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A B S T R A C T

To fight climate change, the Province of Quebec, Canada, has set targets to reduce greenhouse gas emissions
by reducing fossil fuel consumption and integrating biofuel content into gasoline and diesel fuel. Motivated
by a real-world case study, this paper presents a novel distributed decision model for designing a symbiotic
supply chain network and supporting pricing decisions. A distributed decision-making problem is formulated
as a game theoretic approach considering a Stackelberg–Nash equilibrium. A novel mathematical model is
proposed to support the decisions of four actors: corn farms, processing depots, pig farms, and biorefineries. In
addition to the configuration of a biofuel-based industrial symbiosis, the model offers the possibility of setting
purchase prices and supply levels for biomass (corn stover supplied by farms), as well as determining sales
prices and production levels for the main product (the cellulosic sugar used for the bioethanol production) and
a coproduct (pig feed sold to pig farmers). A three-step optimization process involving the user is proposed to
address the computational challenges posed by large design problem instances. The case study of the Province
of Quebec is used to evaluate the performance of the proposed resolution approach.
1. Introduction

The intensifying climate crisis, driven by GreenHouse Gas (GHG)
emissions generated by fossil fuels and the depletion of fossil fuel
reserves, has forced countries around the world to explore alternative
energy sources (Zheng et al., 2023), such as first and second-generation
biofuels. Second-generation biofuels are more sustainable, not least be-
cause they are derived from non-food plant or crop residues (e.g., corn
stover), unlike first-generation biofuels which are made from edible
crops (Valladares-Diestra et al., 2022). In addition, second-generation
biofuels are increasingly recognized as an attractive alternative because
they can partially replace fossil fuels in the transportation sector and
significantly reduce GHG emissions (Mofijur et al., 2016). In this re-
spect, a regulation was adopted in December 2021 by the Government
of Quebec on the integration of low-carbon fuel content into gasoline
and diesel (Williams, 2022). In 2023, Quebec will require 10% low-
carbon fuel content in gasoline and 3% in diesel, increasing to 15%
and 10%, respectively, by 2030 (Government of Canada, 2022). In this
context, creating an industrial symbiosis to produce second-generation
biofuels from corn residues is a promising avenue. In addition to the en-
vironmental benefits, such as reducing the demand for fossil fuels and
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valorizing waste, this symbiosis offers existing companies in Quebec,
including corn farmers, the possibility to enhance their profitability by
creating new market opportunities.

Biofuel production from biomass faces challenges in designing the
supply chain network (Maillé and Frayret, 2016; Liu et al., 2013; Bai
et al., 2011). More than 44% of the total selling price of biofuels can be
attributed to biomass production, logistics, and processing operations
involved in converting biomass into feedstock (Roni et al., 2019). Of
these expenses, logistics costs typically account for between 20% and
50% of the total feedstock costs (Djomo et al., 2023). Consequently,
reducing feedstock expenses can play a crucial role in decreasing the
overall costs associated with the biofuel supply chain network.

Motivated by a real-world case in Quebec, the present paper aims
to enhance the environmental and economic efficiency of the province
by developing a decision-support system to design a symbiotic network
valorizing corn biomass and generating second-generation biofuels.
First, the paper puts forth a distributed decision-making system, involv-
ing multiple actors collaborating in strategic exchanges to efficiently
align waste and coproduct sources with the requirements of biofuels
customers. Second, to take into account the interests of the symbiosis
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Cleaner Energy Systems 9 (2024) 100163 
actors, a non-cooperative game theory is considered, and a Distributed
ecision-Making (DDM) model is proposed. Based on a four-actor
tackelberg–Nash game, the DDM model enables the determination of
he number, capacity, and location of biomass processing depots. In
ddition, the DDM model allows for the determination of purchase
rices, biomass supply levels (corn residue supplied by farmers), as well
s sales prices and production levels for the primary product (cellulosic
ugar) and coproducts (hemicelluloses and lignin). The DDM model is
olved using the Karush–Kuhn–Tucker (KKT) method, which generates
onlinear conditions. After linearizing these conditions, the complexity
f the model increases significantly. Thus, a three-step optimization
rocess, using clustering and involving the user, is developed to tackle
nd resolve the model.

The remainder of this paper is organized as follows. Section 2
provides a concise review of the literature on models for designing
iofuel supply chain networks and DDM models in general. Section 3

introduces the problem statement. Section 4 presents the industrial
ymbiosis as a DDM system, as well as the DDM model. While the

resolution approach is provided in Section 5, the numerical results are
presented in Section 6. In Section 7, the main findings will be discussed.
Section 8 includes conclusions and some recommendations.

2. Literature review

This section is divided into two parts. The first part focuses on mod-
els for designing biofuel supply chain networks, while the second part
presents distributed decision-making models and resolution methods
commonly used to support group decision-making in large and complex
systems.

2.1. Models for designing Biofuel Supply Chain Networks (BSCNs)

The papers that were identified and analyzed during this part have
been classified into two categories: linear or traditional BSCN and
Symbiotic BSCN, an expansion of traditional BSCN.

2.1.1. Linear BSCNs
The literature presents various models for the design of linear

SCNs and for optimizing flows of raw materials and products. A
omprehensive optimization strategy has been formulated by Shirazaki
t al. (2024) for the creation of a microalgae biofuel system. The
pproach begins by refining the biorefinery architecture for microalgae
iomass. Following this, it integrates a carbon capture, utilization, and
torage framework. To tackle uncertainties in key input parameters, a
esilient optimization model is utilized. Santibañez-Aguilar et al. (2016)
ntroduced a linear mixed model to determine the optimal design

decisions under different feedstock price scenarios, taking into account
the environmental and economic impacts of the annual net profit of
the biorefinery. The authors concluded that feedstock price uncertainty
primarily influences the optimal network structure, with no significant
impact on profitability or environmental considerations. Along this
line, Roni et al. (2017) developed a multi-objective linear mixed model
that integrates both environmental and social objectives. Through a
eal-world case study conducted in North Dakota, the model provides a
UB-and-spoke supply chain design that optimizes biomass transporta-

ion costs, the number of jobs created, and the CO2 emissions generated
y transportation activities. Recently, Afkhami and Zarrinpoor (2022)
ave developed a two-stage approach to design and optimize a supply
hain network producing biofuel from Jatropha Curcas (a species of
lowering plant) and cooking oil. The first phase uses a geographic
nformation system (GIS) to analyze the environmental and geological
haracteristics of Jatropha Curcas farm locations. The second phase
ptimizes the BSCN using a multi-objective linear model. Roni et al.

(2019) developed a Mixed Integer Linear Programming (MILP) model
to evaluate the best way to use biomass and how a distributed BSCN
ould increase the drawing area and the supply volume compared to
2 
the centralized BSCN. The authors proposed also a dynamic approach
to meet the feedstock quality specifications.

In the context of sustainable strategies and resource management
within biofuel supply chains, Ghani et al. (2018) developed a decision-
making tool that uses a linear model to identify biomass-producing
agricultural farms (corn residues) in need of subsidies to convert their
esidues into bioethanol. By incorporating emission penalties, the tool

can also determine the appropriate mode of transportation. A multi-
objective multi-period MILP model was developed by Mahjoub et al.
(2020) for the design of a second and third-generation BSCN. This
model integrates anaerobic digestion and transesterification processes
and considers three types of biomass sources: agricultural residues and
livestock manure, microalgae, and jatropha.

2.1.2. Symbiotic BSCNs
In the literature, industrial symbiosis is an extension of the tradi-

ional supply chain that includes symbiotic suppliers and buyers, as
ell as resource or information-sharing firms (Turken and Geda, 2020).
 symbiotic BSCN is generally based on collaborative strategies involv-

ing different industries (Martin et al., 2009; Martin, 2015). The primary
goal of symbiosis is to convert by-products (i.e., products that are
roduced anyway as a result of the processing but are often considered
s waste (Lehoux et al., 2012)) into valuable products. In the context of

a BSCN, corn residues are considered by-products that can be converted
into cellulosic sugar (the main product) and pig feed (a coproduct that
results in producing the main product). There are few studies in the
literature that focus on symbiotic relationships. Nguyen et al. (2024)
presented the development and analysis of an industrial symbiosis
ystem designed to utilize regional crop residues for the production of

energy and chemicals. The research focuses on creating an integrated
approach that leverages locally available agricultural by-products to en-
hance resource efficiency and sustainability. By evaluating the potential
of crop residues as feedstocks, the study aims to optimize the gener-
ation of valuable products while reducing waste and environmental
impact. Martin and Eklund (2011) exposed the benefits of an industrial
ymbiosis producing first and second-generation biofuels. In contrast
o this study which does not conduct a quantitative analysis, Gonela

and Zhang (2014) proposed Linear Programming (LP) and MILP models
o determine the optimal configuration of a bioenergy-based industrial
ymbiosis and to optimize the network flows of a BSCN. Along this
ine, Li et al. (2021) proposed another model to design an industrial

symbiosis that generates second and third-generation biofuels. Their
model considers the multiple interactions of the BSCN actors, which
allows them to reduce the annual manufacturing cost (Capital and
biofuel production costs) by more than 10% in all IS scenarios and to
reduce GHG emissions by 36%. None of the above-mentioned studies
provided a multi-period model to address the joint design and pricing
problem for symbiotic BSCN, as proposed by this paper.

