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A B S T R A C T

Within polycrystals, significant stress concentrations can arise due to their heterogeneous nature. These stress
intensities strongly influence the onset of nonlinear behaviors, such as plasticity and fatigue damage. One often
overlooked source of heterogeneity is the crystal anisotropy and its resulting neighborhood effect. Previous
research introduced a data-driven analytical model based on a cellular automaton (CA) to account for the
neighborhood effect on a grain’s stress level within an infinite aggregate under elastic conditions. It was
demonstrated that, in some rare specific cases, grains could experience stress levels twice as high as the applied
load. The current work extends the CA model by incorporating the effects of a free surface. Randomly oriented
polycrystals under uniaxial loading were studied using a regular aggregate structure (Kelvin structure), where
all grains are considered spherical and of identical size. Compared to full-field simulations, the extended
CA model demonstrated an excellent capability to capture heterogeneities, even in cases where high stress
concentrations are generated by the neighborhood. By leveraging the model’s speed, a distribution function
for grain stress levels was optimized to accurately capture the probability of extreme values. This allows for
the estimation of the most likely highest stress within randomly oriented aggregates composed of billions of
grains, along with its most probable localization relative to a free surface and the specific crystallographic
configurations leading to it.
1. Introduction

Predicting and understanding material fatigue life has been a subject
matter for several decades. The fatigue life of metallic parts can roughly
be divided into three stages: crack initiation, short, and then long
crack propagations [1]. For the latter, engineers often disregard the
microstructural characteristics as the propagation is governed mainly
by the crack geometry. When it comes to the first two stages, the
material cannot be considered homogeneous anymore to accurately
assess the mechanisms at stake. Due to the random nature of the het-
erogeneities, the fatigue life of the material may significantly vary for
parts originating from the same bulk material, requiring a probabilistic
approach to study the fatigue life of the material. As the crack initiation
stage can represent 5 to 20% of the total life in the case of high cycle
fatigue (HCF) [2–4] and up to 80% or more in the case of very high
cycle fatigue (VHCF) [5–7], it is crucial to account for the material
heterogeneities and their distribution probabilities.

HCF and VHCF regimes correspond to stress loads that remain
below the macroscopic elastic limit of the material, resulting in small
plastic deformation [8,9]. The plasticity is localized and depends on the
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local microstructure. It was shown experimentally [10,11] and numer-
ically [12–14], in the case of high crystallin-elastic anisotropy, such as
nickel or iron base alloys, that the onset of plasticity is strongly driven
by the elastic regime. In the case of face-centered cubic polycrystals
(fcc), full field simulations have revealed a correlation between grains’
normalized resolved shear stress (NRSS) during the linear elastic regime
and grains’ plastic rate in HCF [15–17]. These studies indicate that
grains with the highest NRSS values tend to plastify the fastest, making
them more susceptible to crack initiation [18]. Thus, if one wants to
predict material fatigue life at the microscale, the elastic stress fields
and its heterogeneities must be accurately predicted in the first place.

Full-field simulations have shown that a grain’s stress level is influ-
enced as much by its own crystallographic orientation as by its neigh-
boring grain orientations [16,19,20]. Polycrystals exhibit numerous
sources of heterogeneities, including variations in grain morphology,
distinct phases, crystallographic texture, surface effects, etc. However,
all of these heterogeneities ultimately stem from a single trait: crystal
anisotropy. The stiffness of the crystal varies depending on its orienta-
tion relative to the loading direction. Each grain generates stress-field
variations specific to its orientation in its surroundings. Consequently,
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the environment of a grain can strongly influence the mechanical
state of the grain, a phenomenon known as the neighborhood effect.
According to full-field simulations, the stress-field scattering can exhibit
high amplitudes, with the highest observed grain mean stress being
double or even higher than the lowest, depending on the material. Due
to the random nature of crystallographic orientation distributions, a
probabilistic approach must be employed to study polycrystal stress
fields in the elastic regime.

Many numerical models exist to predict polycrystal stress fields,
hich can be roughly divided into two categories. The first cate-
ory consists of full field models, such as the finite element method
FEM) [21–23] and models based on the fast Fourier transformation
FFT) [12,16,24]. These models can account for as many hetero-

geneities as needed and be as precise as the problem is described. The
EM does not have a description limit but is computationally intensive,

whereas the FFT model incurs lower computational costs. However,
FFT models are often restricted when it comes to geometry. They are
usually limited to the study of periodic aggregates, excluding surface
effect studies. Nonetheless, more recent works [25,26] made the study
of heterogenous environment with a free-surface possible. On the other
hand, there are analytical models, a.k.a. mean-field homogenization
models, such as the widely known self-consistent approach and its
erivatives [12,27–30] or the Maximum Entropy Method [31] which

trades off the detail level for a much lower computational cost. Most of
these models are capable of capturing the first and second moments of a
grain’s mean stress level. However, they may not accurately determine
a grain mean stress level within a specific environment leading to sig-
nificant stress concentrations and are unable to identify these particular
onfigurations. In order to accurately predict the highest mean stress

level within a polycrystalline mechanical part, a model should have
the ability to capture a wide range of heterogeneities while keeping
a low computational cost. This is essential to effectively evaluate an
xceptionally large number of grain-neighborhood configurations. Un-
ortunately, none of the above models allow such study, one category

being computationally expensive and the other considering limited
microstructure specificities.

Alternatively, Bretin et al. [32] developed a data-driven cellular
automaton (CA) model to predict grains’ mean stress tensors within
n infinite single phase polycrystalline aggregate. The model’s distinct
eature is its ability to consider the orientations of both, the grain
n question and its neighboring grains, to predict its stress level. The
odel parameters are calibrated for a given material using the out-

omes of a limited number of specific FEM simulations. Once fitted,
he model becomes capable of predicting the mean stress tensors of
housands of grains within a fraction of a second, all the while con-
idering the specific distribution of aggregate orientations. The model
xhibits excellent accuracy in predicting the grains NRSS during the
inear elastic regime when compared to converged FE predictions,
ven those with very high stress concentrations. The model’s simplicity
lso enables the user to swiftly predict millions of grain-neighborhood
onfigurations, generating ample data to accurately capture the most
robable highest stress within an aggregate and the corresponding
onfigurations leading to it.

However, one critical source of heterogeneity missing in the CA
model is the impact of a free surface on the aggregate stress field.
Experimental observations reveal distinct behaviors in crack initiation
location between the High Cycle Fatigue (HCF) and Very High Cycle
Fatigue (VHCF) regimes, with surface-initiated cracks prevalent in the
former [33] and in-depth initiation more common in the latter [34,35].
Numerical simulations by various researchers have shown that the
perturbation caused by a free surface typically extends to a depth of
only 3 or 4 grains [36–38]. Additionally, surface grains tend to ex-
ibit fewer active slip systems compared to in-depth grains, attributed
o the more constraining neighborhood effect. Despite these surface-
nduced complexities, studies by Barbe et al. [37] underscore that the

surface effect, while noteworthy, has a comparatively lesser impact
2 
on grain stress levels than the neighborhood effect. Assuming ideal
surface conditions (clean and polished) the sources of heterogeneities
contributing to microscopic crack initiation and propagation can be
arrowed down to persistent slip bands, plastic incompatibilities at
oundaries, and elastic anisotropy. All of these sources can also be
ied to grain crystallographic orientation, making the implementation
f a free surface effect in the CA model straightforward, which would
llow studying the location of stress concentrations within aggregates
elatively to a free surface.

The present work aims to predict, within a standard-sized aggre-
gate composed of millions of grains, the depth of the grain with the
highest NRSS as well as the crystallographic configuration leading to it.
According to VHCF experimental observations and assuming localized
lasticity, grains with the highest NRSS are expected to be located in-
epth. Other criteria, such as various critical resolved shear stresses
CRSS) or slip transmission and blockage due to grain boundary mis-
rientation, which have been shown to be relevant factors in crack
nitiation for HCP crystal structures [39], will be disregarded here.
ll grains are considered to have the same CRSS level, and plasticity

s assumed to be strictly localized within the grains. To address this
problem, the CA model developed by Bretin et al. [32] has been
extended to include the effect of a free surface on the stress field within
the aggregate. Following a methodology similar to that in [32], the

elvin structure is used to represent the polycrystals, avoiding any
orphological or size effects. For this study, the crystal parameters of

FCC stainless steel 316L were used as an example.
The article’s outline unfolds as follows. In Section 2, the assumptions

underlying the CA model are revisited, and the modifications made to
account for the grains’ depth are presented. Section 3 describes the FEM
simulations of polycrystalline aggregates conducted to fit the model’s
arameters and evaluate its accuracy. A substantial volume of FEM

data was generated and employed to precisely ascertain the accuracy
of the CA model. In Section 4, this FEM data is utilized to provide
an initial insight into the probability distribution of grains’ stress as a
function of their depth. Given that FEM alone is insufficient to generate
enough data to accurately predict the highest stress within an aggregate
comprising millions of grains, the CA model’s speed was leveraged to
generate a larger database. Section 5 details the methodology used
to generate this database and how it was utilized to determine a
grain’s NRSS distribution function based on its depth. Using these
functions, the most probable value of the highest NRSS within an ag-
regate composed of millions of grains was determined, along with its

most probable localization relative to the free surface. From this data,
grain-neighborhood crystallographic configurations leading to probable
high-stress concentration were identified and simulated using FEM with
an added viscoplastic behavior. Section 4.2 presents the results of these
simulations to study the plastic behavior of these specific configurations
and reestablish the correlation between a grain’s NRSS and fatigue
damage, while including the effects of a free surface. Finally, closing
remarks and conclusions can be found in Section 6.

2. Definition of the CA model

2.1. Definition and approximation of the neighborhood effect proposed
n [20]

The neighborhood effect of a specific neighborhood 𝑁 on a grain 𝑔
immersed in a crystalline aggregate under an uniform loading 𝐸𝐸𝐸, noted
𝜀𝜀𝛥𝜀𝑔𝑁 and illustrated in Fig. 1(a), was defined in [20] as the difference

between the mean strain tensor 𝜀𝜀𝜀𝑔 of the grain 𝑔 immersed in the
specific environment 𝑁 and the mean strain tensor 𝜀𝜀𝜀𝑔0 of the same grain
𝑔 (same size, shape, orientation, and mechanical properties) immersed
in a homogeneous environment with the material effective properties.
Therefore, with this definition of the neighborhood effect, the mean
strain and stress tensors of a grain 𝑔 within a polycrystal can be defined
as follows:
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Fig. 1. 2D schematic representations of the neighborhood effect in aggregates under uniform loading (𝐸𝐸𝐸/𝛴𝛴𝛴). (a) A grain 𝑔’s strain/stress deviation due to the neighborhood 𝑁
(𝛥𝜀𝛥𝜀𝛥𝜀𝑔𝑁/𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑁 ) is quantified by the difference between grain 𝑔’s strain/stress tensor in the polycrystalline aggregate (𝜀𝜀𝜀𝑔/𝜎𝜎𝜎𝑔) and grain 𝑔’s strain/stress tensor in an infinite medium
having the aggregate effective properties (𝜀𝜀𝜀𝑔0/𝜎𝜎𝜎

𝑔
0). (b) Within a homogeneous medium, a subset 𝑔𝑒𝑓 𝑓 ’s strain/stress deviation due to a neighboring grain 𝑛𝑖 (𝛥𝜀𝛥𝜀𝛥𝜀𝑔

𝑒𝑓 𝑓
𝑛𝑖 /𝛥𝜎𝛥𝜎𝛥𝜎𝑔𝑒𝑓 𝑓

𝑛𝑖 ) is
quantified by the difference between region 𝑔𝑒𝑓 𝑓 ’s strain/stress tensor in the homogeneous medium with the presence of the neighboring grain 𝑛𝑖 (𝜀𝜀𝜀𝑔

𝑒𝑓 𝑓
𝑛𝑖 /𝜎𝜎𝜎𝑔𝑒𝑓 𝑓

𝑛𝑖 ) and the applied
loading (𝐸𝐸𝐸/𝛴𝛴𝛴) [20].
𝛥

𝜎

𝜀𝜀𝜀𝑔 = 𝜀𝜀𝜀𝑔0 + 𝛥𝜀𝛥𝜀𝛥𝜀𝑔𝑁 (1a)

𝜎𝜎𝑔 = 𝜎𝜎𝜎𝑔0 + 𝛥𝜎𝛥𝜎𝛥𝜎𝑔𝑁 = CCC𝑔 ∶ 𝜀𝜀𝜀𝑔 (1b)

where ‘:’ denotes the double tensor contraction, CCC𝑔 is the grain 𝑔
elastic stiffness tensor and 𝜎𝜎𝜎𝑔0 = CCC𝑔 ∶ 𝜀𝜀𝜀𝑔0 . Bretin et al. [32] studied the
neighborhood effect within single phase polycrystals randomly oriented
(meaning that the grains orientations were chosen randomly leading to
isotropic effective properties of the material) where all grains were of
identical shape and size. It was observed that for crystals with high elas-
tic anisotropic, such as iron or nickel crystals, the neighborhood effect
can increase or decrease the grain average strain but is in average null.
It was also shown that for some specific configurations of environment,
the amount of strain induced by the neighborhood effect can at least
account for a half or more of the total strain (‖𝛥𝜀𝛥𝜀𝛥𝜀𝑔𝑁‖𝑒𝑞 ≥ ‖𝜀𝜀𝜀𝑔0‖𝑒𝑞).

In order to predict such strain concentration, Bretin et al. [20]
proposed an approximation of 𝛥𝜀𝛥𝜀𝛥𝜀𝑔𝑁 for the case of an infinite elastic
polycrystalline aggregate: first 𝛥𝜀𝛥𝜀𝛥𝜀𝑔𝑁 is approximated by the sum of each
neighboring grain 𝑛𝑖’s individual influence on the grain 𝑔, noted ⃖⃖⃖⃖⃗𝑔 𝑛𝑖,
which, according to the definition of neighborhood effect proposed
earlier, is the strain difference within the grain 𝑔 immersed in a
homogenized environment with and without the neighboring grain 𝑛𝑖.
Then, the second approximation ⃖⃖⃖⃖⃗𝑔 𝑛𝑖 ≈ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑔𝑒𝑓 𝑓 𝑛𝑖 is made, which consists
of replacing the properties within the space occupied by the grain 𝑔
with the effective ones. By combining these two approximations, we
derive the subsequent approximation of the neighborhood effect, and
consequently, the mean stress tensor for a grain 𝑔 is obtained as follows:

𝛥𝜀𝜀𝛥𝜀𝑔𝑁 ≈
∑

𝑛𝑖

𝛥𝜀𝛥𝜀𝛥𝜀𝑔
𝑒𝑓 𝑓

𝑛𝑖
⇒ 𝛥𝜎𝛥𝜎𝛥𝜎𝑔𝑁 ≈ CCC𝑔 ∶ CCC𝑒𝑓 𝑓−1 ∶

∑

𝑛𝑖

𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖
(2a)

𝜎𝜎𝑔 ≈ 𝜎𝜎𝜎𝑔0 + CCC𝑔 ∶ CCC𝑒𝑓 𝑓−1 ∶
∑

𝑛𝑖

𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖
(2b)

with 𝜎𝜎𝜎𝑔 = CCC𝑔 ∶ 𝜀𝜀𝜀𝑔 , 𝜎𝜎𝜎𝑔0 = CCC𝑔 ∶ 𝜀𝜀𝜀𝑔0 and 𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖
= CCC𝑒𝑓 𝑓 ∶ 𝛥𝜀𝛥𝜀𝛥𝜀𝑔

𝑒𝑓 𝑓
𝑛𝑖

(2c)

where CCC𝑔 is grain 𝑔 stiffness tensor, CCC𝑒𝑓 𝑓 is the homogenized aggregate
stiffness tensor attributed to the medium, and 𝛥𝜀𝛥𝜀𝛥𝜀𝑔

𝑒𝑓 𝑓
𝑛𝑖 is the mean strain

deviation within the volume of grain 𝑔𝑒𝑓 𝑓 generated by the presence of
the neighboring grain 𝑛𝑖 within the homogeneous medium as illustrated
in Fig. 1(b).

