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Abstract: Managing parallel−connected single−phase distributed generators in low−voltage
microgrids is challenging due to the volatility of renewable energy sources and fluctuating load
demands. Traditional droop control struggles to maintain precise power sharing under dynamic
conditions and varying line impedances, leading to inefficiency. This paper presents a novel adaptive
droop control strategy integrating artificial neural networks and particle swarm optimization to
enhance microgrid performance. Unlike prior methods that optimize artificial neural network
parameters, the proposed approach uses particle swarm optimization offline to generate optimal
dq−axis voltage references that compensate for line effects and load variations. These serve as
training data for the artificial neural network, which adjusts voltage in real time based on line
impedance and load variations without online optimization. This decoupling ensures computational
efficiency and responsiveness, maintaining voltage and frequency stability during rapid load
changes. Addressing dynamic load fluctuations and line impedance mismatches without
inter−generator communication enhances reliability and reduces complexity. Simulations
demonstrate that the proposed strategy maintains stability, achieves accurate power sharing with
errors below 0.5%, and reduces total harmonic distortion, outperforming conventional droop control
methods. These findings advance adaptive control in microgrids, supporting seamless renewable
energy integration and enhancing the reliability and stability of distributed generation systems.

Keywords: droop control; micro grid; dq control; distributed generation; artificial neural network;
particle swarm optimization; single phase inverter; islanding control

1. Introduction

The global transition towards sustainable energy systems is increasingly driven by the
integration of renewable energy sources (RES) and the development of smart grids (SGs).
Renewable energies, such as wind and solar power, have gained prominence due to their
potential to reduce reliance on fossil fuels and minimize environmental impact. Microgrids
(MGs), as key components of SGs, have become essential for managing decentralized
energy resources within extensive power networks. By incorporating diverse distributed
generation (DG) units, energy storage systems, conversion devices, protection equipment,
and loads, MGs offer effective solutions for handling the variability and intermittency
associated with RES. Operating in both grid−connected and islanded modes, MGs enhance
the reliability and resilience of power systems, especially in regions with high penetration
of RES and variable energy availability [1–4].

However, the integration of variable and unpredictable energy sources poses
significant challenges to maintaining stable and efficient power distribution [5,6]. A core
challenge in MG operation is the dynamic regulation of voltage and frequency for DG
units to ensure stable and reliable power supply. Inverters, critical components in DG
units, manage the conversion of DC to AC power and are classified as voltage source
inverters (VSIs) or current source inverters (CSIs) based on their DC−side storage
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elements. Within an MG, DG units and loads can connect or disconnect at any node,
necessitating robust control strategies to ensure stable operation during both
grid−connected and islanded modes, particularly during network disturbances.

Local control in MGs typically employs the droop control approach, a decentralized
method that autonomously adapts to load variations and maintains voltage and frequency
stability using only local information. This method effectively manages active and reactive
power distribution among DG units without relying on external communication.
Traditional droop control methods are well−suited for high−voltage grids with inductive
line impedances, where active power (P) and frequency ( f ), as well as reactive power (Q)
and voltage (V), can be decoupled using (P– f ) and (Q–V) characteristics. In
medium−voltage grids with primarily resistive line impedances, the (P–V) and (Q– f )
characteristics are more effective. However, in low−voltage MGs, both inductive and
resistive components significantly affect power flow, creating coupling between active and
reactive power controls. This mixed impedance environment makes conventional droop
control (CDC) methods less effective, causing inaccuracies in power sharing and instability
under varying load conditions.

Traditional droop control methods often suffer from several limitations:

• Inaccurate power sharing due to line impedance variations: variations in line
impedance lead to unequal voltage drops and power−sharing inaccuracies among
DG units.

• Voltage and frequency deviations under load changes: fixed droop coefficients
cannot adapt to sudden fluctuations in load demand, resulting in significant voltage
and frequency deviations, compromising power quality and system stability.

• Limited adaptability to dynamic operating conditions: traditional methods lack
the ability to adjust control parameters in real time, making them ineffective under
changing load demands and network configurations.

• Sensitivity to nonlinear loads and harmonics: increased Total Harmonic Distortion
(THD) occurs due to ineffective handling of nonlinear loads, degrading power quality.

• Dependence on communication links: enhancements often require communication
between DG units, reducing system reliability and increasing complexity.

To address these limitations, this paper proposes a novel droop control strategy
that integrates artificial neural network (ANN) and Particle Swarm Optimization (PSO)
to enhance the stability, efficiency, and adaptability of MGs with parallel−connected
single−phase DG units. Unlike prior methods where PSO is commonly used to optimize the
internal parameters of the ANN, the proposed approach uniquely utilizes PSO during the
offline training phase to generate optimal dq−axis voltage reference values that compensate
for transmission line effects and load variations. These optimized voltage references serve
as training data for the ANN, enabling it to learn the complex relationships between load
conditions, line impedances, and the necessary control actions.

By focusing on optimizing control inputs rather than ANN parameters, a dataset of
optimal control actions corresponding to different operating scenarios is generated. This
data−driven learning enables the ANN to map system measurements to optimal control
inputs effectively. During real−time operation, the ANN rapidly computes the required
control signals based on real−time measurements, ensuring the necessary responsiveness
for MG applications. The ANN−based strategy adjusts control parameters in real time,
providing adaptability that fixed−parameter methods lack. This decoupling of the
optimization process from real−time operation ensures that the MG control strategy
remains responsive and efficient, as the computational demands of PSO do not impact
operational performance.

The proposed method specifically targets challenges in MG droop control, such as line
impedance mismatches and dynamic load changes. By optimizing control inputs that
directly compensate for these variations, improved voltage and frequency stability and
accurate power sharing among DG units are achieved. Unlike previous hybrid ANN−PSO
approaches that focus on parameter optimization within the controller, this method
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addresses droop control optimization in MGs under varying line impedances and
load conditions.

By combining these control methods, MG stability is not only maintained but also
significantly improved compared with traditional droop control methods. The proposed
ANN−based strategy achieves high precision in active and reactive power control by
effectively reducing power−sharing errors and enhancing voltage and frequency
regulation. This method maintains voltage and frequency stability within tighter bounds,
ensuring consistent system performance even under varying load conditions. This directly
contributes to the overall objectives of enhancing system performance and improving
power quality, as the ANN−based method effectively responds to dynamic changes,
mitigates harmonic distortions, and ensures robust and reliable MG operation without the
limitations associated with traditional control strategies. These improvements are
validated through simulation results presented in the following sections, which
demonstrate the effectiveness of the proposed method in achieving superior performance
compared with conventional approaches.

The main contributions of this research are as follows:

• Development of a novel ANN−PSO droop control strategy: introducing a new
approach that integrates ANN and PSO specifically for droop control optimization
in MGs.

• Enhanced MG performance: improving efficiency, stability, and adaptability in MG
operations without relying on communication infrastructure.

• Addressing practical challenges: providing solutions for line impedance mismatches,
dynamic load changes, and harmonic distortions within a decentralized framework.

• Practical implementation methodologies: offering methodologies for implementing
advanced control strategies in real−time MG environments.

The rest of the paper is organized as follows: Section 2 reviews the related literature
and identifies the research gap; Section 3 discusses conventional droop control methods;
Section 4 details the proposed control strategy; Section 5 presents the simulation results
and compares the performance of the proposed method with traditional approaches; and
Section 6 concludes the paper with a summary of findings, contributions, and future
research directions.

2. Literature Review

The integration of DG units into modern power grids has led to significant
advancements and challenges in MGs. Ensuring adequate voltage regulation and optimal
power sharing among parallel−connected generators is a critical issue in MGs. Droop
control methods have emerged as a fundamental solution due to their ability to distribute
power without centralized control.

