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ABSTRACT This scientific article aims to provide a comprehensive review of fault monitoring, diagnosis,
and prognosis methods based on Artificial Intelligence (AI) for Hydroelectric Generator Units (HGUs).
It presents a compilation of research studies that have utilized AI models for fault monitoring, diagnosis,
and prognosis in HGUs. Additionally, it outlines the process for building an AI model in the context of
fault management in HGUs and discusses the advantages and disadvantages associated with AI methods
in this domain. Furthermore, the article examines the research prospects and trends of AI models for fault
management in HGUs. By synthesizing existing literature and highlighting future directions, this article
serves as a valuable resource for researchers and practitioners seeking to leverage AI techniques for effective
fault management in HGUs.

INDEX TERMS Artificial intelligence (AI), diagnosis, hydroelectric generator unit (HGU), monitoring,
prognosis.

I. INTRODUCTION
The hydroelectric machine is an important source of renew-
able energy and is used to generate electricity in many parts
of the world. However, they are multi-failure mode systems
evolving through a great number of components and com-
plex failure mechanisms. Fault monitoring, diagnosis, and
prognosis (MDP) of hydroelectric generators are essential
for ensuring the reliable and efficient operation of these
renewable energy sources. By identifying and diagnosing
potential problems before they become serious, maintenance
planning can be optimized to reduce the risk of costly repairs
or replacements and the risk of downtime due to generator
failure. Fault monitoring focuses on detecting and identifying
faults as they occur, while fault diagnosis involves analyzing
the detected faults to determine their type, severity, causes,
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and location. Prognosis goes a step further by predicting
the degradation assessment and remaining useful life as
presented in Figure 1. Fault detection is the process of
monitoring the system for any signs of a fault or malfunction.
Different parts of hydroelectric generators can have faults
and these faults can be electrical or mechanical which they
can be monitored by different techniques like electromag-
netic field monitoring, temperature measurements, etc. [1],
[2], [3], [4]. IEEE1129-2014 standard defined the online
monitoring techniques and guidelines of large synchronous
generators [5]. Degradation mechanisms were described, and
all online monitoring methods and instrumentation were
explained. HGU components, some monitoring sensors and
faults are illustrated in Figure 2. Condition monitoring
techniques based on magnetic fields for electrical machines
are compared in [6] and applications of magnetic flux for
faults diagnosis of wound field synchronous machines are
discussed.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 173599

https://orcid.org/0000-0001-7537-403X
https://orcid.org/0000-0003-2246-6541
https://orcid.org/0000-0002-3283-9391
https://orcid.org/0000-0002-9228-5255
https://orcid.org/0000-0003-0276-4277
https://orcid.org/0000-0002-4367-5097


H. Bechara et al.: Review of AI Methods for Faults MDP in Hydroelectric Synchronous Generators

Fault diagnosis involves identifying the fault type, its
severity, cause and its location. The condition monitoring
and fault diagnosis techniques of electrical machines were
reviewed, discussed and compared in [7] and [8].

FIGURE 1. Fault monitoring,diagnosis and prognosis.

Reference [9] overviewed diagnosis methods based on
electromagnetic fields (air-gap and stray fluxes) for large
synchronous machines diagnosis. There are many methods
based on different signal type proposed to diagnose faults
in hydroelectric generator. For example, [10] proposed
mathematical models based on vibration signals to assist fault
diagnosis, however [11] and [12] proposed methods based on
electromagnetic fields to diagnose eccentricity fault. Diag-
nostic tools aid the researchers to perform fault prognosis. For
example, MIIDA (Methodology for Integrated Diagnostic of
hydroelectric generators), a web-based application used by
Hydro-Québec (Canada) for condition-based maintenance,
calculates a health index for large hydroelectric generators by
using data from actual diagnostic tools and inspections [13].
A prognosis provides the basis for predictive maintenance.

It can be an assessment of the remaining useful life of
repairable systems, a prediction of the future state of the
system or a representation of degradation evolution [14].
Fault prognosis provides useful information that support
decision-making and optimize the maintenance strategies.
Reference [15] proposed a prognosis method based on
Physics of Failure, data and expert knowledge and estimated
the failure propagation by using the Petri-Net technique. The
prognosis model in [16] relied on the failure mechanisms.
According to degradation states and data obtained from the
diagnosis tools, the failure mode is predicted. By utilizing dif-

ferent types of sensors to monitor the status and performance
of complex systems, utilities can leverage the latest advances
in MDP technology to reduce maintenance costs, minimize
unscheduled outages, and prevent catastrophic failures.

Reference [17] showcases the viability of using artificial
neural networks for the monitoring of electrical machines’
condition. While [18] presents an in-depth review of the
application of deep learning techniques in renewable energy,
providing an assessment of their performance and discussing
the main challenges and opportunities for further research in
the field. References [19] and [20] underscore the growing
acceptance of AI-based data-driven approaches in the fields
of electric machine drives and fundamental sciences, serving
as a catalyst for researchers to gain a profound understanding
of AI applications and contribute to the ongoing advancement
of these fundamental sciences.

The use of AI models and reinforcement learning for
predictive maintenance is becoming increasingly popular,
by combining them the predictive maintenance can be more
accurate and cost-effective [21]. AI-based models can handle
a large volume of data, adapt to new information, and
detect anomalies that can be missed by experts or traditional
methods, whereas they require big data to be trained,
tested and validated which can be the main drawback when
using them for fault MDP of large hydroelectric generators.
As these machines are well-monitored and quickly repaired,
it is difficult to find large faulty data. Moreover, fault cannot
be implemented on large HGUs as they are only designed for
power generation not for conducting experiments.

The aim of this paper is to present, analyze, and classify
the AI based methods specifically applied for fault MDP
of hydroelectric generator units. The work is divided into
the following sections. Section II describes the methodology
employed for the literature review. Section IV provides a
compilation of research studies that have utilized AI models
for fault monitoring, diagnosis, and prognosis in HGU.
Section III describes the various AI techniques by explaining
the techniques used for fault MDP of HGU. Section V
presents the process for building an AI model. Section VI
discusses the advantages and disadvantages of AI methods
in this domain. Section VII outlines the research prospects
and trends of AI models. Lastly, the article culminates with a
comprehensive conclusion that encapsulates the key findings
and insights derived from the preceding sections.