This approximation was tested using the FE method on single-phase
aggregates with periodic boundary conditions where all grains were of
identical size and shape using the Kelvin’s structure as illustrated Fig. 2,
with high elastic anisotropy (nickel, iron, and titanium crystals were
tested) and accounting for the influence of all the neighboring grains
within 3 grain’s layers (258 neighboring grains 𝑛𝑖). The approximation
has shown excellent accuracy, for various applied loadings, and even
3 
Fig. 2. Schematic illustration of the Kelvin’s structure with the presence of a free
surface.

for the specific configurations leading to high strain concentrations. It
was also shown that the more grain 𝑔 elastic properties differ from
the effective properties, the less accurate this approximation is. This
observation was negligible in the case of a single-phase material, but
it might be significant in the case of a multiphase material with sig-
nificant difference in elastic properties. Concerning the neighborhood
influence, it was shown that the neighboring grains’ influence decreases
exponentially the farther they are from the central grain. A neighboring
grain at three grain’s radii from grain 𝑔 will generate a 𝛥𝜀𝛥𝜀𝛥𝜀𝑔

𝑒𝑓 𝑓
𝑛𝑖 much

lower than a close grain, but all the neighboring grains located at 3
grains’ radius put together, representing a bigger volume than the close
grains, can have an influence on grain 𝑔 as significant as the grains in
close contact if they all have a crystallographic orientation favoring a
stress concentration on it.

2.2. Definition of the new CA model accounting for the free surface

Two alterations from Eq. (2) were made to approximate a grain’s
mechanical state while accounting for the neighboring effect and the
surface effect. The new governing equations of the CA model are now
defined as follows:

𝛥𝜎𝜎𝛥𝜎𝑔𝑁 (𝑑) ≈ 1
2

(

∑

𝑛𝑖

𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖
(𝑑) + CCC𝑔 ∶ CCC𝑒𝑓 𝑓−1 ∶

∑

𝑛𝑖

𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖
(𝑑)

)

(3a)

𝜎𝜎𝑔(𝑑) ≈ 𝜎𝜎𝜎𝑔0(𝑑) +
1
2

(

III + CCC𝑔 ∶ CCC𝑒𝑓 𝑓−1) ∶
∑

𝑛𝑖

𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖
(𝑑) (3b)

where III is the fourth order identity tensor and (𝑑) refers to the
dependency of the stress tensors on the depth of the grain 𝑔.

The first alteration concerns the neighborhood effect approximation
presented in Eq. (2a). Bretin et al. [20] chose to use the strain variations
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𝛥𝜀𝜀𝛥𝜀𝑔
𝑒𝑓 𝑓

𝑛𝑖 to approximate the neighborhood effect, but another possible
olution was instead to use the stress variations 𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 as follows:

𝛥𝜎𝜎𝛥𝜎𝑔𝑁 ≈
∑

𝑛𝑖

𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖
(4a)

𝜎𝑔 ≈ 𝜎𝜎𝜎𝑔0 +
∑

𝑛𝑖

𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖
(4b)

It will be proven in Section 3.3.2, that the average of the two ap-
proximations Eqs. (2) and (4), resulting in Eq. (3) without the depth
dependency, is a more accurate approximation of the grain mechanical
state than Eq. (2) alone.

The second alteration is the insertion of the grain’s depth depen-
dency. The influence of the free surface and the grain 𝑔’s depth, noted
𝑑, are taken into account by making 𝜎𝜎𝜎𝑔0 and 𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 depth dependent.

By introducing depth dependency to the stress variables, we assume
that the neighborhood effect approximation derived from Eqs. (2) and
4) remains accurate, even in the presence of a free surface. This
ssumption is put to test in Section 3.3.2.

From Eq. (3), the prediction of 𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖 (𝑑) and 𝜎𝜎𝜎𝑔0(𝑑) remain to be
efined.

2.2.1. Prediction of 𝛥𝜎𝛥𝜎𝛥𝜎𝑔𝑒𝑓 𝑓𝑛𝑖 (𝑑)
A method for predicting 𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 was introduced by Bretin et al. [32]:

for a given applied loading, 𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖 can be estimated through a linear
regression involving the components of the grain 𝑛𝑖’s stiffness tensor
expressed in the global axis system. This relationship, expressed in
Voigt tensor notation, can be noted as:

𝛥𝜎𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖
= 𝑈𝑈𝑈 ⃖⃖⃖⃗𝑔 𝑛𝑖 ×𝑋𝑋𝑋𝑛𝑖 (5)

where 𝑋𝑋𝑋𝑛𝑖 is a 𝑁𝑐 𝑠𝑡-list of independent components of the neighboring
rain 𝑛𝑖 stiffness tensor expressed in the global axis system, and 𝑈𝑈𝑈 ⃖⃖⃖⃗𝑔 𝑛𝑖 is
 6 by 𝑁𝑐 𝑠𝑡 matrix of fitted parameters. These parameters are fitted by
eans of a multilinear regression using a set of values obtained through

EM for an adequately large number of random crystallographic ori-
ntations of grain 𝑛𝑖. The fitted parameters are specific to the relative
osition ⃖⃖⃖⃖⃗𝑔 𝑛𝑖, the submitted loading 𝐸𝐸𝐸 and the medium properties CCC𝑒𝑓 𝑓 .
here is one tensor 𝑈𝑈𝑈 ⃖⃖⃖⃗𝑔 𝑛𝑖 for each accounted neighboring grain 𝑛𝑖. 𝑈𝑈𝑈 ⃖⃖⃖⃗𝑔 𝑛𝑖

relies solely on geometric factors, such as the shapes of grains 𝑔 and
𝑛𝑖, as well as their relative positions, while 𝑋𝑋𝑋𝑛𝑖 is influenced by the
orientation of grain 𝑛𝑖 and its stiffness tensor. Due to the structure
periodicity of the Kelvin structure, the same set of parameters 𝑈𝑈𝑈 ⃖⃖⃖⃗𝑔 𝑛𝑖 can
be used for all grains and their neighbors.

The addition of a free surface affects the Kelvin’s structure periodic-
ty: only grains sharing the same depth have an identical environment
eometrically. Therefore, the choice to keep the same equations to
ompute 𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 (𝑑) was made with a small change: a set of parameters

𝑈 ⃖⃖⃖⃗𝑔 𝑛𝑖 need to be fitted for each grain 𝑔 depth 𝑑 up to a certain depth
here the surface effect can be neglected. Eq. (5) can then be modified
s:

𝛥𝜎𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖
(𝑑) = 𝑈𝑈𝑈 ⃖⃖⃖⃗𝑔 𝑛𝑖 ,𝑑 ×𝑋𝑋𝑋𝑛𝑖 (6)

This formulation has the inconvenience to require much more FEM data
o fit the parameters as one tensor 𝑈𝑈𝑈 ⃖⃖⃖⃗𝑔 𝑛𝑖 ,𝑑 has to be fitted for each grain-
eighbor’s relative position accounted and for each depth accounted.
ut, as it will be shown in Section 3.3, the use of an in-house FEM

solver accelerates the process.
In the case of a cubic stiffness tensor, 𝑁𝑐 𝑠𝑡 = 10 and thus the list 𝑋𝑋𝑋𝑛𝑖

is composed of the 10 following components:

𝑋𝑋𝑛𝑖 =
[

C𝑛𝑖
1111,C

𝑛𝑖
1131,C

𝑛𝑖
2212,C

𝑛𝑖
3323,C

𝑛𝑖
2323,C

𝑛𝑖
2331,C

𝑛𝑖
2312,C

𝑛𝑖
3131,C

𝑛𝑖
3112,C

𝑛𝑖
1212

]

(7)

where CCC𝑛𝑖 is the grain 𝑛𝑖 stiffness tensor expressed in the global axis sys-
tem and thus depending on the grain crystallographic orientation. All
the other components of CCC𝑛𝑖 can be expressed as a multilinear function
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of these 10 components, independently of the grain orientation. The
dependency of CCC𝑛𝑖 components was found using the QR decomposition
on a matrix 81 by 100, where each column is the 81 components of CCC𝑛𝑖

for 100 random crystallographic orientations.

2.2.2. Prediction of 𝜎𝜎𝜎𝑔0(𝑑)
The Eshelby’s equivalent inclusion method was used by Bretin

t al. [32] to predict 𝜎𝜎𝜎𝑔0 . A modified version of this method accounting
for a free surface could have been used to predict 𝜎𝜎𝜎𝑔0(𝑑), but a simpler
solution is proposed in the present work. In the same way as 𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 (𝑑),

𝜎𝜎𝑔0(𝑑) can be predicted as a multi-linear regression of CCC𝑔 components
s:

𝜎𝜎𝑔0(𝑑) = 𝑈𝑈𝑈 0⃗,𝑑 ×𝑋𝑋𝑋𝑔 (8)

where is 𝑋𝑋𝑋𝑔 is a list of the same 10 specific components from Eq. (7)
of CCC𝑔 . The FEM simulations generating the set of values used to fit the
tensors 𝑈𝑈𝑈 ⃖⃖⃖⃗𝑔 𝑛𝑖 ,𝑑 also provide a set of values of 𝜎𝜎𝜎𝑔0(𝑑) that can be used
to fit the tensors 𝑈𝑈𝑈 0⃗,𝑑 . The accuracy of this model will be discussed in
Section 3.3.1.

2.2.3. Accounted neighboring grains
The influence of a neighboring grain 𝑛𝑖 was shown by Bretin

t al. [20] to exponentially decrease with the distance from the central
rain 𝑔. Therefore, only the stress deviation 𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 (𝑑) from the three

ayers of neighboring grains were accounted in the summation from
q. (3). In the present work, four layers were considered to capture the

influence of a wider neighborhood. In the Kelvin’s structure, a grain has
14 grains in its first neighboring grains layer, 50 in the second, 194 in
the third and 278 in the fourth, making a total of 536 grains accounted
in the neighborhood effect. Due to the presence of the free surface,
grains located at the surface (𝑑 = 0) see these numbers shortened to 9,
29, 105, 149 and 292, respectively.

3. Validation of the CA model accuracy by means of the FE

3.1. Variables used to estimate model’s accuracy

The CA model accuracy will be measured on how well it can predict
 grain mean stress tensor 𝜎𝜎𝜎𝑔 and the resulting resolved shear stress 𝜏𝑔𝑠
n comparison to a reference model, the FE method:

• To quantify the distance between the stress tensors predicted by
the FE and CA models, the equivalent von Mises stress, denoted
as ‖ ∙ ‖𝑒𝑞 , serves as a tensorial norm.

• The normalized resolved shear stress (NRSS), noted 𝜏∗𝑔𝑠 , is a
variable that is used to gauge a grain’s chances to undergo plastic
deformation, i.e., to potentially initiate a crack. In an homoge-
neous environment (meaning that 𝜎𝜎𝜎𝑔 = 𝛴𝛴𝛴), the NRSS would be
equal to the Schmid’s factor, but due to the stress concentration
that can occur, the NRSS can reach much higher values than the
Schmid’s factor. It was shown by Bretin et al. [17] that a grain
cyclic plastic strain is proportional to its highest NRSS, making
the NRSS a good indicator to where damage will occur. A grain
𝑔’s NRSS for its slip system 𝑠 is defined as the slip system RSS
normalized by the applied load in the linear elastic range (for
which no visco-plasticity has occurred yet):

𝜏∗𝑔𝑠 =
𝜏𝑔𝑠

‖𝛴𝛴𝛴‖𝑒𝑞
(9)

where 𝜏𝑔𝑠 is the resolved shear stress (RSS) of grain 𝑔 slip system
𝑠, computed as:

𝜏𝑔𝑠 = 𝜎𝜎𝜎𝑔 ∶ 𝑚𝑚𝑚𝑔
𝑠 = (CCC𝑔 ∶ 𝜀𝜀𝜀𝑔) ∶ 𝑚𝑚𝑚𝑔

𝑠 (10)

were 𝑚𝑚𝑚𝑔
𝑠 is the orientation tensor of the grain 𝑔’s slip system 𝑠

defined as:
𝑔 1 ( 𝑔 𝑔 𝑔 𝑔)
𝑚𝑚𝑚𝑠 =

2
�⃗�𝑢𝑢𝑠 ⊗ �⃗�𝑣𝑣𝑠 + �⃗�𝑣𝑣𝑠 ⊗ ⃗�⃗�𝑢𝑢𝑠 (11)
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where ⊗ denotes the tensor product, �⃗�𝑣𝑣𝑔𝑠 is the normal to the slip
plane and �⃗�𝑢𝑢𝑔𝑠 is the slip direction.
The highest NRSS among all the grain 𝑔’s slip systems will be
noted 𝜏∗𝑔 :

𝜏∗𝑔 = 𝑚𝑎𝑥( |𝜏∗𝑔𝑠 | )𝑠 (12)

With such a definition, within the elastic range, a grain with the
highest NRSS within an aggregate would start to plastify for an
applied load of 𝛴 = 𝑚𝑖𝑛(𝑐 𝑟𝑠𝑠𝑔𝑠 ∕ 𝜏∗𝑔𝑠 )𝑠, where 𝑐 𝑟𝑠𝑠𝑔𝑠 is the grain
𝑔 critical resolved shear stress at which the slip system 𝑠 would
start yielding.

3.2. Finite element model definitions

Following the same methodology as Bretin et al. [20], static elastic
finite element simulations were performed on polycrystalline aggre-
gates with the addition of a free surface. These simulations’ results are
later used to fit the CA model’s tensors 𝑈𝑈𝑈0,𝑑 and 𝑈𝑈𝑈 ⃖⃖⃖⃗𝑔 𝑛𝑖 ,𝑑 , evaluate its
ccuracy and make a preliminary study of the surface effect.