2.1. Traditional Droop Control Methods

Traditional droop control adjusts voltage amplitude and frequency automatically
based on network load, allowing for equitable power distribution without the need for
complex centralized communication. This simplicity and robustness make droop control
particularly advantageous for MGs. However, traditional droop control methods often
suffer from several limitations:

• Inaccurate power sharing due to line impedance variations: Traditional droop control
assumes identical line impedances between DG units and loads. In practice, line
impedances can vary significantly, leading to unequal voltage drops and phase shifts,
causing inaccuracies in active and reactive power sharing among DG units.

• Voltage and frequency deviations under load changes: fixed droop coefficients
cannot adapt quickly to sudden fluctuations in load demand, resulting in significant
voltage and frequency deviations, compromising power quality and system stability.



Energies 2024, 17, 5825 4 of 34

• Limited adaptability to dynamic operating conditions: traditional methods lack
the ability to adjust control parameters in real time, making them ineffective under
changing load demands and network configurations.

• Sensitivity to nonlinear loads and harmonics: traditional droop control does not
effectively handle nonlinear loads, leading to increased Total Harmonic Distortion
(THD) and degraded power quality.

• Dependence on communication links: enhancements to traditional droop control
often rely on communication between DG units, which can reduce system reliability
and increase implementation complexity.

2.2. Advanced Droop Control Techniques

To overcome the limitations of conventional droop control, several advanced
strategies have emerged. Adaptive droop control adjusts coefficients in real time based on
system conditions, enhancing performance under varying loads and network
configurations [7,8]. Virtual impedance control improves power sharing and stability by
virtually modifying inverter output impedance [9]. Hierarchical control strategies utilize
multi−layered control (primary, secondary, tertiary) for better coordination across
microgrid levels [4]. Model Predictive Control (MPC) leverages predictive models to
optimize future control actions, supporting proactive power management [10]. Lastly,
distributed cooperative control strategies rely on real−time communication between DG
units to reach consensus, improving performance and synchronization [11].

Despite their benefits, these advanced methods face several limitations beyond
communication dependency. Many of them, such as adaptive and cooperative strategies,
demand high computational resources and intricate system models to operate effectively,
making real−world implementation challenging and costly. For instance, methods like
MPC require significant computational power for real−time predictive analysis, which can
be impractical in resource−constrained environments. Similarly, communication reliance
increases the risk of instability in case of delays or failures, reducing system reliability.
Moreover, the need for complex parameter tuning in adaptive and hierarchical methods
can add considerable setup and maintenance complexity, hindering scalability and
long−term usability [12–16].

The proposed ANN−PSO droop control strategy uniquely addresses these challenges
with a decentralized design that eliminates the need for communication links and
minimizes computational demands. By using offline particle swarm optimization (PSO) to
generate optimal control inputs, the method enables responsive and adaptive real−time
control without the resource−intensive burden of online computation. This approach not
only simplifies implementation and enhances reliability but also maintains robust stability
and power−sharing precision under dynamic conditions, setting it apart from other
advanced techniques.

2.3. Artificial Neural Networks in Microgrid Control

ANN offers a promising solution by modeling nonlinear systems and providing
adaptive control. ANN can adapt to changing conditions in real time, offering a more
flexible and efficient control mechanism compared with traditional methods [17]. However,
their implementation in MGs is challenged by high computational requirements and the
need for extensive training datasets. Previous studies have applied ANN in various
power system contexts, such as load forecasting, fault detection, and optimizing control
parameters [18–21]. In these applications, PSO is often used to optimize the weights and
biases of the ANN during training to enhance its predictive capabilities.
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2.4. Particle Swarm Optimization in Power Systems

PSO is a robust optimization technique inspired by the social behavior of birds and
fish, known for its simplicity and efficiency. It has been successfully applied to various
power system problems, enhancing the performance of control strategies under diverse
conditions [22–24]. Combining ANN with PSO presents a potential solution to overcome
computational challenges, enabling real−time adaptive control in MGs.

2.5. Research Gap and Objectives

Despite these advancements, there remains a critical gap in effectively integrating
ANN−based droop control strategies optimized with PSO for parallel−connected
single−phase DG units in MGs. Existing methods do not fully address the need for
real−time adaptation to load changes and line impedance variations, nor do they
sufficiently validate their approaches under diverse operational scenarios. Previous hybrid
ANN−PSO approaches often focus on optimizing the internal parameters of the ANN,
such as weights and biases, during training. They may not address the specific issue of
droop control optimization in MGs, particularly under varying line impedances and load
conditions [4].

2.6. Contributions of the Proposed Method

This paper addresses the identified research gap by proposing a novel integration
of ANN and PSO specifically for optimizing droop control inputs in MGs. Unlike prior
methods, PSO is employed during the offline training phase to generate optimal dq−axis
voltage reference values that compensate for transmission line effects and load variations.
These optimized voltage references serve as the training data for the ANN, enabling
it to learn the complex relationships between load conditions, line impedances, and the
necessary control actions. By optimizing the control inputs rather than the ANN parameters,
the method focuses on directly enhancing the control action for MG performance.

The proposed control strategy employs dq control for the single−phase inverter, which
is critical in maintaining system stability under varying operating conditions. Through
dq transformation, the active and reactive power components are decoupled, allowing for
precise and independent management of power flow. The ANN, trained with dq voltage
references generated offline by PSO, dynamically adjusts these parameters in real time,
achieving stability even during rapid load changes and line impedance fluctuations. By
learning complex, nonlinear relationships within the microgrid system, the ANN can
predict and rectify power imbalances and voltage deviations efficiently, without the need
for inter−unit communication. This adaptability significantly enhances system stability
and responsiveness, outperforming conventional fixed−parameter droop control.

During real−time operation, the ANN rapidly computes the required control signals
based on real−time measurements, ensuring the necessary responsiveness for MG
applications. This approach decouples the optimization process from real−time operation,
ensuring computational efficiency and effective control without the computational burden
of online optimization.

The key contributions of this research include the following:

1. Development of an innovative ANN−PSO strategy: integrating ANN for adaptive
control and PSO for optimization significantly advances control strategies for MGs,
offering a novel application of these techniques specifically for droop
control optimization.

2. Enhanced real−time adaptation: the proposed method adapts to real−time changes
in the MG, improving power sharing precision under varying load conditions and
line impedances without relying on communication links between DG units.

3. Comprehensive evaluation under various scenarios: The performance of the
proposed method is evaluated under various scenarios, including different levels of
RES integration, diverse line impedances (inductive, resistive, and mixed), and
dynamic load changes (both linear and nonlinear). The results demonstrate that the
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method maintains voltage and frequency stability, accurate power sharing, and
acceptable THD levels across all tested conditions, outperforming conventional droop
control methods.

4. Scalability and practical implementation potential: the approach’s scalability and
potential for practical implementation in larger MG systems with diverse renewable
energy sources are discussed, highlighting its applicability in real−world settings.

By addressing the limitations of traditional droop control strategies and bridging
the existing research gap, this method contributes to the development of more efficient
and stable MG systems. The proposed intelligent control approach significantly improves
MG performance by ensuring accurate power sharing, enhancing voltage and frequency
stability, reducing harmonic distortions, and operating reliably without dependence on
communication infrastructure.

3. Conventional Droop Control Method
3.1. Fundamental Control Mechanism

A primary challenge in the autonomous control of MGs is the regulation of voltage
magnitude and frequency. This control relies on local measurements to ensure accurate
power distribution in response to load changes, eliminating the need for communication
among DG sources. It operates effectively in both isolated and grid−connected scenarios,
facilitating smooth transitions between these states. The droop control strategy is widely
used for integrating DG units within an MG, leveraging active and reactive power to
modulate the inverter’s output voltage and frequency using only local information.
However, the dispersed placement of DGs, combined with line impedances and voltage
variations, can lead to deviations from desired operational points, affecting optimal
load distribution.

