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A B S T R A C T

ABB’s YuMi is a unique, innovative cobot but it is also one of the most challenging 7-degree-
of-freedom (DOF) robot arms on the market, in terms of kinematics. Indeed, unlike some other
7-DOF robot arms with revolute joints, in YuMi, consecutive joint axes are normal to each
other, but not intersecting. And despite being invented over a decade ago, there is surprisingly
little information available about its kinematics. To effectively incorporate this manipulator
into motion planning tasks, it is essential to have a comprehensive grasp of its arm angle and
singularities. In this paper, we use the screw dependency approach with a novel combinatorial
technique and Grassmann geometry of lines to identify and categorize, for the first time, the
kinematic singularities of YuMi based on simple geometrical conditions. This methodology
allows for a systematic and clear understanding of the robot’s singular configurations. In
addition, we provide the definition of the arm angle used by ABB and a formula for the
angle calculation. Then, we describe the representation singularity, and explain the algorithmic
singularities that are related to the arm angle.

. Introduction

Seven-degree-of-freedom (7-DOF) manipulators present greater design and operational challenges compared to 6-DOF arms due
o the additional DOF, which complicates inverse kinematics and singularities. However, 7-DOF manipulators offer significant
dvantages in some applications. The extra DOF enhances the robot’s agility, enabling it to avoid obstacles and singularities and
mprove overall manipulability [1,2]. Redundant manipulators used to be reserved mainly for spatial and research applications [3].
oday, there are many examples of 7-DOF industrial robots, such as FANUC’s R-1000iA/120F-7B, KUKA’s iiwa, and the cobots of
assow Robots, Franka Robotics and Productive Robotics, as well as ABB’s YuMi.

A few 7-DOF robot arms (e.g., KUKA’s iiwa and Yaskawa’s SIA series) have a simple 7R (7-revolute-joint) kinematic structure
rom a geometrical point of view, where the joint axes in each of the following three groups are concurrent: {1,2,3} (shoulder),
3,4,5} (elbow), and {5,6,7} (wrist), and every two consecutive axes are normal to each other. In the other popular 7R architecture,
ssumed by most space manipulators (e.g., the Canadarm2), the middle three joint axes are parallel.

A simple 7-DOF kinematic architecture loosely means that singularities are easy to describe (and therefore deal with), and
he inverse kinematics have an analytical solution. A 6R arm, for example, is considered to have a complex structure if it lacks
ny combination of three parallel axes or three axes intersecting at a single point [4]. Of course, an analytical solution is always
referable to a numerical method because it works flawlessly and provides a simple method for specifying the desired solution
hrough so-called configuration parameters (typically Boolean variables determining which of two solutions for certain joint angles
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Mechanism and Machine Theory 205 (2025) 105884 
is selected) and—in the case of 7R arms—the arm angle, which is the variable associated with the redundant DOF, also called a self
otion [5].

In the more recent, single-arm version of ABB’s YuMi, IRB 14050, which is the same as each of the two arms of the original
uMi, IRB 14000, no two axes are permanently parallel or intersecting at a constant point, and a numerical method is used for
olving the robot’s inverse kinematics. YuMi has the same kinematic structure as the robot arm studied in [5]. The joint offsets

in YuMi enable a larger workspace and improved reachability compared to a 7R robot arm without joint offsets such as KUKA’s
iiwa. For the same reasons, many manufacturers of 7R and 6R cobots have adopted designs with joint offsets (e.g., Kassow Robots,
Productive Robotics, Fanuc and Kinova).

Every 7-DOF cobot brand likely manages singularities, the self-motion variable, and inverse kinematics parameters differently.
n the case of ABB’s YuMi, which this paper specifically addresses, not understanding these three kinematic elements can make
rogramming cumbersome, despite the clear advantages of hand-guiding. Hence, it is crucial to conduct an analysis of the inverse
inematics and singularities of this manipulator and provide a clear definition for the arm angle.

In 7-DOF robot arms, there are two types of singular configurations: kinematic singularities and algorithmic singularities [5]. A
inematic singularity is a configuration where the robot end-effector loses the ability to move in at least one direction [6]. When a
anipulator is in a kinematic singularity, the Jacobian matrix becomes rank-deficient. For a 6-DOF manipulator, since the Jacobian

is a 6 × 6 matrix, singularities occur when det (𝐉) = 0 [7]. However, for a 7-DOF redundant manipulator like YuMi, the Jacobian is
a 6 × 7 matrix and does not have a determinant to analyze the singularities. Therefore, some researchers have utilized Whitney’s
approach to analyzing the singular configurations of redundant manipulators [8]. Luh and Gu [9] used the fact that a singularity
occurs when det (𝐉𝐉T) = 0. However, this equation is particularly complex for a redundant manipulator with non-intersecting axes,
s it involves a sum of trigonometric expressions in five joint angles, spans over two pages, and cannot be factored or simplified.

Indeed, the equation in question involves calculating the determinant of a 6 × 6 matrix whose components are complex
trigonometric expressions. This equation is often impossible to analyze symbolically [5]. Therefore, other approaches have been
xpressed to find the singular configurations of these robot arms. Nokleby and Podhorodeski [10] developed a reciprocity-based

approach based on the mutual reciprocity of the joint screws in the Canadarm2. In addition to identifying singular configurations,
his approach can reveal the lost motion information by giving a screw that is reciprocal to all joint screws.