Two kinds of FEM aggregates were generated:

• S-1G: A Kelvin structured aggregate constituted of one central
grain and its 4 layers of neighboring grains are immersed in
an homogeneous cubic matrix located at a depth 𝑑 from a free
surface as illustrated in Fig. 3(a). The crystallographic properties
and a specific orientation are attributed only to the central grain
(in red on Fig. 3(a)), and the effective properties are attributed
to the rest of the mesh. The S-1G aggregates serve two purposes:
either the central grain is considered as the grain 𝑔, providing
the value 𝜎𝜎𝜎𝑔0(𝑑) (Fig. 1(a)), which is later used to fit the tensors
𝑈𝑈𝑈0,𝑑 . Or, the central grain is considered as a neighboring grain 𝑛𝑖,
and the values 𝜎𝜎𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 (𝑑) can be extracted from all the neighboring

grains considered as 𝑔𝑒𝑓 𝑓 (Fig. 1(b)). This leads to 𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖 (𝑑) =
𝜎𝜎𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 (𝑑) − 𝛴𝛴𝛴, which is later used to fit the tensors 𝑈𝑈𝑈 ⃖⃖⃗𝑔 𝑛,𝑑 . Various

central grain depths 𝑑 ranging from 0 to 9, as well as 𝑑 = 𝐶∕2 ≈
∞, were meshed, where a Kelvin cell radius serves as the unit of
length. For each depth, 100 random crystallographic orientations
for the central grain were generated, making a total of 1100
different aggregates studied.

• S-Agg : A Kelvin structured aggregate constituted of 1395 grains
is immersed in a homogeneous cubic matrix as illustrated in
Fig. 3(b). The crystallographic properties and a specific orienta-
tion are attributed to all the grains, and the effective properties
are attributed to the remaining mesh. In these 1395 grains, only
65 have their full 4 layers of neighboring grains, and only 10 have
their full 5 layers of neighboring grains (one for each depth from
0 to 9). The crystallographic orientations were distributed within
the aggregate in three different ways:

– S-Agg-1: orientations are distributed randomly. A total of
400 aggregates with random distributions were generated.

– S-Agg-2: Using the CA model, the NRSS of 108 grain-
neighborhood randomly oriented located at a given depth
𝑑 were evaluated (more details on the methodology in
Section 5.2). The configuration of orientations leading to
the highest NRSS predicted was saved and distributed to the
aggregate central grain located at the given depth 𝑑 and
its neighboring grains, as illustrated in Fig. 3(b). All the
remaining grains from the aggregate not being accounted
for in the CA prediction of neighborhood effect are ran-
domly oriented. One hundred of such configurations were
identified by repeating this process for the depths 𝑑 =
{0, 1, 2, 9}, making a total of 400 S-Agg-2 aggregates.
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– S-Agg-3: Using the CA model, the grain-neighborhood orien-
tations configurations leading to the highest possible NRSS
value for a given depth 𝑑 were identified. Taking advantage
of the CA model decomposition of the neighborhood effect,
for each neighboring grain 𝑛𝑖 starting from the closest to
the farthest, the crystallographic orientation leading to the
highest increase of the grain NRSS is attributed to that
neighboring grain. These orientations are then distributed
accordingly to the corresponding grains from the aggregate
mesh. All the grains not being accounted for in the CA
prediction of neighborhood effect (namely, all the grains
farther than 4 grain layers from the central grain) are ran-
domly oriented. Four S-Agg-3 aggregates were generated,
one for each depth 𝑑 = {0, 1, 2, 9}.

A total of 804 S-Agg aggregates were generated. For each ag-
gregate, only the resulting mean stress tensors of the 65 central
grains with their 4 complete layers of neighboring grains (bright-
colored in Fig. 3(b)) are retained and will be used later for
comparison between the FE and CA predictions.

For both types of aggregates, linear-elastic simulations are con-
ducted with the following boundary conditions applied to the cubic
matrix:

• Nodes at the bottom of the cube (𝑧 = −𝐶∕2) have their displace-
ment along 𝑍-axis set to 0.

• Nodes at the top of the cube (𝑧 = 𝐶∕2) have their displacement
along 𝑍-axis set to 𝐶 × 𝐿, 𝐶 being the cube’s size.

• The node located at the bottom-left (𝑥 = 𝐶∕2, 𝑦 = 𝐶∕2, 𝑧 =
−𝐶∕2) is pinned, meaning that its displacement is set to 0 in all
directions.

Such boundary conditions yields to a uni-axial stress load 𝛴𝛴𝛴 along
𝑍-axis such that all its components equal 0, except 𝛴33 such that:

𝛴33 = 𝐸𝑒𝑓 𝑓
𝑦 × 𝐿 = 19.64 [MPa] (13)

where 𝐸𝑒𝑓 𝑓
𝑦 is the material effective Young’s modulus, and 𝐿 is the

strain amplitude equal to 0.01%. A uniaxial stress load was chosen to
demonstrate the accuracy and applications of the CA model; however,
other types of loading, such as tension-torsion applied to the mesh
boundaries while maintaining the free surface, could also be used.
Additionally, the CA model parameters are fitted to a specific applied
load. Given the linearity of the problem, as demonstrated in [32],
any linear combination of the fitted loads would yield the same linear
combination of the fitted parameters.

The size of the cubic matrix 𝐶 = 100 (1 being a Kelvin’s cell radius)
n which the aggregates are immersed was chosen large enough to

avoid any border effect (except for the intended free surface) on the
rains’ stress field. This way, the aggregate’s volume fraction repre-
ents less than 0.03% of the whole mesh volume. After conducting a

convergence study on the grains’ mean stress tensors, as displayed in
Appendix A, the Kelvin structure is meshed with an average of 1284
etrahedral elements per cell with quadratic interpolation. The element
ize in the matrix increases farther from the aggregate, reaching a
aximum size of 10 elements per cube’s edge. The average number of

lements per grain used is nearly twice as fine as the mesh density used
y Bretin et al. [20] for similar simulations. This finer mesh is employed

to capture not only the grain mean stress tensor but also the standard
deviation within a grain, as it will be used in Section 4. For each FEM
simulation, a grain mean stress tensor 𝜎𝜎𝜎𝑔 is obtained by averaging the
rain elements’ strain tensors at the centroid, weighted by their volume
raction.

An in-house FEM code was used to perform these simulations. The
code was made using CUDA-FORTRAN, taking advantage of graphics
processing unit (GPU) parallel-computing. The code was validated
y comparing it to the results obtained with the commonly known

software ABAQUS for one of the S-Agg simulations using the exact
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Fig. 3. Schematic illustrations of the different meshes used for the FEM simulations: (a) 2D cut of a grain (in red) and its four layers of neighboring grains (delimited by dotted
lines) immersed in a homogeneous matrix at a depth 𝑑 varying from 0 to 9 or equaled to 𝐶∕2 for the in-depth case (𝑑 is set to 6 in this illustration). Only the central grain has
the crystallographic properties, while both the matrix and neighboring grains share the effective material properties. 𝑅 = 4 × 2 + 1 = 9, 𝐶 = 100; (b) 2D cut of 10 grains scattered at
different depth from 0 to 9 and their five layers of neighboring grains immersed in a homogeneous matrix. All colored grains have crystallographic properties. All bright-colored
grains (total of 65 grains) have their 4 layers of neighboring grains complete. 𝑅 = 5 × 2 + 1 = 11, 𝐶 = 100; In both illustrations, the free surface is represented by the blue transparent
plan and the grayer the matrix, the coarser the mesh.
𝜎

same mesh, boundary conditions and material properties. By comparing
the two codes results at each integration point, the maximum value
of 𝑒𝑟𝑟𝜎 = ‖𝜎𝜎𝜎𝑔𝑡𝑒𝑠𝑡𝑒𝑑 − 𝜎𝜎𝜎𝑔𝑟𝑒𝑓‖𝑒𝑞∕‖𝛴𝛴𝛴‖𝑒𝑞 observed did not get higher than

10−6 which is very negligible. Using an Nvidia RTX3090 GPU, it takes
between 15 s. for 𝐷 = 0 (187,000 elements) and 26 s. for 𝐷 = ∞
(373,000 elements) to perform one S-1G simulation, and 65 s. (634,000
elements) for one S-Agg simulation.

The material chosen for these simulations and the rest of the article
is the 316L austenitic stainless steel (face centered cubic structure)
which the material parameters were taken from Guilhem’s work [38].
This material shows a significant crystal elastic anisotropy, which is
great to put to test the CA model. Its crystal structure is face-centered
cubic, and only the 12 octahedral slip systems are considered for
the calculation of the NRSS. The material parameters are listed in
Appendix B.

3.3. Comparison between FE and CA models predictions

3.3.1. Prediction of 𝛥𝜎𝛥𝜎𝛥𝜎𝑔𝑒𝑓 𝑓𝑛𝑖 (𝑑) and 𝜎𝜎𝜎𝑔0(𝑑)

Before evaluating the CA model’s accuracy in predicting the grain
mean stress tensor 𝜎𝜎𝜎𝑔 , the accuracy of its components used to calculate
it, 𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 (𝑑) and 𝜎𝜎𝜎𝑔0(𝑑), needs to be assessed. In the following, to

standardize the notations, 𝜎𝜎𝜎𝑔0 will be denoted as 𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛0 , meaning that
𝑛0 refers to the observed central grain 𝑔. Also, 𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 𝐹 𝐸 and 𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 𝐶 𝐴

will denote the predictions obtained with the FE model and the linear
regression from Eqs. (6) and (8), respectively.

For each relative position ⃖⃖⃖⃖⃗𝑔 𝑛𝑖 and each grain 𝑔 depth, 100 values
of 𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 (𝑑) are extracted from S-1G simulations, with one value corre-

sponding to each random orientation of the central grain. Within these
100 values, a random subset of 40 values is used for the multilinear
regression to fit the tensor 𝑈𝑈𝑈 ⃖⃖⃖⃗𝑔 𝑛𝑖 ,𝑑 and 𝑈𝑈𝑈 0⃗,𝑑 , while the other 60 are used
to validate the prediction accuracy.

Instead of relying on the R-squared statistic, which is inadequate for
evaluating the prediction error of a stress tensor, different statistical
tool was employed to calculate the differences in predictions. The
variable used to assess the prediction differences between the two
models is defined as follows:

𝛥𝜎𝜎𝛥𝜎𝑑 𝑖𝑓 𝑓𝑛𝑖
=

‖𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖 𝐹 𝐸 − 𝛥𝜎𝛥𝜎𝛥𝜎𝑔
𝑒𝑓 𝑓

𝑛𝑖 𝐶 𝐴‖𝑒𝑞
⟨‖𝛥𝜎𝛥𝜎𝛥𝜎𝑔

𝑒𝑓 𝑓
𝑛𝑖 𝐹 𝐸‖𝑒𝑞⟩𝑜𝑟𝑖𝑛𝑖

(14)

where ⟨∙⟩ ⃖⃖⃖⃗𝑔 𝑛𝑖 is the average of the 60 values obtained for each orienta-
tion attributed to the grain 𝑛 .
𝑖
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In Table 1 are presented the statistics of 𝛥𝜎𝛥𝜎𝛥𝜎𝑑 𝑖𝑓 𝑓𝑛𝑖 per neighboring
grains layers and grain 𝑛𝑖’s depth. In the table, ⟨𝛥𝜎𝛥𝜎𝛥𝜎𝑑 𝑖𝑓 𝑓𝑛𝑖 ⟩⃖⃖⃖⃖⃖⃖⃗𝑆 𝐸 𝐿 designs
the average over all the values of 𝛥𝜎𝛥𝜎𝛥𝜎𝑑 𝑖𝑓 𝑓𝑛𝑖 obtained for each orientation,
each selected relative position ⃖⃖⃖⃖⃗𝑔 𝑛𝑖 and each selected depth. Similarly,
𝑠𝑡𝑑 (∙)⃖⃖⃖⃖⃖⃖⃗𝑆 𝐸 𝐿 and 𝑚𝑎𝑥 (∙)⃖⃖⃖⃖⃖⃖⃗𝑆 𝐸 𝐿 are their standard deviation and maximum,
respectively. Two points can be drawn out of these data.

First, apart from the case where the central grain is located on the
free surface (in that case the central grain is a half Kelvin’s cell), the
predictions errors are remotely constant no matter the grain 𝑛𝑖’s depth
and distance from the grain 𝑔. An average prediction error of 𝜎𝜎𝜎𝑔0 𝐶 𝐴
lower than 0.3% is observed, with a standard deviation lower than
0.1% and a maximum error lower than 0.5%. This high precision of
𝜎𝜎𝑔0 𝐶 𝐴 predictions is relevant as it represents in average more than half
of a grain total stress (Eq. (1b)). An average prediction error of 𝛥𝜎𝛥𝜎𝛥𝜎𝑔𝑛𝑖 𝐶 𝐴
of ∼1% is observed, with a standard deviation lower than 0.1% and
a maximum error lower than 4%. These data are also very satisfying,
showing the excellent accuracy of the model.

The second point concerns grains located on the free surface (depth
equals 0) as a loss in accuracy is observed. The average prediction error
of 𝜎𝜎𝜎𝑔0 𝐶 𝐴 is 1%, which is 3 times larger than the error observed in depth.
Similarly, the standard deviation and maximum errors are up to 0.3%
and 1.9%, respectively. These values are still significantly small, which
is great, knowing the importance of predicting 𝜎𝜎𝜎𝑔0 𝐶 𝐴 accurately. On the
same note, 𝛥𝜎𝛥𝜎𝛥𝜎𝑔𝑛𝑖 𝐶 𝐴 also shows similar trends: the average prediction
error goes up to 4.6% when ∼1.1% was observed for the other depth.
Similar ratios are also observed for all the other relative positions and
other statistical values. Nonetheless, these values remain low and the
accuracy of the model excellent.

Concerning the identification of the tensors 𝑈𝑈𝑈 0⃗,𝑑 and 𝑈𝑈𝑈 ⃖⃖⃗𝑔 𝑛,𝑑 , the
number of FE simulations required to fit their components could have
been reduced, but due to the speed of the FE software used, it was
not necessary to look for an optimization of the process, but one could
imagine a smaller specific set of crystallographic orientations leading
to the same precision and reducing the amount of FE simulations.

3.3.2. Prediction of 𝜎𝜎𝜎𝑔(𝑑) and 𝜏∗𝑔(𝑑)
In this section, the CA model predictions of a grain’s stress tensor

and highest NRSS for the S-Agg aggregates are confronted to those
obtained from the FE model. To highlight the importance of each
improvement brought to the CA model (new approximation formula-
tion, depth dependency, 4 layers of neighbors accounted), five different
variants of the CA model were tested, where each variant has some or
all of the upgrades mentioned in Section 2.2. The 65 × 804 predictions
obtained with each FE and CA models are compared in Table 2:
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Table 1
Statistics of 𝛥𝜎𝛥𝜎𝛥𝜎𝑑 𝑖𝑓 𝑓

𝑛𝑖 in % depending on 𝑛𝑖 ’s depth and distance from the grain 𝑔. 𝛥𝜎𝛥𝜎𝛥𝜎𝑑 𝑖𝑓 𝑓
𝑛𝑖 is used to assess 𝜎𝜎𝜎𝑔

0 (𝑑) and 𝛥𝜎𝛥𝜎𝛥𝜎𝑔𝑒𝑓 𝑓 predictions differences between
the CA and FE models.