II. LITERATURE REVIEW METHODOLOGY
The literature review aims to present most of the studies
that have investigated methods based on artificial intelli-
gence for detecting, diagnosing, or prognosing faults in
hydroelectric generators. The review predominantly relied
on the Web of Science (WOS) and SCOPUS databases,
which are widely recognized as the standard and most
authoritative repositories for scientific research. Different
combinations of keywords such as hydroelectric generator,
hydropower, hydraulic generator, monitoring, diagnostic,
prognostic, artificial intelligence and fault were used to

173600 VOLUME 12, 2024



H. Bechara et al.: Review of AI Methods for Faults MDP in Hydroelectric Synchronous Generators

FIGURE 2. Hydroelectric generator unit fault monitoring, adapted from ‘‘https://en.wikipedia.org/wiki/Water_turbine’’.

capture the majority of the relevant studies, for example:
hydropower AND fault AND artificial intelligence, etc.
The retrieved documents were then filtered for the years
2004-2024 to highlight the evolution of research interest in
applying AI-based methods to study faults in hydroelectric
generators, including monitoring, diagnosis, and prognosis.
During the research process, papers not written in English,
notes, editorial materials, meeting abstracts, and retracted
papers were excluded as they lack a sufficient level of detail.
After screening the abstracts, studies that did not focus on
studying faults in hydroelectric generators using artificial
intelligence methods were excluded. Only studies that
presented methods for monitoring, diagnosing, or prognosing
faults in hydroelectric generators were considered eligible for
inclusion in this review. The remaining papers were assessed
for relevancy, and it was determined whether they would
contribute valuable knowledge to this review. Furthermore,
studies for which full texts were not available were also
excluded. As a result, 35 research papers, suitable for full-
text reading, were included and interpreted in this review.

Figure 3 provides a comprehensive overview of the
publication trajectory of research papers in the field of
fault analysis in hydroelectric generators with artificial
intelligence from 2004 to 2024. The trajectory is measured
by the cumulative number of publications, which serves as a
quantitative indicator of the research output in this specific
domain.

The figure is instrumental in discerning the publication
trends and assessing the growth and development of scientific

contributions in the field of fault analysis with artificial
intelligence applied to hydroelectric generators.

During the period spanning from 2004 to 2015, researchers
primarily directed their focus towards the utilization of
artificial intelligence (AI) for the purpose of fault diagnosis.
Throughout this timeframe, monitoring practices predom-
inantly relied on methodologies that did not incorporate
AI techniques. However, since 2015, there has been a
discernible increase in the prevalence and application of
AI techniques among researchers. These techniques are
now not only employed for fault diagnosis but also for
prognosis and monitoring tasks. The surge in AI adoption
can be attributed to its inherent reliability and its ability to
analyze large datasets, thereby facilitating the identification
of common patterns across disparate data types and enabling
the prediction of future values.

The discernible and sustained growth pattern, particularly
observed between the years 2018 and 2024, serves as a clear
indication of the heightened interest and emphasis placed
on harnessing the capabilities of AI-based methods for fault
monitoring, diagnosis, and prognosis within the domain of
hydroelectric generators.

Consequently, the application of artificial intelligence
in fault analysis for hydroelectric generators has gar-
nered substantial global attention in recent years. This
attention is primarily driven by the diverse range of
applications offered by these methodologies, leading to
an increasingly prominent and rapidly developing area of
research.
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FIGURE 3. Cumulative number of publications over time.

III. OVERVIEW OF AI TECHNIQUES
AI is becoming increasingly prevalent in today’s world
and is seen as a crucial part of Industry 4.0, the fourth
industrial revolution; as it has the potential to handle big
data, increase efficiency and reduce costs [22]. It is a rapidly
developing field of technology that allows machines to think
and act like human expert. AI techniques are used to create
autonomous systems that can learn from their environment
and make decisions based on the data they receive. They are
intelligent systems that are used to cluster data, recognize
patterns, make predictions, and solve complex problems [23].
Figure 5 presents some of the most common AI-based
methods including machine learning, deep learning, natural
language processing (NLP), expert systems and others.
Machine learning is a specific field of AI that focuses on
the development of computer programs that can learn from
data and has many subset techniques such as supervised
and unsupervised learning, support vector machines and
others [24]. The following AI-based techniques are mostly
used for fault MDP of hydroelectric generators.

A. EXPERT SYSTEM
Expert systems were developed in 1970s by extracting
knowledge from human experts and applying it to a computer
program. Expert systems are computer programs that employ
artificial intelligence to imitate the decision-making capacity
of a human specialist. Based on knowledge processing, they
can handle qualitative and quantitative data. Expert systems
are used to detect, classify, diagnose and predict problems
in electrical machines, as well as to aid in their repair and
maintenance [25], [26], [27].

B. MACHINE LEARNING
Machine learning is a subset of artificial intelligence that
enables computers to learn from data and experience. When
attempting to solve a problem, data scientists emphasize

that there is not a single algorithm that is the best for all
situations. The type of algorithm used depends on the nature
of the problem, the number of variables, and the model
that would be most suitable. Machine learning has become
increasingly popular in recent years because of its capability
to quickly and accurately process large amounts of data.
It can be used to identify and classify faults in electrical
machines, predict their performance, and optimize their
performance [28], [29].

Machine learning without guidance, known as unsuper-
vised learning, is a branch of machine learning that relies
on data to make decisions without direction. It utilizes
algorithms to identify patterns and clusters in data, allowing
for the detection of subtle, hidden patterns. Unsupervised
learning has applications in diverse areas such as anomaly
detection and data segmentation, clustering. This capability
holds the potential for automating various tasks by analyzing
vast amounts of information, thereby discovering intricate
correlations [30].

1) NEURAL NETWORK
A Neural Network is a type of machine learning algorithm
that uses interconnected nodes, or neurons, arranged in layers.
Each neuron is connected to other neurons in the network
and is responsible for processing information. The ANN
is trained by providing it with a set of input data and a
set of desired output data. The weights of the connections
between the neurons are then adjusted using a process
called backpropagation to reduce the difference between the
desired output and the actual output, thus improving the
accuracy of the ANN. To ensure accurate predictions, training
should be done carefully to avoid overfitting. ANN is used
for pattern recognition, classification, fault detection and
prediction [31], [32].