3.2. Overview of Droop Control

The droop control technique emulates the behavior of synchronous generators in
traditional power systems by adjusting the terminal voltage frequency in response to
active power changes and the terminal voltage amplitude in response to reactive power
changes. This method is also utilized for managing parallel inverters in isolated MGs
to autonomously allocate load demands. As depicted in Figure 1, a simplified model
illustrates the power transfer via a transmission line from the micro−source to the load.

DG
Unit

ig

P+ jQ

PCC
Z θ

+

−

vc δ

+

−

vg 0

Figure 1. Simplified model of power transfer through a transmission line.

In this model, vc represents the voltage at the inverter output after filtering, with a
phase angle δ. The terminal voltage vg appears after the line impedance
Z = R + jX = |Z|∠θ, where R and X are the resistive and reactive components,
respectively, and θ = arctan

(
X
R

)
is the impedance angle. The complex power S = P + jQ

at the transmission line’s end represents the active power P and reactive power Q
delivered to the load.
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The relationship between the voltages and the complex power is given by [25]

S = vgi∗g =
vcvg

Z
∠(δ − θ)−

v2
g

Z
∠(−θ) = P + jQ, (1)

where i∗g is the complex conjugate of the current ig. By expressing the phasor relationships
and separating real and imaginary parts, the active and reactive power can be approximated
as [26]

P =
vc

R2 + X2

[
R
(
vc − vg cos(θ)

)
+ Xvg sin(δ)

]

Q =
vc

R2 + X2

[
X
(
vc − vg cos(θ)

)
− Rvg sin(δ)

] (2)

Assuming that the voltage phase angle difference δ is small (δ ≈ 0), the trigonometric
functions can be approximated as cos(δ) ≈ 1 and sin(δ) ≈ δ. This simplifies the expressions
for P and Q.

3.2.1. Scenario 1: Inductive Line Impedance (θ ≈ 90◦)

In this scenario, the inductive component of the line impedance is significantly greater
than the resistive component (X ≫ R), so the resistive component can be neglected. The
impedance angle θ approaches 90◦. The simplified expressions for active and reactive
power become

P ≈ vcvg

X
sin(δ) ≈ vcvg

X
δ,

Q ≈ vcvg

X
cos(δ)−

v2
g

X
≈ vcvg

X
−

v2
g

X
.

(3)

The partial derivatives of P and Q with respect to δ and vc are:

∂P
∂δ

=
vcvg

X
,

∂P
∂vc

=
vgδ

X
∂Q
∂δ

= 0,
∂Q
∂vc

=
vg

X

(4)

Equation (4) indicates that active power P can be controlled by adjusting the phase
angle δ, while reactive power Q can be controlled by adjusting the voltage magnitude vc.
To achieve power sharing among parallel−connected DGs, droop characteristics utilizing
active power versus frequency (P– f ) and reactive power versus voltage (Q–V) are
employed, as shown in Figure 2.

Pmin P∗ P
Pmax

f ∗

f

∆ f

Storage Generation

Qmin Q∗ Q
Qmax

v∗c

vc

∆vc

Inductive LoadCapacitive Load

Figure 2. Droop characteristics for inductive line impedance.

The droop control expressions for an inductive MG are given by:

f = f ∗ − fp(P − P∗),

vc = v∗c − vq(Q − Q∗),
(5)

where P∗ and Q∗ are the rated active and reactive power of the DG unit, f ∗ and v∗c are the
rated frequency and voltage amplitude, Cp, and Cq are the droop coefficients for frequency
and voltage, respectively. The droop control scheme based on (5) is depicted in Figure 3.
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+++++++++++
−−−−−−−−−−−

fp
+++++++++++

+++++++++++ 2π
1
s

vq
−−−−−−−−−−−

+++++++++++ −−−−−−−−−−−
+++++++++++

P∗

P

f ∗

Q∗

Q

v∗c

∆ f f ω

∆vc vc

θ•

•

•

•

•

•

Figure 3. CDC scheme for inductive line impedance.

3.2.2. Scenario 2: Resistive Line Impedance (θ ≈ 0◦)

In this scenario, the resistive component of the line impedance is much greater than
the inductive component (R ≫ X), so the inductive component can be neglected. The
impedance angle θ approaches 0◦. The simplified expressions for active and reactive
power become

P ≈ vcvg

R
cos(δ)−

v2
g

R
≈ vcvg

R
−

v2
g

R
,

Q ≈ vcvg

R
sin(δ) ≈ vcvg

R
δ.

(6)

The partial derivatives are

∂P
∂δ

= 0,
∂P
∂vc

=
vg

R
,

∂Q
∂δ

=
vcvg

R
,

∂Q
∂vc

=
vgδ

R
.

(7)

Equation (7) shows that active power P can be controlled by adjusting the voltage
magnitude vc, while reactive power Q can be controlled by adjusting the phase angle
δ. To achieve power sharing between DGs operating in parallel, droop characteristics
utilizing active power versus voltage (P–vc) and reactive power versus frequency (Q– f )
are employed, as demonstrated in Figure 4.

Pmin P∗ P
Pmax

v∗c

vc

∆vc

Storage Generation

Qmin Q∗ Q
Qmax

f ∗

f

∆ f

Inductive Load Capacitive Load

Figure 4. Droop characteristics for resistive line impedance.

The droop control expressions for a resistive MG are given by

f = f ∗ − fq(Q − Q∗),

vc = v∗c − vp(P − P∗).
(8)
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The droop control scheme based on (8) is illustrated in Figure 5.

+++++++++++
−−−−−−−−−−−

fq
+++++++++++

+++++++++++ 2π
1
s

vp
−−−−−−−−−−−

+++++++++++ −−−−−−−−−−−
+++++++++++

Q∗

Q

f ∗

P∗

P

v∗c

∆ f f ω

∆vc vc

θ•

•

•

•

•

•

Figure 5. CDC scheme for resistive line impedance.

3.2.3. Scenario 3: Mixed−Line Impedance

In low−voltage MGs, both inductive and resistive components of line impedance
significantly impact power distribution. The interdependence of active and reactive power
affects both voltage and frequency, necessitating a more flexible control approach.
Traditional droop control methods adjust voltage and frequency based on static
coefficients, but these coefficients can limit the flexibility of the droop curve and result in
discrepancies in power distribution if not appropriately selected.

To address this, a rotation matrix T is introduced to transform active and reactive
powers (P, Q) into new components (Pr, Qr), providing a more adaptable control
mechanism (9). The transformation is given by

[
Pr
Qr

]
=

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

][
P
Q

]
, (9)

where ϕ = θ. The transformed power components become:

Pr =
R
Z

P +
X
Z

Q,

Qr = −X
Z

P +
R
Z

Q.
(10)

Assuming a small phase angle difference δ, applying the rotation matrix simplifies the
control relationships:

Pr ≈
vcvg

Z
cos(δ − θ)−

v2
g

Z
cos(θ),

Qr ≈
vcvg

Z
sin(δ − θ)−

v2
g

Z
sin(θ).

(11)

When resistance and reactance are comparable (R ≈ X), both P and Q are affected by
δ and vc, linking all four control variables. In such cases, decoupling is necessary to ensure
precise and independent control of power flows. This analysis illustrates the complexity
of power coupling in low−voltage MGs and underscores the need for advanced control
techniques to handle the nonlinear interactions between voltage, frequency, and power
components effectively.

4. Proposed Droop Control Method

This section presents a novel methodology for droop control in MGs, utilizing an
artificial neural network droop control (ANNDC) technique, as shown in Figure 6. The
goal is to improve the performance of inverter−based MGs, ensuring stable and efficient
operation under varying load conditions. PSO is employed to fine−tune the parameters of
the ANN and generate a comprehensive dataset for ANN training.
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Power Control Voltage Control Current Control

+++++++++++
−−−−−−−−−−− PI +++++++++++

−−−−−−−−−−−
+++++++++++

−−−−−−−−−−− PI
+++++++++++

+++++++++++
−−−−−−−−−−−

ωC f

ωC f

ωL f

ωL f

−−−−−−−−−−−
+++++++++++ PI

+++++++++++
+++++++++++

−−−−−−−−−−−
+++++++++++ PI

+++++++++++
+++++++++++
+++++++++++

vd

vq

v∗cd

vcd iLd

vcd

vcq

v∗cq

iLq

vcq

•

•

• •

•

•
••

ANN
Droop
Control

[
P̃

Q̃

]
=

1
2

[
iLd iLq

iLq iLd

][
vcd

vcq

]

[
P

Q

]
=

ωc

s+ωc

[
P̃

Q̃

]

P̃ Q̃

iLd iLq
vcqvcd

• •••

Q

P

Figure 6. Structure of the proposed droop control.