[%] Relative positions Grain 𝑛𝑖 ’s depth

⃖⃖⃖⃖⃗𝑔 𝑛𝑖 considered 0 1 2 3 4 5 to 9 ∞

𝜎𝜎𝜎𝑔
0 (𝑛𝑖 = 𝑛0) 1.0 0.3 0.2 0.2 0.2 0.2 0.2

Average 0 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 2 4.6 1.4 1.1 1.0 1.0 1.0 1.0
2 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 4 4.2 1.1 0.9 0.8 0.8 0.8 0.8

⟨𝛥𝜎𝛥𝜎𝛥𝜎𝑑 𝑖𝑓 𝑓
𝑛𝑖 ⟩ ⃖⃖⃖⃖⃖⃗𝑆 𝐸 𝐿 4 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 6 3.9 1.0 0.9 0.8 0.7 0.7 0.7

6 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 8 3.8 1.0 0.9 0.8 0.8 0.7 0.7

𝜎𝜎𝜎𝑔
0 (𝑛𝑖 = 𝑛0) 0.3 0.1 0.1 0.0 0.0 0.0 0.0

Standard deviation 0 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 2 2.4 0.5 0.4 0.3 0.3 0.3 0.3
2 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 4 2.3 0.6 0.4 0.3 0.3 0.3 0.3

𝑠𝑡𝑑
(

𝛥𝜎𝛥𝜎𝛥𝜎𝑑 𝑖𝑓 𝑓
𝑛𝑖

)

⃖⃖⃖⃖⃖⃗𝑆 𝐸 𝐿 4 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 6 2.1 0.5 0.4 0.3 0.3 0.3 0.3
6 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 8 2.1 0.5 0.4 0.3 0.3 0.3 0.3

𝜎𝜎𝜎𝑔
0 (𝑛𝑖 = 𝑛0) 1.9 0.5 0.4 0.3 0.3 0.3 0.3

Maximum 0 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 2 14.6 3.6 2.5 2.2 2.3 2.3 2.3
2 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 4 13.9 3.8 2.5 2.1 2.1 2.1 2.1

𝑚𝑎𝑥
(

𝛥𝜎𝛥𝜎𝛥𝜎𝑑 𝑖𝑓 𝑓
𝑛𝑖

)

⃖⃖⃖⃖⃖⃗𝑆 𝐸 𝐿 4 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 6 12.7 3.9 2.6 2.2 2.2 2.2 2.3
6 < ‖ ⃖⃖⃖⃖⃗𝑔 𝑛𝑖‖ ≤ 8 12.8 3.5 2.5 2.4 2.3 2.4 2.4
Table 2
Comparison between the FE model and several variants of the CA model. S-Agg simulations results from both models are used to assess the CA model accuracy to predict a grain’s
tress tensor and NRSS, depending on the model’s version and the grain’s depth. Different variants of the CA model are presented to highlight the importance of each improvement
rought to the CA model.
Average CA model’s Grain’s depth 𝑑 All depths

version 0 1 2 3 4 5 6 7 8 ≤9 included

Stress error NEW4 4.1 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.2 3.4
OLD4 6.7 5.6 5.4 5.2 5.2 5.2 5.2 5.2 5.1 5.1 5.4

‖𝜎𝜎𝜎𝑔
𝐹 𝐸−𝜎𝜎𝜎𝑔

𝐶 𝐴‖𝑒𝑞
‖𝜎𝜎𝜎𝑔

𝐹 𝐸‖𝑒𝑞
D∞ 13.3 8.1 5.3 4.2 3.8 3.6 3.4 3.4 3.3 3.2 5.0
NEW3 4.5 3.7 3.7 3.8 3.8 3.8 3.8 3.9 3.8 3.8 3.9

[%]
D01 8.5 10.6 ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ 9.6
SC 16.4 14.9 15.6 15.4 15.4 15.3 15.3 15.3 15.1 15.3 15.4

NRSS error NEW4 2.0 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.5 1.5 1.6
OLD4 2.9 2.5 2.4 2.3 2.4 2.3 2.3 2.3 2.3 2.3 2.4

|𝜏∗𝑔𝐹 𝐸−𝜏∗𝑔𝐶 𝐴 |
𝜏∗𝑔𝐹 𝐸

D∞ 5.2 3.2 2.4 2.0 1.8 1.7 1.7 1.6 1.6 1.5 2.2
NEW3 2.3 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9

[%]
D01 4.4 4.9 ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ 4.7
SC 8.8 7.7 7.6 6.8 6.6 6.8 6.8 6.7 6.9 7.0 7.2
• The NEW4 version, based in Eq. (3) , includes the 3 mentioned
improvements and shows the best accuracy among all the CA
model’s variants, with an average stress prediction error of 3.4%
and an average NRSS prediction error of 1.6%. These results are
very satisfying, however, further details regarding this matter will
be provided later.

• OLD4 accounts for 4 layers of neighboring grains and is depth
dependent, but Eq. (2b) is used to approximate the neighborhood
effect instead of Eq. (3). The prediction errors increased by a
factor 1.5, showing that the new approximation of the neighbor-
hood effect (Eq. (3)) is much more accurate than the initial one
proposed in [32] (Eq. (2b)). This is even more relevant for the
case 𝑑 = 0 where the average prediction error is increased by a
factor 1.6.

• D∞ uses Eq. (3) approximation and accounts for 4 layers of
neighboring grains, but all grains are considered in deep-depth
(𝑑 = ∞). Comparing D∞ to NEW4 shows that the free surface
affects only the grains less deep than 𝑑 = 5. A much more
significant accuracy drops is observed for D∞ in comparison to
NEW4 for the grains located at the surface (𝑑 = 0 or 1).

• NEW3 uses Eq. (3) approximation and is depth dependent, but
only accounts for 3 layers of neighboring grains. Comparing
NEW3 to NEW4 shows that reducing the radius of accounted
neighboring grains has decreased the accuracy in a non-negligible
amount, going from an average stress prediction error of 3.4% to
3.9% and an average NRSS prediction error of 1.6% to 1.9%. This
7 
indicates that increasing the range of neighboring grains consid-
ered in the model could be a potential solution for improving its
accuracy, up to a certain point.

• D01 includes all upgrades but considers only the grains visible
from the surface (grains located at 𝑑 = 0 and 𝑑 = 1) for the
calculation of the neighborhood effect. The difference in precision
between the model versions NEW4 and D01 underscores the risk
of relying solely on 2D analysis based on EBSD surface images.
Considering only the visible grains leads to an average error of
9.6% for the stress and 4.7% for the NRSS. These errors increase
to 11.1% and 10.5%, respectively, when considering only the
grains with high stress concentration from S-Agg-2 aggregates.
This demonstrates the critical importance of accounting for the
full grain environment when performing stress field analysis,
rather than relying only on surface observations.

• SC refers to the commonly used Self Consistent scheme, which
consists of disregarding the neighborhood effect in the CA model
(𝜎𝜎𝜎𝑔𝑆 𝐶 (𝑑) = 𝜎𝜎𝜎𝑔0(𝑑)). Comparing the SC and FE models is in fact
equivalent to quantifying the neighborhood effect 𝛥𝜎𝛥𝜎𝛥𝜎𝑔𝑁 (𝑑). The
neighborhood effect represents on average 15.4% of a grain total
stress, with a 90th percentile value of 23.7% and a maximum of
69.9% observed for the S-Agg-3 aggregates. These values show
how important it is to accurately capture the neighborhood ef-
fect when the environment is specifically set to generate stress

concentrations, as it is in S-Agg-2 and S-Agg-3 aggregates.
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Fig. 4. Scatter plot of FE and CA-NEW4 model predictions, along with the distribution of the model differences across the 65 × 804 values divided into various subsets. The
ariable 𝑛 refers to the number of grains included in the subset. The exponent sign ∙+ refers to the predictions of the grains showing the highest 𝑋 value among the 65 grains
onsidered within an aggregate. ∙− refers to all the remaining grains. Thus, S-Agg-3+ counts only 4 points.
i
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• Regardless of the model under consideration, surface grains (d
= 0) consistently exhibit a prediction accuracy noticeably lower
than that of the other grains.

Each modification brought to the model has improved the accuracy
f the CA model when compared to the FEM. To provide a thorough
ssessment of the model NEW4’s accuracy, Fig. 4 displays the predic-

tions of 𝜎𝑔 and 𝜏∗𝑔 from both models, along with the distributions of
their prediction differences. Data are divided into various subsets to ap-
prehend the models’ differences depending on the grain-neighborhood
configuration. S-Agg+ refers to the grains showing the highest value
mong the 65 grains considered within an aggregate for each S-Agg
imulation. On the figure is also displayed the 95% confidence interval

calculated using the empirical rule as follows:
8 
𝐶 𝐼95%(𝑍𝑔) = ⟨𝑍𝑔
⟩𝑔 ± 2 ∗ 𝑠𝑡𝑑(𝑍𝑔)𝑔 (15)

This formulation assumes that 𝑍𝑔 follows a normal distribution, which
s a reasonable assumption for our data. Several points can be noticed
rom these data:

• The two models’ predictions exhibit remarkable consistency, with
all data points closely aligning along the 𝑋 = 𝑌 axis. Over all the
data, the following 95% confidence intervals of the two models
differences are obtained:

– 𝐶 𝐼95%(
‖𝜎𝑔𝐹 𝐸−𝜎𝑔𝐶 𝐴‖𝑒𝑞

‖𝜎𝑔𝐹 𝐸‖𝑒𝑞 ) = 3.354 ± 2.761 [%]

– 𝐶 𝐼 (
𝜏∗𝑔𝐹 𝐸−𝜏∗𝑔𝐶 𝐴

∗𝑔 ) = −0.081 ± 4.042 [%]
95% 𝜏𝐹 𝐸
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– 𝐶 𝐼95%(𝜏∗𝑔𝐹 𝐸 − 𝜏∗𝑔𝐶 𝐴) = 0.000 ± 0.016

• Except for S-Agg-3, there is no notable decrease in accuracy
observed between the S-Agg+ and S-Agg− subsets, despite the sig-
nificant differences in stress levels among their grains. In absolute
terms, a slight decrease of accuracy is observed for 𝜏∗𝑔𝐶 𝐴 in Fig. 4(b)
from S-Agg− to S-Agg+ subsets. However, proportionally to the
predicted grain value, the trend is reversed, similar to 𝜎𝑔𝐶 𝐴 in
Fig. 4(a).

• S-Agg-3+ exhibits extremely high stress levels. Nonetheless, the
accuracy of predictions for these extreme configurations remains
relatively similar to that of other predictions. Their values of
𝜏∗𝑔 are twice as high as those of S-Agg-1+ and even S-Agg-2+,
which are the maximum observed after millions of random grain-
neighborhood generations. This demonstrates that when the en-
tire grain neighborhood is perfectly oriented to generate stress
concentration, extremely high stress levels can be attained. In
the case of textured material, these stress levels might be more
achievable than in the case of fully random aggregates.

• The CA model predictions for S-Agg-2+ are less accurate than
those for S-Agg-1+. 𝜏∗𝑔 are in average overestimated by the CA
model for S-Agg-2+ in comparison to the FE model, whereas
an average closer to zero is observed for S-Agg-1+. This could
be explained by the difference of stress level between the two
subsets (

⟨

𝜏∗𝑔𝐹 𝐸
⟩

𝑔 = 0.507 for S-Agg-1+ versus 0.632 for S-Agg-
2+), suggesting that the CA model tends to overestimate grains
exhibiting high stress levels. However, this hypothesis is not
corroborated by the data from the S-Agg-3+ subset, where the CA
model underestimates the stress levels. Nonetheless, this subset
is not large enough to draw conclusive results. Another reason
for this discrepancy could be the methodology used to generate
S-Agg-2 aggregates. They are generated using the CA model, by
keeping the grain-neighborhood configurations that exhibit the
highest NRSS among 108 random configurations. Consequently,
by selecting the highest predicted value, the likelihood of 𝜏∗𝑔𝐶 𝐴 >
𝜏∗𝑔𝐹 𝐸 is increased, leading to skewed statistics. The best way to con-
firm these hypotheses would be to also simulate 108 aggregates
randomly generated using the FE model. However, undertaking
such a large scale of simulations would require a significant
amount of time and resources. Therefore, the necessity of models
such as the CA model becomes apparent, as they provide a
more efficient means of generating large datasets for analysis and
comparison.

• Grains located at the surface (d = 0) exhibit lower prediction
accuracy compared to other grains, as previously observed in
Table 2. Similar to Fig. 4(b), different subsets of data are pre-
sented in Fig. 5: predictions from S-Agg-1+ and S-Agg-2+ subsets
are further divided based on the grains’ depth. In the case of the
S-Agg-2+ subset, when the stress concentration is located at d =
1, 2 and 9, the confidence intervals are constant. However, when
d = 0, the interval width is multiplied by 0.024/0.016 ≈ 1.5.
This trend is less pronounced in the case of the S-Agg-1+ subset.
The explanation mentioned above could also be applied to this
discrepancy.

The primary objective of the CA model is to accurately predict
the NRSS of grains, enabling the identification of grain-neighborhood
configurations that lead to high stress concentration within very large-
scale aggregates. This information is crucial for pinpointing the grains
most likely to initiate crack and determining their associated stress
levels. Therefore, the confidence intervals illustrated in Fig. 5 are the
most relevant to the problematic. Assuming that the intervals from S-
gg-2+ subsets are skewed due to the explanation mentioned above, the

ntervals from S-Agg-1+ would be the most accurate and adapted to the
problematic for assessing the model’s precision in comparison to the FE
model:
9 
• For surface grains (d = 0):

– 𝐶 𝐼95%(𝜏∗𝑔𝐹 𝐸 − 𝜏∗𝑔𝐶 𝐴) = −0.002 ± 0.018
– 𝐶 𝐼95%(

𝜏∗𝑔𝐹 𝐸−𝜏∗𝑔𝐶 𝐴
𝜏∗𝑔𝐹 𝐸 ) = −0.472 ± 3.652 [%]

• For in-depth grains (d > 0):

– 𝐶 𝐼95%(𝜏∗𝑔𝐹 𝐸 − 𝜏∗𝑔𝐶 𝐴) = −0.001 ± 0.016
– 𝐶 𝐼95%(

𝜏∗𝑔𝐹 𝐸−𝜏∗𝑔𝐶 𝐴
𝜏∗𝑔𝐹 𝐸 ) = −0.110 ± 3.129 [%]

An estimation error of approximately ±4% (±0.02 in absolute terms)
validates the precision of the CA model, demonstrating its effectiveness
in identifying areas of high stress concentration within polycrystalline
aggregates.