Adaptive NeuroFuzzy Interference System (ANFIS) is
a type of artificial intelligence technique that combines
the learning ability of neural networks with the fuzzy
logic of fuzzy systems. The ANFIS design consists of
two steps: designing the premise parameters and training
the consequent parameters. A hybrid learning algorithm is
commonly used to train the ANFIS. Reference [33] proposed
this technique and developed the model architecture. This
technique is a powerful tool for fault detection, diagnosis and
prediction [34], [35], [36].

Long Short-Term Memory (LSTM) architecture, devel-
oped by Hochreiter and Schmidhuber [37], is a type of
Recurrent Neural Network (RNN) designed to address
the vanishing gradient problem associated with traditional
RNNs. LSTM is particularly effective at capturing long-
term dependencies, making it well-suited for sequence pre-
diction tasks. Unlike conventional neural networks, LSTMs
feature feedback connections that enable them to process
entire sequences of data rather than just individual points,
enhancing their ability to recognize patterns in sequential
information such as time series, text, and speech.
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Multi-layer feed-forward neural networks (MFNN)
involve a neural network that is aware of the desired
output. The weights are adjusted to minimize the difference
between the calculated output and the target output.
MFNNs, particularly those trained with back-propagation
algorithms, are among the most widely used. They can
adapt independently without human’s intervention. Neurons
function as nonlinear devices, which means the entire
network exhibits non linearity. This property is crucial when
the relationship between input and output is inherently
nonlinear. In supervised training, each example consists of
a specific input and its corresponding desired output. The
network processes examples from the training set, adjusting
weights to reduce the discrepancy between the expected
and actual outputs. This process continues until the network
stabilizes, effectively creating a mapping between inputs
and outputs for the given problem. MFNN demonstrate
robustness, maintaining performance even as noise levels
increase. However, ANNs also have some drawbacks such as
for certain problems, convergence can be slow, and the high
number of weights in an ANN often leads to lengthy training
times [38].

2) AUTOENCODER
Autoencoders are a type of neural network used in unsuper-
vised machine learning. It is made up of two components;
an encoder that compresses input data into a hidden
representation and a decoder that uses this knowledge to
reconstruct the original data. They are widely used for
tasks such as compression, denoising, feature extraction, and
dimensionality reduction. Autoencoders can also help with
the reconstruction of missing data points, making them an
invaluable tool [39].

3) SUPPORT VECTOR MACHINE
SVM is a supervised machine learning algorithm that can
be used for both classification and regression tasks. The
algorithm creates a hyperplane or set of hyperplanes in
a high-dimensional space to which data are mapped and
classified. It is a powerful and versatile algorithm that can
classify data even when they are not linearly separable [40].
SVMs can identify relationships between different variables,
identify patterns in data that are not easily detected by other
algorithms and identify anomalies in data. SVMs can be used
to identify fault features that aid in diagnosing faults [41].

4) RANDOM FOREST
Random forest is a machine learning technique used for
both classification and regression problems that constructs
multiple decision trees to perform data mining tasks and
produce a more accurate outcome. Random Forest is also
known for its robustness to overfitting, accuracy, stability,
and ease of user. It is capable of processing a wide range of
descriptors at the same time while disregarding redundant or
irrelevant ones [42].

IV. AI-BASED TECHNIQUES FOR FAULTS MDP
The following paragraph presents a compilation of research
studies that have utilized AI models for the purposes of
monitoring, diagnosing, or prognosing faults in HGUs.
Table 1 provides an all-inclusive list of these studies,
including their respective publication dates, the fault types
investigated (electrical or mechanical), the types of input used
(invasive or non-invasive), the specific input types utilized,
the feature extraction techniques applied, the AI models
employed for fault MDP, and the methods used for evaluating
the models. The abbreviations of the feature extraction and
AI-based methods mentioned in Table 1 are presented in
Table 2 and Table 3, respectively, in the Appendix section.
As shown in Table 1, most studies focus on signals

related to vibration, power, partial discharge, air gap flux,
and stray flux, which highlights a considerable interest in
these signal types within the research landscape and indicates
their significance in the MDP processes of hydroelectric
generators.

Upon analyzing the references, it is evident that a subset of
studies employed non-AI techniques for feature extraction,
while others opted for AI methods. To provide a compre-
hensive overview, Figure 4 presents a categorization of the
feature extraction techniques into two distinct groups: non-
AI based and AI-based. Each technique is explicitly linked
to its respective reference. Furthermore, it is noteworthy that
although all the MDP models utilized in the studies are based
on AI, each method falls into a specific category. To facilitate
a more comprehensive analysis of these methods, they have
been distributed and organized in Figure 5 according to their
respective categories, with each category associated with the
corresponding reference.

By analyzing the data, it is evident that machine learning
algorithms were predominantly used (84%) among the
mentioned methods. Specifically, NN were utilized in 29%
of the references, while SVM were employed in 13% of
the cases. AE and PCA were each used in 11% of the
references. Furthermore, KELM was utilized 6% among the
used methods, while other methods accounted for 2% each.
In addition to machine learning approaches, AI methods that
do not fall under the machine learning category like ES, BN,
and SSAwere each employed in 4% among the usedmethods.
Furthermore, AMWGOmethod andWFSTwere each used in
2% of the references.

A. ML-BASED TECHNIQUES
1) NN-BASED TECHNIQUES
NN have been widely adopted for fault diagnosis, prognosis,
and monitoring HGUs. Their effectiveness in addressing
complex pattern recognition challenges through the approxi-
mation of non-linear mapping relationships, along with their
parallel processing capabilities for knowledge acquisition,
has contributed to their popularity [49]. In their study,
[49] utilized granular computing techniques to reduce the
dimensionality of input data for fault diagnosis. Specifically
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TABLE 1. Review of the papers using AI-based techniques for hydroelectric generator faults MDP.
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TABLE 1. (Continued.) Review of the papers using AI-based techniques for hydroelectric generator faults MDP.