Orientation and position singularity analysis can be done separately based on the Jacobian partitioning and generating a zero
block using the elementary transformation matrices [11,12]. However, this approach is only applicable to architectures with
ecoupled kinematics. Another method is to look at the 6-joint sub-groups of the Jacobian. Based on this approach, singularity
ccurs when all of these sub-groups become singular, and their determinants become zero [13]. Kong and Gosselin [14] analyzed

Canadarm2 using the dependent screw suppression approach. This approach can find the rank deficiency of one of these sub-
acobians; then, additional conditions for being in a singular configuration must be satisfied. However, these methods can only
e used for redundant manipulators with simple structures.

Screw dependency analysis is another method used to identify singular configurations of a manipulator. While we recently
applied it to Kinova’s Link 6, a 6-DOF manipulator [15], as far as we are aware, this technique has not yet been used for
redundant manipulators. This approach can reveal the geometry behind kinematic singularities, showing that for a configuration to
be considered singular in a redundant manipulator, it must simultaneously satisfy two distinct geometric conditions.

All these methods can reveal information about kinematic singularities. However, 7R arms also have an algorithmic singularity,
epending on how the arm angle is defined [5]. An algorithmic singularity occurs when the arm angle, as defined, has no connection

to the self-motion vector [16]. As a result, it becomes impossible to separate the control of the arm angle from the control of the
nd-effector motion. In YuMi, when programming Cartesian moves, the user must always specify the arm angle, in addition to the
nd-effector pose. Thus, to control the end-effector pose and the arm angle, it is important to conduct an analysis of both types of
ingularities [5].

In order to comprehend the singularities of YuMi, we employ the screw dependency approach and evaluate their geometric
onditions for categorization. According to this method, a kinematic singularity occurs when two separate linear dependencies exist
etween specific groups of joint screws, causing the end-effector to lose one of its motion capabilities.

In addition, we clearly define the arm angle in YuMi, which happens to be the same as in [5]. During a Cartesian move between
wo so-called robtargets with the same arm angle, the latter normally remains unchanged and is not automatically adjusted by some
edundancy resolution algorithm. Therefore, it is up to the user to decompose the Cartesian move and specify the arm angle at each

intermediate robtarget in order to avoid obstacles or singularities.
The remainder of this paper is organized as follows. In Section 2, the direct kinematic model of the single-arm YuMi is presented.

n Section 3, the kinematic singularities of YuMi are categorized into different families in terms of their geometric conditions. In
ection 4, the arm angle definition is given, and the algorithmic singularities are investigated. Section 5 discussed what YuMi’s

controller considers as singularities. Then Section 6 compares YuMi with a popular 7-DOF robot arm in terms of singularities.
Finally, Section 7 concludes the paper and presents a summary of what is left for further investigation.

2. Single-arm YuMi model and its direct kinematics

The single-arm YuMi is a redundant manipulator with seven revolute joints, where every two consecutive joint axes are skew
and normal to each other. Fig. 1 shows a schematic of the arm with its principal dimensions. To avoid confusion, we will use here
he more common consecutive joint numbering; beware that the actual YuMi uses a different convention.
2 
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Fig. 1. The single-arm YuMi with all joints at zero degrees.

Table 1
DH parameters of YuMi.
𝑖 𝜃𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖
1 𝜃1 𝑑 −𝑎 −90◦

2 𝜃2 0 𝑎 90◦

3 𝜃3 𝑒 𝑏 −90◦

4 𝜃4 − 90◦ 0 𝑏 −90◦

5 𝜃5 + 180◦ 𝑓 𝑐 −90◦

6 𝜃6 0 −𝑐 90◦

7 𝜃7 𝑔 0 0◦

The Denavit and Hartenberg (DH) parameters and frames [17] of ABB’s YuMi are given in Table 1 and Fig. 1(b). The DH
parameters can be used to transform two consecutive frames into each other as:

𝑖−1
𝑖 𝐓 = 𝐓𝑧𝑖−1 (𝑑𝑖)𝐑𝑧𝑖−1 (𝜃𝑖)𝐓𝑥𝑖 (𝑎𝑖)𝐑𝑥𝑖 (𝛼𝑖). (1)

Eq. (1) describes the position and orientation of frame Fi with respect to frame F𝑖−1, where 𝐑𝑧𝑖−1 (𝜃𝑖) represents a pure rotation
about the 𝑧𝑖−1 axis by 𝜃𝑖, 𝐓𝑧𝑖−1 (𝑑𝑖) a pure translation along the 𝑧𝑖−1 axis by 𝑏𝑖, 𝐓𝑥𝑖 (𝑎𝑖) a pure translation along the 𝑥𝑖 axis by 𝑎𝑖,
and 𝐑𝑥𝑖 (𝛼𝑖) a pure rotation about the 𝑥𝑖 axis by 𝛼𝑖 [10], and the DH frames Fi are shown in Fig. 1(b). Therefore, two consecutive
link-frames of a manipulator can be expressed with respect to each other using this homogeneous transformation matrix according
to the manipulator’s configuration. The direct kinematic equation can be obtained as:

0
7𝐓 = 0

1𝐓
1
2𝐓...