However, determining whether stress concentrations are more likely
o be located at the surface or within the bulk material presents a

more challenging task. The range of prediction error is comparable to
the variations in NRSS observed across different depths. For instance,
in the subset S-Agg-2+, the average

⟨

𝜏∗𝑔𝐹 𝐸
⟩

𝑔 is 0.666 for d = 0 and
0.620 for d > 0, yielding a difference of 0.046, which is only twice
the magnitude of the prediction error interval. Fig. 6 displays the box
plots of 𝜏∗𝑔 predicted by FE and CA models for various subsets of data
and grain depths (each box plot is based on 100 values). Although
there are discrepancies between the box plots of each model (CA box
plots being shifted towards higher values compared to FE box plots),
the trends observed across different grain depths are consistent for
both models. On average, grains located at d = 0 exhibit the highest
stress, whereas those at d = 1 demonstrate the lowest stress levels.
Grains at d = 2 and d = 9 fall somewhere in between, but closer to
the stress levels observed at d = 1. This shows that despite the CA
model exhibiting prediction errors of similar magnitude as the average
variations in NRSS attributable to the grain’s depth, it remains capable
of pinpointing where grains experiencing the highest stress are likely
to be located: either at the surface or within the bulk material.

4. Stress field analysis by mean of the FEM model

Before undertaking large-scale statistical analyses of aggregate stress
ields using the CA model, a preliminary investigation is performed
ith the FEM model. This analysis first examines the linear-elastic

tress field using S-Agg simulaitons, followed by an assessment incor-
orating elasto-plastic behavior for selected S-Agg aggregate configura-
ions.

4.1. Linear-elastic FEM analysis

The extreme values observed for S-Agg-3+ in Fig. 4(b) theoretically
represent the maximum values a grain can possibly reach, but statis-
tically, they are highly improbable. Conversely, S-Agg-2+ provides the
maximum values that should be expected within a dataset of 108 grains.
These values are detailed in Table 3 as a function of the grain’s depth.
In-depth grains, having more neighboring grains, would exhibit the
ighest possible value if all these neighbors were perfectly aligned to
enerate stress concentration, as observed in the table for S-Agg-3+.
ollowing the same logic, surface grains should theoretically exhibit
he lowest value. However, this is not observed in the results. Surface
rains actually display the second-highest value. One potential expla-
ation for this discrepancy could be the stronger individual influence of

neighboring grains on surface grains compared to in-depth grains. This
could be attributed to the fact that surface grains constitute only half
of a Kelvin’s cell. On the other hand, since in-depth grains have 536
neighboring grains compared to 292 for surface grains, it is more prob-
able for the neighbors of surface grains to all be aligned and generate
stress concentration compared to in-depth grains. Additionally, due to
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Fig. 5. Scatter plot of FE and CA-NEW4 model predictions of S-Agg highest NRSS values, along with the distribution of the model differences across the 800 values. The exponent
ign ∙+ refers to the predictions of the grains showing the highest 𝜏∗𝑔𝐹 𝐸 among the 65 grains considered within an aggregate. Over all subsets, 𝐶 𝐼95%(𝑍𝑔 ) = −0.006 ± 0.019.
Fig. 6. Box plot of 𝜏∗𝑔 predicted by FE and CA models for different grain’s depth and subsets of data (100 values were used for each box plot): (a) S-Agg-1’s 100 highest values
ut of the 6 grains located at 𝑑 = 𝑖 × among the 400 S-Agg-1 random aggregates; (b) S-Agg-2+ subset.
o

Table 3
Variation of 𝜏∗𝑔𝐹 𝐸 depending on the grain’s depth in the case of high stress concentration
onfigurations.

𝑑 = 0 1 2 9
⟨

𝜏∗𝑔𝐹 𝐸
⟩

𝑔
S-Agg-2+ 6.66 6.15 6.25 6.21
S-Agg-3+ 1.40 1.24 1.33 1.46

the stronger influence of surface grains’ neighbors, they are expected
to have higher values than in-depth grains, as observed in the table for
S-Agg-2+.

On another note, the variations of the grains’ second moment de-
pending on the grains’ depth is an interesting value to consider. Up to
this point, only the first moment (average value within a grain) has
been observed. The CA model is limited to predicting the first moment,
while the second moment (the standard deviation of all the grain’s
elements) can be derived from FE simulations. This value is relevant for
characterizing the heterogeneity within a grain. The second moment of
a grain’s stress level is calculated as follows:

𝑠𝑡𝑑𝑔𝜎𝜎𝜎 =
√

∑ 𝑣𝑒𝑙 ⋅
(

∥ 𝜎𝜎𝜎𝑒𝑙 − 𝜎𝜎𝜎𝑔 ∥𝑒𝑞
)2 (16)
𝑒𝑙 𝑓 𝑟𝑜𝑚 𝑔 𝑣𝑔

10 
where 𝑣𝑒𝑙 and 𝑣𝑔 are the element and grain volumes, respectively. Fig. 7
illustrates the variations in the second moment of grains as a function of
several factors: the grain’s average stress level, the grain’s depth, and
the prediction differences between the FE and CA models. Three key
bservations can be drawn from the figure:

• There appears to be no evident correlation in Fig. 7(a) between
the second moment and the prediction error of the CA model.
This suggests that even in cases where high heterogeneities exist
within the grain, the CA model can predict a grain’s mean stress
level with consistent accuracy.

• As the stress concentration within the aggregate increases, so does
the second moment within the grains of the aggregate. The boxes
in Fig. 10 display higher 𝑠𝑡𝑑𝜎𝜎𝜎 for S-Agg-3 compared to S-Agg-2,
and they are higher for S-Agg-2 compared to S-Agg-1. This can be
explained by the fact that neighboring grains can induce stresses
in different directions, leading to stress heterogeneity within the
grain. Grains with high stress levels (such as those in the S-Agg-2+
subset) have neighbors with strong influences, but these neigh-
bors may not all pull in the exact same direction, but still resulting
in a stress concentration within the grain. This explanation is also
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Fig. 7. Variations of the grains’ stress level second moment as a function of (a) the FE and CA models predictions differences, (b) different subset of data based on grains’ depth
and stress level.
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supported by the observations of S-Agg-3+ grains, which do not
exhibit significantly high standard deviations compared to their
very high stress levels. This is because their entire neighborhood
is perfectly oriented to increase stress within the grain in the same
direction, thus introducing no significant heterogeneities. How-
ever, their neighboring grains (S-Agg-3−) show higher standard
deviations than the other aggregates.

• Surface grains are more likely to display a higher second moment
than their neighbors. For each subset of data in Fig. 7(a), the
boxes display higher 𝑠𝑡𝑑𝑔𝜎𝜎𝜎 the closer the grains are to the surface.
The explanation from the previous point can also be applied to
this observation. Surface grains are influenced by their neighbors
on only one side, leading to heterogeneities within the grain.
Additionally, grains located at d = 0 are only half of a Kelvin’s
cell, which could be another reason for this observation.

At equal stress levels, grains with a higher second moment should
e more likely to plastify first. Within the S-Agg-2+ subset, surface

grains exhibit higher second moments, making them even more likely
to plastify first in addition to their higher stress levels.

4.2. Elasto-plastic FEM analysis

4.2.1. Finite element model additional feature
The above analysis was conducted under the assumption that the

rain most likely to initiate a crack first is the one with the highest
RSS during the elastic load. To validate this assumption, elasto-
iscoplastic FEM simulations were performed using the aggregates
-Agg presented in Section 3.2. The grains’ mechanical behavior is no

longer considered purely elastic and has been extended to an elasto-
viscoplastic behavior. A cyclic load with a stress rate 𝑅 = −1, a constant
strain rate of �̇�33 = 10−3 s−1, and a strain amplitude of 0.06% is applied
o the aggregate’s matrix. This amplitude was chosen just below the

material elastic limit, allowing the matrix surrounding the grains to
still be assumed as linear-elastic. As in Section 3.2, only the behavior
f the 65 core-grains with their four whole neighboring grain layers

was reported. These simulations are not intended to study the cyclic
behavior of the grain, but rather to confirm the correlation between
the grains’ NRSS and their susceptibility to initiate crack formation in
the presence of a free surface.

The Meric-Cailletaud’s model [40] was employed to characterize the
rystal elasto-viscoplastic behavior, defined as:

�̇�𝑔𝑠 =
(

𝜏𝑔𝑠 − 𝜒𝑔
𝑠

|𝜏𝑔𝑠 − 𝜒𝑔
𝑠 |

)

�̇�𝑔𝑠 (17a)

ith �̇�𝑔𝑠 =

(
(

|𝜏𝑔𝑠 − 𝜒𝑔
𝑠 | − 𝑟𝑔𝑠

)+)𝑛

(17b)

𝐾

11 
where �̇�𝑔𝑠 is the grain 𝑔 slip rate of the slip system 𝑠; (⋅)+ denotes the
perator taking the positive part of its argument; 𝜈𝑔𝑠 is the system 𝑠
umulative viscoplastic slip; 𝐾 and 𝑛 are material parameters that char-
cterize the viscous effect; 𝜒𝑔

𝑠 and 𝑟𝑔𝑠 are, respectively, the kinematic
and isotropic hardening. The chosen parameters are derived from the

orks of Y. Guilhem [38] on 316L stainless steel in HCF. Only the 12
octahedral slip systems were considered. All simulations presented in
this article were conducted using the equations and material parame-
ters listed in Appendix B. For further details on the model, readers are
encouraged to refer to the following articles [17,38,40].

FE simulations were conducted using ABAQUS software, with the
eric-Cailletaud model implemented through the UMAT function. Due

o the computational weight of such simulation, the mesh shown
n Fig. 3(b) was retained, although it was not sufficient to achieve

viscoplastic-variable convergence. However, it was deemed adequate
or capturing the overall trends. For a more comprehensive analysis of

the grain’s cyclic behavior, a finer mesh and a larger aggregate would
be required.

The total cumulative viscoplastic slip 𝜈𝑔𝛴 is employed to evaluate
grain fatigue damage, a variable commonly used in crack nucleation
criteria. It is defined as the summation of the cumulative viscoplastic
slip 𝜈𝑔𝑠 (𝑡) at the instant 𝑡 across all 12 octahedral slip systems:

𝜈𝑔𝛴 (𝑡) =
12
∑

𝑠=1
𝜈𝑔𝑠 (𝑡) (18)

In this study, 20 aggregates from the S-Agg-2 set (five from each
stress concentration depth 𝑑 = {0, 1, 2, 9}) and an additional five
aggregates from the S-Agg-1 set were randomly selected, resulting in
a total of 25 simulations. Each simulation provides 65 values of 𝜈𝑔𝛴 .
Only 1/4 of a cycle was simulated, except for five simulations (one for
each subset) where 4 cycles were simulated (due to server issues, only
1.5 cycles were simulated for two of them).

Using these longer simulations (65 × 5 values), it can be demon-
strated that the values of 𝜈𝑔𝛴 at 1/4 cycle are proportional to the values
of 𝜈𝑔𝛴 at 1.5 and 4 cycles. Their regressions exhibit an excellent 𝑅2

coefficients:

𝜈𝑔𝛴 (1.5 𝑐 𝑦𝑐 𝑙 𝑒𝑠) ≈ 4.89 ⋅ 𝜈𝑔𝛴 (1∕4 𝑐 𝑦𝑐 𝑙 𝑒) , (𝑅2 = 0.999) , (5 x 65 values)
(19a)

𝜈𝑔𝛴 (4 𝑐 𝑦𝑐 𝑙 𝑒𝑠) ≈ 14.6 ⋅ 𝜈𝑔𝛴 (1∕4 𝑐 𝑦𝑐 𝑙 𝑒) , (𝑅2 = 0.998) , (3 x 65 values)
(19b)

Even though the elasto-viscoplastic behavior includes softening, it
should only appear after several cycles, which explains the excellent
𝑅2 coefficients. This correlation allows us to study the grain cyclic
damage by only focusing on the value at the end of the first tensile
load (1/4 cycle) which considerably reduce the computational time
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Fig. 8. Correlation between the grains’ values of 𝜈𝑔𝛴 at 1/4 cycle predicted by the FE model and their NRSS 𝜏∗𝑔𝐶 𝐴 predicted by the CA model along with a second order polynomial
regression. (a) color coded as a function of the grain’s depth; (b) color coded as a function of the grain’s neighbor plasticity level.
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Table 4
Eq. (20) fitting parameter 𝑏 obtained for different subsets of data (𝑎 = 9.11⋅10−4 and 𝜏∗𝑐 𝑟𝑖𝑡 0.34).

Selected grains 𝑎𝑙 𝑙 𝑑 > 1 𝑑 ≤ 1 𝑑 = 0 𝑑 = 1 𝑑 = 2 𝑑 = 9
𝑏 = [×10−3] 3.43 2.93 3.85 3.88 3.79 2.68 3.07

needed to perform the elasto-viscoplastic simulations. For simplicity,
𝜈𝑔𝛴 (1∕4 𝑐 𝑦𝑐 𝑙 𝑒) will be denoted as 𝜈𝑔𝛴 in the following.

4.2.2. Analysis of the elasto-plastic FEM simulations
Fig. 8 show the grains’ plastic damage at 0.06% deformation (1/4

cycle) predicted by the FE model (𝜈𝑔𝛴) as a function of the grains’ NRSS
at 0.01% deformation (before plasticity) predicted by the CA model
(𝜏∗𝑔𝐶 𝐴). The figure confirms the correlation between 𝜈𝑔𝛴 and 𝜏∗𝑔𝐶 𝐴, and a
second order polynomial function was used to express 𝜈𝑔𝛴 as a function
of 𝜏∗𝑔𝐶 𝐴:

𝜈𝑔𝛴 ≈ 𝑓𝜈𝑔𝛴 (𝜏
∗𝑔
𝐶 𝐴) =

{

0 if 𝜏∗𝑔𝐶 𝐴 < 𝜏∗𝑐 𝑟𝑖𝑡
𝑎 × (𝜏∗𝑔𝐶 𝐴 − 𝜏∗𝑐 𝑟𝑖𝑡) + 𝑏 × (𝜏∗𝑔𝐶 𝐴 − 𝜏𝑐 𝑟𝑖𝑡)2 else

(20)

𝜏∗𝑐 𝑟𝑖𝑡 corresponds to the minimum NRSS value necessary for the slip
ystem to reach its critical resolved shear stress 𝑟0 = 40 MPa. Thus, 𝜏∗𝑐 𝑟𝑖𝑡
s equal to 40∕(𝐸𝑦 ⋅ 0.06%) = 0.34. The coefficients 𝑎 and 𝑏 have been
itted using all the available data, resulting in values of 9.11 × 10−4 and
.43 × 10−3, respectively, with a coefficient of determination 𝑅2 = 0.953,
onfirming the validity of the correlation.