targeting faults such as uncentering, movement rubbing,
uneven rotor quality, tail water pipe eccentricity, and
vortex formation, this approach demonstrated improved
efficiency in fault diagnosis. Similarly, in [59], a novel
artificial neural network model was proposed, resulting in
significant improvements in the accuracy of fault diagno-
sis specifically tailored for HGUs. The authors utilized
a 1-D CNN-GRU technique to diagnose various HGU
faults, including eccentric draft tube surges, thrust bearing
unevenness, hydraulic disequilibrium, unbalance, and mixed
faults. The technique demonstrated robustness in the presence
of changing conditions, enabling real-time diagnosis and
exhibiting higher reliability compared to other AI-based
methods. It is important to note that in cases where new
faults arise, retraining the model with updated data becomes
crucial to enhance classification performance and improve
the diagnostic capabilities of the system. In their study, [48]
incorporated the output of a local neural network diagnosis
system as input at the decision level. This integration
method resulted in enhanced precision for diagnosing faults
associated with unbalanced rotor quality, misalignment of the
generator’s axis, rubbing between the stator and rotor, and a
thinner main axis. On the other hand, RBFNN possesses local
approximation characteristics and outperforms conventional
BP (Backpropagation) neural networks in terms of learning
rate, pattern recognition, and classification abilities. By train-
ing an RBFNN, it becomes possible to determine the type
and severity degree of faults as the output. Reference [46]

employed this approach to diagnose mechanical faults such
as mass unbalance of the rotor, vortex in the draft tube,
unsymmetrical entry of guide vanes, large ellipticity of
the stator, rotor misalignment, and looseness of the stator
core. Moreover, SOFM, a method categorized under NN,
exhibits pattern recognition capabilities in fault diagnosis. Its
objective is to classify input vectors belonging to different
categories accurately. [80] employed the U-Net to extract
the gap signature from other PD sources, producing an
output image that serves as input for a convolutional neural
network (CNN) model, which is then followed by a classifier
to identify the PD sources automatically. Subsequently,
a decision-making method is proposed to determine the
optimal output category by considering the posterior and
prior probabilities estimated by various individual models.
In [43], the authors classified inputs into eight distinct
categories, including shaft disequilibrium, shaft asymmetry,
shaft scrape, vane looseness, shaft abrasion, shaft defection,
shaft crack, and vane fracture. In the context of anomaly
detection, LSTM neural network was utilized to analyze
variables including bearing temperatures and vibrations. The
LSTM model was employed to predict the temperature one
hour ahead, taking into account the rate of variation in
bearing temperature. The model showcased its ability to
make accurate predictions of values closely associated with
failures in the temperature of generator bearings [53]. In their
work, [75] proposed two predictive maintenance techniques
for fault detection: a deep Neural Network with Logistic
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Regression and an LSTMmodel with an Autoencoder. These
techniques leveraged the analysis of temperature, pressure,
and voltage data to detect anomalies and classify faults,
such as generator bearing faults, generator asymmetries, and
forced pressures in the turbine. To enhance the performance
of the models, the data underwent feature engineering that
improved the training process. The LSTM model exhibited
accurate predictions of bearing temperature, and the Deep
Neural Network outperformed a simple neural network in
terms of accuracy. As a result, these techniques hold promise
for detecting other failures. However, further research is
required to establish appropriate thresholds for failure
alarms. Another study conducted by [73] employed generator
apparent power, bearing hydraulic lubrication unit inflow,
and bearing vibration as input variables for an LSTM-weight
model. The study demonstrated that this technique possesses
the capability to detect subtle changes, unlike traditional
detection models, and exhibits a high level of prediction
ability. In the realm of NN, [44] and [45] utilized various
machine parameters, including load, flux, operating status,
pressure fluctuation, frequency, vibration, throw, amplitude,
and temperature changing parameters of the upper bearing,
thrust bearing, and turbine bearing, in conjunction with
BNN for diagnosing faults such as eccentric vortex band,
unbalance, and misalignment. Reference [54] presented an
innovative methodology in which MFNN was employed for
automatic classification of partial discharge (PD) in order
to assess the insulation condition of stator windings. This
approach incorporated advanced noise filtering techniques,
the extraction of novel features using image projection,
and the training of multiple neural networks to achieve
accurate PD classification. Furthermore, [74] employed
ANFIS, a widely used prediction technique, to forecast the
faulty temperature zone for prognosticating stator winding
failure. Given the success of this technique in prognosticating
stator insulation, it can also be applied to prognosticate
insulation failure in other components, such as rotor winding
insulation.

2) AE-BASED TECHNIQUES
In the field of machine learning (ML), alternative techniques
have been explored for fault classification and monitor-
ing. AE has been utilized primarily for fault monitoring,
diagnosis, and occasionally prognosis. The application of
VAE technique in the early detection of failure modes in
large hydroelectric generators has gained attention due to
its ability to reduce dimensionality and accurately diagnose
faults in high-dimensional data. Reference [72] utilized the
discrete wavelet transform (DWT) to analyze the stray flux
signal, then applied Short-Time Wavelet Entropy (STWE) to
extract features from the resulting subbands. Subsequently,
a variational autoencoder (VAE)was employed in an unsuper-
vised learning framework to organize the STWE signatures
derived from stray flux measurements. The analysis of
the latent space showed a significant correlation between
specific trajectories in this reduced space and an increase

