage compared to the exact SAD when used with the selected
motion estimation algorithms. We have also shown that their
efficient SIMD implementation yields very high speed-ups—
up to 11.4:1—compared to the non vectorized C version of
the full SAD. The SIMD-friendly structure of both the dein-
terlaced and sampled deinterlaced metrics makes them sig-
nificantly faster than the quincunx metric by a factor of as
much as 2:1, despite testing the same number of points, or
slightly fewer in the case of the sampled deinterlaced approx-
imate metric. Future work will include characterization of the
behavior of approximated metrics in codecs such as MPEG4
and H.264.

7. REFERENCES

[1] J. C. Candy, M. A. Franke, Barry G. Haskell, and F. W.
Mounts, “Transmitting television as clusters of frame-



to-frame differences,” Bell Systems Technical Journal,
vol. 50, pp. 1889–1917, Aug. 1971.

[2] Sergio Brofferio and Fabio Rocca, “Interframe redun-
dancy rediction of video signals generated by translating
objects,” IEEE Trans. Comm., pp. 448–455, Apr. 1977.

[3] Jaswant R. Jain and Anil K. Jain, “Displacement
measurement and its application in interframe image
coding,” IEEE Trans. Comm., vol. 29, no. 12, pp. 1799–
1808, Dec. 1981.

[4] T. Koga, K. Iinuma, Y. Iijima, and T. Ishiguro, “Motion
compensated interframe coding for video conferencing,”
in IEEE NTC, 1981, pp. G5.3.1–G5.3.5.

[5] M. Ghanbari, “The cross-search algorithm for motion
estimation,” IEEE Trans. Comm., vol. 38, no. 7, pp.
950–953, July 1990.

[6] Bede Liu and André Zaccarin, “New fast algorithms for
the estimation of block motion vectors,” IEEE Trans.
Circuits and Systems For Video Technology, vol. 3, no.
2, pp. 148–157, Apr. 1993.

[7] Renxiang Li, Bing Zeng, and Ming Liou, “A new
three-step search algorithm for block-motion estima-
tion,” IEEE Trans. Circuits and Systems For Video Tech-
nology, vol. 4, no. 4, pp. 438–442, Aug. 1994.

[8] Lai-Man Po and Wing-Chung Ma, “A novel four-
step search algorithm for fast block motion estimation,”
IEEE Trans. Circuits and Systems For Video Technol-
ogy, vol. 6, no. 3, pp. 313–317, June 1996.

[9] Ce Zhu, Xiao Lin, and Lap-Pui Chau, “Hexagon-based
search pattern for fast block motion estimation,” IEEE
Trans. Circuits and Systems For Video Technology, vol.
12, no. 5, pp. 349–355, May 2002.

[10] Alexis Michael Tourapis, “Enhanced predictive zonal
search for single and multiple frame motion estimation,”
in Visual Communications and Image Processing, Jan.
2002, pp. 1069–1079.

[11] Zhibo Chen, Peng Zhou, and Yun He, “Fast integer and
fractional pel motion estimation for JVT,” Tech. Rep.
JVT-F017, Dec. 2002.

[12] Xuan-Quang Banh and Yap-Peng Tan, “Efficient video
motion estimation using dual-cross search algorithms,”
in Int. Symposium on Circuits and Systems, May 2005,
pp. 5485–5488.

[13] Chorng-Yann Su, Yi-Pin Hsu, and Cheng-Tao Chang,
“Efficient hexagonal inner search for fast motion esti-
mation,” in Int. Conference on Image Processing (ICIP),
Sept. 2005, pp. 1093–1096.

[14] Alexis Michael Tourapis, Oscar C. Au, and Ming Liou,
“Predictive motion vector field adaptive search tech-
nique (PMVFAST) - enhancing block based motion esti-
mation,” in Int. Conference on Image Processing (ICIP),
Jan. 2001.

[15] Hoi-Ming Wong, Oscar C. Au, Chi-Wang Ho, and
Shu-Kei Yip, “Enhanced predictive motion vector
field adaptive search technique (E-PMVFAST) based on
future mv prediction,” in IEEE Int. Conf. Multimedia
and Expo., July 2005.

[16] Han-Ting Lin, Chih-Yueh Chang, and Jen-Shiun Chi-
ang, “Hierarchical predictable hexagon search algo-
rithm for MPEG4-AVC/H.264 coding,” in IEEE North-
East Workshop on Circuits and Systems, June 2006, pp.
153–156.

[17] Svetislav Momcilovic, Nuno Roma, and Leonel
Sousa, “Adaptive motion estimation algorithm for
H.264/AVC,” in 15th Int. Conf. on Digital Signal Pro-
cessing, July 2007.

[18] Federico Tombari and Stefano Mattoccia, “Template
matching based on the lp norm using sufficient condi-
tions with incremental approximations,” in Procs. IEEE
int. Conf. on Advanced Video and Signal-Based Surveil-
lance, Nov. 2006, pp. 20–26.

[19] Chok-Kwan Cheung and Lai man Po, “A hierarchical
block motion estimation algorithm using partial distor-
tion measures,” Int. Conference on Image Processing
(ICIP), vol. 3, pp. 606–609, 1997.

[20] Yui-Lam Chan and Wan-Chi Siu, “New adaptive pixel
decimation for block motion vector estimation,” IEEE
Trans. Circuits and Systems For Video Technology, vol.
6, no. 1, pp. 113–118, Jan. 1996.

[21] Power ISA Version 2.05, International Business Ma-
chines, Inc., Oct. 2007.

[22] Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 2A: Instruction Set Reference, A-M,
Intel Corporation, Nov. 2008.

[23] Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 2B: Instruction Set Reference, N-Z,
Intel Corporation, Nov. 2008.

[24] “The ARM Cortex-A9 processors,” Tech. Rep., ARM
Limited, Sept. 2007.

[25] Intel Integrated Performance Primitives for Intel Archi-
tecture Volume 2: Image and Video Processing, Intel,
Sept. 2007.