6
7𝐓, (2)

where

𝑖−1
𝑖 𝐓 =

⎡

⎢

⎢

⎢

⎢

⎣

cos 𝜃𝑖 − sin 𝜃𝑖 cos 𝛼𝑖 sin 𝜃𝑖 sin 𝛼𝑖 𝑎𝑖 cos 𝜃𝑖
sin 𝜃𝑖 cos 𝜃𝑖 cos 𝛼𝑖 − cos 𝜃𝑖 sin 𝛼𝑖 𝑎𝑖 sin 𝜃𝑖
0 sin 𝛼𝑖 cos 𝛼𝑖 𝑑𝑖
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (3)

By choosing an appropriate reference frame to represent joint screws, the Jacobian matrix can be made simpler [18,19]. Thus,
the joint screws and the Jacobian can be determined by (4)–(13) when F4 serves as the main reference frame of the 𝑖th joint. Thus,
the joint screw 4$𝑖 is expressed in the reference frame F4, and represents the infinitesimal motion of that joint:

4$𝑖 =
[

4𝐞𝑖
4𝐞𝑖 × 4𝐫𝑖

]

, (4)

where 4𝐞𝑖 is the unit vector along joint axis 𝑖, and 4𝐫𝑖 is the vector between the origins frames F𝑖 and F4, both vectors expressed
with respect to frame F4. We utilize Eqs. (1) to (4) to express these vectors in frame F4. We thus have

[ ]
4𝐉 = 4$1 4$2 4$3 4$4 4$5 4$6 4$7 , (5)

3 
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Table 2
Kinematic singularities in YuMi. Category 𝐴: First condition is 1 ≡ 3. In each case, Rank (𝐉) = 5.

Case Second condition Examples of joint positionsa

𝐴1𝑎 3 ≡ 5 30◦, 0◦, 30◦, −90◦, 30◦, 30◦, 30◦
𝐴1𝑏 5 ≡ 7 30◦, 0◦, 30◦, 30◦, 30◦, 0◦, 30◦
𝐴1𝑐 2 ≡ 7 30◦, 0◦, 99.58◦, 69.34◦, −169.85◦, 69.66◦, 30◦

𝐴2𝑎 2, 4, 7 are parallel and coplanar 30◦, 0◦, 0◦, −66.52◦, 90◦, 90◦, 30◦

𝐴2𝑏 2, 5, 7 are concurrent and coplanar 30◦, 0◦, 100.28◦, 71.62◦, 10.92◦, 52.33◦, 30◦

𝐴3𝑎 2, 3, 5, 6 belong to two planar pencils with a common line 30◦, 0◦, 99.09◦, 34.29◦, −80.53◦, 30◦, 30◦

𝐴3𝑏 2, 3, 4, 7 belong to a regulus of lines 30◦, 0◦, 88.97◦, 0◦, −173.11◦, 42.93◦, 30◦

𝐴3𝑐 2, 5, 6, 7 belong to two planar pencils with a common line 30◦, 0◦, −103.87◦, 74.33◦, 0◦, 31.34◦, 30◦

𝐴4𝑎 2, 3, 4, 5, 6 are concurrent with two skew lines 30◦, 0◦, 110.57◦, −107.81◦, 69.27◦, 30◦, 30◦

𝐴4𝑏 2, 3, 4, 6, 7 are concurrent with two skew lines 30◦, 0◦, 106.07◦, −102.18◦, 0◦, 5.91◦, 30◦

a Each joint angle of ±30◦ can be replaced with an arbitrary value.

where 4𝐉 is the Jacobian matrix expressed in frame F4. The Jacobian matrix relates the joint velocities of a robotic manipulator to
the end-effector velocities by the following equation:

𝐪̇ = 𝐉(𝐪)−1𝐱̇ (6)

where 𝐪̇ is the vector of joint velocities and 𝐱̇ is the vector of end-effector velocities. The columns of this matrix ($1, $2, . . . , and $7)
re calculated as follows:

4$1 =
[

−𝑆2𝐶3,−𝐶2, 𝑆2𝑆3, ℎ𝑆3, 𝑏𝑆2𝑆3, ℎ𝐶3 + 𝑏𝐶2
]T, (7)

4$2 =
[

𝑆3, 0, 𝐶3, 𝑒𝐶3, 𝑏𝐶3 + 𝑎,−𝑒𝑆3
]T, (8)

4$3 =
[

0,−1, 0, 0, 0, 𝑏]T, (9)

4$4 =
[

0, 0, 1, 0, 0, 0
]T, (10)

4$5 =
[

𝐶4, 𝑆4, 0, 0, 0, 𝑏
]T, (11)

4$6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑆4𝑆5

−𝐶4𝑆5

𝐶5

(−𝑏𝐶5 + 𝑐)𝐶4 + 𝑓 𝑆4𝐶5

(−𝑏𝐶5 + 𝑐)𝑆4 − 𝑓 𝐶4𝐶5

−𝑓 𝑆5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (12)

4$7 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑆4𝐶5𝑆6 + 𝐶4𝐶6

𝐶4𝐶5𝑆6 + 𝑆4𝐶6

𝑆5𝑆6
(

(−𝑐 𝐶6 + 𝑓 𝑆6 + 𝑐)𝑆4 − 𝑏𝐶4𝑆6
)

𝑆5

−
((

−𝑐 𝐶6 + 𝑓 𝑆6 + 𝑐
)

𝐶4 + 𝑏𝑆4𝑆6
)

𝑆5

(−𝑐 𝐶6 + 𝑓 𝑆6 + 𝑐)𝐶5 + 𝑏𝐶6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (13)

where 𝑆𝑖 = sin 𝜃𝑖, 𝐶𝑖 = cos 𝜃𝑖, and ℎ = 𝑎 cos 𝜃2 + 𝑒 sin 𝜃2 − 𝑎.