in WE. Reference [76] employed VAE to monitor Rotor
Inter turn Short Circuits (RITSC) using vibration signals.
The study confirmed that VAE exhibits high sensitivity
to fault occurrences and can detect faults at their early
stages. Moreover, [77] utilized VAE to project stray flux
measurements into a 2D space, enabling the monitoring
of RITSC in large hydroelectric generators. This technique
effectively distinguished healthy signals from faulty ones
and clustered them based on the severity of the fault. VAE,
a variant of the classical autoencoder, has demonstrated high
accuracy in fault detection and dimensionality reduction.
To extend the capabilities of the VAE, convolution layers
are added to both the encoder and the decoder compo-
nents, resulting in the CVAE. CVAE is another approach
employed for data projection into a 2D-visualization latent
space. The input vectors are encoded and represented in
this 2D space, facilitating visual analysis of the spatial
distribution of the training dataset. Reference [83] employed
the CVAE to project stray flux signals into a 2D space for
monitoring interturn short circuits in large hydrogenerators.
The CVAE effectively clustered the signals into multiple
groups, reflecting the severity of the faults present in the
signals. Additionally, it was shown that the CVAE is robust
against external noise and demonstrates greater sensitivity
in fault detection compared to the standard method (RMS).
References [66] and [67] utilized CVAE in conjunction with
classifiers to diagnose stator winding insulation failure by
classifying Partial Discharge Analysis (PDA) patterns. CVAE
aided classification and data visualization by projecting
data into a 2D space while preserving valuable features.
However, it was observed that expert knowledge was
necessary for feature extraction and identification of the
source of the partial discharge, which significantly impacted
the classification accuracy. Furthermore, the VAE has been
employed to detect various levels of severity of the RITSC in
large hydrogenerators by analyzing vibration signals, proving
its capacity for fault classification within a 3D, user-friendly
space, as demonstrated in [81]. This technique has also been
extended to two other fault types, namely Static Eccentricity
(SE) and Broken Damper Bar (BDB), with results confirming
its effectiveness in fault classification, as noted in [82]. The
method has been further enhanced by integrating it with a
Sparse Dictionary Learning algorithm, as developed in [79],
enabling therefore earlier fault detection without false alarms.
Additionally, a new term based on the Desirability function
was incorporated into the CVAE model’s cost function
in [84], standardizing the technique across two different large
hydrogenerator designs. This improvement demonstrated the
model’s potential to classify the same fault in two different
machines within the same geographical region.

3) SVM-BASED TECHNIQUES
SVM is a widely used technique in fault diagnosis. It is a
supervised learning method suitable for pattern classification
problems and has found applications in various domains
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FIGURE 4. Feature extraction techniques used for fault MDP in hydroelectric generators.

FIGURE 5. AI-based techniques used for fault MDP in hydroelectric generators.

such as target classification, pattern recognition, and fault
diagnosis. Reference [52] proposed an innovative method

for determining the correlation between vibration amplitude
and rotating speed in hydroelectric generator units. They
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utilized a statistical fuzzy vector chain code to extract shape
features from the vibration-speed curve and employed an
SVM to accurately identify the type of vibration-speed curve,
improving the efficiency and effectiveness of fault type
identification compared to previous methods. While [71]
introduced a fault diagnosis method using vibration signals
from bearings. They decomposed the vibration signals into
intrinsic mode functions using VMD. The calculated singular
values of the resulting modal components, representing the
energy characteristics of the maximum frequency, were used
as feature vectors input to an SVM for fault diagnosis and
recognition. Furthermore, LS-SVM was employed by [47]
to diagnose faults in HGU, such as low-frequency vortex
of the draft tube, asymmetry aperture of runner blade, and
nonuniform air space between the rotor and stator. They
utilized a multiclass classifier based on SVM for fault type
identification, emphasizing the importance of optimizing
model parameters for improved accuracy. On the other hand,
[51] proposed a novel method for fault diagnosis in HGU by
combining rough sets and SVM. Vibration signals were used,
and fault patterns were extracted from overlapped regions.
Rough set techniques were employed to define upper and
lower approximations for each fault class. Moreover, [58]
diagnosed mechanical faults like vortex belt eccentricity,
unit axis misalignment, and dynamic-static rubbing using the
QPSO-SVMapproach. They extracted the energy eigenvector
as a feature to reflect the spectrum characteristics, which was
used as input to the diagnosis model. The QPSO technique
enhanced the SVM’s classification accuracy, and the model
was found to be robust to noise. Increasing the number of
learning samples could further improve SVM performance.

4) PCA-BASED TECHNIQUES
PCA is a widely used method for monitoring, diagnosis, and
prognosis of industrial processes. It is a data-driven approach
for anomaly detection, particularly in processes with a large
number of variables. The basic idea of PCA is to remove
noise and eliminate correlations between process variables.
It achieves this by constructing a principal component
subspace that contains the most important information of the
original dataset, as well as a residual subspace that contains
noise and unimportant information [55]. In their work,
[55] proposed an improved PCA algorithm for detecting
anomalies in HGUs. The approach involved identifying the
operational conditions of the HGUs and using adaptive
methods to update the PCA model. By considering variables
such as the X and Y swing of the upper guide and the vertical
and horizontal vibrations of the upper bracket, the enhanced
method achieved higher precision and satisfactory detection
rates for anomalies compared to traditional approaches.
Furthermore, [57] diagnosed faults in HGUs, including rotor
imbalance, rotor misalignment, spindle bending, dynamic
and static rubbing, draft tube eccentric vortex, and hydraulic
imbalance. They extracted features from multi-source wide-
area data, including time and frequency domain features,
air gap, magnetic pull force, and axis orbit shape features.

The diagnosis model consisted of two steps: first, the
dimensionality of the features was reduced using LGPCA,
and then the reduced feature set was classified using the
Random Forest algorithm for fault diagnosis. On the other
hand, [63] proposed an adaptive variation of MWPCA for
the early detection of aging in stator winding electrical
insulation of HGUs using temperature data. The findings
from simulated data demonstrated the capability of this
technique in identifying faults at an early stage, thereby
enhancing maintenance planning. Additionally, [70] studied
the prognosis of stator winding insulation failure using
MWPCA. The authors employed this technique to estimate
the system failure date and determine the remaining useful
life. The results showed that this technique is a powerful tool
for fault prognosis, as it is more accurate and faster than
traditional methods.