2.2. Models and resolution methods for Distributed Decision-Making
DDM)

This section delves into the various approaches and techniques
used to understand and address the complexities of decision-making in
distributed environments.

2.2.1. Models for Distributed Decision-Making
Distributed models are predominant in handling decision-making

in complex systems such as BSCNs. They have not only to deal with
subsystems’ problems but are mainly concerned with the coordination
task (Schneeweiss, 2012). In the literature related to supply chain
networks design and planning, several distributed models are used to
optimize cooperative DDM systems. Gjerdrum et al. (2001) presented
a mathematical programming model using Nash-type game theory for
fair profit distribution in multi-enterprise supply chains, formulating
it as a mixed-integer nonlinear programming problem. The approach
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Cleaner Energy Systems 9 (2024) 100163 
is refined into a mixed-integer linear programming model and vali-
ated through case studies. In a subsequent study, Gjerdrum et al.

(2002) introduced a mathematical programming model for fair profit
istribution in multi-enterprise supply chains using the Nash bargain-
ng solution, formulated as a mixed-integer nonlinear programming
MINLP) problem. It employs a branch-and-bound algorithm with exact

and approximate linearizations to solve this model, optimizing inter-
firm transfer prices, production levels, inventory, and product flows,

ith its applicability demonstrated through industrial case studies.
lso, Taghipour and Frayret (2012) proposed a decentralized coordi-

nation mechanism for supply chains, based on negotiation-like mutual
adjustments of planning decisions, to address the challenges of infor-
mation sharing in decentralized systems. The approach, which involves
interaction between two enterprises to enhance both individual and
ollective performance, achieves near-optimal results and equitable
evenue sharing compared to centralized systems. Zhang et al. (2013)
resented a mathematical programming model for fair cost distribu-
ion in microgrids, using the Nash bargaining solution approach to
ptimize multi-partner cost levels within specified cost bounds. The
roblem, initially formulated as a mixed-integer nonlinear program-
ing model, is transformed into a mixed-integer linear programming
odel through separable programming, and applied to a case study

nvolving five microgrid participants. In addition, Fernandes et al.
(2013) developed a deterministic mixed-integer linear program (MILP)
for optimizing the strategic design and planning of a multi-entity, multi-
echelon petroleum supply chain network. The MILP determines optimal
depot locations, capacities, transportation modes, routes, and network
configurations to maximize long-term profits across the supply, re-
fining, distribution, and retail stages, and is tested using a real-case
network in Portugal. For the non-cooperative DDM systems, Ryu et al.
(2004) modeled supply chain optimization as a bilevel programming,
sing parametric programming to solve plant and distribution network
roblems optimally. Also, Zamarripa et al. (2012) extended a Mixed

Integer Linear Programming (MILP) model for supply chain planning
by integrating Game Theory, testing it with a case study involving two
supply chains and two optimization criteria for competitive scenarios.
In addition, Zamarripa et al. (2013) introduced third parties to supply
chain planning, modeled the interaction with the supply chain, em-
ployed multi-objective optimization to handle competition trade-offs,
and used game theory for reactive decision-making.

Since BSCNs are typically decentralized and involve multiple actors,
a DDM model enables the consideration of the objectives of each actor
and the common Leader-Follower hierarchy structure. For example, to
design a second-generation BSCN, Yue and You (2014) developed a
ingle-period DDM model based on the Stackelberg game. This model

specifically addresses the pricing problem by establishing equilibrium
through fictitious markets. The authors have also developed a global
solution method that considerably reduces computational time com-
pared to commonly used commercial solvers such as BARON and SCIP.
The current paper, unlike (Yue and You, 2014), considers the symbi-
tic aspect and thus proposes a game-theoretic model incorporating
ore optimization levels. Similarly, Jonkman et al. (2019) propose a

ame-theoretic model considering two key actors (farmers and biomass
rocessing facilities) and addressing the biomass pricing problem. The
urrent paper considers a more complex distributed problem incor-

porating four actors and deals with coproduct pricing, in addition to
biomass pricing.

2.2.2. Resolution methods for Distributed Decision-Making
The resolution of Leader-Follower DDM models is typically achieved

sing two different types of methods: classical methods and evolution-
ry methods (Sinha et al., 2017).
Classical methods
One widely used classical method relies on Karush–Kuhn–Tucker

(KKT) optimality conditions. This method is applicable for bi-level
models with a convex low-level problem. The idea is to replace the
3 
low-level problem with the appropriate optimality conditions at the
high level. Following this transformation, a new mathematical model
is obtained with equilibrium constraints, which can be solved using
lassical resolution approaches such as Branch and Bound or classical
euristics and metaheuristics methods. For example, Bialas and Kar-

wan (1984) explored two-level linear programming problems within
decentralized planning, focusing on how hierarchical control structures
allow for influencing policies at different levels. The authors presented
geometric characterizations and algorithms to show the tractability of
these problems and encourages further research. Also, Chen and Florian
(1992) analyzed the structure of linear bilevel program solutions by
examining the dual polyhedron of the lower level problem, demon-
strating that optimal solutions occur at the vertices of a connected
dual inducible region and outlining methods for solving these problems.
In addition, Tuy et al. (1993) reformulated linear two-level program-
ming problems, often related to Stackelberg leader-follower games, as
global optimization problems and developed a new solution method
leveraging recent global optimization techniques, illustrated with a
small example. Besides, Zhang et al. (2023) proposed a leader-follower
bi-level model for microgrid energy management, using Stackelberg
game theory and stochastic MPEC, validated by numerical results. Last
but not least, Han et al. (2023) proposed a privacy-preserving bilevel
optimization for microgrids using Stackelberg games and Benders de-
composition, validated by numerical tests. A second classical method is
similar to the previous method but introduces a penalty function. The
penalty can be associated with both levels of the bi-level model before
applying the KKT reformulation (Ishizuka and Aiyoshi, 1992), or it can
e added only to the complementarity condition generated by the KKT
pproach (Lv et al., 2007).
Evolutionary methods
Evolutionary resolution approaches encompass nested methods and

methods that reduce the problem to a single-level problem (Sinha
et al., 2017). For nested methods, specific algorithms are required to
solve each level and high-level solutions are considered to determine
the solutions of the low-level problem (Sinha et al., 2017). For ex-
ample, Mathieu et al. (1994) used a genetic algorithm to solve the
high-level problem, while they applied a classical method of solv-
ing linear programs for the low-level problem. Similarly, Zhu et al.
(2006) used a method based on differential evolution to solve the high-
level problem and the interior point method to solve the low-level
roblem. In contrast to nested methods, reducing the problem to a
ingle-level problem requires the low-level of the problem to be convex
nd to exhibit certain regularities. Regularities imply that the objective
unction and constraints are defined consistently, and an example of
egularity is the smoothness of the objective function. This approach
ased on single-level reduction has been generalized to apply to bi-level
roblems regardless of context (Sinha et al., 2017). For example, Hejazi

et al. (2002) solved the equilibrium-constrained mathematical program,
obtained from the KKT reformulation, using a genetic algorithm with
chromosomes representing the vertices of the polyhedron solution.

2.3. Research gaps and contribution of the paper

Although this literature offers various solutions for designing
BSCNs, none of them addresses both the need to incentivize biomass
providers to sell their by-products (biomass pricing optimization) and
the need to maximize the profit of processing depots by valorizing
coproducts (coproduct pricing optimization). Building on Yue and
You (2014), a new multi-period game-theoretic model is proposed
o optimize the symbiotic BSCN design and product pricing within
 market equilibrium. This paper is the first to consider four actors
corn farms, processing depots managed by a HUB, biorefineries, and
ig farms) when making decisions on the biomass-to-bioenergy supply
hain. Furthermore, this paper deals with a multi-product biomass-to-

bioenergy supply chain (cellulosic sugar for second-generation biofuel
nd a coproduct as animal feed), whereas most studies focus on a

single product. Finally, this paper proposes a novel resolution ap-
proach for distributed models based on data clustering and interactive
reoptimization.
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Fig. 1. The industrial symbiosis proposed to produce second-generation biofuels from corn residues.
3. Problem statement

As briefly introduced above, this paper addresses the problem of
designing an industrial symbiosis to produce second-generation biofuels
from corn residues. In this context, an actor is only interested in
participating in the symbiosis if his participation increases his profit.
The idea of symbiosis can be considered less attractive if the revenues
do not exceed the costs (e.g., biomass production, logistics, and pro-
cessing operations). Therefore, a decision-support system is needed to
guarantee an optimal profit for the different actors of the symbiosis.
This system can be particularly useful for Quebec, the second largest
corn-producing province in Canada (Hamel and Dorff, 2014), where
the idea of a BSCN can be interesting to improve the environmental
and economic efficiency of the province. The design problem can be
described as follows. Given I existing corn farms, a decision needs to
be made on where to locate processing depots among J potential lo-
cations. Processing depots, supplied by corn farms, offer two products:
cellulosic sugar to K biorefineries and pig feed to F pig farmers. For the
sake of simplicity, the terms ‘‘sugar’’ and ‘‘coproduct’’ will be used in
the following sections and refer to ‘‘cellulosic sugar’’ and ‘‘pig feed’’,
respectively.