3. Kinematic singularities

YuMi is in a kinematic singularity when the six rows of its Jacobian matrix are linearly dependent. In all other configurations,
he arm can control its end-effector with all six DOFs, and in addition, the arm can possibly control some redundant self motion.
hat redundant motion will be studied in the next section. Here, we will employ the screw dependency approach and classify the
ifferent kinematic singularities based on simple geometric conditions [13,20].

The geometric conditions given here (Tables 2, 3, and Fig. 2) correspond to kinematic singularities, as proven by screw theory,
ut they are also associated with complex symbolic expressions resulting from the analysis of dependencies in the Jacobian matrix’s
4 
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Fig. 2. Examples of YuMi’s kinematic singularities.

Table 3
Kinematic singularities in YuMi. Category 𝐵: First condition is 5 ≡ 7. In each case, Rank (𝐉) = 5.

Case Second condition Examples of joint positionsa

𝐵1𝑎 3 ≡ 5 30◦, 30◦, 30◦, −90◦, 30◦, 0◦, 30◦
𝐵1𝑏 1 ≡ 3 30◦, 0◦, 30◦, 30◦, 30◦, 0◦, 30◦
𝐵1𝑐 1 ≡ 6 30◦, −79.96◦, 12.29◦, 79.73◦, −77.98◦, 0◦, 30◦

𝐵2𝑎 1, 4, 6 are parallel and coplanar 30◦, −90◦, 90◦, −78.98◦, 0◦, 0◦, 30◦

𝐵2𝑏 1, 3, 6 are concurrent and coplanar 30◦, −107.61◦, 9.57◦, 71.66◦, −80.98◦, 0◦, 30◦

𝐵3𝑎 2, 3, 5, 6 belong to two planar pencils with a common line 30◦, 30◦, 99.09◦, 34.29◦, −80.53◦, 0◦, 30◦

𝐵3𝑏 1, 2, 5, 6 belong to a regulus of lines 30◦, −34.93◦, 51.72◦, 0◦, −85.71◦, 0◦, 30◦

𝐵3𝑐 1, 4, 5, 6 belong to a regulus of lines 30◦, −45.25◦, 5.96◦, 0◦, −90.92◦, 0◦, 30◦

𝐵4𝑎 2, 3, 4, 5, 6 are concurrent with two skew lines 30◦, 30◦, 110.57◦, −107.81◦, 69.27◦, 0◦, 30◦

𝐵4𝑏 1, 2, 4, 5, 6 are concurrent with two skew lines 30◦, −52.74◦, 0◦, 15.68◦, 90◦, 0◦, 30◦

𝐵4𝑐 1, 3, 4, 5, 6 are concurrent with two skew lines 30◦, −14.22◦, 25.59◦, −85.94◦, 64.22◦, 0◦, 30◦

a Each joint angle of ±30◦ can be replaced with an arbitrary value.

columns. Indeed, we used these expressions to find numerical examples of kinematic-singularity joint sets that we present in this
paper.

To identify a singular configuration in a redundant manipulator, we initially examine the relationships among the first six
joint screws to identify linear dependencies [5,11]. To uncover the relationships among various combinations of joint screws,
we conducted a comprehensive analysis. At the outset, we treat the seventh joint as the redundant joint. Next, we examine the
interdependencies among the first six joint screws, using a novel combinatorial approach.

First, we focused on pairs of screws, examining dependencies such as (4$1, 4$2), (4$1, 4$3), all the way to (4$5, 4$6). Next, we
extended our analysis to three-screw dependencies, exploring combinations like (4$1, 4$2, 4$3) and (4$1, 4$2, 4$4). Finally, we delved
into four-screw, five-screw, and six-screw dependencies, considering sets like (4$1, 4$2, 4$3, 4$4), (4$1, 4$2, 4$3, 4$4, 4$5), (4$1, 4$2,
4$3, 4$4, 4$5, 4$6). To establish dependencies, we employed the concept of dependent vectors.

Here, we illustrate how we derived a dependency involving (4$1, 4$6), and for the others, we utilized the same approach. To assess
the dependency between these two screws, we arrange them into a 2 × 6 matrix. To determine their dependency, we repeatedly
5 
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remove four distinct rows and compute the determinant of the resulting 2 × 2 matrix, resulting in 15 different expressions. For these
screws to be considered dependent, each of these 15 expressions must be zero. Consequently, we calculate these expressions and
eliminate those that exhibit dependency or are already zero.

Up to this point, we identify all the dependencies among the first set of six joint screws. However, to be in a singular configuration,
two different dependencies should be satisfied. Therefore, we need to apply, individually, each of these conditions for dependency
to the Jacobian matrix to determine the dependencies among the second set of six joint screws (4$2, 4$3, 4$4, 4$5, 4$6, 4$7). To
dentify available dependencies among this set, we are using the same approach as for the first set of six joint screws.

Without this combinatorial approach, it is impossible to derive expressions for the cases of rank deficiency of the Jacobian matrix.
Finally, we categorize the exhaustive list of kinematic singularities, defined by symbolic expressions, based on different geometric

conditions involving the joint axes, using Grassmann line geometry. We have two categories, depending on the first dependency
condition, which is a simple one. Each of these categories is divided into sub-categories and cases. We also have a third category
hat has only one case.