5) OTHER ML-BASED TECHNIQUES
Various machine learning models, such as KELM, GPR,
DTF, and others, are mainly employed for prognosis and
some for diagnosis, and monitoring tasks. For instance,
the KELM incorporates a kernel function into the ELM
to achieve a least-squares optimal solution, leading to
improved generalization performance and stability compared
to basic ELM. Moreover, KELM has the advantage of
multi-output capability over traditional single-output Support
Vector Regression (SVR), resulting in reduced training time.
Therefore, KELM is considered more suitable for vibration
tendency prediction [56]. In the work presented by [56], the
authors aimed to predict the vibration tendency, which serves
as an indicator of the health status and stability of HGUs.
They utilized two AI-based techniques, SSA and KELM,
to enhance prediction results. By employing feature extrac-
tion through FEEMD in conjunction with SSA and KELM,
the proposed FEEMD-KELM approach outperformed pre-
dictions made by NN, SVR, and traditional KELM methods.
On the other hand, [64] proposed a fault detection technique
based on IF to automatically build models using normal
data and successfully identify faults, even in the presence
of non-linear correlations. The effectiveness of the method
was evaluated by examining the generated power under both
healthy and faulty conditions. Addressing the challenge of
evaluating operational status and predicting failures in HGUs,
[65] leveraged real-time monitoring data. They employed
techniques such as PCC, MIC, and GCD to select appropriate
operational state parameters from the extensive HGU system
data. These parameters were then used to construct an
input eigenvector, and a health assessment model for HGUs
was established based on the GPR framework. Additionally,
a condition monitoring directive based on the MD was
designed. In [69], the authors explored a fault detection
method for hydroelectric generators employing RRCF and
conducted feature selection based on HSIC-KNN-FS. Their
proposed method effectively addressed the challenges of
scarce fault data and non-linear correlations in HGU data
by selectively retaining features with distinct characteristics
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while eliminating those with similar characteristics. While
in [78], the authors investigated signal processing techniques
combined with different machine learning classifiers, such as
LR, KNN, SVM, XGBoost DTF and MLP, for the detection
of interturn short circuit faults in hydroelectric generators.
The classifiers were trained on a dataset of spectral and
waveform features extracted from air-gap signals. The
proposed approach achieved an 84.5% detection rate for
interturn short circuit faults with a 92.7% accuracy in fault
detection.

B. OTHER AI-BASED TECHNIQUES
Various AI techniques, like BN, are employed in the field of
fault diagnosis, and in some cases, for monitoring purposes
as well. In the study conducted by [68], a hybrid framework
combining MWPCA and BN is proposed for automated fault
detection and diagnosis in complex systems. The framework
utilizes various sensors, including vibration and temperature
sensors, to detect electrical or mechanical faults. The results
demonstrate the capability of the framework in successfully
identifying and diagnosing multiple simulated failures in a
hydroelectric generator.

On the other hand, AMGWO and SSA algorithms are
employed for prognosis tasks. Reference [60] present a
hybrid approach that combines VMD, SSA, and PSR
techniques with KELM and AMGWO for accurate vibration
tendency forecasting in HGUs. VMD decomposes the
monitored vibration signal into components with different
frequency scales, SSA extracts characteristic trends from
nonstationary subseries, and PSR generates inputs and
outputs for the predictionmodels. The study demonstrates the
effectiveness of KELM for vibration tendency forecasting,
and proposes the use of AMGWO to significantly improve
the forecasting model. In their work, [62] put forward an
intelligent approach for forecasting vibration tendencies in
HGUs, with the objective of attaining a balance between
stability and accuracy. The method leverages KELM and
MOSSA to achieve this goal. The method involves several
steps, including decomposing raw sensor signals using EWT,
refactoring modes with a sample entropy-based reconstruc-
tion strategy, selecting important input features through
GSO, and predicting refactored modes using KELM. The
parameters of GSO and KELM are simultaneously optimized
using the MOSSA.

An ES mainly used for diagnosis and it has been suc-
cessfully applied in hydroelectric power plant maintenance.
It has demonstrated high reliability and accuracy in fault
diagnostics, resulting in effective maintenance planning and
cost reduction. However, a disadvantage of expert systems is
their reliance on predefined rules stored in the knowledge
base (KB), which requires updating to detect new failure
modes [50]. In their work, [50] developed an expert system
for real-time fault diagnosis in complex systems, utilizing
machine variables such as temperature, pressure, and flow.
The system, integrated into an intelligent maintenance
system, aids in maintenance planning and enables the trans-

formation from time-based maintenance to condition-based
maintenance. Moreover, [61] propose a fault diagnosis expert
system that aims to facilitate the transition from time-based
maintenance to condition-basedmaintenance. This intelligent
tool integrates expert experiences and Bayesian inferences,
offering advantages such as a comprehensive collection of
expert knowledge, accurate simulation of expert thinking,
and precise fault diagnosis. In their methodology, the authors
thoroughly analyze hydraulic, electrical, and mechanical
faults. They establish a precise Bayesian network and utilize
a Noisy-Or modeling approach within the fault diagnosis
expert system to effectively diagnose these faults.

Lastly, WFST is employed for quantitative fault status
diagnosis in HGUs. Reference [53] successfully diagnose
upper guide swing and pressure fluctuation faults in HGUs
by using machine performance parameters and working
condition parameters with RDM-WNN and weighted fuzzy
set theory. The output of the AI-based RDM-WNN model
is used as input for the weighted fuzzy set theory, enabling
accurate fault detection even under load variation.

V. AI-BASED MODELS PROCESS
This section provides a comprehensive overview of the
essential steps involved in utilizing AI-based models for
fault monitoring, diagnosis, and prognosis in hydroelectric
generators.

Upon thorough analysis of the references in paragraph IV,
it becomes evident that the utilization of AI models in
fault monitoring, diagnosis, and prognosis for HGUs entails
a series of distinct steps, as depicted in Figure 6. The
process initiates with the collection of relevant data from
diverse sources, thereby forming a comprehensive dataset.
Subsequently, feature extraction techniques are employed
to extract meaningful and informative features from the
collected data. The objective is to obtain robust inputs that
enhance the AI model’s capacity. Following the training and
deployment of the model, its output is subjected to a rigorous
evaluation process. It serves as a pivotal stage in validating the
model’s reliability and determining its applicability in real-
world scenarios.

A. DATA COLLECTION
Data collection is an important part of AI-based methods,
as it is the foundation of any model. Data acquisition involves
discovering, augmenting, or generating new datasets. Some
online tools, such as Google Dataset Search, are available
to assist researchers in finding publicly available data on
the internet. However, benchmark and datasets for large
hydroelectric generator, such as external magnetic fields
measurements, are still hard to find. Hence, the first question
to ask is ‘What data is available that can provide useful
information and contribute to fault MDP?’. Sometimes a
lack of data leads to the need to launch new measurement
campaigns or to augment the existing datasets. Data quality
checks are essential, as they affect the model accuracy [85].
Hence, to increase the data quality, one should clean the data,
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which will be discussed in the next paragraph. Moreover,
one should also consider the data privacy and security
implications of the data. Data can be confidential, and the
privacy of data providers should be properly protected.

Machine learning can perform well with smaller datasets
and often requires less data for training, whereas deep
learning typically requires large amount of data to achieve
high performance due to the complexity of its models.