The presence of processing depots in conjunction with biorefineries
offers several advantages. Corn residues can be valorized and trans-
formed into sugar and coproduct. Processing depots can also offer
the lowest price to the local customers since transportation costs are
reduced. However, depots address challenges such as flowability, trans-
portability, stability, and storage (Geismar et al., 2022). Given the
multi-level structure of this BSCN, a central HUB is introduced to
make strategic and tactical decisions aimed at maximizing the overall
profit of all processing depots. The structure of the BSCN proposed is
illustrated by Fig. 1. For each period (e.g., a year), the HUB needs to
determine (a) the number and the locations of the depots (one decision-
maker), (b) the production capacity and the supply of each depot, (c)
the corn residues prices offered to corn farmers, and (d) the selling
prices of the sugar and the coproduct offered to biorefineries and pig
farms, respectively. Therefore, the HUB can be considered as the leader
4 
of the BSCN, while both the suppliers (corn farmers) and the customers
(biorefineries and pig farmers) can be considered as followers. A non-
cooperative context is assumed, where independent decisions are made
by the followers in response to the leader’s actions. This situation can
be formulated as a Stackelberg game.

For the followers (corn farmers, biorefineries, and pig farmers), a
static game (i.e., a strategic situation in which the actors simultaneously
decide on their strategy (Mahmoodi, 2020)) can be observed. In this
study, this static game is chosen for analysis under Nash equilibrium
(i.e., a situation in which none of the actors can modify their pay-
off by deviating from their decision while the others’ strategies are
fixed (Mahmoodi, 2020)). Thus, it is assumed that followers make their
decisions simultaneously and compete over quantities and prices in a
common market. In this context, the optimal final decisions of the BSCN
design problem are a Stackelberg–Nash equilibrium.

In response to the leader’s decisions, each follower maximizes his
profit simultaneously with the other followers. For each period t, each
corn farmer i decides how much biomass to sell to each processing
depot, each pig farm f decides how much to purchase from each
processing depot, and each biorefinery k decides how much sugar to
purchase from each depot.

For the leader (i.e., the HUB), it is essential to carefully determine
the prices offered to farmers and customers. If the biomass price is
set too low, corn farms may refuse to sell to processing depots (not a
profitable situation). Conversely, if the price is set too high, the depot
would increase raw material costs. The same challenge is faced by
customers: if the price offered by depots is set too high, biorefineries
and pig farms may be hesitant to buy. Conversely, if the price is set
too low, the depot would miss out on potential revenue. Furthermore,
if the HUB finds it unprofitable to invest in the BSCN, no processing
depots would be opened.

4. Mathematical model

This paper proposes a Distributed Decision-Making (DDM) model
that aims to support decision-making with the 4 types of actors of our
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Fig. 2. Distributed decision-making through the symbiotic Biofuel Supply Chain Network (BSCN).
Table 1
Indexes used in modeling.

Indexes

i Corn farm (i = 1..I)
j Potential location j for processing depots (j = 1..J)
k Biorefinery (k = 1..K)
f Pig farm (f = 1..F)
t Period (t = 1..T)

BSCN (Fig. 2). In short, the hierarchical leader (HUB) of this DDM
system first optimizes the locations, sugar production capacities, and
supply and production levels of the depots. From this optimization
process, it also derives the selling prices of the sugar for the biorefinery
and the coproduct for the pig farms, as well as the prices offered to the
corn farms for the purchase of their by-products (i.e., corn residues).
Once the leader’s decisions are sent to their respective actors, the
followers independently optimize their production process to decide
how much corn residue to sell at the sales price proposed by the HUB,
and how much sugar and coproduct to procure at the purchase prices
offered by the HUB. The followers’ decisions are sent back to the leader.
To carry out this process, several interrelated optimization models must
be used. The next section describes each of these models.

4.1. Distributed Decision-Making (DDM) model

This section describes four optimization models, starting with the
leader (the HUB), then the corn farmers, the biorefineries, and the pig
farmers. To standardize all models, the following notations and indexes
are described hereafter through Tables 1 to 5.

4.1.1. HUB (leader) problem
A first model is required by the HUB to make decisions related to

processing depots’ locations, capacity planning, and pricing problems.
Table 2 presents the notation used to formulate this model. The main
objective of the HUB is to maximize the total profit from all the process-
ing depots over the entire planning horizon as given by the objective
function (FO1). The first term of (FO1) corresponds to the revenue
generated from selling sugar to biorefineries, which is calculated as the
product of the sugar price (𝑃 𝑠𝑢𝑔 𝑎𝑟) and the total sales amount (𝛷𝑠𝑢𝑔 𝑎𝑟).
𝑗 𝑡 𝑗 𝑘𝑡

5 
The second term represents the revenue generated from selling the
coproduct to pig farms. The third term represents the sale of surplus
coproducts to the external market once the demand of the pig farms
has been met. The fourth term corresponds to the sale of surplus sugar
on the external market, once the demand of the biorefineries has been
met. The HUB’s costs mainly include the purchase cost of biomass from
corn farmers, investments in depot construction, operating costs asso-
ciated with running the depots, as well as the purchase of additional
biomass on the external market if the farmers are unable to supply the
quantity of biomass required to fill the quantity required by the depots
(𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 ).
Eqs. (1) and (2) express the sale of surplus of sugar and coproduct by

the depots. Eq. (3) determines the cost of the quantity of biomass that
needs to be purchased by the depots from the external market, which
offers a higher price than farmers. Eqs. (4)–(11) describe the various
production and depot opening constraints. More specifically, Eq. (4)
ensures that the amount of sugar produced in a processing depot cannot
exceed its capacity. Eqs. (5)–(7) stipulate that if the processing depot is
not open, the corresponding sales of sugar and coproduct (∑𝑘∈𝐾 𝜙𝑠𝑢𝑔 𝑎𝑟

𝑗 𝑘𝑡
and ∑

𝑓∈𝐹 𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 ), as well as the biomass supply, (𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 ) should
be zero. In other words, sales and purchases can only be carried out
when the processing depot is open. Eq. (8) reveals that sugar production
capacity is limited and cannot exceed a certain maximum capacity
value (𝑞𝑚𝑎𝑥). Eqs. (9) and (10) ensure the conversion from biomass to
sugar and to coproduct at the processing depot. In other words, the
amount of sugar and coproduct generated depends directly on biomass
availability and is governed by the conversion factors 𝛼 and 𝜇. Finally,
Eq. (11) ensures that all variables used are positive values, except those
determining the locations of the depots (𝛿𝑗 𝑡) which are binary.

max𝛱𝐽 (𝑃 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 , 𝑃 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑡 , 𝑃 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑗 𝑡 , 𝛿𝑗 𝑡, 𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 , 𝑊 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 , 𝑊 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑡 , 𝑄𝑗 )

=
∑

𝑡∈𝑇

∑

𝑘∈𝐾

∑

𝑗∈𝐽
𝑃 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 𝜙𝑠𝑢𝑔 𝑎𝑟

𝑗 𝑘𝑡

+
∑

𝑡∈𝑇

∑

𝑓∈𝐹

∑

𝑗∈𝐽
𝑃 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑡 𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑓 𝑡 + 𝑆𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 + 𝑆𝑠𝑢𝑔 𝑎𝑟

−
∑

𝑡∈𝑇

∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝑃 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑗 𝑡 𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑖𝑗 𝑡 −
∑

𝑗∈𝐽
𝑐𝑓 𝑖𝑥𝑄𝑗

−
∑∑

𝑐𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑊 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑡 −

∑∑

𝑐𝑠𝑢𝑔 𝑎𝑟𝑊 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 − 𝑆𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝐹 𝑂1)
𝑡∈𝑇 𝑗∈𝐽 𝑡∈𝑇 𝑗∈𝐽



H. Bouazizi et al.

c
t
s
t
o
f
b
a
c

Cleaner Energy Systems 9 (2024) 100163 
Table 2
The HUB parameters and decision variables.