The proposed method aims to address the limitations of traditional droop control
strategies by incorporating intelligent control techniques. By integrating ANN and PSO, the
control system can adaptively adjust to changing operating conditions, enhancing overall
system performance.

4.1. Structure of the Proposed Control for DG Unit

Transitioning from the broader concept of MGs, the specific control structure
employed in this paper is illustrated in Figure 7. This structure forms the foundation for
the development and application of the proposed droop control methodology, as well as
the implementation of the PSO and ANN algorithms.

Fuel Cell

PV Array

Wind Turbine

DC Link

+

−
vdc

is
Inverter

Control
Unit

• •iL vc

G1 −G4Gate •

LC Filter
L f iL

C f

+

−
vc

Wire Non-Linear Loads

Figure 7. Structure of the distributed generator.

The DG inverter is connected to the load through a second−order LC filter, which
plays a crucial role in attenuating the switching components of the Pulse Width Modulation
(PWM) carrier voltages and limiting the current harmonics injected into the Point of
Common Coupling (PCC). This setup is essential for maintaining power quality and
ensuring compliance with grid codes.

In addition to the DG unit, the MG includes a nonlinear load representing typical
conditions found in modern electrical grids. Including a nonlinear load allows for a more
realistic representation of practical load conditions, ensuring that the proposed control
method is robust and effective in real−world scenarios.

Figure 8 illustrates the robust control scheme for a DG unit within an MG, integrating
traditional droop control with an ANNDC. This control method comprises three primary
components: an ANNDC and two cascaded PI controllers for voltage and current
control, respectively.

The ANNDC generates the decoupled dq voltage references, which are subsequently
used by the inverter. The power control, managed by the ANN, ensures balanced power
distribution. By leveraging the ANN’s ability to learn complex nonlinear relationships, the
control system can adapt to varying load conditions more effectively than traditional droop
control methods.



Energies 2024, 17, 5825 11 of 34

SOGI

ANN/PSO
Power Control

PWM
Generator

Current
Control

Voltage
Control

αβ
dq

•
iL

•
iLα

•
iLβ

•
iLd

•
iLq

•iLd

•
iLq

•
v∗cd

•
v∗cq

SOGI

αβ
dq

•
vc

•
vcα

•
vcβ

•
vcd

•
vcq

•

Gate G1 −G4

•
vd

•
vq

•
i∗Ld •

i∗Lq

Figure 8. Structure of the proposed control unit.

The current control system generates vdq for the PWM module, providing a fast,
efficient response to filter inductor current fluctuations and harmonic disturbances. This
significantly improves the Total Harmonic Distortion (THD) of the output current,
enhancing power quality.

The integration of ANN and PSO in the control strategy represents a novel contribution
to the field. Unlike CDC methods that rely on fixed droop coefficients, the proposed
approach adaptively adjusts the droop coefficients based on the MG’s operating conditions.
This adaptability leads to improved performance and efficiency in power sharing among
DG units.

By combining these control methods, MG performance is maintained while achieving
high precision in active and reactive power control. This directly contributes to the overall
objectives of enhancing system performance under varying load conditions and improving
power quality.

4.2. dq Model for Single−Phase Inverter

The Park Transformation is a common tool used to model three−phase inverters.
However, its application to single−phase inverters presents challenges due to the
requirement of at least two orthogonal components, whereas a single−phase inverter only
provides one component [27,28].

To address this issue, an imaginary component is generated based on the real
component, effectively creating the required second orthogonal component. In this paper,
a second−order generalized integrator (SOGI) is employed to achieve this [29]. The
structure of the SOGI, as shown in Figure 9, takes the measurement of the single−phase
AC component (xa) as input, producing the estimated αβ components (xα and xβ) as
output. It is important to note that xα is identical to the input AC measured component,
while xβ is shifted by 90◦ relative to xα.

−−−−−−−−−−−
+++++++++++ k +++++++++++

−−−−−−−−−−−
×××××××××××

×××××××××××
1
s

×××××××××××
×××××××××××

1
s

xa•
xα

xβ

•ω
∗

Figure 9. Structure of the second−order generalized integrator (SOGI).
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Following this, the Park transformation is applied to the extracted αβ components,
resulting in the dq components (xd and xq). The state−space equation for the single−phase
inverter is expressed as follows:

[
i̇L
v̇c

]
=



−

RL f

L f
− 1

L f
1

C f
− 1

Z.C f



[

iL
vc

]
+




1
L f
0


v (12)

In this equation, the control variable v is determined by the state of the switches in the
single−phase inverter. After applying the SOGI, the state−space representation becomes




i̇Lα

i̇Lβ

v̇cα

v̇cβ


 =




−
RL f

L f
0 − 1

L f
0

0 −
RL f

L f
0 − 1

L f
1

C f
0 − 1

Z.C f
0

0
1

C f
0 − 1

Z.C f







iLα

iLβ

vcα

vcβ


+




1
L f

0

0
1

L f
0 0
0 0




[
vα

vβ

]
(13)

Finally, by applying the dq rotating transformation, the dynamic equation for the
single−phase inverter is obtained:




i̇Ld
i̇Lq

v̇cd

v̇cq


 =




−
RL f

L f
−ω − 1

L f
0

ω −
RL f

L f
0 − 1

L f
1

C f
0 − 1

Z.C f
−ω

0
1

C f
ω − 1

Z.C f







iLd
iLq

vcd

vcq


+




1
L f

0

0
1

L f
0 0
0 0




[
vd
vq

]
(14)

By incorporating an imaginary component via the SOGI, it becomes possible to apply
the Park Transformation for modeling a single−phase inverter. This, in turn, facilitates the
development of an efficient control scheme based on the dq model, as shown in Figure 10.

−−−−−−−−−−−
+++++++++++

−−−−−−−−−−−

1
L f .s

RL f

ω.L f

vd iLd

+++++++++++
+++++++++++

−−−−−−−−−−−

1
L f .s

RL f

ω.L f

vq
iLq

•

•

•

−−−−−−−−−−−
+++++++++++

−−−−−−−−−−−

1
C f .s

Z−1

ω.C f

vcd

+++++++++++
+++++++++++

−−−−−−−−−−−

1
C f .s

Z−1

ω.C f

vcq

•

Figure 10. dq model of the single−phase inverter.
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4.3. dq Control for Single−Phase Inverter

The design of the dq controller for a single−phase inverter is crucial for achieving high
performance operation of the MG. Similar to a three−phase inverter, the control strategy
consists of two cascaded Proportional−Integral (PI) controllers: an inner current control
loop and an outer voltage control loop. Figure 11 illustrates the control structure of a
single−phase inverter in the dq frame, where the dq voltage references are obtained from
the ANN−based power controller.

+++++++++++
−−−−−−−−−−− kpv +

kiv
s

−−−−−−−−−−−
+++++++++++ kpc +

kic
s

1
RL f + Lf  s

−−−−−−−−−−−
+++++++++++

1
Cf  s

1
Z(s)

iL ic

io

•
u∗c uc

Figure 11. Control structure of the single−phase inverter in the dq frame.

To design the cascaded current and voltage loop PI controllers, the open−loop transfer
functions (OLTF) and closed−loop transfer functions (CLTF) are derived. The objective is
to achieve desired dynamic responses and stability margins by appropriately tuning the
controller parameters.