B. DATA PREPROCESSING
The purpose of data preprocessing and its need is defined
according to the collected data. So firstly, one should
determine the reason for doing this step, data cleaning,
data calculation or other. Moreover, data quality should
be checked because sensors are electronic devices that are
susceptible to faults, interruptions, or saturation. In addition,
the measurements of sensors can be affected by the noise
of the hydroelectric generators’ industrial environment [86].
As explained in the book [87], data cleaning can be done by
quantitative error detection which consists of detecting the
values that are so different than the others, called ‘outlier val-
ues’. Or by qualitative data cleaning which requires domain
expertise and can be automated by detection algorithms to
reduce data cleaning time. Furthermore, data transformation
and data duplication should also be performed, if necessary.
Data transformation is the process of changing the data
format or normalizing it. If the transformation does not
require external knowledge of the data, it is called syntactic
transformation, and if it requires an understanding of the data,
it is called semantic transformation. Data duplication consists
of creating metrics to measure the similarity between two
records. Data cleaning techniques should be wisely chosen
as they depend on data type and size [88]. One should be
cautious in building his datasets as the accuracy of the AI
model greatly relies on data quality. One should also ensure
that the data is properly constructed and that any outliers or
anomalies are identified and addressed, as the AI model’s
accuracy greatly relies on its inputs.

Machine learning typically works with structured, tabular
data, while deep learning directly handles unstructured data
types.

C. FEATURE EXTRACTION
The quality of a model’s output is influenced by data prepro-
cessing and information redundancy. Feature extraction is a
way of decreasing the number of features in a dataset while
keeping the most important information. It is used to make
a dataset simpler to analyze and to reduce its complexity.
When selecting a feature extraction technique, the purpose
of the extraction and the type of input should be considered.
If the data is non-stationary, time-frequency techniques are
recommended, and if frequency features are desired, the FFT
method is usually used for spectral analysis [89]. Feature
extraction can be used to reduce the dimensionality of a
dataset, reduce the noise in a dataset, and improve the

accuracy of a model. After building the database, it is split
into three sets: training, testing and validation, to train, test
and validate the model.

Machine learning requires significant manual feature
engineering to select, extract, and transform relevant features,
whereas deep learning automatically learns features from raw
data.

D. MODEL TRAINING
The selection of the right model is a critical step in the
machine learning process, as it determines the model’s
performance and accuracy. The choice of model depends
on the complexity of the problem, the size and structure
of the data, the computational resources available, and the
desired output and level of accuracy. Some models classify
data which are used to diagnose or monitor faults, other
model predict values and are used to calculate future values
to predict faults and system behavior. The process involves
the selection of a set of hyperparameters, the training of the
model with those hyperparameters and the training set, and
the evaluation of the model’s performance. The process is
repeated until the hyperparameters are optimized [90].
Machine learning generally requires less time for training

due to simpler models and fewer parameters, making it
suitable for quick iterations. Whereas, deep learning involves
longer training times because of the complexity of the models
and the large volume of required data.

E. MODEL EVALUATION
Finally, the model undergoes testing using previously unseen
data from the validation set to assess its performance.
Performance metrics such as accuracy, precision, recall, and
others can be used to evaluate the model’s effectiveness [91].
In comprehensive reviews [92], [93], researchers have
compiled and described different evaluation metrics that
are also used for evaluating the performance of the model
like the MAPE, MSE, F1-score, etc. Additionally, assessing
the robustness of the model is also crucial, taking into
account various factors that can introduce uncertainties
in the deterioration process, the absence of run-to-failure
data, sensor noise, unknown environmental and operating
conditions, as well as engineering variations. These factors
have the potential to impact the AI model and compromise
its robustness [94].

Machine learning commonly employs standard metrics
like accuracy, precision, recall, F1-score, and ROC-AUC
for classification tasks, as well as Mean Absolute Error
(MAE) and Mean Squared Error (MSE) for regression tasks.
Whereas, deep learning models may use these standard
metrics alongside additional specialized metrics, such as
Intersection over Union (IoU) for image segmentation.

VI. ADVANTAGES & DISADVANTAGES OF AI METHODS
AI is a rapidly growing field of technology that has
the potential to revolutionize the fault MDP approaches.
Nevertheless, while AI has many potential benefits when
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FIGURE 6. Model development process.

developed with a hydroelectric generator system, one may
still encounter some challenges that should be considered
before implementation.

A. BENEFITS OF USING AI FOR HGU’S FAULT MDP
1) Increase efficiency and accuracy:, A hydroelectric

generator unit is a complex Multiphysics system
with multiple components of different types, making
data analysis difficult. Artificial intelligence (AI) can
process quickly and accurately all kinds of input
such as magnetic flux, vibration, and temperature,
while uncovering fault-related signatures, trends and
patterns, as well as identifying correlations and
dissimilarities between data from datasets that are
hard to detect with the human eye or traditional
methods [95].

2) Handling multimodal data: Obtaining all the neces-
sary information for fault MDP can be difficult when
relying on just one type of input, which leads to the
need for using different types of data such as images,
records, text, etc. Though analyzing multimodal data
with traditional methods is complicated, it is achievable
with some AI-based models like multi-branch deep
neural networks. Hence, one of the benefits of AI is that
it can handle numerical and non-numerical data, extract
features, and process them quickly and accurately [96].

3) Handling Nonlinearity: Some machine systems may
exhibit nonlinear behavior, where outputs do not
vary linearly with inputs. AI techniques, particularly
Neural Networks, are well-suited for modeling these
complex relationships, facilitating more accurate fault
detection and diagnosis. This capability reduces the
reliance on human expertise and minimizes the risk of
oversight [97].