3.1. Category A: 1 ≡ 3 (i.e., 𝜃2 = 0)

In the first category, the first dependency is between the first and the third joint axes. This category can be further divided into
hree sub-categories, based on the number of joint axes involved in the second dependency, i.e., the second condition for singularity,
s shown in Table 2. In each group of two, three, four or five joint axes, the sub-index, 1, 2, 3 or 4, respectively, corresponds to the

number of linearly independent screws. In each case, the rank of the Jacobian drops to 5.
By defining 𝑖 as the 𝑖th joint axis, here are the four possible sub-categories for category 𝐴, each having several cases.

3.1.1. Sub-category 𝐴1: Two-screw dependencies
This sub-category covers three cases with one dependency between two joint screws:

𝐴1𝑎: 3 ≡ 5 (shoulder–elbow singularity). This singularity occurs when axes 3 and 5 coincide too.
𝐴1𝑏: 5 ≡ 7 (shoulder–wrist singularity). This singularity occurs when axes 5 and 7 coincide too.
𝐴1𝑐 : 2 ≡ 7. This singularity occurs when axes 2 and 7 coincide too (Fig. 2(a)).

3.1.2. Sub-category 𝐴2: Three-screw dependencies
This sub-category covers two cases with one dependency between three joint screws:

𝐴2𝑎: 2, 4, and 7 are parallel and coplanar. As shown in Fig. 2(b), 2, 4, and 7 are parallel and lie in the same plane,  .
𝐴2𝑏: 2, 5, and 7 are concurrent and coplanar. As shown in Fig. 2(c), 2, 5, and 7 intersect each other at one point and

lie in the same plane,  .

3.1.3. Sub-category 𝐴3: Four-screw dependencies
This sub-category covers three cases with one dependency between four joint screws:

𝐴3𝑎: 2, 3, 5, and 6 are forming a union of two flat pencils having a common line, but lying in distinct planes and with
distinct centers. As shown in Fig. 2(d), 2 and 6 intersect at point 𝐴 and lie in plane 𝑎, and 3 and 5 intersect at point
𝐵 and lie in plane 𝑏. Besides, planes 𝑎 and 𝑏 intersect at line 𝐴𝐵.

𝐴3𝑏: 2, 3, 4, and 7 belong to a regulus of lines. This means that there are infinitely many lines that intersect 2, 3, 4,
and 7. These lines belong to a hyperboloid of one sheet, forming a type of four-screw dependency [21]. This geometric
condition is similar to the one demonstrated in Fig. 2(g).

𝐴3𝑐 : 2, 5, 6, and 7 are forming a union of two flat pencils having a common line, but lying in distinct planes and with
distinct centers. Specifically, 2 and 6 intersect at point 𝐴 and lie in plane 𝑎, and 5 and 7 intersect at point 𝐵 and lie
in plane 𝑏. Besides, planes 𝑎 and 𝑏 intersect at line 𝐴𝐵. Since this geometric condition is similar to that of case 𝐴3𝑎, we
do not provide a figure.

3.1.4. Sub-category 𝐴4: Five-screw dependencies
This sub-category covers two cases with one dependency between five joint screws:

𝐴4𝑎: 2, 3, 4, 5, and 6 are concurrent with two skew lines. As shown in Fig. 2(e), 2 and 6 intersect at a point on a line
𝑎, and 3 and 5 also intersect at a point on line 𝑎. Similarly, 3 and 6 intersect at a point on a line 𝑏, 2 and 5
also intersect at a point on line 𝑏, and finally 4, 𝑎 and 𝑏 intersect at one point. In other words, each of the five axes
intersects both 𝑎 and 𝑏.

𝐴4𝑏: 2, 3, 4, 6, and 7 are concurrent with two skew lines. Specifically, 3 and 7 intersect at one point, and there is a
line 𝑎 passing through that point, intersecting 2, and parallel to 4 and 6. There is also a line 𝑏 that intersects all five
joint axes. This case is similar to the previous one, so no figure is provided.
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3.2. Category B: 5 ≡ 7 (i.e., 𝜃6 = 0)

In the second category, the first dependency is between the fifth and the seventh joint axes. As with category 𝐴, category 𝐵
can be divided into four sub-categories, based on the number of joint axes involved in the second dependency forming the second
condition for singularity, as shown in Table 2. Again, the rank of the Jacobian drops to 5.

As in the case of category 𝐴, there are four possible sub-categories, each having several cases.

3.2.1. 𝐵1: Two-screw dependencies
This sub-category covers three cases with one dependency between two joint screws:

𝐵1𝑎: 3 ≡ 5 (wrist–elbow singularity). This singularity occurs when axes 3 and 5 coincide too.
𝐵1𝑏: 1 ≡ 3 (shoulder–wrist singularity). This case is identical to case 𝐴1𝑏.
𝐵1𝑐 : 1 ≡ 6. This singularity occurs when axes 1 and 6 coincide too, as shown in Fig. 2(f).

3.2.2. 𝐵2: Three-screw dependencies
This sub-category covers two cases with one dependency between three joint screws. The geometric conditions are simple, so no

igures are provided.

𝐵2𝑎: 1, 4, and 6 are parallel and coplanar.
𝐵2𝑏: 1, 3, and 6 are concurrent and coplanar.

3.2.3. 𝐵3: Four-screw dependencies
This sub-category covers three cases with one dependency between four joint screws:

𝐵3𝑎: 2, 3, 5, and 6 are forming a union of two flat pencils having a common line, but lying in distinct planes and with
distinct centers. This second condition is the sames as the second condition of case 𝐴3𝑎.