4.3.1. Current Control Loop

The inner current control loop is responsible for regulating the filter inductor current
iLdq to follow the reference current provided by the voltage control loop. The structure of
the current control loop is shown in Figure 11. The transfer function of the plant (inverter
and filter) in the dq frame for the current control loop is given by

Hc(s) =
1

L f s + RL f

(15)

where L f is the filter inductance and RL f is the resistance of the filter inductor.
The PI controller for the current loop is defined as

Cc(s) = kpc +
kic
s

(16)

where kpc and kic are the proportional and integral gains, respectively.
The open−loop transfer function of the current control loop is

OLTFc(s) = Cc(s) · Hc(s) =
(

kpc +
kic
s

)
· 1

L f s + RL f

(17)

To simplify the expression, the numerator and denominator are multiplied to obtain

OLTFc(s) =
kpc +

kic
s

L f s + RL f

=
kic
s

·
1 +

kpc

kic
s

L f s + RL f

(18)

The objective is to cancel the pole introduced by the filter inductor L f by selecting the
controller gains appropriately. Setting

kpc

kic
=

L f

RL f

, (19)



Energies 2024, 17, 5825 14 of 34

this compensates for the dynamics of the inductor, simplifying the open−loop transfer
function to

OLTFc(s) =
kic
s

· 1
RL f

(20)

The closed−loop transfer function of the current control loop is then

CLTFc(s) =
OLTFc(s)

1 + OLTFc(s)
=

kic
RL f s

1 +
kic

RL f s

=
1

1 +
RL f

kic
s

(21)

This represents a first−order system with a time constant τc:

CLTFc(s) =
1

1 + τcs
, where τc =

RL f

kic
(22)

To achieve the desired transient response, a suitable time constant τc is selected.
Assuming a desired current loop response time Trc , it can be related to the time constant as
Trc = 3τc. Consequently, the integral gain is expressed as

kic =
3RL f

Trc

(23)

Using Equation (19), the proportional gain is

kpc =
L f

RL f

kic =
3L f

Trc

(24)

Thus, the PI controller gains for the current loop are




kic =
3RL f

Trc

kpc =
3L f

Trc

(25)

By appropriately selecting Trc , the desired speed of response and stability for the
current control loop can be ensured.

4.3.2. Voltage Control Loop

The outer voltage control loop regulates the inverter output voltage vcdq to follow
the reference voltage provided by the ANN−based power controller. The structure of the
voltage control loop is also shown in Figure 11. The transfer function of the plant for the
voltage control loop is

Hv(s) =
1

C f s
(26)

where C f is the filter capacitance.

The PI controller for the voltage loop is defined as

Cv(s) = kpv +
kiv
s

(27)

The open−loop transfer function of the voltage control loop is

OLTFv(s) = Cv(s) · Hv(s) =
(

kpv +
kiv
s

)
· 1

C f s
(28)
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Simplification yields

OLTFv(s) =
kpv

C f s2 +
kiv

C f s3 (29)

However, the resulting expression indicates a third−order system, which complicates
the controller design. To mitigate this issue, it is assumed that the inner current loop
operates much faster than the outer voltage loop. Consequently, the current control loop
can be approximated as a unity gain for the voltage loop design. This simplification enables
the plant to be represented as a first−order system.

Rewriting the open−loop transfer function

OLTFv(s) =
(

kpv +
kiv
s

)
· 1

C f s
, (30)

the closed−loop transfer function of the voltage control loop is

CLTFv(s) =
OLTFv(s)

1 + OLTFv(s)
=

kiv
C f s2 +

kpv

C f s

1 +
kiv

C f s2 +
kpv

C f s

(31)

Normalizing the denominator yields

CLTFv(s) =
kiv + kpv s

s2 +
kpv

C f
s +

kiv
C f

(32)

Comparing this with the standard second−order system transfer function

CLTFv(s) =
ω2

n
s2 + 2ξωns + ω2

n
, (33)

the controller parameters can be obtained by equating coefficients




ω2
n =

kiv
C f

2ξωn =
kpv

C f

(34)

where ωn is the natural frequency and ξ is the damping coefficient (typically between 0.7
and 1 for a critically damped or slightly underdamped response).

Solving for the PI controller gains
{

kiv = C f ω2
n

kpv = 2ξC f ωn
(35)

Selecting suitable values for ωn and ξ enables the desired transient response and
stability for the voltage control loop.

4.4. Power Sharing Control Loop

The inverter output voltage vc and the filter inductor current iL are measured and used
to compute the instantaneous active and reactive power of the inverter. These quantities
are transformed into the synchronous dq reference frame using the Park Transformation,
resulting in vcd , vcq , iLd , and iLq .

The instantaneous active power P̃ and reactive power Q̃ can then be calculated using

[
P̃
Q̃

]
=

1
2

[
iLd iLq

iLq iLd

]
.
[

vcd

vcq

]
(36)
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These expressions are derived from the definition of instantaneous power in the dq
frame, where P̃ represents the real power component and Q̃ represents the imaginary
power component. The calculations utilize the orthogonality of the d and q axes and are
essential for decoupling active and reactive power control.

To obtain the average active and reactive power components P and Q corresponding
to the fundamental frequency, the instantaneous powers P̃ and Q̃ are passed through
low−pass filters with a cutoff frequency ωc:

[
P
Q

]
=

ωc

s + ωc

[
P̃
Q̃

]
(37)

The choice of cutoff frequency ωc is crucial for the system’s dynamic response. It must
be sufficiently low to effectively filter out high−frequency components and harmonics
caused by switching actions and nonlinear loads, ensuring smooth signals for control
purposes. However, ωc should also be high enough to allow the controller to respond
promptly to changes in power demand. Typically, ωc is selected based on a trade−off
between filtering effectiveness and system responsiveness, often set to a fraction of the
fundamental frequency.

The power sharing between the inverters is accomplished using the ANNDC. The
ANNDC calculates the voltage amplitude references v∗cd

and v∗cq , which are then applied
to the voltage controller, as shown in Figure 6. By adjusting these voltage references, the
ANNDC ensures balanced power distribution among the DG units in the MG, maintaining
system performance.

4.5. Artificial Neural Network Droop Control

As illustrated in Figure 12, an artificial neural network (ANN) comprises layers
of interconnected neurons, where each layer is fully connected with the preceding and
succeeding layers. These layers include an input layer, where the input signals are fed,
several hidden layers, and an output layer, which produces the final result.

Σ
net j

xi wi, j

−1 wi+1, j Σ netk ok

y j w j,k

−1 wj+1,k

Figure 12. Structure of the ANN.

Each neuron in the ANN is characterized by a combination function and an activation
function. The combination function performs a weighted sum of the signals from the
neurons in the previous layer. The activation function introduces non−linearity into the
response, mimicking the operation of a biological neuron. These parameters (weights and
activation functions) facilitate the transformation of an input signal from the previous layer
into an output signal for the next layer.

The design of the ANN involves five critical steps: input selection, data collection,
ANN architecture selection, ANN training, and ANN testing. Each step is crucial and
contributes to the successful implementation of the ANN.

In the proposed application, referred to as ANNDC, the input variables of the neural
network are the inverter’s active and reactive powers (P, Q). The output variables are
the reference voltages supplied to the voltage controller (v∗cd

, v∗cq ). The architecture of the
ANN consists of three layers: an input layer with two neurons, a hidden layer comprising
N neurons with logarithmic sigmoid activation functions, and an output layer with two
neurons using linear activation functions. This ANN architecture is specifically designed to
accommodate the requirements of the ANNDC for effective droop control in MGs.
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In the following subsections, the generation of the required training data for the ANN
using PSO is discussed, followed by a detailed explanation of the training, testing, and
validation process.