B. CHALLENGES OF USING AI FOR FAULT MDP IN HGU
1) Lack of faulty data: Analysis of the studies

discussed shows that AI models have high accuracy
when trained in a supervised setting with labelled
data representing both normal and faulty conditions.
In addition, to achieve high performance and strong
predictive capabilities, the model needs to be trained on
a balanced dataset, as it will be more likely to learn the
conditions that are more frequently encountered [98].
However, this is difficult to apply in real-world

industrial systems such as hydroelectric generator units
for two main reasons. Firstly, as the power plant is
expected to generate stable electricity for the grid,
the HGU is designed to always operate optimally.
Therefore, most of the provided measurements are
labelled as normal, ‘‘healthy’’ conditions. Even when
a fault occurs, the maintenance team usually quickly
schedules corrective maintenance to fix or replace
the equipment, as the generator’s shutdown has many
drawbacks, such as economic loss. Having a quick
maintenance action limits the amount of faulty data,
which leads to a lack of available faulty samples [99].
Moreover, the equipment is designed for industrial
purposes and cannot be used for testing, so it is not
possible to introduce faults to generate faulty bench
tests. Secondly, the process of labelling data is a
very time-consuming endeavour, as it necessitates the
knowledge of a domain expert to recognize the fault
condition and assign the data the appropriate label.

2) Maintenance cost: To ensure AI models remain reli-
able, model calibration strategies must be implemented
when performance drops or unexpected or new events
occur. The maintenance required can vary depending
on the error tolerance, and customer requirements, and
can range from simple patching and troubleshooting,
model upgrade, to model reconstruction and full model
retraining [100].

3) Architecture selection: Selecting an appropriate
architecture for a specific fault diagnosis task presents
significant challenges. The performance of different
architectures can vary based on the complexity of the
relationships within the data; and an incorrect choice,
may result in suboptimal performance.
Moreover, AI models often necessitate meticulous
tuning of hyperparameters, such as the learning rate and
the number of layers. This process is time-consuming
and typically requires considerable expertise. Manual
selection of hyperparameters is particularly challeng-
ing, and estimating the optimal values can be both
labor-intensive and demanding [101].

VII. RESEARCH PROSPECTS AND TRENDS
The monitoring, diagnosis, and prognosis of faults in hydro-
electric generators are of paramount importance in ensuring
the dependable and efficient operation of hydroelectric
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TABLE 2. Abbreviations of feature extraction methods.

power plants. This field of research has demonstrated
enduring commitment over an extended period, continuously
advancing in parallel with technological innovations and
data analytics [102], [103]. This article delineates significant
research prospects and emerging trends related to the
diagnosis and prognosis of hydroelectric generator faults.

A. SENSOR TECHNOLOGY AND IOT INTEGRATION
A central research focus pertains to the development and
deployment of advanced sensors capable of providing
real-time data on various aspects of hydroelectric generator
performance. These aspects encompass critical parameters
such as temperature, vibration, pressure, and electrical
characteristics. Such data plays a pivotal role in the
identification and diagnosis of faults [104]. Furthermore,
there is a burgeoning anticipation of increased integration
of Internet of Things (IoT) technology, facilitating remote
monitoring. This integration affords immediate oversight
of hydroelectric generators and their associated systems,
thereby streamlining responses to emergent issues. The
advent of the Industry 4.0 paradigm has opened doors to
IoT technologies, enabling elevated levels of automation and
productivity [105].

B. DATA ANALYTICS AND MACHINE LEARNING
The significance of data analytics and machine learning
algorithms continues to ascend in the domain of fault
diagnosis and prognosis. Researchers are dedicated to
crafting predictive models adept at scrutinizing extensive
datasets to reveal patterns and anomalies indicative of
faults. These models significantly contribute to early fault
detection and prediction. In conjunction with the introduction
of the Industry 4.0 concept, there is heightened interest
in artificial intelligence-based fault analysis, which has
garnered community involvement in the development of
intelligent fault diagnosis and prognosis (IFDP) models for
rotating machinery [106].

C. CONDITION-BASED MAINTENANCE (CBM) AND
PREDICTIVE MAINTENANCE
CBM is poised to be steered by technological advancements,
data analytics, and an unwavering commitment to optimize
the reliability and performance of these critical power
generation assets. The amalgamation of intelligent diagnosis
systems, leveraging the collective knowledge and expertise
of multiple specialists, promises to transcend the capabilities
of individual experts. This system facilitates the expeditious
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TABLE 3. Abbreviations of AI-based methods.

and reliable diagnosis of multiple faults, handling complex
processes and abrupt abnormal faults. Predictivemaintenance
within the framework of an intelligent-control-maintenance-
management system (ICMMS) effectively harnesses a trove
of data from control, maintenance, and technical management
domains to execute timely and precise maintenance. This
article introduces the ICMMS platform for hydroelectric
generating units, with special emphasis on its maintenance
functions [107], [108]. A cognitive mechanism has been
formulated and empirically examined, exhibiting the ability
to simultaneously track alterations in the dataset and the
performance of predictive models. This mechanism perpetu-
ally refines the predictive models. Consequently, the method
introduced herein can serve as an augmentative component
within the decision support system ofmanufacturing facilities

that operate injection molding machines. Its primary aim is
to mitigate the occurrence of production failures and reduce
machine downtime [109].

VIII. CONCLUSION
In conclusion, this review highlights the dynamic nature
of research in fault monitoring, diagnosing, and prognosis
(MDP) in hydroelectric generators. Nowadays, one can
observe that researchers are increasingly utilizing advanced
AI techniques to enhance and strengthen these processes,
aiming to achieve objectives such as fault diagnosis, RUL
estimation, and degradation assessment more effectively
than traditional non-AI-based methods. By harnessing the
potential of AI, the research community can leverage
data-driven approaches and machine learning algorithms
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to improve the reliability and accuracy of fault MDP in
hydroelectric generator systems.

Furthermore, this ongoing evolution underscores the sig-
nificance of interdisciplinary collaborations. The successful
development and implementation of advanced fault MDP
systems require expertise from diverse fields, including
engineering and data science. By integrating knowledge
and skills from these disciplines, researchers can effectively
address the complex challenges associated with hydroelectric
generator systems, ensuring their sustained reliability and
security in the face of advancing technologies and emerging
threats.

In summary, the integration of advanced AI techniques in
fault monitoring, diagnosing, and prognosis in hydroelectric
generators holds great promise for enhancing the efficiency,
reliability, and sustainability of hydroelectric power gen-
eration. Accurate AI-based diagnosis has since become a
strategic goal to supply reliable energy to meet the growing
demand for the electrification and transportation, set as global
goal to fight against Green house gaz emission. This review
underscores the importance of interdisciplinary collabora-
tions and emphasizes the continued need for ongoing research
and innovation to meet the evolving demands of the utilities.

APPENDIX. ACRONYMES
See Tables 2 and 3.
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