Parameters

𝛼 Conversion factor of corn residue to sugar
𝜇 Conversion factor of corn residue into coproduct
𝑐𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 Cost of obtaining 1 ton of coproduct from the biomass
𝑐𝑠𝑢𝑔 𝑎𝑟 Cost of obtaining 1 ton of sugar from the biomass
𝑐𝑓 𝑖𝑥 Fixed cost for constructing a depot with a 1-ton capacity
𝑚𝑐𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑡 Cost of purchasing 1 ton of coproduct for a pig farm at period t on the external market
𝑚𝑐𝑠𝑢𝑔 𝑎𝑟𝑡 Cost of purchasing 1-ton sugar from the external market for a biorefinery at periodt
𝑚𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑡 External Market price of 1 ton biomass at period t
𝑚𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑡 External Market price of 1 ton coproduct at period t
𝑚𝑠𝑢𝑔 𝑎𝑟

𝑡 External Market price of 1-ton coproduct sugar at period t
𝑞𝑚𝑎𝑥 Maximum sugar quantity that can be produced by a depot
Big M A very large number

Decision variables

𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑗 𝑡 Biomass supply level set by a depot at location j at period t

𝑊 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑡 Coproduct production level set by a depot at location j at period t

𝑊 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 Sugar production level set by a depot at location j at period t

𝑄𝑗 Sugar production capacity of a depot at location j
𝑃 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑡 Selling price of 1-ton coproduct by a depot at location j at period t

𝑃 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 Selling price of 1-ton sugar by a depot at location j at period t

𝑃 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑗 𝑡 Purchasing price of 1-ton biomass set by a depot at location j at period t

𝛿𝑗 𝑡 Binary variable equal to 1 if a depot at location j is open at period t ; 0 otherwise
𝑆𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 Total profit from selling surplus of coproduct to the external market
𝑆𝑠𝑢𝑔 𝑎𝑟 Total profit from selling surplus of sugar to the external market
𝑆𝑏𝑖𝑜𝑚𝑎𝑠𝑠 Total purchasing cost of additional biomass quantity required to fill the demand
𝛱𝐽 Total profit of all processing depots
p
a

𝑗

f
E

t

𝑗

𝑘

𝑆𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 =
∑

𝑡∈𝑇

∑

𝑗∈𝐽
𝑚𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑡 (𝑊 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑡 −
∑

𝑓∈𝐹
𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 ) (1)

𝑆𝑠𝑢𝑔 𝑎𝑟 =
∑

𝑡∈𝑇

∑

𝑗∈𝐽
𝑚𝑠𝑢𝑔 𝑎𝑟
𝑡 (𝑊 𝑠𝑢𝑔 𝑎𝑟

𝑗 𝑡 −
∑

𝑘∈𝐾
𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 ) (2)

𝑆𝑏𝑖𝑜𝑚𝑎𝑠𝑠 =
∑

𝑡∈𝑇
𝑚𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑡 (

∑

𝑗∈𝐽
𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 −
∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 ) (3)

𝑊 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 ≤ 𝑄𝑗 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (4)

∑

𝑓∈𝐹
𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 ≤ 𝑏𝑖𝑔 𝑀 ∗ 𝛿𝑗 𝑡,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (5)

∑

𝑘∈𝐾
𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 ≤ 𝑏𝑖𝑔 𝑀 ∗ 𝛿𝑗 𝑡,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (6)

𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑗 𝑡 ≤ 𝑏𝑖𝑔 𝑀 ∗ 𝛿𝑗 𝑡,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (7)

𝑄𝑗 ≤ 𝑞𝑚𝑎𝑥 ∗ 𝛿𝑗 𝑡,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (8)

𝑊 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 = 𝛼 ∗ 𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (9)

𝑊 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑡 = 𝜇 ∗ 𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (10)

𝑊 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 , 𝑊 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑡 , 𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑗 𝑡 , 𝑃 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 , 𝑃 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 , 𝑃 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑡 , 𝑄𝑗 ≥ 0, 𝛿𝑗 𝑡 ∈ {0, 1}
(11)

4.1.2. Corn farm problem
Table 3 presents the notation used to formulate the problem of a

orn farm i. Each corn farm i aims to maximize its profits by estimating
he profits of the other farmers since each biomass supplier in the
upply chain is independent. Therefore, the decisions of other farms are
reated as constants from the farm i’s perspective under the assumption
f Nash equilibrium. This objective is formulated in the objective
unction (FO2), where a farmer’s profit is determined by the difference
etween the revenues of the biomass sold and the transportation costs
ssociated with shipping the biomass to the processing depots. The
onstraints of the corn farms problem are expressed in Eqs. (12)–(14).
6 
Eq. (12) aims to limit the quantity of biomass sold by a farm i at
eriod t so that it does not exceed the quantity of biomass available
t that farm. In addition, Eq. (13) guarantees that the total quantity

of biomass sold by all farmers to a processing depot at period t does
not exceed the depot’s biomass supply level (𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 ) set by the HUB.
Eq. (14) guarantees that the quantity of biomass sold and transported
is a positive value.

max𝛱 𝑖(𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 ) =

∑

𝑡∈𝑇

∑

𝑗∈𝐽
(𝑃 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 − 𝑡𝑐𝑓 𝑖𝑥,𝑏𝑖𝑜𝑚𝑎𝑠𝑠 − 𝑡𝑐𝑣𝑎𝑟,𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑑𝑖𝑗 )𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 (𝐹 𝑂2)

∑

∈𝐽
𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 ≤ 𝜂𝐼 ∗ 𝑟𝑖𝑡,∀𝑡 ∈ 𝑇 (12)

∑

𝑖′∈𝐼
𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖′𝑗 𝑡 ≤ 𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (13)

𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 ≥ 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (14)

4.1.3. Biorefinery problem
Table 4 presents the notation used to formulate the problem of a

biorefinery k. After anticipating the decisions of the other biorefineries,
a biorefinery k seeks to maximize its profits by reducing its purchases
rom the external market, as described in the objective function (FO3).
q. (15) ensures that the quantity of sugar sold by all depots in a

period t does not exceed the biorefinery demand. Eq. (16) guarantees
that the quantity of sugar purchased by all the biorefineries from a
processing depot at a period t does not exceed the production level
of the processing depot at location j (𝑊 𝑠𝑢𝑔 𝑎𝑟

𝑗 𝑡 ). Finally, Eq. (17) ensures
hat the variable representing the quantity of sugar sold and transported

from a depot at location j to biorefinery k is positive.

max𝛱𝑘(𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 ) = ∑

𝑡∈𝑇

∑

𝑗∈𝐽
(𝑚𝑐𝑠𝑢𝑔 𝑎𝑟𝑡 − (𝑃 𝑠𝑢𝑔 𝑎𝑟

𝑗 𝑡 +𝑡𝑐𝑓 𝑖𝑥,𝑠𝑢𝑔 𝑎𝑟+𝑡𝑐𝑣𝑎𝑟,𝑠𝑢𝑔 𝑎𝑟𝑑𝑗 𝑘))𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 (𝐹 𝑂3)

∑

∈𝐽
𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 ≤ 𝜑𝑠𝑢𝑔 𝑎𝑟

𝑘𝑡 ,∀𝑡 ∈ 𝑇 (15)

∑

′∈𝐾
𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘′𝑡 ≤ 𝑊 𝑠𝑢𝑔 𝑎𝑟

𝑗 𝑡 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (16)

𝑠𝑢𝑔 𝑎𝑟
𝜙𝑗 𝑘𝑡 ≥ 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (17)
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Table 3
Corn farmers parameters and decision variables.

Parameters

𝑡𝑐𝑓 𝑖𝑥,𝑏𝑖𝑜𝑚𝑎𝑠𝑠 Fixed cost of transporting 1 ton biomass
𝑡𝑐𝑣𝑎𝑟,𝑏𝑖𝑜𝑚𝑎𝑠𝑠 Variable cost of transporting 1 ton biomass per kilometer
𝑑𝑖𝑗 Distance between corn farm i and a depot at location j
𝑟𝑖𝑡 Quantity of biomass available at corn farm i at period t
𝜂𝐼 Participation ratio of the I corn farms

Decision variables

𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 Biomass quantity sold by from corn farm i to a depot at location j at period t

𝛱 𝑖 Total profit of the corn farm i
Table 4
Biorefineries parameters and decision variables.

Parameters

𝑡𝑐𝑓 𝑖𝑥,𝑠𝑢𝑔 𝑎𝑟 Fixed cost of transporting 1 ton sugar
𝑡𝑐𝑣𝑎𝑟,𝑠𝑢𝑔 𝑎𝑟 Variable cost of transporting 1 ton sugar per kilometer
𝑑𝑗 𝑘 Distance between a depot at location j and biorefinery k
𝜑𝑠𝑢𝑔 𝑎𝑟
𝑘𝑡 Quantity of sugar required by biorefinery k at period t

Decision variables

𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 Sugar quantity purchased from a depot at location j to biorefinery k at period t

𝛱𝑘 Total profit of biorefinery k
Table 5
Pig farms parameters and decision variables.