4.6. Particle Swarm Optimization

PSO plays a vital role in the proposed approach by generating the training data for the
ANN. Unlike traditional applications where PSO is used to optimize the internal parameters
of the ANN, in this method, PSO is employed during the offline training phase to generate
optimal dq−axis voltage reference values. These optimized voltage references compensate
for transmission line effects and load variations, enabling the ANN to learn the complex
relationships between load conditions, line impedances, and the necessary control actions.

PSO is a stochastic optimization technique inspired by the social behavior of swarms in
nature [22,23,30]. The underlying idea is that a collective of individuals, each with limited
intelligence, can achieve complex global optimization through collaboration.

In the context of PSO, each individual, or “particle”, represents a potential solution
to the optimization problem. The particles explore the search space collectively, aiming
to identify the global optimum. Initially, each particle is assigned a random position and
velocity within the search space, and the quality of each particle’s position is evaluated by
a fitness function.

As the particles traverse the search space, they remember the best position they have
encountered (Pk

Besti
), and they are also aware of the best position found by any particle in

the swarm (Gk
Best).

The velocity of each particle is updated based on these two parameters, according to

vk+1
ij = ω vk

ij + c1r1

(
Pk

Bestij
− xk

ij

)
+ c2r2

(
Gk

Bestj
− xk

ij

)
, (38)

with j = 1, 2, . . . , d and i = 1, 2, . . . , d, where d is the dimension of the search space.
In Equation (38), the selection of c1, c2, r1, and r2 is based on standard PSO parameter

settings. Typically, c1 and c2 are chosen to balance exploration and exploitation, often set to
values like 1.49. The random variables r1 and r2 are uniformly distributed in the range [0,1],
introducing stochastic behavior in the particle updates. The parameter ω, representing the
inertia weight, is linearly decreased from 0.9 to 0.4.

Figure 13 illustrates the typical motion of a particle in an optimization problem.

xk
i j

xk
i j

Gk
Besti j

Pk
Besti j

vk+1
i j

wvk
i j

vk
i j

c1r1(
P
k
Best i j

− xki j
)

c2 r2 (G k
Bestj − x k

i j )

Figure 13. Displacement of particles in the search space.

PSO can be envisioned as a group of explorers searching for the best location in a vast
landscape. Each explorer moves based on their own past experiences and learns from the
discoveries of others, gradually converging on the most promising location. This process
plays a critical role in the next step, where datasets are extracted to train the ANN.
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Since PSO is utilized only during the offline training phase, its convergence speed does
not affect the real−time performance of the MG control system. Once the ANN is trained
using the dataset generated by PSO, it operates independently of the PSO algorithm during
real−time control. The ANN can rapidly compute the required control signals based on
real−time measurements, ensuring the necessary responsiveness for MG applications.

4.7. Extracting the Dataset for Training the ANN Using PSO

Following the setup of the ANN and PSO, the next crucial step involves extracting a
dataset for training the ANN. In this context, the PSO algorithm is utilized to determine the
optimal dq−axis voltage reference values (v∗cd

, v∗cq ) to be applied to the voltage controller
under different operating conditions, as depicted in Figure 14.

Power Control Voltage Control Current Control

+++++++++++
−−−−−−−−−−− PI +++++++++++

−−−−−−−−−−−
+++++++++++

−−−−−−−−−−− PI
+++++++++++

+++++++++++
−−−−−−−−−−−

ωC f

ωC f

ωL f

ωL f

−−−−−−−−−−−
+++++++++++ PI

+++++++++++
+++++++++++

−−−−−−−−−−−
+++++++++++ PI
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+++++++++++
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vq
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vcd iLd
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vcq
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iLq

vcq

•

•

• •

•

•
••
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Control

[
P̃

Q̃

]
=

1
2

[
iLd iLq

iLq iLd

][
vcd

vcq

]

[
P

Q

]
=

ωc

s+ωc

[
P̃

Q̃

]

P̃ Q̃

iLd iLq
vcqvcd

• •••

P

Q

P∗ Q∗

Figure 14. Structure of the proposed PSO−based droop control.

By optimizing the control inputs rather than the ANN parameters, the PSO algorithm
generates a dataset of optimal control actions corresponding to different operating scenarios.
This dataset captures the relationship between system states and the control inputs that
achieve optimal performance, including compensation for transmission line effects and
load variations.

This optimization process aims to minimize the fitness function f , while adhering to
the operating constraints expressed as:

Fitness function: f (P, Q) =
1
2

(
(P − P∗)2 + (Q − Q∗)2

)

Constraints:





110 V ≤ v∗c ≤ 120 V
70 V ≤ v∗cd

≤ v∗c
0 V ≤ v∗cq ≤

√
v∗2

c − v∗2
cd

(39)

The results of the data extraction process based on PSO are visualized in Figure 15.
This dataset encompasses a wide range of operating points and serves as a

comprehensive training set for the ANN. The aim is to ensure that the ANN can effectively
learn and generalize from a representative sample of the MG’s operating conditions. By
providing clear definitions of the fitness function and constraints, the reproducibility of
this process is enhanced, enabling other researchers to apply similar techniques in their
own studies on MGs.



Energies 2024, 17, 5825 19 of 34

(a) d−axis

(b) q−axis

Figure 15. PSO data training.

4.8. Training, Testing, and Validation of the ANN

After establishing the dataset, the next phase involves training, testing, and validating
the ANN. This phase ensures the practical effectiveness of the model and its ability to
generalize beyond the training data, thus avoiding overfitting.

The central idea behind the ANN’s functionality lies in the careful adjustment of its
weights and biases, achieved through an iterative learning process. This training phase
utilizes the stochastic gradient descent backpropagation algorithm to regulate the weights
of each neuron, guided by the error between the network’s predicted output and the actual
output. The learning process typically concludes when this error reaches a predefined
acceptable threshold.

It is important to emphasize that the creation of an extensive and representative
dataset is vital for the training of the ANN. In this research, the dataset was generated
through simulations conducted under various operating conditions, including different
levels of renewable energy source integration, diverse line impedances (inductive, resistive,
and mixed), and dynamic load changes (both linear and nonlinear), as depicted in
Figure 15. This comprehensive dataset provides valuable insights into the performance
and characteristics of the MG, serving as a valuable resource for training and validating the
ANN−based droop control strategy.
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The simulation parameters are presented in Table 1.

Table 1. System parameters.

Power Parameters Value

DC Link Voltage 240 V
DC Link Capacitor 3 mF

DG Output Apparent Power 600 VA
Inverter Switching Frequency 20 kHz

Nominal Output Voltage 120 V (rms)
Filter Inductance L f , RL f 3 mH, 0.25 Ω

Filter Capacitor C f 20 µF
Nominal Output Frequency 60 Hz

Sampling Step Ts 20 µs

Subsequently, the generated dataset was divided into ten subsets. Out of these subsets,
eight were randomly selected to form the training dataset, while the remaining two were set
aside for validation and testing purposes. To enhance the generalization ability of the ANN
and minimize the risk of overfitting, this process was repeated ten times using different
combinations of training, validation, and testing subsets.

Upon completion of the training, validation, and testing stages, a total of ten ANNs
were available for evaluation. The selection of the final ANN was based on the performance
of each model, as assessed by the Mean Squared Error (MSE) across all three stages. The
choice was determined by either the individual MSEs or the sum of the MSEs, considering
that the error variance among the different solutions was negligible. This approach ensured
the selection of the most reliable and robust model for the study, guaranteeing the accuracy
and effectiveness of the ANN−based droop control strategy.

By training the ANN with the optimized control actions generated by PSO, the ANN
learns to map the system measurements (such as power demands and line conditions) to
the optimal dq voltage references. During real−time operation, the ANN can rapidly
generate appropriate control inputs based on the current system state without the need for
online optimization. This results in a control strategy that is both adaptive and
computationally efficient.