It appears that in Fig. 8(a), for the same value of 𝜏∗𝑔𝐶 𝐴, grains located
t the surface (𝑑 ≤ 1, represented by orange and yellow dots) exhibit
igher 𝜈𝑔𝛴 values compared to those below (𝑑 > 1, represented by
lue and green dots). This observation is further supported by fitting
q. (20) parameter 𝑏 to different subsets of data corresponding to

grains’ depth. While keeping the parameters 𝑎 and 𝜏∗𝑐 𝑟𝑖𝑡 constant, Table 4
presents the fitted parameter 𝑏 obtained for different grains’ depths.
urface grains demonstrate a higher value of 𝑏, indicating that, for a
iven NRSS, surface grains undergo greater plastic damage than grains

located below. However, although a larger dataset would be necessary
to accurately estimate the influence of grain depth, it can be argued
that the differences observed between the fitting curves are negligible
in comparison to the overall trend. Hence, the primary correlation for
atigue damage within the grains predominantly lies with their NRSS,
hile the influence of grain depth appears to be negligible.

Another observation from Fig. 8 is that grains deviating the most
rom the fitting curve are those with a neighborhood that has under-
one more plastic deformation than the average. In Fig. 8(b), grains are
12 
color-coded into three categories based on the plasticity level of their
close neighborhood: grains with a highly plastified close neighborhood
are represented by red crosses in the background, those with a mildly
plastified close neighborhood are denoted by yellow plus signs, and
grains with a non-plastified close neighborhood are depicted as blue cir-
cles in the foreground. It can be observed that grains deviating from the
fitting curve are grains with a plastified neighborhood. This observation
could be explained by the fact that when a grain undergoes plastic
deformation, its apparent stiffness tensor varies, thereby affecting its
influence on its neighbors (Eqs. (6) and (7)). Its influence can either
be amplified or diminished depending on its relative position with the
neighboring grain. Furthermore, the observation that grains with high
plasticity levels are also surrounded by a plastified neighborhood (as
een in Fig. 8(b), where all grains displaying 𝜏∗𝑔 > 0.5 are either

yellow or red) suggests an escalation of plasticity levels. These grain
lasticity levels may increase stress levels in their neighborhood, fur-

ther augmenting its plastic strain and creating a sort of snowball effect.
onsequently, there may be an agglomeration of grains with higher
alues of 𝜈𝑔𝛴 , which are ideal sites for crack initiation.

The computation of a grain’s NRSS by the CA model only considers
the elastic behavior of its neighborhood. However, due to the influence
of grains’ plastic strain on their environment, 𝜏∗𝑔𝐶 𝐴 is not a perfect
ndicator of grain damage rate. Nonetheless, grains most affected by
eighboring plasticity would be those next to a grain undergoing a
igher plastic rate and thus with a very high NRSS. The probability
f two adjacent grains having very high NRSS values is almost zero.
herefore, since the stress level applied to the aggregate is low in
CF-VHCF, the neighborhood effect variation due to plastic strains is
egligible. Thus, 𝜏∗𝑔𝐶 𝐴 remains a reliable indicator for identifying critical
onfigurations that lead to high damage rates and, consequently, crack
nitiation.

To conclude on the correlation between 𝜈𝑔𝛴 and 𝜏∗𝑔 , according to
the regression function 𝑓𝜈𝑔𝛴 (𝜏

∗𝑔
𝐶 𝐴), a grain with a NRSS of 0.62 (the

expected maximum NRSS in the case of GEO1 in Fig. 11) should exhibit
a value of 𝜈𝑔𝛴 = 5.26𝑒 − 04. This represents a damage rate 5 times
faster than the average grain (⟨𝜈𝑔𝛴

⟩

𝑔 = 1.04𝑒 − 04) and 1.7 times faster

than the maximum rate observed in the random distributions S-Agg-1
(𝜈𝑔𝛴 = 3.18𝑒 − 04). The damage rate increasing exponentially with 𝜏∗𝑔

justifies even more the need to study aggregates such as S-Agg-2 rather
than random aggregates, highlighting the importance of identifying
such configurations for deeper studies. However, it is essential to
acknowledge the limitations of this correlation. Using the three sigma
rules, a 95% confidence interval of 𝑓𝜈𝑔𝛴 (𝜏

∗𝑔
𝐶 𝐴) can be estimated using the

20 grains displaying a NRSS higher than 0.6:
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• 𝐶 𝐼95%(𝜈𝑔𝛴 − 𝑓𝜈𝑔𝛴 (𝜏
∗𝑔
𝐶 𝐴)) = 0.033 ± 1.923 [×10−4]

• 𝐶 𝐼95%(
𝜈𝑔𝛴−𝑓𝜈𝑔𝛴

(𝜏∗𝑔𝐶 𝐴)
𝜈𝑔𝛴

) = −2.435 ± 25.02 [%]

A data set larger than 20 values would be required to obtain a more
ccurate estimate of the confidence interval. However, the range of the

interval highlights the lack of precision in the correlation for grains
displaying high NRSS.

5. Probabilistic approach of the highest NRSS localization

Considering the observations from Section 4.2, which indicate that
grains with the highest NRSS are the ones most likely to plastify first
and thus initiate a crack, the probability of obtaining a high value of
𝜏∗𝑔 based on a grain’s depth was analyzed. This study helps assess the
conditions under which a crack is more likely to initiate, whether near
the surface or deeper within the material.

5.1. Independent random variables’ definitions

In order to proceed, several variables, terms and equations need to
e introduced:

• 𝑋𝑑
𝑔 represents the dimensionless shear stress 𝜏∗𝑔 of a random

grain 𝑔 surrounded by a random neighborhood, located at a
depth 𝑑. In the following, we will assume 𝑁𝑑 random variables
𝑋𝑑

1 ,… , 𝑋𝑑
𝑁𝑑

that are identically and independently distributed
with a common probability distribution function (PDF) 𝑃 (𝑋𝑑

𝑔 =
𝜏∗𝑔) = 𝑓 𝑑

𝑋 (𝜏
∗𝑔). The left-tailed cumulative distribution function

(CDF) is noted 𝑃 (𝑋𝑑
𝑔 ≤ 𝜏∗𝑔) = 𝐹 𝑑

𝑋 (𝜏
∗𝑔).

• 𝑌 𝑑
𝑁𝑑

= 𝑚𝑎𝑥(𝑋𝑑
1 ,… , 𝑋𝑑

𝑁𝑑
) denotes the highest value of 𝜏∗𝑔 observed

among 𝑁𝑑 random grains located at a depth 𝑑. It is PDF and CDF
noted 𝑓 𝑑

𝑌 (𝜏
∗𝑔 , 𝑁𝑑 ) and 𝐹 𝑑

𝑌 (𝜏
∗𝑔 , 𝑁𝑑 ), respectively, can be defined as

a function of 𝑓 𝑑
𝑋 (𝜏

∗𝑔):

𝑓 𝑑
𝑌 (𝜏

∗𝑔 , 𝑁𝑑 ) = 𝑁𝑑 × 𝑓 𝑑
𝑋 (𝜏

∗𝑔) × 𝐹 𝑑
𝑋 (𝜏

∗𝑔)(𝑁𝑑−1) (21a)

𝐹 𝑑
𝑌 (𝜏

∗𝑔 , 𝑁𝑑 ) = 𝐹 𝑑
𝑋 (𝜏

∗𝑔)𝑁𝑑 (21b)

The probability to have at least one grain among 𝑁𝑑 grains at a
depth 𝑑 with a value of 𝜏∗𝑔 higher than 𝑦 is 𝑃 (𝑌 𝑑

𝑁𝑑
> 𝑦) = 1 −𝐹 𝑑

𝑌 (𝑦).
• 𝑍𝐷 = 𝑚𝑎𝑥(𝑌 𝑑1

𝑁𝑑1
,… , 𝑌 𝑑𝐼

𝑁𝑑𝐼
) denotes the highest value of 𝜏∗𝑔 ob-

served among ∑𝑖=𝐼
𝑖=1 𝑁𝑑𝑖 random grains located at different depths

𝑑𝑖 from the set of depth 𝐷 = {𝑑1,… , 𝑑𝐼}. It is PDF and CDF noted
𝑓𝐷
𝑍 (𝜏∗𝑔 , {𝑁𝑑1 ,… , 𝑁𝑑𝐼 }) and 𝐹𝐷

𝑍 (𝜏∗𝑔 , {𝑁𝑑1 ,… , 𝑁𝑑𝐼 }), respectively,
can be defined as a function of 𝑓 𝑑

𝑋 (𝜏
∗𝑔):

𝑓𝐷
𝑍 (𝜏∗𝑔 , {𝑁𝑑1 ,… , 𝑁𝑑𝐼 }) =

𝑖=𝐼
∑

𝑖=1
𝑁𝑑𝑖 × 𝑓 𝑑𝑖

𝑋 (𝜏∗𝑔) × 𝐹 𝑑𝑖
𝑋 (𝜏∗𝑔)−1

×
𝑗=𝐼
∏

𝑗=1
𝐹

𝑑𝑗
𝑋 (𝜏∗𝑔)(𝑁𝑑𝑗 ) (22a)

𝐹𝐷
𝑍 (𝜏∗𝑔 , {𝑁𝑑1 ,… , 𝑁𝑑𝐼 }) =

𝑗=𝐼
∏

𝑗=1
𝐹

𝑑𝑗
𝑋 (𝜏∗𝑔)(𝑁𝑑𝑗 ) (22b)

In the case of a depth-set of a single layer (𝐷 = {𝑑𝑖}) we
have then 𝑓𝐷

𝑍 (𝜏∗𝑔 , {𝑁𝑑𝑖}) = 𝑓 𝑑=𝑑𝑖
𝑌 (𝜏∗𝑔 , 𝑁𝑑𝑖 ) and 𝐹𝐷

𝑍 (𝜏∗𝑔 , {𝑁𝑑𝑖}) =
𝐹 𝑑=𝑑𝑖
𝑌 (𝜏∗𝑔 , 𝑁𝑑𝑖 ). The probability to have at least one grain among

all grains within a range of depth with a value of 𝜏∗𝑔 higher than
𝑧 is 𝑃 (𝑍𝐷 > 𝑧) = 1 − 𝐹𝐷

𝑍 (𝑧).
• 𝑈𝐷1 ,𝐷2 = 𝑍𝐷2 − 𝑍𝐷1 denotes the difference between of the

highest value of 𝜏∗𝑔 observed among random grains located in
the two different sets of depth 𝐷1 and 𝐷2. It is PDF and CDF
noted 𝑓𝐷1 ,𝐷2

𝑈 (𝜏∗𝑔 , 𝐷1, 𝐷2) and 𝐹𝐷1 ,𝐷2
𝑈 (𝜏∗𝑔 , 𝐷1, 𝐷2) respectively can

𝑑 ∗𝑔
be defined as a function of 𝑓𝑍 (𝜏 ): o
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𝑓𝐷1 ,𝐷2
𝑈 (𝑢) = ∫

∞

−∞
𝑓𝐷1
𝑍 (𝑥, {𝑁𝑑1,1 ,… , 𝑁𝑑1,𝐼 })

⋅ 𝑓𝐷2
𝑍 (𝑥 − 𝑢, {𝑁𝑑2,1 ,… , 𝑁𝑑2,𝐼 }) ⋅ 𝑑 𝑥 (23a)

𝐹𝐷1 ,𝐷2
𝑈 (𝑢) = ∫

𝑢

−∞
𝑓𝐷1 ,𝐷2
𝑈 (𝑥) ⋅ 𝑑 𝑥 (23b)

The probability that the difference between the maximum 𝜏∗𝑔

within the depth-sets 𝐷1 and 𝐷2 is lower or equal to a given value
𝑢 is 𝑃 (𝑈𝐷1 ,𝐷2 ≤ 𝑢) = 𝑃 (𝑍𝐷2 − 𝑍𝐷1 ≤ 𝑢) = 𝐹𝐷1 ,𝐷2

𝑈 (𝑢). Therefore,
𝑃 (𝑈𝐷1 ,𝐷2 ≤ 0) = 𝑃 (𝑍𝐷2 ≤ 𝑍𝐷1 ) = 𝐹𝐷1 ,𝐷2

𝑈 (0) is the probability that
the grain with the highest value of 𝜏∗𝑔 among all the grains from
the two depth-sets 𝐷1 and 𝐷2 is located in the depth-set 𝐷1.

5.2. Analysis and fitting of 𝜏∗𝑔 distributions

To calculate 𝑃 (𝑈𝐷1 ,𝐷2 ≤ 0), it is essential to evaluate the two
functions 𝑓 𝑑

𝑋 (𝜏
∗𝑔) and 𝐹 𝑑

𝑋 (𝜏
∗𝑔), particularly for the extreme values of

𝜏∗𝑔 . To achieve this, the CA model proposed in Section 2.2 and tested
in Section 3.3 was employed to estimate the distribution functions of
𝜏∗𝑔 for different grain depths. Its efficiency and accuracy enable the
estimation of 𝜏∗𝑔 for a large number of grain-neighborhood configura-
tions within a short calculation time. For each depth 𝑑 under study, 1010
andom grain-neighborhood configurations were generated, and the
RSS of each configuration was estimated using the CA model. Among

these 1010 configurations, every 108 block, the configuration leading
to the highest NRSS value in the block was saved and utilized for the
specific configurations of S-Agg-2 from FEM simulations, as defined
in Section 3.2. The methodology for generating these distributions
proceeded as follows:

• A pool of 100,000 random crystallographic orientations was gen-
erated using the quaternion representation [41,42]. For each
orientation, depth, and relative position ⃖⃖⃖⃗𝑔 𝑛, the values 𝜎𝜎𝜎𝑔0(𝑑) /
𝛥𝜎𝛥𝜎𝛥𝜎𝑔𝑛(𝑑) were preliminary calculated according to Eqs. (6), (8).

• The central grain and its four layers of neighboring grains were
randomly assigned orientations from the initial pool. The central
grain’s NRSS was calculated according to Eqs. (3) and (9) based
on the given orientation configuration and utilizing the prelimi-
narily calculated values of 𝜎𝜎𝜎𝑔0(𝑑) / 𝛥𝜎𝛥𝜎𝛥𝜎𝑔𝑛(𝑑). This step was repeated
1010 times for each studied depth.

Because of the straightforward nature of the CA model, the aforemen-
tioned algorithm is easily parallelizable. As a result, it was implemented
in CUDA-FORTRAN, leveraging the parallel computing capabilities of
graphics processing units (GPUs). With an Nvidia RTX3090 GPU, esti-
mating the 𝜏∗𝑔 values for 107 grain-neighborhood configurations takes
approximately 40 s. Thus, the total time required to generate the
distributions for 1010 evaluations across all selected depths 𝑑 from 0
to 9 and ∞ is roughly 122 h.