𝐵3𝑏: 1, 2, 5, and 6 belong to a regulus of lines. In other words, as illustrated in Fig. 2(g), there are infinitely many lines
that intersect 1, 2, 5, and 6.

𝐵3𝑐 : 1, 4, 5, and 6 belong to a regulus of lines. In other words, there are infinitely many lines that intersect 1, 4, 5,
and 6. This case is similar to the previous one.

3.2.4. 𝐵4: Five-screw dependencies
This sub-category covers three cases with one dependency between five joint screws:

𝐵4𝑎: 2, 3, 4, 5, and 6 are concurrent with two skew lines. This second condition is identical to the second condition of
case 𝐴4𝑎 (Fig. 2(e)).

𝐵4𝑏: 1, 2, 4, 5, and 6 are concurrent with two skew lines. Specifically, as shown in Fig. 2(h), there is a line 𝑎 that
intersects 1, 2, 4, and 5, and is parallel to 6 (thus intersecting it at infinity). In addition, there is a 𝑏 that passes
through the intersection point of 1 and 5, intersects 6, and is parallel to 2 and 4, thus intersecting them at infinity.

𝐵4𝑐 : 1, 3, 4, 5, and 6 are concurrent with two skew lines. One of these two lines is parallel to 6.

3.3. Category C

The last category is different as it does not involve two coincident axes. Also, it consists of a single case. Here, the two conditions
re: three of the joint axes are coplanar and parallel, while the remaining four joint axes are coplanar [20]. Again, the rank of the

Jacobian is 5, i.e., the robot end-effector loses one DOF. Specifically, we have

𝐶: 2, 4, and 6 are parallel and coplanar, and 1, 3, 5, and 7 are coplanar. An example of this singularity is shown in
Fig. 2(i), where 𝜃3 = 𝜃5 = 0, and 𝜃4 = −71.42◦.

3.4. Combinations

In all of these 21 cases of unique singularities, each composed of two different geometric conditions, there is only one end-effector
OF lost. However, some of these cases can be combined to lead to a loss of two end-effector DOFs. The pairs of conditions that can
ombined are as follows: {𝐴1𝑎, 𝐴1𝑏} (i.e., 1 ≡ 3 ≡ 5 ≡ 7), {𝐴1𝑏, 𝐴4𝑎}, and {𝐴1𝑏, 𝐴3𝑎}. Other combinations of singularity cases
an produce a singularity with two end-effector DOFs lost, but they do not create new singularities. For example, by combining
1𝑏 and 𝐵4𝑎, we are generating the condition that is generated by combining 𝐴1𝑏 and 𝐴4𝑎. Finally, in Category 𝐶, we can add the
ondition 1 ≡ 7 to produce a case with two end-effector DOFs lost.

It is impossible to lose three or more DOFs at the end-effector in YuMi. Indeed, it is easy to prove that joint screws 4$2, 4$3, 4$4,
nd 4$ , can never be linearly dependent.
5
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Fig. 3. Definition of the arm angle in YuMi.

4. Arm angle and algorithmic singularity

In YuMi, ABB defines the redundant self motion with an arm angle [22]. Whenever a user must specify a desired end-effector
pose, they must also specify the arm angle. And while there is a command to automatically find the optimal so-called configuration
of the robot (i.e., the solution of the inverse kinematics), there is no command to omit specifying an arm angle and let the robot
automatically find an optimal one. Thus, users must know the exact definition of the arm angle, and we provide here a detailed
explanation of this angle.

4.1. Definition of arm-angle and representation singularities

Loosely speaking, the arm angle defines the rotation of the elbow about an axis passing through some point in the shoulder and
some other point in the wrist of the robot. Indeed, the desirable redundant self motion in YuMi is the swivel of joint axis 4, while the
end-effector is fixed with respect to the base. Thus, when joint axes 3 and 5 are coincident, we still have the desirable self motion.

While the arm angle is easy to define in 7R arms where the first and last three axes are concurrent, YuMi’s arm angle definition
is more intricate. ABB defines the arm angle as the angle of the arm about a line passing through the ‘‘origin of axis 2’’ and the
‘‘wrist center point’’ (WCP), with no definition of the WCP [22]. Here, we present the exact definition of YuMi’s arm angle, which
happens to be the same as defined in [5]. While there are three different options for the so-called reference direction (axis 1, or the
𝑦 or 𝑧 axis of the world reference frame) that could be chosen in the controller parameters for the definition of the arm angle, we
will consider joint axis 1 as the reference direction, since it is the most logical choice for a table-top installation, but the definition
can be easily obtained for the other two options.

The arm angle is defined as the directed angle between two vectors that are normal to two planes, as shown in Fig. 3. The
first plane, which we call the reference plane, is the plane containing axis 1 and the WCP. The so-called WCP was found to be the
intersection point between axis 7 and the common normal to axes 6 and 7. The second plane is the arm plane, which has axis 4 as
its normal vector and contains axes 3 and 5. Assuming that all vectors are expressed in the base reference frame, the arm angle 𝜙
is defined as:

𝜙 = at an2 (sign (𝐞𝟑 ⋅ 𝐞𝟎
)

‖

‖

𝐧 × 𝐞𝟑‖‖ ,𝐧 ⋅ 𝐞𝟑
)

, (14)

where 𝐞𝟑 is the unit vector along axis 4, or more precisely along 𝑧3 (Fig. 1(b)), and 𝐧 is the unit vector normal to the plane containing
axis 1 and the WCP, which we call the reference plane. Vector 𝐧 is calculated as follows:

𝐧 =
𝐞𝟎 × 𝐰

‖

‖

𝐞𝟎 × 𝐰‖
‖

, (15)

where 𝐞𝟎 is the unit vector along axis 1, defined by the right-hand rule, and 𝐰 is the position vector of the WCP.
When the WCP lies on axis 1, the above definition fails, leading to a representation singularity. In such configurations, YuMi’s

controller detects the singularity, preventing the robot from moving in Cartesian mode. To address this, ABB has implemented two
alternatives for axis 1 in defining the reference plane [22]—the 𝑦 or 𝑧 axis of the world reference frame. By selecting an axis on
which the WCP can never lie, representation singularities are avoided.
8 
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Table 4
Kinematically singular configurations of KUKA’s iiwa.
Case First condition Second condition Rank(𝐉)

𝐴 sin 𝜃2 = 0 cos 𝜃3 = 0 5
𝐵 sin 𝜃4 = 0 – 5
𝐶 cos 𝜃5 = 0 sin 𝜃6 = 0 5
𝐷 sin 𝜃2 = 0 sin 𝜃6 = 0 5
𝐴𝐵 sin 𝜃2 = 0, cos 𝜃3 = 0 sin 𝜃4 = 0 4
𝐴𝐷 sin 𝜃2 = 0, cos 𝜃3 = 0 cos 𝜃5 = 0, sin 𝜃6 = 0 4
𝐵 𝐶 sin 𝜃4 = 0, sin 𝜃6 = 0 sin 𝜃4 = 0 4
𝐴𝐵 𝐶 𝐷 sin 𝜃2 = 0, cos 𝜃3 = 0, sin 𝜃4 = 0 cos 𝜃5 = 0, sin 𝜃6 = 0 3

4.2. Algorithmic singularity

In an algorithmic singularity, there is a sudden change of the redundant self motion [5]. The arm-angle is still defined, but
cannot be changed. In YuMi, there are two possibilities.

Shoulder algorithmic singularity
When 𝜃2 = 0, the first and the third joint axes coincide and there is a self motion where joints 1 and 3 can rotate at the same

peed in opposite directions. For all but two values of 𝜃3, the arm-angle self motion is impossible.

Wrist algorithmic singularity
Similarly, when 𝜃6 = 0, the fifth and the seventh joint axes coincide and there is a self motion where joints 5 and 7 can rotate

at the same speed in opposite directions. For all but two values of 𝜃5 the arm-angle self motion is impossible.
Contrary to [5], which studied essentially the same manipulator as YuMi, we do not consider the configuration 𝜃4 = −90◦

(i.e., when joint axes 3 and 5 coincide) as an algorithmic singularity because ABB’s arm angle is well-defined. Indeed, the resulting
self motion is exactly the default arm-angle motion, although we agree that in this configuration, the self motion is less useful. For
example, the redundant DOF cannot be used to avoid obstacles, nor to move away from a singularity.

4.3. Avoidability of kinematic singularities

One of the advantages of 7-DOF arms is that we can use the self motion in order to avoid a kinematic singularity for a given pose.
s we saw in Section 3, all but two cases of Category 𝐴 kinematic singularities depend on axis 2. Therefore, by simply rotating the

self motion about the coinciding axes 1 and 3, we can escape the kinematic singularity, while keeping the pose of the end-effector.
Similarly, all but two cases of Category 𝐵 kinematic singularities depend on axis 6. Therefore, by simply rotating the self motion
about the coinciding axes 5 and 7, we can escape the kinematic singularity, while keeping the pose of the end-effector. Grant ed,
in ABB, none of these two self motions can be controlled by the user in Cartesian mode, since they are not associated with the arm
angle. However, if one needs the end-effector to be at a pose that corresponds to one of these kinematic singularities, it is possible
to calculate (though not in ABB’s software) a joint position for which there is no kinematic singularity.

As for Category 𝐶, it is generally possible to rotate the arm angle, as defined by ABB, and exit the kinematic singularity (though
this cannot be done in ABB’s software).

Therefore, the only end-effector poses that cannot be reached in a joint position that does not correspond to a kinematic
singularity is those for which we have any two of the following three conditions: 𝜃2 = 0, 𝜃4 = −90◦ and 𝜃6 = 0.

5. Singularities of YuMi according to ABB

According to the technical documentation of ABB [22], serial link robots with seven axes, such as the IRB 14000/14050, have
ll the singularities of 6-axis robots but also have two additional singularities. The first of these is when joint 2 has an angle equal
o zero so that joint axes 1 and 3 become coincident. This is similar to the wrist singularity. The second singularity is related to the
alculation of the arm angle and varies depending on which reference direction is configured since the singularity occurs when the
CP is in the reference direction.
In reality, YuMi’s robot controller seems to be programmed to consider the following three configurations as problematic, in

ddition to the representation singularity:

• 𝜃2 = 0, i.e., when joint axes 1 and 3 coincide;
• 𝜃6 = 0, i.e., when joint axes 5 and 7 coincide;
• loosely speaking, when the arm is ‘‘fully stretched’’ as in Fig. 4, and the 6 × 6 Jacobian matrix of a robot obtained by removing

the redundant joint 3 from YuMi is singular.
9 
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Fig. 4. Example of a ‘‘kinematic limitation’’ according to ABB, for the joint position {30◦, −89.48◦, 17.32◦, −62.73◦, 122◦, 80.72◦, 30◦}.