Parameters

𝑡𝑐𝑓 𝑖𝑥,𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 Fixed cost of transporting 1 ton coproduct
𝑡𝑐𝑣𝑎𝑟,𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 Variable cost of transporting 1 ton coproduct per kilometer
𝑑𝑗 𝑓 Distance between a depot at location j and pig farm f
𝜑𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑓 𝑡 Quantity of coproduct required by pig farm f at period t

Decision variables

𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 Coproduct quantity purchased from a depot at location j to pig farm f at period t

𝛱𝑓 Total profit of pig farm f
w
d
l

I

i

L

4.1.4. Pig farm problem
Table 5 presents the notation used to formulate the problem of

 pig farm f. After anticipating the decisions of the other farms, a
ig farm aims to maximize its profits by minimizing its purchases on
he external market, as given by the objective function (FO4). The
onstraints related to the pig farm problem are similar to those of the

biorefinery problem. Eq. (18) ensures that the quantity of coproduct
sold by all processing depots in a period t must not exceed the pig
farm’s demand (𝜑𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑓 𝑡 ). Eq. (19) states that the quantity of coproduct
purchased by all the pig farms from a processing depot at a period t
does not exceed the production level of the processing depot at location
j. Finally, Eq. (20) ensures that the variable representing the quantity
of coproduct sold and transported from a depot at location j to pig farm

is positive.

max𝛱𝑓 (𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 )

=
∑

𝑡∈𝑇

∑

𝑗∈𝐽
(𝑚𝑐𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑡 − (𝑃 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑡 + 𝑡𝑐𝑓 𝑖𝑥,𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 + 𝑡𝑐𝑣𝑎𝑟,𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑑𝑗 𝑓 ))

× 𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 (𝐹 𝑂4)

∑

∈𝐽
𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 ≤ 𝜑𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑓 𝑡 ,∀𝑡 ∈ 𝑇 (18)

∑

𝑓 ′∈𝐹
𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 ′𝑡 ≤ 𝑊 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑡 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (19)

𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 ≥ 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (20)
7 
4.2. Reformulation of the DDM model

The DDM model formulated above addresses a multilevel problem
ith several optimization subproblems that cannot be directly han-
led by off-the-shelf mathematical programming solvers due to their
imited computational performance on large-scale applications. In this

section, a proposal is made to reformulate this multilevel model, which
comprises mixed variables (continuous and integer), into a single-level
model. This can be accomplished by using the Karush–Kuhn–Tucker
(KKT) condition-based approach instead of the nesting-based approach.
n fact, according to Sinha et al. (2017), nesting approaches are less

suitable for large-scale problems such as ours. First, the KKT conditions
associated with the followers’ problems, formulated in Section 4.1,
have been incorporated as linear programs. These conditions were then
embedded into the leader’s constraints to obtain a single-level model.

4.2.1. KKT conditions applied to followers’ problems
Given a general problem:

𝑀 𝑖𝑛𝑥∈𝑋𝑘(𝑥, 𝑦)

s.t

𝑚(𝑥, 𝑦) ≤ 0

The KKT conditions, also known as optimality conditions for an opti-
mization problem, consist of four sets of constraints, namely stationar-
ty (21), primal feasibility (22), dual feasibility (23), and complemen-

tary slackness (24), where 𝐿(𝑥, 𝑦, 𝑣) = 𝑘(𝑥, 𝑦) + 𝑣𝑇𝑚(𝑥, 𝑦) and 𝑣 is the
agrange multiplier associated to the optimization problem.

∇𝑦𝐿(𝑥, 𝑦, 𝑣) = 0 (21)
𝑚(𝑥, 𝑦) ≤ 0 (22)
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𝑣 ≥ 0 (23)

𝑣𝑇𝑚(𝑥, 𝑦) = 0 (24)

By applying the principle described above, the corn farm problem is
replaced by constraints (12)–(14) and (25)–(31), where 𝛽1𝑖𝑡, 𝛽2𝑗 𝑡, 𝛽3𝑖𝑗 𝑡 are
he Lagrange multipliers associated respectively with initial constraints
12)–(14).
∑

∈𝐽
𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 − 𝜂𝐼 𝑟𝑖𝑡 ≤ 0,∀𝑖 ∈ 𝐼 ,∀𝑡 ∈ 𝑇 (12)

𝛽1𝑖𝑡(
∑

𝑗∈𝐽
𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 − 𝜂𝐼 𝑟𝑖𝑡) = 0,∀𝑖 ∈ 𝐼 ,∀𝑡 ∈ 𝑇 (25)

𝛽1𝑖𝑡 ≥ 0,∀𝑖 ∈ 𝐼 ,∀𝑡 ∈ 𝑇 (26)

∑

𝑖∈𝐼
𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 −𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 ≤ 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (13)

𝛽2𝑗 𝑡(
∑

𝑖∈𝐼
𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 −𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 ) = 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (27)

𝛽2𝑗 𝑡 ≥ 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (28)

−𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 ≤ 0,∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (14)

−𝛽3𝑖𝑗 𝑡𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 = 0,∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (29)

𝛽3𝑖𝑗 𝑡 ≥ 0,∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (30)

The stationarity condition (31) related to this optimization problem is
dded.

−𝑃 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑗 𝑡 + 𝑡𝑐𝑓 𝑖𝑥,𝑏𝑖𝑜𝑚𝑎𝑠𝑠 + 𝑡𝑐𝑣𝑎𝑟,𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑑𝑖𝑗 + 𝛽1𝑖𝑡 + 𝛽2𝑗 𝑡 − 𝛽3𝑖𝑗 𝑡 = 0,∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇

(31)

Similarly, the biorefinery problem is replaced by constraints (15)–
(17) and (32)–(38), where 𝛾1𝑘𝑡, 𝛾2𝑗 𝑡, 𝛾3𝑗 𝑘𝑡 are the Lagrange multipliers
ssociated respectively with initial constraints (15)–(17).
∑

∈𝐽
𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 − 𝜑𝑠𝑢𝑔 𝑎𝑟

𝑘𝑡 ≤ 0,∀𝑘 ∈ 𝐾 ,∀𝑡 ∈ 𝑇 (15)

𝛾1𝑘𝑡(
∑

𝑗∈𝐽
𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 − 𝜑𝑠𝑢𝑐 𝑟𝑒

𝑘𝑡 ) = 0,∀𝑘 ∈ 𝐾 ,∀𝑡 ∈ 𝑇 (32)

𝛾1𝑘𝑡 ≥ 0,∀𝑘 ∈ 𝐾 ,∀𝑡 ∈ 𝑇 (33)

∑

𝑘∈𝐾
𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 −𝑊 𝑠𝑢𝑔 𝑎𝑟

𝑗 𝑡 ≤ 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (16)

𝛾2𝑗 𝑡(
∑

𝑘∈𝐾
𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 −𝑊 𝑠𝑢𝑔 𝑎𝑟

𝑗 𝑡 ) = 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (34)

𝛾2𝑗 𝑡 ≥ 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (35)

−𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 ≤ 0,∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 ,∀𝑡 ∈ 𝑇 (17)

−𝛾3𝑗 𝑘𝑡𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 = 0,∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 ,∀𝑡 ∈ 𝑇 (36)

𝛾3𝑗 𝑘𝑡 ≥ 0,∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 ,∀𝑡 ∈ 𝑇 (37)

The stationarity condition (38) related to this optimization problem is
dded.

−𝑚𝑐𝑠𝑢𝑔 𝑎𝑟𝑡 +𝑃 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 +𝑡𝑐𝑓 𝑖𝑥,𝑠𝑢𝑔 𝑎𝑟+𝑡𝑐𝑣𝑎𝑟,𝑠𝑢𝑔 𝑎𝑟𝑑𝑗 𝑘+𝛾1𝑘𝑡+𝛾2𝑗 𝑡−𝛾3𝑗 𝑘𝑡 = 0,∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 ,∀𝑡 ∈ 𝑇
(38)
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Finally, the pig farm problem is replaced by constraints (18)–(20) and
39)–(45), where 𝜆1𝑓 𝑡, 𝜆2𝑗 𝑡, 𝜆3𝑗 𝑓 𝑡 are the Lagrange multipliers associated

respectively with initial constraints (18)–(20).
∑

∈𝐽
𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 − 𝜑𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑓 𝑡 ≤ 0,∀𝑓 ∈ 𝐹 ,∀𝑡 ∈ 𝑇 (18)

𝜆1𝑓 𝑡(
∑

𝑗∈𝐽
𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 − 𝜑𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑓 𝑡 ) = 0,∀𝑓 ∈ 𝐹 ,∀𝑡 ∈ 𝑇 (39)

𝜆1𝑓 𝑡 ≥ 0,∀𝑓 ∈ 𝐹 ,∀𝑡 ∈ 𝑇 (40)

∑

𝑓∈𝐹
𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 −𝑊 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑡 ≤ 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (19)

𝜆2𝑗 𝑡(
∑

𝑓∈𝐹
𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 −𝑊 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑡 ) = 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (41)

𝜆2𝑗 𝑡 ≥ 0,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (42)

−𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 ≤ 0,∀𝑗 ∈ 𝐽 ,∀𝑓 ∈ 𝐹 ,∀𝑡 ∈ 𝑇 (20)

−𝜆3𝑗 𝑓 𝑡𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 = 0,∀𝑗 ∈ 𝐽 ,∀𝑓 ∈ 𝐹 ,∀𝑡 ∈ 𝑇 (43)

𝜆3𝑗 𝑓 𝑡 ≥ 0,∀𝑗 ∈ 𝐽 ,∀𝑓 ∈ 𝐹 ,∀𝑡 ∈ 𝑇 (44)

The stationarity condition related to this optimization problem is as
follows:

− 𝑚𝑐𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑡 + 𝑃 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑡 + 𝑡𝑐𝑓 𝑖𝑥,𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 + 𝑡𝑐𝑣𝑎𝑟,𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑑𝑗 𝑓 + 𝜆1𝑓 𝑡 + 𝜆2𝑗 𝑡 − 𝜆3𝑗 𝑓 𝑡

= 0,∀𝑗 ∈ 𝐽 ,∀𝑓 ∈ 𝐹 ,∀𝑡 ∈ 𝑇 (45)

4.2.2. Linearization of complementary slackness constraints
To linearize the KKT complementary slackness constraints previ-

usly introduced, the following binary variables are added
1
𝑖𝑡, 𝑍2

𝑗 𝑡, 𝑍3
𝑖𝑗 𝑡, 𝐵1

𝑘𝑡, 𝐵2
𝑗 𝑡, 𝐵3

𝑗 𝑘𝑡, 𝑌 1
𝑓 𝑡, 𝑌 2

𝑗 𝑡𝑎𝑛𝑑 𝑌 3
𝑗 𝑓 𝑡, associated respectively with

he constraints (25), (27), (29), (32), (34), (36), (39), (41) and (43).
ach binary variable takes 1 if the constraint is active, and 0 if the
agrange multiplier is zero. Considering a huge number BM (for Big

M), complementary slackness constraints are replaced as presented in
Table 6.

4.2.3. Single-Level Model(SLM)
After establishing the KKT conditions for the followers’ problems

and linearizing the complementary slackness constraints, a Single-
Level Model (SLM) formulated as a Mixed Integer Non-Linear Pro-
gram (MINLP) is obtained. The SLM addresses the original multilevel
problem and is composed of the objective function of the leader’s
problem (FO1) subject to the following constraints: (4)–(20), (26), (28),
30)–(31), (33), (35), (37)–(38), (40), (42) and ((44)–63).

5. Resolution approach

Most global optimizers for MINLPs face challenges in terms of
computational performance with large-scale applications. This was the
ase for the SLM proposed in this study. In a previous work (Bouazizi
t al., 2023), the SLM has been implemented using GAMS 42.2.0 with
he BARON solver. Although a small data instance (6 corn farms, 5
otential depot locations, 1 biorefinery, and 4 pig farms) representing
bout 2% of the full dataset (247 corn farms, 395 potential locations
or depots, and 286 pig farms) was considered, the optimizer failed
o obtain an optimal solution within an 8-hour resolution time. To
esolve the model using the entire dataset, this paper proposes a
ovel resolution approach that involves the user of the DDM system
n a three-step optimization process, as illustrated by Fig. 3. First, a
clustering module identifies clusters for corn farms, depots’ potential
locations, biorefineries, and pig farms according to their geographic
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Table 6
Complementarity slackness constraints and corresponding linearized constraints.

Constraints Linearized constraints

(25)
𝛽1𝑖𝑡 ≤ 𝐵 𝑀 ×𝑍1

𝑖𝑡 ,∀𝑖 ∈ 𝐼 ,∀𝑡 ∈ 𝑇 (46)

−(
∑

𝑗∈𝐽 𝜙
𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 − 𝜂𝐼 𝑟𝑖𝑡) ≤ 𝐵 𝑀 × (1 −𝑍1

𝑖𝑡),∀𝑖 ∈ 𝐼 ,∀𝑡 ∈ 𝑇 (47)

(27)
𝛽2𝑗 𝑡 ≤ 𝐵 𝑀 ×𝑍2

𝑗 𝑡 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (48)

−(
∑

𝑖∈𝐼 𝜙
𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 −𝑊 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑗 𝑡 ) ≤ 𝐵 𝑀 × (1 −𝑍2
𝑗 𝑡),∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (49)

(29)
𝛽3𝑖𝑗 𝑡 ≤ 𝐵 𝑀 ×𝑍3

𝑖𝑗 𝑡 ,∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (50)

𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑖𝑗 𝑡 ≤ 𝐵 𝑀 × (1 −𝑍3

𝑖𝑗 𝑡),∀𝑖 ∈ 𝐼 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (51)

(32)
𝛾1𝑘𝑡 ≤ 𝐵 𝑀 × 𝐵1

𝑘𝑡 ,∀𝑘 ∈ 𝐾 ,∀𝑡 ∈ 𝑇 (52)

−(
∑

𝑗∈𝐽 𝜙
𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 − 𝜑𝑠𝑢𝑔 𝑎𝑟

𝑘𝑡 ) ≤ 𝐵 𝑀 × (1 − 𝐵1
𝑘𝑡),∀𝑘 ∈ 𝐾 ,∀𝑡 ∈ 𝑇 (53)

(34)
𝛾2𝑗 𝑡 ≤ 𝐵 𝑀 × 𝐵2

𝑗 𝑡 ,∀𝑡 ∈ 𝑇 ,∀𝑗 ∈ 𝐽 (54)

−(
∑

𝑘∈𝐾 𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 −𝑊 𝑠𝑢𝑔 𝑎𝑟

𝑗 𝑡 ) ≤ 𝐵 𝑀 × (1 − 𝐵2
𝑗 𝑡),∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (55)

(36)
𝛾3𝑗 𝑘𝑡 ≤ 𝐵 𝑀 × 𝐵3

𝑗 𝑘𝑡 ,∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 ,∀𝑡 ∈ 𝑇 (56)

𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 ≤ 𝐵 𝑀 × (1 − 𝐵3

𝑗 𝑘𝑡),∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝐾 ,∀𝑡 ∈ 𝑇 (57)

(39)
𝜆1𝑓 𝑡 ≤ 𝐵 𝑀 × 𝑌 1

𝑓 𝑡 ,∀𝑓 ∈ 𝐹 ,∀𝑡 ∈ 𝑇 (58)

−(
∑

𝑗∈𝐽 𝜙
𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 − 𝜑𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑓 𝑡 ) ≤ 𝐵 𝑀 × (1 − 𝑌 1
𝑓 𝑡),∀𝑓 ∈ 𝐹 ,∀𝑡 ∈ 𝑇 (59)

(41)
𝜆2𝑗 𝑡 ≤ 𝐵 𝑀 × 𝑌 2

𝑗 𝑡 ,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (60)

−(
∑

𝑓∈𝐹 𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 −𝑊 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑡 ) ≤ 𝐵 𝑀 × (1 − 𝑌 2
𝑗 𝑡),∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇 (61)

(43)
𝜆3𝑗 𝑓 𝑡 ≤ 𝐵 𝑀 × 𝑌 3

𝑗 𝑓 𝑡 ,∀𝑗 ∈ 𝐽 ,∀𝑓 ∈ 𝐹 ,∀𝑡 ∈ 𝑇 (62)

𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑓 𝑡 ≤ 𝐵 𝑀 × (1 − 𝑌 3

𝑗 𝑓 𝑡),∀𝑗 ∈ 𝐽 ,∀𝑓 ∈ 𝐹 ,∀𝑡 ∈ 𝑇 (63)
c

t
d
f

coordinates (i.e., latitudes and longitudes). This allows the user to con-
sider one representative for each cluster, thus reducing the complexity
of the problem. Second, the SLM module solves the SLM considering
he clusters’ representatives. Since the solution obtained at this stage
oes not necessarily maximize the leader’s profit, a final step is required
o adjust the pricing decisions considering the whole database.

5.1. Clustering module

As shown in Fig. 3, the user is involved before and after the
clustering module. First, through a graphical user interface, the user

ust specify to the clustering module several parameters (e.g., the
number of clusters respectively for corn farms, for depots’ potential
locations, for biorefineries and pig farms). The clustering module then
generates candidate solutions for the cluster representatives using a
lustering algorithm. In this paper, the K-Means algorithm for clustering
s used, whose various parameters, such as the number of clusters, the

maximum number of iterations, and the centroid initialization, must
e set by the user. The use of the K-Means algorithm is motivated
y the need to easily detect local geographic patterns by grouping
ata points according to their distances (Novianti et al., 2017). In
ddition, this algorithm is easy to implement and interpret, which is
ecessary for an interactive reoptimization approach. Various metrics
e.g., Silhouette index, Calinski–Harabasz index, and Davies–Bouldin
ndex) enable the user to evaluate the clustering results and to choose
he best configuration according to the nature of the data and the
bjectives of the analysis (Baarsch and Celebi, 2012). At the end of
his step, the datasets of the corn farms, depots’ potential locations,

biorefineries, and pig farms can be reduced to cluster representatives.
he graphical user interface presents a map showing the clusters and
he user is prompted to select a representative to the SLM module a
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representative location for each cluster, as well as the optimization
stopping criterion (the maximum resolution time in our case).

5.2. SLM module

Considering the clusters’ representatives and the maximum resolu-
tion time set by the user, the SLM is solved using the solver BARON.
Depending on the solution quality, the user can at this point adjust
the maximum resolution time, and even restart the clustering step if
necessary.