The cumulative distribution of the 1010 predicted values of 𝜏∗𝑔 is
epicted in Fig. 9 for each grain depth. Overall, these distributions

closely resemble each other, except for 𝑑 = 0, which exhibits a slightly
wider distribution. The distribution’s mean is approximately 0.410 at
𝑑 = 0, and it fluctuates around this value within a range of ±0.02
as the depth increases. It quickly converges back to 0.410 at around
𝑑 = 7. Despite minor differences, these average values closely match
those obtained from the 400 random S-Agg-1 aggregates discussed in
Section 3.3, as shown in Table 5. The observed discrepancies at the
surface may be attributed to either the limited accuracy of the CA
model for 𝑑 = 0 or the insufficient number of S-Agg-1 aggregate
simulated to precisely capture the average NRSS, possibly due to a
wider distribution of 𝜏∗𝑔 for 𝑑 = 0.

Given that material parts are composed of millions of grains, it is
ore pertinent to focus on the extreme values. A closer examination

f the extreme values of 𝜏∗𝑔 in Fig. 9(b), using a scale 𝑙 𝑜𝑔 (1 − 𝑐 𝑑 𝑓 ),
10
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Fig. 9. Distribution of 𝜏∗𝑔 predicted by the CA model: (a) Cumulative distribution of 1010 evaluations of random grain-neighborhood crystallographic orientation configurations
for various grain depths 𝑑; (b) Fitting of the distribution by means of the generalized Pareto function. The scale 𝑙 𝑜𝑔10(1 − 𝑐 𝑑 𝑓 ) is utilized to zoom in on the extreme values of 𝜏∗𝑔

ith very low probability.
Table 5
Average value of 𝜏∗𝑔 per depth predicted by the FE or CA models for different dataset sizes: 2400 value per depth from S-Agg-1 random aggregates versus a dataset of 1010 random
onfigurations.
⟨𝜏∗𝑔⟩𝑔 𝑑 = 0 1 2 3 4 5 6 7 to 9 ∞

2400 values FE 0.407 0.406 0.411 0.410 0.410 0.412 0.411 0.410 ⊘
(S-Agg-1) CA 0.409 0.406 0.412 0.411 0.410 0.412 0.411 0.410 ⊘

1010 values CA 0.410 0.408 0.412 0.412 0.412 0.411 0.411 0.410 0.410
Table 6
Generalized Pareto parameters for each studied grain’s depth.
𝑑 = 0 1 2 3 4 5 6 7 8 9 ∞

𝜅𝑑
0 0.559 0.533 0.539 0.538 0.537 0.537 0.536 0.536 0.536 0.535 0.535

𝜉𝑑 −0.050 −0.056 −0.056 −0.057 −0.054 −0.050 −0.050 −0.050 −0.051 −0.051 −0.052
𝜃𝑑 0.012 0.010 0.011 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.010
a

reveals that the distribution for 𝑑 = 0 differs from the others. It
indicates that a grain at 𝑑 = 0 has approximately 101.8 times more
likelihood to reach a value higher than 0.6 compared to a grain at

= ∞. In another perspective, the probability of a grain at 𝑑 = 0
xceeding 0.63 is 10−6, while a grain at 𝑑 = ∞ has the same probability
f exceeding 0.59 (0.04 lower). The distribution for 𝑑 = 1 exhibits the
owest probability of extreme values. Subsequently, the distribution for
= 2 shows a slight increase compared to 𝑑 = 1, becoming the second-

ighest probability after 𝑑 = 0. From 𝑑 = 2 onwards, the probability
radually decreases towards 𝑑 = ∞.

To predict the probability of the distribution extreme values, the
peak over threshold method [43] with the generalized Pareto distribu-
tion (GPD) [44] were used. The PDF 𝑓 𝑑

𝑋 (𝜏
∗𝑔) and CDF 𝐹 𝑑

𝑋 (𝜏
∗𝑔) are then

expressed as follows:

𝑓 𝑑
𝑋 (𝜏

∗𝑔) = 𝑃 (𝑋𝑑 > 𝜅𝑑
0 )

(

1
𝜃𝑑

(

1 + 𝜉𝑑
𝜏∗𝑔 − 𝜅𝑑

0

𝜃𝑑

))−(1∕𝜉𝑑+1)

∀𝜏∗ ≥ 𝜅𝑑
0

(24a)
𝑑
𝑋 (𝜏

∗𝑔) = (1 − 𝑃 (𝑋𝑑 > 𝜅𝑑
0 )) + 𝑃 (𝑋𝑑 > 𝜅𝑑

0 )

×

(

1 + 𝜉𝑑
𝜏∗𝑔 − 𝜅𝑑

0

𝜃𝑑

)−1∕𝜉𝑑

∀𝜏∗ ≥ 𝜅𝑑
0 (24b)

The selected thresholds 𝜅𝑑
0 are chosen so that 𝑃 (𝑋𝑑 ≤ 𝜅𝑑

0 ) = (1 − 10−3),
which is equivalent to 𝑃 (𝑋𝑑 > 𝜅𝑑

0 ) = 10−3. This chosen value of
10−3 is sufficiently low considering that a typical mechanical part is
composed of far more than 103 grains, yet not too low to maintain an
excellent fit with the distribution data. The parameters 𝜉𝑑 and 𝜃𝑑 do
not have a physical interpretation; they only control the curvature and
the rate of decrease of the curve. The fitted curves for 𝑑 = 0, 1, 2,∞
14 
are plotted in Fig. 9(b) along with their corresponding distributions,
nd the fitted parameters for each depth are listed in Table 6. The

lowest 𝑅2 value obtained from the fitting curve is 0.9998, indicating
the goodness of fit of the GPD parameters. The obtained parameters
align with the observations mentioned in the paragraph above. For the
values of 𝜏∗𝑔 below 𝜅𝑑

0 , a normal distribution was used. The normal
distribution’s parameters are adjusted to ensure the continuity of 𝑓 𝑑

𝑋
and 𝐹 𝑑

𝑋 at 𝜏∗𝑔 = 𝜅𝑑
0 .

5.3. Probabilistic localization of 𝜏∗𝑔 highest value in mechanical parts

In this section, the probability of the highest 𝜏∗𝑔 value and its
localization in a real-size mechanical part is studied. To do so, the
dimensions of a standard cylindrical fatigue test specimen, following
ASTM E-466 specifications, were chosen as the reference geometry
(GEO1). Its cylindrical working section has a height ℎ𝑐 of 25 mm
and a diameter ∅𝑐 of 6.5 mm. To explore the influence of the ratio
between the number of surface and in-depth grains on the localization
probability of the grain with the highest NRSS, two additional specimen
geometries were derived. The second specimen (GEO2) halves the
height and doubles the diameter compared to SP1, resulting in twice
the number of in-depth grains while maintaining the same number of
surface grains. Conversely, the third geometry (GEO3) quadruples the
height and halves the diameter, doubling the number of surface grains
while retaining the same number of in-depth grains. The number of
grains per depth 𝑁𝑑 was determined based on the specimen dimen-
sions. An illustration alongside equations estimating the number of
grains per depth, depending on the cylinder’s dimensions, is provided
in Fig. 10.
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Fig. 10. Illustration of the grains counting per grain-layers in a cylinder.
Fig. 11. Probability of at least one grain having an NRSS exceeding 𝜏∗𝑔 within a given range of grain depth for each studied geometry. 𝑁𝐷 represents the number of grains within
the considered grain depth. GEO1 denotes the geometry with realistic dimensions. GEO2 doubles the number of grains in depth-set 𝐷∞, while 𝐷0<𝑑≤3 and 𝐷𝑑≤3 remain constant.
GEO3 doubles the number of surface grains while maintaining a constant number in depth.
For each geometry, the most probable values of 𝑍𝐷 (Eq. (22)) and
𝑈𝐷1 ,𝐷2 (Eq. (23)) were examined for different depth-sets 𝐷:

• 𝐷𝑎𝑙 𝑙 = {𝑎𝑙 𝑙 𝑙 𝑎𝑦𝑒𝑟𝑠 𝑑}: all the sample’s grains.
• 𝐷𝑑 >3 = {𝑎𝑙 𝑙 𝑙 𝑎𝑦𝑒𝑟𝑠 𝑑 > 3}: all the in-depth grains. An arbitrary

limit of 4 surface layers was chosen to set the limit between the
surface and the in-depth grains as illustrated in Fig. 10.

• 𝐷𝑑≤3 = {𝑑 = 0, 𝑑 = 1, 𝑑 = 2, 𝑑 = 3}: all the surface grains.
• 𝐷0<𝑑≤3 = {𝑑 = 1, 𝑑 = 2, 𝑑 = 3}: all the surface grains except those

located at d = 0 which are only a half Kelvin’s cell.

Grains were modeled as Kelvin cells with a diameter ∅𝑔 of 50 μm,
typical for stainless steel 316L grain size [38,45]. As a result, the chosen
threshold between surface and in-depth grains corresponds to 100 μm.

The probabilities 𝑃 (𝑍𝐷 > 𝜏∗𝑔) (Eq. (22)) and 𝑃 ((𝑍𝐷∞ −𝑍𝐷𝑑≤3 ) ≤ 𝑢)
(Eq. (23)) are illustrated in Figs. 11 and 12, respectively, for each
geometry and various depth-sets. Several points can be discussed from
these figures:

• An increase in either the number of grains within the specimen
or its surface area corresponds to higher anticipated maximum
15 
NRSS values and, consequently, a reduced fatigue life, as ob-
served experimentally [46]. Within the entire specimen GEO1,
the highest NRSS expected should fall within the range of 0.604
to 0.650 with a 99% chance, with a 50% chance to be either
above or below 0.618. These values increase for GEO2 and GEO3
due to different factors. In GEO2, the total number of grains
doubles, thereby enhancing the likelihood of encountering higher
stress levels. Conversely, in GEO3, although the total number of
grains remains constant, the surface grain count doubles. Since
surface grains are more prone to undergo higher NRSS compared
to those within the material depth, this consequently increases
the expected highest NRSS within the whole part.

• The highest NRSS within the surface grains is predominantly
influenced by the grains located at 𝑑 = 0. In Fig. 11, the curves
for the depth-sets 𝐷𝑑≤3 and 𝐷𝑑=0 overlap each other, whereas the
curve for 𝐷0<𝑑≤3 exhibits lower values. This is due to the fact that
the number of grains in each of these layers is identical and that
grains located at 𝑑 = 0 have a much higher chance to hit a higher
NRSS than other surface-layers. Thus, the grain with the highest
NRSS is most likely to be located at d = 0 rather than 1, 2 or 3.
Therefore, the following approximation can be made:
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Fig. 12. Probability that the difference between the highest NRSS among grains from depth-set 𝐷∞ and grains from depth-set 𝐷𝑑≤3 is equal to 𝑢 for each studied geometry. GEO1
enotes the geometry with realistic dimensions. GEO2 doubles the number of grains in depth-set 𝐷∞, while 𝐷𝑑≤3 remains constant. GEO3 doubles the number of surface grains
hile maintaining a constant number in depth.
Fig. 13. Variables contour plot based on specimen dimensions: (a–b) lower and upper bounds of the 95% confidence interval for the expected highest 𝜏∗𝑔 within the specimen;
(c) Probability of the grain with the highest 𝜏∗𝑔 being located at the surface.
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𝐹𝐷𝑑≤3
𝑍 (𝜏∗𝑔 , {𝑁𝑑=0, 𝑁𝑑=1, 𝑁𝑑=2, 𝑁𝑑=3}) ≈ 𝐹 𝑑=0

𝑌 (𝜏∗𝑔 , {𝑁𝑑=0}) (25)

• The ratio of surface area to volume of the specimen influences the
location where cracks initiate. In Fig. 11, the curves correspond-
ing to the surface grains (orange) and the curves corresponding
to the in-depth grains (blue) do not intersect at the same point,
depending on the geometry: GEO2 shows higher chances of a
higher 𝜏∗𝑔 value in-depth, while GEO3 displays higher chances
of a higher 𝜏∗𝑔 value at the surface. As observed in Fig. 12 for
GEO1, there is a 48% chance that 𝑍𝐷inf ≤ 𝑍𝐷𝑑≤3 , indicating a
48% probability that the highest NRSS is located at the surface.
When the ratio of surface to in-depth grains is halved (GEO2),
this probability decreases to 35%, and when the ratio is doubled
(GEO3), the probability increases to 68%.

• In the case of GEO1, the disparity between the highest NRSS of
surface and in-depth grains is expected to be within [−0.030;
0.025] with 95% confidence, representing ±5% of the highest ex-
pected NRSS (𝑃 (𝑍𝑎𝑙 𝑙 𝑑 > 0.618 = 50%)). This range is of the same
order as the CA model prediction margin of error, estimated at
±4%. Although Section 3.3.2 demonstrated that both the FE and
CA models exhibited similar trends in the discrepancies between
surface and in-depth grains, this small predicted range might not
be significant enough to definitively determine whether cracks
will initiate on the surface or in-depth.

On a more general note, Fig. 13 displays the 95% confidence
nterval of the expected highest NRSS and the probability of whether
his highest NRSS is located at the surface or in-depth for any specimen

size and surface area to specimen volume ratio. The figure illustrates
 E

16 
the broad spectrum of potential applications of the CA model and the
nformation it can provide. By utilizing these contour maps, users can
inpoint the expected range of the highest NRSS and its probable loca-

tion, which can then be employed to generate more suitable aggregates
for fatigue life analysis using more detailed simulation methods, akin
to what was accomplished for S-Agg-2 aggregates.

5.4. Textured orientations pool

Previously, grain orientations were randomly generated using the
uaternion method, which prevented any specific texture. Due to man-
facturing processes, crystallographic texture gradients can be present
ithin a mechanical part. This prompts consideration of the impact of

ntroducing a crystallographic texture at the surface on Fig. 9.
Initially, orientations were chosen randomly from a pool of 100,000

andom orientations. Here, three new orientation pools were generated
o introduce texture, from which orientations are randomly distributed
o grains. The first pool uses an EBSD map from an extruded alu-
inum sheet. Although aluminum differs from the 316L steel alloy,

his provides a realistic texture for a theoretical CA model application.
he second pool emphasizes high Schmid factor (SF) orientations: 106
andomly generated orientations were sorted into categories based on
F values, from which a specified number of orientations were ran-
omly selected per category. This selection generated a new orientation
ool with a high concentration of orientations having SF values above
.48. The third pool only includes orientations leading to high-stress
oncentrations in S-Agg-3+ configurations. In this section, the ‘‘random
ool’’ refers to the original orientation set, the ‘‘extrusion pool’’ to the
BSD-derived set, the ‘‘high SF pool’’ to the second set, and the ‘‘S-
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Fig. 14. ODF of all the orientation pools generated. The direction X refers to the free surface normal and the direction Z to the loading direction.
Agg-3+ pool’’ to the third. Fig. 14 presents the orientation distribution
function (ODF) for each pool.