Fig. 5. The kinematic singularities of KUKA’s iiwa 7-DOF robot arm. Note that all unimportant angles were assigned the value of 30◦ or −30◦, as we did in
Fig. 2, which is why all configurations seem similar.

The third configuration is actually reported by the controller as a ‘‘kinematic limitation’’. In that configuration, YuMi’s controller
cannot rotate the arm angle in one direction, even though the physical arm-angle self motion is not restrained.

The combination of these three boundary conditions is used to designate the maximum of eight configurations that ABB’s
RobotStudio software proposes as different solutions to the inverse kinematics of YuMi, for a given arm angle, in the same fashion
as the well-known {front/back, elbow-up/elbow-down, flip/noflip} configuration parameters of traditional, PUMA-like 6-DOF robot
arms.

While these three configurations are not kinematic singularities, ABB is right to consider the first two, which are algorithmic
singularities, as problematic since, as already mentioned, users must always specify the arm angle for Cartesian moves, rather than
let the robot use some redundancy-resolution technique. As for the third configuration, while it represents no singularity at all, it
is close to a workspace limit.

As summarized in Tables 2 and 3, we showed that all but one of the actual kinematic singularities in YuMi require that 𝜃2 = 0
(category 𝐴) or 𝜃6 = 0 (Category 𝐵). Thus, ABB has simplified its approach to managing kinematic singularities, by considering only
the first of the two conditions for a kinematic singularity of categories 𝐴 and 𝐵.

We must also add that YuMi’s controller does detect the kinematic singularities of category 𝐶 (Fig. 2(i)) as problematic and
reports them as ‘‘kinematic limitations’’. This is simply because the numerical method used fails to find an inverse kinematic solution.
However, it also reports as problematic configurations like the one in Fig. 4, that are close to but not singular.

6. Comparison between KUKA’s iiwa and YuMi

To conclude, we compare YuMi’s singularities to those of a 7R robot arm with zero offsets, like KUKA’s LBR iiwa. A description
of iiwa’s singularities has been given in [16], for example. In our comparison, we evaluate the singularities of these two redundant
arms in terms of the rank of the Jacobian matrix, the number of lost end-effector DOFs, and the avoidability of the singularities. The
singular conditions for KUKA’s iiwa are summarized in Fig. 5 and Table 4. Not only does iiwa have fewer kinematic singularities,
but they are simpler to describe.

6.1. Number of lost end-effector DOFs

As we saw, in YuMi, the rank of the Jacobian is always greater than four, which means that YuMi’s end-effector loses at most two
DOFs when in a kinematic singularity. However, KUKA’s iiwa can lose one, two, or three DOFs [16]. For example, iiwa’s end-effector
loses three DOFs when all of the different kinematic singularity conditions occur (case 𝐴𝐵 𝐶 𝐷, Table 4).
10 
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6.2. Avoidability of kinematic singularities

There is little difference between YuMi and iiwa in their ability to escape kinematic singularities through the use of the available
elf motion. In iiwa too, to escape the most frequent kinematic singularities (cases 𝐴 and 𝐶), the redundant self motion to use is

not the arm angle.

7. Conclusion and further work

In this paper, we demonstrated that the kinematic singularities of YuMi are completely different from the well-known wrist,
elbow, and shoulder singularities of typical 6-DOF, PUMA-type robots. We also showed that YuMi has a greater variety of
ingularities compared to a 7-DOF robot arm without joint offsets.

Specifically, we presented for the first time simple geometric conditions for each kinematic singularity, giving a more precise
understanding of the robot’s kinematics. Furthermore, we showed that in some specific singular configurations, YuMi’s end-effector
loses two degrees of freedom, but it can never lose three DOFs, unlike other 6- and 7-DOF robot arms.

It should be noted that the authors of [5], who studied a manipulator identical to YuMi, did not find the robot’s kinematic
singularities. Instead, they derived the kinematic singularities of a simplified version of the manipulator, where one of the joint
offsets was set to zero.

Moreover, ABB’s definition of the arm angle was given as the angle between the arm plane normal to joint axis 4 and the
reference plane that runs through axis 1 and a special point WCP on joint axis 7. Although this was already done in [5], for
completeness, we also provided the representation singularity where this particular arm-angle definition fails. Similarly, the two
algorithmic singularities were discussed: the shoulder algorithmic singularity, and the wrist algorithmic singularity. In each of these
two configurations, the arm-angle self motion is generally lost and the redundant DOF becomes different.

By identifying and categorizing the various singular configurations, this paper equips researchers and engineers with essential
information to develop more efficient and robust robot control strategies. Understanding the conditions under which the robot is in a
singularity allows for better motion planning. The insights gained from this study are invaluable for optimizing YuMi’s performance,
ensuring safe and efficient robot operation, and enhancing its usability in diverse real-world scenarios. The study can also be applied
to other 7-DOF robot arms with complex kinematics, such as those from Kassow Robots, for which no geometric description is yet
vailable.

The inverse kinematics of YuMi remains a challenge and no analytical solution is currently available. As a result, in future works,
we will attempt to derive an analytic solution for the robot’s inverse kinematic problem. Besides, we intend to propose an algorithm
o automatically manage the self motion in YuMi and avoid kinematic singularities. Furthermore, we intend to work on a better
ay of proposing a set of inverse kinematic solutions for a given end-effector pose.

Finally, our novel approach to analyzing the singularities of a 7-DOF robot arm can be applied to other similar designs, such as
the very similar one studied in [5], or the collaborative robots of Kassow Robots.
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