5. Results and Discussion

The simulation and analysis of low−voltage MGs are essential for validating control
strategies and ensuring a reliable, high−quality power supply. This section presents
the evaluation of the proposed ANNDC method compared with the CDC technique.
Simulations were conducted using MATLAB/Simulink on two primary MG configurations:
common bus and mesh grid structures.

5.1. Simulation Setup
5.1.1. Microgrid Configurations

Common Bus Structure

The common bus structure is a widely used topology in MGs, where DG units are
connected in parallel to a common bus that feeds various loads. This configuration allows
for efficient power distribution while maintaining system stability and power quality.

Figure 16 illustrates the common bus MG configuration used in the simulations. Four
DG units, each rated at 600 VA with a voltage of 110 V and a frequency of 60 Hz, are
connected to the common bus. The line impedances are modeled as series RL components
with different characteristics: inductive and mixed. The specific parameters of these
impedances are summarized in Table 2.
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DG 4
R L

DG 3
R L

Load 2

DG 2
R L

Load 1

DG 1
R L

Figure 16. Microgrid configuration with a common bus structure.

Table 2. Line impedance parameters for different configurations.

Inductive Mixed

R, L 0.75 Ω, 4 mH 0.75 Ω, 2 mH

Mesh Grid Structure

The mesh grid structure offers increased flexibility and redundancy in power
distribution, enhancing the resilience and reliability of the MG. In this topology, DG units
are interconnected through multiple paths, allowing for better management in case of
failures in network elements.

Figure 17 depicts the mesh grid MG configuration used in the simulations, where
four DG units are interconnected to form a mesh network. Simulations were performed
with line impedances of inductive and mixed nature. The parameters of these impedances
are provided in Table 3.

DG 3
R3 L3

Lx

Rx

L4 R4

DG 4

Rx Lx L2 R2

DG 2

Load

DG 1
R1 L1

Figure 17. Microgrid configuration with a mesh grid structure.

Table 3. Line impedance parameters for different mesh grid configurations.

Inductive Mixed

R1, L1 0.75 Ω, 4.0 mH 0.75 Ω, 2.0 mH
R2, L2 0.60 Ω, 3.5 mH 0.75 Ω, 1.7 mH
R3, L3 0.60 Ω, 3.0 mH 0.60 Ω, 1.6 mH
R4, L4 0.50 Ω, 3.5 mH 0.60 Ω, 1.8 mH
Rx, Lx 0.75 Ω, 0.4 mH 0.75 Ω, 0.2 mH

5.1.2. Load Types and Test Scenarios

To evaluate the robustness and effectiveness of the proposed control method under
various conditions, simulations were conducted using different load types and
test scenarios.
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Linear Loads

Simulations with linear loads were performed to assess the controller’s ability to
maintain system stability and efficient power sharing under varying load conditions. The
loads used in the mesh grid structure are illustrated in Figure 18 and consist of the following:

• Load 1: 1.2 kW and 0 kVAR, connected continuously.
• Load 2: 1.2 kW and 1.2 kVAR, connected from 2 to 4 s.

      P1   P2,Q

Figure 18. Linear loads in the mesh grid structure.

This scenario introduces dynamic changes to the system, allowing evaluation of the
controller’s response to load variations.

Nonlinear Loads

To test the controller’s performance under more complex load conditions, simulations
were conducted with nonlinear loads as shown in Figure 19:

• Load 1: 1.2 kW and 0 kVAR, connected continuously.
• Load 2: 0 kW and 1.2 kVAR, connected from 2 to 4 s.
• Load 3: A DC load consuming 10 A, connected from 2 to 4 s.

      P1  Q P2

Figure 19. Nonlinear loads in the mesh grid structure.

These nonlinear loads introduce additional disturbances, testing the controller’s ability
to manage power quality, mitigate harmonics, and maintain voltage and frequency stability.

5.2. Simulation Results and Analysis

This section presents the simulation results and analysis of the proposed ANNDC
method compared with the CDC technique. Key performance metrics evaluated include
voltage magnitude stability, frequency stability, power−sharing accuracy among DG units,
and the ability to handle harmonic distortions introduced by nonlinear loads.

5.2.1. Common Bus Structure

In the common bus MG configuration with linear loads, the performance of the
ANNDC method was assessed under inductive and mixed−line impedance conditions.
The objective was to evaluate the controller’s effectiveness in maintaining voltage and
frequency stability and ensuring accurate power sharing among DG units.

Figures 20c,d and 21c,d depict the active and reactive power outputs of each DG unit
under inductive and mixed−line impedance conditions. Each DG unit supplies
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approximately one quarter of the total power demanded by the load, demonstrating
balanced power sharing. While both the CDC and the proposed ANNDC method perform
adequately in terms of power sharing, the ANNDC method achieves more precise power
distribution among the DG units. Specifically, the ANNDC method attains a
power−sharing error of less than 0.5%, whereas the CDC method exhibits errors of up to
7%. This improvement is attributed to the ANNDC’s ability to adjust control parameters in
real time, effectively compensating for variations in line impedance and load conditions.
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Figure 20. Simulation results of four DGs with inductive wire.

Figures 20b and 21b show the load voltage magnitude over time under inductive and
mixed−line impedance conditions, respectively, after load variation. The ANNDC method
maintains the load voltage magnitude within ±0.05 V of the nominal 100 V, whereas the
CDC method exhibits deviations of up to ±5 V. This significant improvement in voltage
regulation enhances the power quality delivered to the load.

Similarly, Figures 20e and 21e present the system frequency over time. The ANNDC
method achieves better frequency stability, maintaining an average deviation of only
0.15 Hz from the nominal 60 Hz, compared with deviations of up to 0.4 Hz with the CDC
method. Improved frequency stability is crucial for the proper functioning of sensitive
equipment and overall system reliability.

As illustrated in Figures 20 and 21, the ANNDC method responds effectively to load
variations by dynamically adjusting the voltage references on the dq axes, keeping the
load voltage stable around its nominal value. This adaptive response enhances the overall
efficiency of the MG, ensuring a reliable power supply under varying operating conditions.
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In summary, the ANNDC method demonstrates superior performance over the CDC
technique in the common bus configuration. By achieving more precise power sharing and
maintaining tighter control over voltage and frequency, the ANNDC method enhances the
reliability and power quality of MG operations.
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Figure 21. Simulation results of four DGs with mixed wire.

5.2.2. Mesh Grid Structure

The performance of the ANNDC method in the mesh MG configuration with linear
and nonlinear loads was assessed under inductive and mixed−line impedance conditions.
The evaluation focused on the controller’s effectiveness in maintaining voltage and
frequency stability, ensuring accurate power sharing among DG units, and reducing
harmonic distortions in a complex network with nonlinear loads.

Figure 22 illustrate the load voltage magnitude over time under inductive and
mixed−line impedance conditions, respectively, following load variations. The ANNDC
method maintains the load voltage magnitude within ±0.2 V of the nominal 100 V,
whereas the CDC (CDC) method exhibits deviations of up to ±4.5 V. Similarly, Figures 23d,
24d, 25d and 26d present the system frequency over time, showing that the ANNDC
method achieves better frequency stability with an average deviation of only 0.15 Hz from
the nominal 60 Hz, compared with deviations of up to 0.4 Hz with the CDC method.
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Figure 22. Load Voltage.

Accurate power sharing among DG units is critical for balanced MG operation.
Figures 23b,c 24b,c, 25b,c and 26b,c depict the active and reactive power outputs of each
DG unit under inductive and mixed−line impedance conditions. The ANNDC method
achieves a power−sharing error of less than 1%, while the CDC method exhibits errors of
up to 8%. This improvement is attributed to the ANNDC’s real−time adjustment
capabilities, effectively compensating for variations in line impedance and load conditions.

In this configuration, the DG1 supplies a larger portion of active power because it
is electrically closer to the load compared with the DG4. Consequently, when the line
impedances differ, the DG units generate different amounts of active power. Equal sharing
of reactive power is not guaranteed among the DGs due to voltage variations throughout
the MG caused by voltage drops across line impedances with different values.