The process described in Section 5.2 has been repeated for 𝑑 = 0,
providing new NRSS distribution functions. Fig. 15 compares these
newly obtained distribution functions, based on the textured orienta-
tion pools, with those shown in Fig. 9(a). No significant differences
are observed between the ‘‘high SF’’ and ‘‘random’’ pools, while the ‘‘S-
Agg-3+’’ pool exhibits slightly lower NRSS values. The ‘‘extrusion’’ pool,
however, shows notably lower NRSS values. Regarding the ‘‘extrusion’’
pool, the inverse pole figures (IPF) for the unit triangle, along with the
Young’s modulus and SF contour plots shown in Fig. 16, reveal that its
orientations are concentrated around below-average Young’s modulus
values and low SF values. This distribution explains the lower NRSS
observed. More generally, the lower NRSS in textured orientation pools
can be linked to the orientation distributions within S-Agg-2+ configu-
rations. Fig. 17 shows the inverse pole figures (IPF) of the orientations
assigned to the central grain at 𝑑 = 0, where stress is concentrated ([0
0 0]), and for three neighboring grains: the one positioned above ([0
0 2]), the one opposite the surface ([2 0 0]), and a side neighbor ([0 2
0]). Each position displays a unique preferred orientation that leads to
high NRSS. The central grain prefers the hkl crystallographic direction
[–3 8 11] aligned with the loading axis (Z), the neighbor opposite the
surface aims towards [0 0 1], and the neighbor above towards [–1 1
1]. The side neighbor shows no preference, likely because this position
corresponds to a surface half Kelvin cell, thus exerting less influence.
Each position exhibits distinct orientation preferences, highlighting the
necessity for a heterogeneous orientation pool to achieve high NRSS
alignment across different relative positions.

As mentioned in [32], a single grain orientation can simultaneously
increase stress in one neighbor while reducing it in another, emphasiz-
ing the need for orientation variety to achieve high NRSS. The strong
textures limit the range of orientations configurations, reducing the
likelihood of high stress concentrations.

It is important to note that this section serves as a hypothetical
application of the CA model, whose parameters depend on the material
macroscopic stiffness and are not calibrated for gradient properties.
Therefore, while this analysis highlights that orientation diversity is key
to reach high NRSS, further investigation is needed to fully understand
the effect of texture gradients.

6. Conclusions

In an attempt to better understand the mechanisms governing crack
localization within samples subjected to stress level typically below
17 
Fig. 15. Fitted distribution by means of the generalized Pareto function of 𝜏∗𝑔 predicted
by the CA model using different orientation pools. The scale 𝑙 𝑜𝑔10(1 − 𝑐 𝑑 𝑓 ) is utilized
to zoom in on the extreme values of 𝜏∗𝑔 with very low probability.

the material elastic limit, an analytical model has been developed.
Discrepancies in stress levels between grains located at different depths
within a sample were investigated using a data-driven model known
as the CA model. Initially developed by Bretin et al. [32], the model
has been enhanced to incorporate surface effects in addition to the
neighborhood effect. The aim of the CA model is to efficiently predict
the grain mean stress tensor and NRSS based on the specific crystallo-
graphic orientations and depths of the grain and its neighbors. Due to
its computational efficiency, the model can estimate in a few minutes
the stress level of millions of grains within polycrystalline aggregates
under any loading, while accounting for the specific crystallographic
heterogeneities surrounding the grain. Specifically, this study focuses
on the grain mean NRSS in single-phase polycrystals with an FCC
crystal structure and high elastic anisotropy under linear-elastic loading
conditions. The aggregates were represented using Kelvin’s structure to
minimize sources of heterogeneity, focusing primarily on discrepancies
due to grains’ crystallographic orientation and depth relatively to a free
surface.

The NRSS under elastic loading was chosen as the primary focus,
based on the assumption that the grain with the highest NRSS would
plastify the fastest and thus be the most susceptible to initiate a crack
first. This assumption, previously highlighted by Bretin et al. [17] for
an infinite medium, remains relevant in the presence of an idealized
free surface without any defects. The correlation NRSS — damage
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Fig. 16. Contour plots of the orientation Young’s modulus and Schmid’s factor along the direction of the inverse pole figure in the standard stereo-triangle.
Fig. 17. Inverse pole figure in the standard stereo-triangle of orientations from S-Agg-2+ grain-neighborhood configurations. Only the grain located at 𝑑 = 0 in which stress is
concentrated and three of its neighbors are represented. One hundred orientations are displayed for each position.
rate shown by FEM simulations comforts the assumption even though
some exception were found. For a given NRSS, surface grains display
higher damage rates than in-depth grains, however a larger dataset is
necessary to fully evaluate the extent of these differences. Nonetheless,
the magnitude of this disparity seems negligible when compared to
the variations of damage rate observed for different NRSS values. A
quadratic function was fitted to the data to express the grain dam-
age rate as a function of its NRSS, yielding a satisfactory regression
coefficient.

To validate the accuracy of the updated CA model, comparisons
were made between its predictions and those of the FE method. The
model was tested on different types of aggregates: some with fully
randomized orientations and others with high stress concentrations
located at various depths. The model exhibited excellent accuracy in
predicting both the grain mean stress tensors and NRSS. Even under
conditions of high stress concentration, where stress levels were twice
as high as the applied stress, the model maintained its accuracy. Some
minor loss in accuracy was observed for surface grains, but it remained
within an acceptable margin of error. Overall, for grains experiencing
high stress levels, the NRSS was predicted within a margin of error of
plus or minus 4% at a 95% confidence interval.

Despite the high accuracy of the CA model, its precision is compara-
ble to the discrepancies observed between surface and in-depth grains.
Leveraging the model’s efficiency, the NRSS of millions of different
grain-neighborhood configurations with random crystallographic orien-
tations were predicted. Using this data, a probabilistic analysis of the
highest NRSS within a mechanical part was conducted depending on its
18 
geometry. The observed NRSS discrepancies between the highest NRSS
from surface and in-depth grains within a typical fatigue test sample
are approximately 5% of their expected value at most. This difference
is not significant enough to establish a clear distinction between surface
and in-depth grains.

Using textured orientation pools, it was shown that the highest
expected NRSS value decreases as the pool becomes more textured. A
wide variety of orientations is necessary for critical configurations to
occur. Since surface grains are generally more textured than in-depth
grains, these observations would suggest that in-depth grains are more
likely to reach a higher NRSS value.

While the differences observed between in-depth and surface grains
may not be significant enough to definitively determine whether a
crack would initiate in-depth or on the surface, the CA model has
proven to be an excellent tool for identifying probable configurations
responsible for high stress concentration. Identifying these configu-
rations is crucial, as they could lead to significant discrepancies in
damage rates. For instance, the highest expected NRSS among millions
of grains is approximately 25% higher than among a thousand. This
disparity results in a damage rate 2.2 times faster in the former than
in the latter, according to the regression function between NRSS and
damage rate. The CA model effectively identifies configurations that
lead to high stress levels at any grain depth, which can then be further
analyzed using full-field models for deeper insights. Other criteria could
also be added to the model such as slip transmission and blockage due
to grain boundary misorientation between grains to distinguish grains
with similar value of NRSS.
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Fig. A.18. Evolution of the maximum differences of the studied variables FE predictions relatively to the reference finest mesh, depending on the mesh finesse. Convergence of
he grains (a) stress tensor (b) NRSS, and (c) stress second moment.
Table B.7
Material parameters of the 316L steel [38,47].
𝐸𝑒𝑓 𝑓

𝑦 𝜈𝑒𝑓 𝑓 C𝑒𝑓 𝑓
1111 C𝑒𝑓 𝑓

1122
(GPa) (GPa) (GPa)

196 0.280 251 97.9

𝐸𝑐 𝑟𝑦
𝑦 𝜈𝑐 𝑟𝑦 𝐺𝑐 𝑟𝑦 C𝑐 𝑟𝑦

1111 C𝑐 𝑟𝑦
1122 C𝑐 𝑟𝑦

1212
(GPa) (GPa) (GPa) (GPa) (GPa)

100 0.3882 122 197 125 122

𝐾 𝑛 𝑟0 𝑄 𝑏 𝑐𝜒 𝑑
(MPa s−𝑛) (MPa) (MPa) (MPa)

12 11 40 10 3 40 1500

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6

1 1 0.6 12.3 1.6 1.8

CRediT authorship contribution statement

R. Bretin: Writing – review & editing, Writing – original draft,
Visualization, Validation, Supervision, Software, Methodology, Inves-
igation, Formal analysis, Data curation, Conceptualization. P. Bocher:

riting – review & editing, Supervision, Resources, Project administra-
ion, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

The work was supported by the discovery grant program of the
atural Sciences and Engineering Research Council of Canada (NSERC)
GPIN 2018-05291 and the computational support of Calcul Québec.

Appendix A. Mesh convergence studies

To assess the level of mesh refinement required for the FE sim-
lations presented in this article, simulations were conducted using
ifferent mesh sizes. One S-Agg-1 and four S-Agg-2 aggregates from
ection 3.2 were selected for the convergence test. Four mesh sizes

were tested: very coarse (170 elements per grain), coarse (637 elements
per grain), medium (1284 elements per grain), and fine (1881 elements
per grain). In Fig. A.18, the predictions obtained from each mesh are
compared to those of a reference mesh, which in this case corresponds
to the fine mesh. The convergence of three variables was studied.
19 
• The grain mean stress tensor 𝜎𝜎𝜎𝑔 :

𝑌1 = 𝑚𝑎𝑥

(

‖𝜎𝑔𝑚𝑠ℎ − 𝜎𝑔𝑟𝑒𝑓‖𝑒𝑞
‖𝛥𝜎𝑔𝑟𝑒𝑓‖𝑒𝑞

)

𝑔

(A.1)

• The grain mean NRSS 𝜏∗𝑔𝑠 :

𝑌2 = 𝑚𝑎𝑥
(

|𝜏∗𝑔𝑠 𝑚𝑠ℎ − 𝜏∗𝑔𝑠 𝑟𝑒𝑓 |
)

𝑠,𝑔
(A.2)

• The stress standard deviation within a grain 𝑠𝑡𝑑 𝜎𝑔 (Eq. (16)):

𝑌3 = 𝑚𝑎𝑥

(

|𝑠𝑡𝑑𝜎𝑔 𝑚𝑠ℎ − 𝑠𝑡𝑑𝑔𝜎 𝑟𝑒𝑓 |
𝑠𝑡𝑑𝑔𝜎 𝑟𝑒𝑓

)

𝑔

(A.3)

Based on these figures, it can be observed that the mesh used in
this article (medium mesh with an average of 1284 elements per
grain) demonstrates convergence of the studied variables towards the
reference values within a reasonable margin of error.

Appendix B. Material constitutive law and parameters

The crystal stiffness tensor is assumed cubic (3 independent vari-
ables) and its values were taken from [38]. The effective elastic prop-
erties of the material were assumed to be isotropic, with a Young’s
modulus 𝐸𝑒𝑓 𝑓

𝑦 of 196 GPa and a Poisson’s ratio 𝜈𝑒𝑓 𝑓 of 0.280. These
values were obtained through the homogenization of FE simulations of
a polycrystalline aggregate RVE submitted to an elastic loading by fol-
lowing the method described in [20]. The stiffness tensors components
are listed in Table B.7.

The kinematic and isotropic hardening from the slip rate defined in
Eq. (17) are respectively defined as follow:

𝜒𝑔
𝑠 = 𝑐𝜒𝛼

𝑔
𝑠 (B.1a)

with �̇�𝑔𝑠 = �̇�𝑔𝑠 − 𝑑 𝛼𝑔𝑠 |�̇�𝑔𝑠 | (B.1b)

𝑟𝑔𝑠 = 𝑟0 +𝑄𝑏
12
∑

𝑢=1
ℎ𝑠𝑢𝜌

𝑔
𝑢 (B.1c)

with �̇�𝑔𝑠 = (1 − 𝑏𝜌𝑔𝑠 )|�̇�
𝑔
𝑠 | (B.1d)

where 𝜌𝑔𝑠 and 𝛼𝑔𝑠 are internal state variables; 𝑏 and 𝑄 are material
parameters characterizing the isotropic hardening; 𝑑 and 𝑐𝜒 are mate-
rial parameters characterizing the kinematic hardening. The hardening
matrix ℎℎℎ reflects the self-hardening and the latent hardening between
slip systems. All these parameters are listed in Tables B.7–B.8.

Data availability

Data will be made available on request.
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Table B.8
Slip system list and their hardening matrix.

Plane Direction System # A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6

(1̄11) [01̄1] A2 ℎ1 ℎ2 ℎ2 ℎ4 ℎ5 ℎ5 ℎ3 ℎ5 ℎ6 ℎ3 ℎ6 ℎ5
(1̄11) [101] A3 ℎ2 ℎ1 ℎ2 ℎ5 ℎ3 ℎ6 ℎ5 ℎ4 ℎ5 ℎ6 ℎ3 ℎ5
(1̄11) [110] A6 ℎ2 ℎ2 ℎ1 ℎ5 ℎ6 ℎ3 ℎ6 ℎ5 ℎ3 ℎ5 ℎ5 ℎ4
(111) [01̄1] B2 ℎ4 ℎ5 ℎ5 ℎ1 ℎ2 ℎ2 ℎ3 ℎ6 ℎ5 ℎ3 ℎ5 ℎ6
(111) [1̄01] B4 ℎ5 ℎ3 ℎ6 ℎ2 ℎ1 ℎ2 ℎ6 ℎ3 ℎ5 ℎ5 ℎ4 ℎ5
(111) [11̄0] B5 ℎ5 ℎ6 ℎ3 ℎ2 ℎ2 ℎ1 ℎ5 ℎ5 ℎ4 ℎ6 ℎ5 ℎ3
(111̄) [011] C1 ℎ3 ℎ5 ℎ6 ℎ3 ℎ6 ℎ5 ℎ1 ℎ2 ℎ2 ℎ4 ℎ5 ℎ5
(111̄) [101] C3 ℎ5 ℎ4 ℎ5 ℎ6 ℎ3 ℎ5 ℎ2 ℎ1 ℎ2 ℎ5 ℎ3 ℎ6
(111̄) [11̄0] C5 ℎ6 ℎ5 ℎ3 ℎ5 ℎ5 ℎ4 ℎ2 ℎ2 ℎ1 ℎ5 ℎ6 ℎ3
(11̄1) [011] D1 ℎ3 ℎ6 ℎ5 ℎ3 ℎ5 ℎ6 ℎ4 ℎ5 ℎ5 ℎ1 ℎ2 ℎ2
(11̄1) [1̄01] D4 ℎ6 ℎ3 ℎ5 ℎ5 ℎ4 ℎ5 ℎ5 ℎ3 ℎ6 ℎ2 ℎ1 ℎ2
(11̄1) [110] D6 ℎ5 ℎ5 ℎ4 ℎ6 ℎ5 ℎ3 ℎ5 ℎ6 ℎ3 ℎ2 ℎ2 ℎ1
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