5.3. Price adjustment module

Since the pricing decisions made by the SLM module consider the
lusters’ representatives, they do not necessarily maximize the Leader’s

profit and they may not represent the optimal offers that the HUB
can make to the followers. The price adjustment module provides
he possibility to adjust the pricing decisions considering the whole
atabase. This consequently leads to necessary adjustments in material
lows as well.

The third step of the optimization process can be described as
follows. The price adjustment module keeps some SLM decisions un-
changed, namely depot locations, depot capacities, and production and
supply levels. These decisions are parameters for three new Price Ad-
justment Models (PAM1, PAM2, and PAM3) derived from the original
SLM. PAM1 (the biomass price adjustment model) adjusts the decisions
𝑃 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑗 𝑡 and 𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑖𝑗 𝑡 , respectively referring to biomass prices offered to
corn farms and biomass sales at these prices. PAM2 (the sugar price
adjustment model) adjusts the decisions 𝑃 𝑠𝑢𝑔 𝑎𝑟

𝑗 𝑡 and 𝜙𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑘𝑡 , respectively

referring to sugar prices offered to biorefineries, and sugar sold at these
prices. Finally, PAM3 (the coproduct price adjustment model) adjusts

𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 and 𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡, respectively referring to coproduct
the decisions 𝑃𝑗 𝑡 𝑗 𝑓 𝑡
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Fig. 3. A three-step optimization process.
prices offered to pig farms and coproduct sales at these prices. The
formulation of these models is detailed in what follows.

For PAM1, two optimization levels are only considered from the
SLM involving depots and corn farms. The following single-level model
is obtained:

max𝛱𝐽 (𝑃 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑗 𝑡 , 𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑖𝑗 𝑡 ) = −
∑

𝑡∈𝑇

∑

𝑖∈𝐼

∑

𝑗∈𝐽
𝑃 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑗 𝑡 𝜙𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑖𝑗 𝑡 − 𝑆𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (64)

subject to constraints (12)–(14), (26), (28), (30)–(31) and (46–51).
For PAM2, two optimization levels are only considered from the

SLM involving depots and biorefineries. The following single-level
model is obtained:

max𝛱𝐽 (𝑃 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 , 𝜙𝑠𝑢𝑎𝑔 𝑟

𝑗 𝑘𝑡 ) =
∑

𝑡∈𝑇

∑

𝑘∈𝐾

∑

𝑗∈𝐽
𝑃 𝑠𝑢𝑔 𝑎𝑟
𝑗 𝑡 𝜙𝑠𝑢𝑎𝑔 𝑟

𝑗 𝑘𝑡 + 𝑆𝑠𝑢𝑔 𝑎𝑟 (65)

subject to constraints (15)–(17), (33), (35), (37)–(38), and (52–57)
Finally, for PAM3, two optimization levels are only considered from

the SLM involving depots and pig farms. The following single-level
model is obtained:

max𝛱𝐽 (𝑃 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑡 , 𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑓 𝑡 ) =
∑

𝑡∈𝑇

∑

𝑓∈𝐹

∑

𝑗∈𝐽
𝑃 𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡
𝑗 𝑡 𝜙𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑗 𝑓 𝑡 + 𝑆𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

(66)

subject to constraints (18)–(20), (40), (42), (44)–(45) and (58–63).

6. Experimentation and results

6.1. Data

The case study addressed in this paper uses 5-year data on corn
producers in the Province of Quebec. The database includes the lo-
cations of 247 corn farms and 286 pig farms, in addition to 395
10 
potential depot locations identified. Each location is characterized by
geographic coordinates (i.e., latitude and longitude), which enables
the determination of a distance matrix between these locations. For
simplicity’s sake, this study considers a single biorefinery location.
The theoretical availability of corn stover is provided by the Biomass
Inventory Mapping and Analysis Tool (BIMAT) of Agriculture and Agri-
Food Canada (Stumborg et al., 2008) while Quebec government data
were used to represent the pigs’ distribution in the territory (Ministère
de l’Énergie et des Ressources naturelles et des Forêts, 2021). Cost
and mass balance data are based on Lemire (2021) report. Table 7
presents the main parameters of the SLM. The maximum resolution
time considered for the SLM is 8 h. The results obtained in each step
of the optimization process are presented in what follows.

6.2. Results

In this subsection, the three-step optimization process proposed
in Fig. 3 is tested for the real case study described above using a
computer with these specifications: 8 GB RAM and an Intel Core i5 8th
Generation CPU. In the first step, a single iteration of the interactive
process was performed, beginning with an analysis of the clustering
evaluation metrics as a function of the number of clusters for the I corn
farms (Fig. 4(a)), J potential locations for processing depots (Fig. 5(a)),
and F pig farms (Fig. 6(a)). Based on the evolution of the evaluation
metrics in Figs. 4(a), 5(a), and 6(a), two clusters were chosen for I,
four clusters for J, and two clusters for F. This decision was primarily
driven by the observation that the Silhouette index reached its peak
value when two clusters were selected for all actors. However, due
to the limited biomass supply capacity at the depots, meeting the
biorefinery’s demand in year 5 requires a minimum of four depots.
Since the Silhouette index decreases as the number of clusters increases,
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Fig. 4. Clustering of corn farms.
Table 7
Principal parameters of the SLM.

Parameter Value Unit

𝜂𝐼 1
𝜇 0.606
𝛼 0.316
𝑐𝑓 𝑖𝑥 476.97 $/Ton
𝑡𝑐𝑓 𝑖𝑥,𝑏𝑖𝑜𝑚𝑎𝑠𝑠 9.32 $/Ton
𝑡𝑐𝑣𝑎𝑟,𝑏𝑖𝑜𝑚𝑎𝑠𝑠 0.26 $/Ton.Km
𝑡𝑐𝑓 𝑖𝑥,𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 22.63 $/Ton
𝑡𝑐𝑣𝑎𝑟,𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 0.24 $/Ton.Km
𝑡𝑐𝑓 𝑖𝑥,𝑠𝑢𝑔 𝑎𝑟 7.56 $/Ton
𝑡𝑐𝑣𝑎𝑟,𝑠𝑢𝑔 𝑎𝑟 0.15 $/Ton.Km
𝑐𝑠𝑢𝑔 𝑎𝑟 532.606 $/Ton
𝑐𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡 32.073 $/Ton
𝑞𝑚𝑎𝑥 10 112 Ton
𝜑𝑠𝑢𝑔 𝑎𝑟
𝑡 ∕𝑡 = 1..4 17 340.66 Ton

𝜑𝑠𝑢𝑔 𝑎𝑟
𝑡 ∕𝑡 = 5 34 681.32 Ton

𝑚𝑏𝑖𝑜𝑚𝑎𝑠𝑠
𝑡 2000 $/Ton

𝑚𝑐𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑡 100 $/Ton
𝑚𝑐 𝑜𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡

𝑡 0 $/Ton
𝑚𝑐𝑠𝑢𝑔 𝑎𝑟𝑡 1445.56 $/Ton
𝑚𝑠𝑢𝑔 𝑎𝑟

𝑡 0 $/Ton

four depots were ultimately chosen to ensure demand fulfillment. Maps
of the different clusters can be generated using software such as Power
BI (see Figs. 4(b), 5(b), and 6(b)). Representatives were then set (see
blue markers in Figs. 4(b), 5(b), and 6(b), one for each cluster) and
used as inputs to the SLM. Additional iterations could be added by
analyzing the results of this first iteration and adjusting the clustering of
the data accordingly. For instance, the results could be contextualized,
and weaknesses related to other aspects of the problem, such as access
to road networks, could be identified. However, this was not done as
it does not provide the reader with additional information about the
optimization process itself.

In the second step, the SLM was solved in a maximum of 8 h,
using the parameters presented in Table 7. The SLM optimal decisions
obtained in 745 min are shown in Table 8. According to the results
in Table 8, a total of 99,698.64 tons of cellulosic sugar will be sold
to the biorefinery over a period of 5 years. This quantity is expected to
11 
produce approximately 27,550,216.71 liters of bioethanol, assuming no
losses, using the conversion ratio of 73 gallons per ton provided by Yue
and You (2014). If this bioethanol is used to meet Quebec’s low-carbon
fuel mandates, it would replace approximately 275,502,167.1 liters
of gasoline under the initial requirement of 10% bioethanol content.
In the scenario where the 2030 requirement of 15% bioethanol is in
place, it would replace about 183,668,111.4 liters of gasoline. This
substitution would significantly contribute to the reduction of fossil fuel
consumption and support the province’s environmental goals. Finally,
in the third step, price adjustments were made as follows.

6.2.1. Adjustment of biomass prices
Fig. 7 presents the corn farms selected by PAM1. The adjusted prices

provided by PAM1 and associated with the selected corn farms are pre-
sented in Table 9. In addition, Fig. 8 exhibits the quantities of biomass
that will be sold by each corn farm to the different depots. PAM1
was successfully solved in 18 s, generating 40 intermediate solutions
(since the solver used is based on local search algorithms), with the
optimal one presented in this article. The adjustment model slashed
the cost of biomass purchases by 63.94%, leading to a reduction of
$10,069,975.18 compared to the expenditure calculated when the SLM
was solved. The profit of the HUB experienced a 16.22% rise, climbing
from $62,082,220 to $72,152,195.20. This increase is explained by the
fact that, following the biomass price adjustment (see Table 9), each
depot is proposing prices lower than those recommended by the SLM
module which considers cluster representatives (and not real data). The
adjusted prices suggested by the depots only motivated the corn farms
surrounding the depots to sell their agricultural residues as shown in
Fig. 7.