As shown in Figures 24 and 26, the ANNDC method responds effectively to the
introduction of nonlinear loads by adjusting the voltage references on the dq axes in real
time, maintaining the load voltage stability around its nominal value. The ANNDC strategy
demonstrates significant performance improvements over the CDC method across various
operating conditions, including linear, nonlinear, and mixed impedance scenarios.
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Figure 23. Simulation results of four DGs with inductive wire using CDC.
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Figure 24. Simulation results of four DGs with inductive wire using proposed droop control.
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Figure 25. Simulation results of four DGs with mixed wire using CDC.
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Figure 26. Simulation results of four DGs with mixed wire using proposed droop control.

Simulation results under inductive and mixed line impedance conditions demonstrate
a significant reduction in harmonic distortion for both current and voltage waveforms.
Specifically, the ANNDC method achieves lower Total Harmonic Distortion (THD) in the
current Fast Fourier Transform (FFT) analysis compared to the CDC approach, indicating
superior power quality, as shown in Figures 27–30. Under nonlinear load conditions, the
ANNDC control method reduces voltage harmonics more effectively, as evidenced by the
voltage FFT analysis in Figures 31–34.
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Figure 27. Current FTT for inductive wire for CDC.
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Figure 28. Current FTT for inductive wire for proposed droop control.
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Figure 29. Current FTT for mixed wire for CDC.
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Figure 30. Current FTT for mixed wire for CDC.
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Figure 31. Voltage FTT for inductive wire for CDC.
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Figure 32. Voltage FTT for inductive wire for proposed droop control.
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Figure 33. Voltage FTT for mixed wire for CDC.
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Figure 34. Voltage FTT for mixed wire for proposed droop control.

Tables 4 and 5 summarize the THD results, providing a quantitative comparison of
the ANNDC and CDC methods under different line and load conditions in the mesh grid
structure. The analysis focuses on both current and voltage THD values, fundamental
amplitudes, and the effects of linear and nonlinear loads.

Under linear load conditions, both control methods exhibit low THD values for current
and voltage, indicating effective harmonic suppression. However, the ANNDC method
consistently achieves slightly lower THD values compared with the CDC method. For
instance, in the inductive line scenario, the ANNDC reduces the current THD from 0.56%
to 0.48% and the voltage THD from 0.56% to 0.48%. Similar improvements are observed in
the mixed−line scenario.

With the introduction of nonlinear loads, THD values increase significantly due to
the harmonic components generated by the nonlinear elements. Despite this increase, the
ANNDC method demonstrates marginally better performance in mitigating harmonics
compared with the CDC method. In the inductive line with linear and nonlinear loads,
the ANNDC reduces the current THD from 12.97% (CDC) to 12.96% and the voltage THD
from 10.55% to 10.53%. Although the differences are slight, they indicate the ANNDC’s
enhanced capability to handle harmonic distortions.

Moreover, the ANNDC method maintains the fundamental voltage amplitudes closer
to the nominal value of 110 V compared with the CDC method, especially under nonlinear
load conditions. For example, in the inductive line with linear and nonlinear loads, the
ANNDC maintains the voltage at 110.07 V, whereas the CDC method experiences a drop to
103.91 V. This improved voltage regulation is critical for maintaining power quality and
protecting sensitive equipment.

In the mixed−line scenario, the ANNDC method also exhibits better performance.
The current and voltage THD values are consistently lower than those achieved by the
CDC method. By maintaining the voltage closer to the nominal value, the ANNDC method
reduces the impact of line impedance variations on the system’s performance.

These results highlight the ANNDC method’s effectiveness in enhancing power quality
by reducing harmonic distortions and maintaining voltage stability. The ability to achieve
lower THD values is crucial for MG operations, as it minimizes losses, prevents equipment
overheating, and extends the lifespan of electrical components.
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Table 4. Summary of current THD results in mesh grid structure.

Line Type Control Load Type Fundamental [A] THD [%]

Inductive

CDC Linear 10.91 0.56
Linear + Nonlinear 21.74 12.97

ANNDC Linear 11.38 0.48
Linear + Nonlinear 23.02 12.96

Mixed

CDC Linear 10.91 0.77
Linear + Nonlinear 22.15 13.97

ANNDC Linear 11.39 0.75
Linear + Nonlinear 23.00 13.91

Table 5. Summary of voltage THD results in mesh grid structure.

Line Type Control Load Type Fundamental [V] THD [%]

Inductive

CDC Linear 114.76 0.56
Linear + Nonlinear 103.91 10.55

ANNDC Linear 110.02 0.48
Linear + Nonlinear 110.07 10.53

Mixed

CDC Linear 114.84 0.77
Linear + Nonlinear 106.00 9.85

ANNDC Linear 110.02 0.75
Linear + Nonlinear 110.13 9.77

Overall, the findings validate the robustness and adaptability of the proposed control
strategy. The ANNDC method consistently outperforms the CDC method across various
scenarios, demonstrating its potential to enhance the efficiency of MG operations. Its ability
to dynamically adjust to changing operational conditions and deliver improved power
quality makes it a viable solution for modern DGs.

6. Conclusions

An ANNDC strategy optimized using PSO was proposed for MG applications.
Comprehensive simulations under various operating conditions demonstrated that the
ANNDC method significantly enhances MG performance compared with CDC techniques.
The key advancements achieved through this approach include the following:

1. Enhanced voltage stability: The ANNDC strategy effectively reduced voltage
deviations, maintaining an average deviation within 0.5% of the nominal voltage,
whereas CDC methods exhibited deviations of up to 6%. This improvement ensures
reliable MG operation and protects sensitive equipment from voltage fluctuations.

2. Improved frequency stability: The ANNDC method achieved superior frequency
regulation, with average deviations of only 0.15 Hz from the nominal 60 Hz frequency,
outperforming CDC methods that had deviations of up to 0.4 Hz. Enhanced frequency
stability is crucial for consistent MG performance under dynamic load conditions.

3. Accurate power sharing: The ANNDC approach delivered substantial improvements
in power−sharing accuracy among DG units, achieving errors below 0.5% compared
with errors of up to 7% with CDC methods. Precise power sharing maintains balanced
load distribution and prevents overloading of individual units.

4. Robustness to nonlinear loads: The proposed method effectively managed nonlinear
loads, maintaining THD levels within acceptable limits. The ANNDC method
achieved lower THD values in both current and voltage waveforms compared with
the CDC method, enhancing power quality in MGs with diverse load types.

5. Real−time adaptability: leveraging the integration of ANN and PSO, the ANNDC
method enables real−time adjustment of control parameters, providing robust and
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adaptive responses to changing MG environments, including variations in load
demand, network topology, and line impedances.

These results demonstrate the potential of integrating ANN and PSO in droop control
strategies to develop more efficient, stable, and adaptable solutions for modern power
systems. The ANNDC method enhances MG reliability, power quality, and scalability,
making it suitable for practical implementation in complex MG configurations.

Future work will focus on the real−world implementation and experimental validation
of the proposed ANNDC method. This includes deploying the strategy in actual MG
setups to assess its performance under practical constraints and operational challenges.
Additionally, evaluating the scalability of the method in larger MG configurations with
a higher number of DG units and integrating renewable energy sources will be explored.
Investigating the method’s performance under fault conditions such as short circuits or
sudden disconnections and its compatibility with other advanced control strategies, like
model predictive control or distributed optimization algorithms, could further enhance
its applicability.

In conclusion, this work lays a solid foundation for advancing MG control strategies
and promoting the adoption of sustainable and decentralized energy systems. By effectively
addressing challenges related to voltage and frequency stability, power−sharing accuracy,
and adaptability, the ANNDC method contributes to the development of resilient and
efficient MGs. Implementing such advanced control strategies supports the transition
towards smarter and more sustainable power grids, capable of meeting the evolving
demands of modern society.
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