6.2.2. Adjustment of coproduct prices
Fig. 9 shows the pig farms selected by PAM3. The adjusted prices

provided by PAM3 and associated with the selected pig farms are
presented in Table 9. In addition, Fig. 10 exhibits the quantities of
coproduct that will be purchased by each pig farm from the different
depots. PAM3 was successfully solved in 20 s, generating 42 inter-
mediate solutions, with the optimal one presented in this article. The
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Fig. 5. Clustering of potential locations for processing depots.
Fig. 6. Clustering of pig farms.
Table 8
Decisions of the SLM (Step 2).

Depots Years 1 to 4 (Year5)

Capacity (Ton) Biomass prices ($/Ton) Biomass purchase(Ton) Sugar prices ($/Ton) Sugar sales (Ton) Coproduct prices($/Ton) Coproduct sales(Ton)

1 0(4345.32) N/A(67.82) 0(13751.013) N/A(1426.36) 0(4345.32) N/A(21.45) 0(8333.114)
2 10112 (10112) 53.26 (53.26) 22875.506(32000) 1430.44(1430.44) 7228.66(10112) 36.81(36.81) 13862.557(19392)
3 10112(10112) 40.26(40.26) 32000(32000) 1416.55(1416.55) 10112(10112) 48.81(48.81) 19392(19392)
4 0(10112) N/A(56.12) 0(32000) N/A(1401.4) 0(10112) N/A(36.33) 0(19392)
12 
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Fig. 7. Corn farms selected by the PAM1.
Fig. 8. Quantities of biomass sold by each corn farm to different depots.
Table 9
Comparison of biomass and coproduct prices determined by SLM and adjusted prices.

Depots Years 1 to 4 (Year 5)

SLM biomass prices($/Ton) Adjusted biomass prices ($/Ton) SLM coproduct prices($/Ton) Adjusted coproduct prices($/Ton)

1 N/A(67.82) N/A(17.326) N/A(21.45) N/A(63.138)
2 53.26 (53.26) 14.462 (14.540) 36.81 (36.81) 72.834 (72.666)
3 40.26 (40.26) 17.154 (17.154) 48.81 (48.81) 69.642 (69.642)
4 N/A(56.12) N/A(28.322) N/A(36.33) N/A(74.154)
adjustment model boosted coproduct sales revenues by 69.21%, result-
ing in a $5,793,604.024 increase compared to the amount calculated
when the SLM was resolved. This led to an 8.02% increase in the
HUB’s profit, elevating it from $72,152,195.20 to $77,945,799.22.
This increase is explained by the fact that, following the adjustment
in coproduct prices (see 9), each depot is selling its coproduct at
higher prices, exceeding what the SLM module suggests considering
cluster representatives. The adjusted prices proposed by the depots only
motivated the pig farms surrounding the depots to buy the coproduct
from the depots as shown in Fig. 9.

The results presented above highlight the dynamics of the proposed
DDM system and the effectiveness of coordination among the various
actors in this industrial symbiosis. As shown in Table 7, sugar requested
by the biorefinery in year 5 is higher than in years 1–4. Consequently,
Table 8 shows that the biomass supply of depot 2 increased in year 5,
compelling the depot to seek additional farmers. In addition, this depot
increased its purchase prices, as evidenced by the adjusted biomass
13 
price value in Table 9. The same logic applies to the coproduct pro-
duction level of depot 2 and its corresponding selling price: coproduct
production increased in year 5. To sell this surplus quantity, depot 2
will reduce the coproduct selling prices in year 5 to attract more pig
farms.

7. Discussion

In this paper, the value of industrial symbiosis was highlighted
as a form of circular economy where the exchanges of waste and
by-products between companies are economically viable. More specif-
ically, the decision-making tool developed in this paper explicitly con-
siders the distribution and sale of by-products generated by the treat-
ment processes as a way to strengthen both business profitability
and the reduction of the overall environmental footprint. Considering
real-world assumptions, it was demonstrated that the developed tool
can support the different decision-makers in the symbiotic bioethanol
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Fig. 9. Pig farms selected by the PAM3.
Fig. 10. Quantities of coproduct purchased by each pig farm from the different depots.
supply chain network. This network includes four actors: corn farmers
(suppliers of corn residues), processing depots, biorefineries, and pig
farms. The proposed tool optimizes the network design and coproduct
pricing within a market equilibrium. On the one hand, the model
allocates a crucial role to the HUB, which must make key decisions
such as identifying the optimal locations for processing depots, as well
as coordinating production plans and prices offered to suppliers and
customers. On the other hand, considering the prices offered by the
HUB and assuming a market equilibrium, the model provides the other
actors with the optimal quantities of products to sell (for corn farms)
or to purchase (for biorefineries and pig farms).

One of the advantages of the proposed tool is that it involves
decision-makers and enables them to contribute to the design of the
supply network and the selection of the most appropriate solution using
the interactive reoptimization approach. In addition, the tool considers
the mutual influences between the actors during decision-making and
coordinates design and pricing decisions within the network. This
approach also allows us to engage in network and beneficial exchanges,
paving the way for a more efficient symbiotic network, and can be
generalized for other sectors in which by-products could be dealt with
within an industrial symbiosis context.

In addition to producing an eco-friendly product (bioethanol), the
proposed industrial symbiosis valorizes by-products (corn residues) and
coproducts (pig feed), reduces reliance on non-renewable resources,
and limits environmental impacts. This case study demonstrates the
economic balance that can be achieved. This can help managers over-
come their fear of changes and losses, which is a common barrier to
being part of an industrial symbiosis.
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8. Conclusion

This paper proposes a novel distributed decision-making model for
design and pricing decisions in a Biofuel Supply Chain Network in the
Province of Quebec. As an industrial symbiosis, the involvement of
four actors with diverse interests is proposed: corn farms, a HUB of
processing depots, biorefineries, and pig farms. The problem is then
formulated as a multi-period non-cooperative Stackelberg game under
the Nash equilibrium assumption. As a leader, the HUB determines
the depots’ locations, production capacities, and supply and production
levels. In addition, the HUB sets the purchase price of the biomass and
the selling price of two products: the sugar offered to the biorefineries
and the coproduct offered to the pig farms. The followers (i.e., each
corn farm, each biorefinery, and each pig farm) independently optimize
their own decisions regarding the quantities to sell or buy in order to
maximize their profits.

To solve this problem, a DDM model is proposed and reformulated
into a single-level model (SLM) using the Karush–Kuhn–Tucker (KKT)
method. In addition, this article introduces a new resolution approach
based on three modules that involve the user. The first module is
the clustering module, which generates candidate solutions for cluster
representatives using a clustering algorithm. The second module is
the SLM module, where the SLM is solved considering the clusters’
representatives and the maximum resolution time set by the user.
The last module is the price adjustment module, which provides the
opportunity to adjust pricing decisions and material flows, considering
the real data, not only clusters’ representatives. This approach is tested
on a real case study in the Province of Quebec.
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In the results section of this article, the place of the user was taken
by choosing the clustering parameters and the maximum resolution
time during the user-guided search. In this section, four clusters were
chosen for the depots, two for the corn farms, and two for the pig
arms. The representatives of these clusters were incorporated into the

SLM module, which underwent a 445-minute runtime. The outcomes
of the decision variables determined by the SLM are presented before
the implementation of the price adjustment step. This step generates
prices for various products and specifies the corn farms from which
each depot will source, as well as the pig farms to which each depot
will sell its coproduct. The comparison of the HUB profits both before
and after the adjustment module is demonstrated by a profit increase
of 25.55% after applying the price adjustments.

One limitation to consider is that when the optimization challenge
takes on considerable proportions, it is common to resort to meta-
euristics, although they do not guarantee an optimal solution. The
esolution approach proposed in this article shares similarities with
hese metaheuristics in this respect, but it differs by actively encour-
ging the decision-maker to leverage their knowledge and intuition to
ncorporate additional constraints into the initial problem, with the

aim of reducing its complexity. However, it is important to note that
this approach does not guarantee the achievement of optimal solutions.
While it does generate interest by allowing an easy representation of the
problem and its solutions, as well as by involving the decision-maker
in integrating relevant constraints, it cannot ensure the optimality of
the generated solutions.

As far as the modification part of a current solution is concerned,
this will be left to the company implementing this framework, to
customize the adjustments according to their specific needs. It would be
also interesting to consider the environmental impact of this symbiosis
in the DDM model proposed for future research. In addition, more
accurate resolution methods could be considered for the single-level
model presented in this article. Also, it would be interesting to see the
results with multiple biorefineries, unlike the case study presented in
this article, which involves only one.
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