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Abstract: Falls among the elderly have been a significant public health challenge, with severe
consequences for individuals and healthcare systems. Traditional balance assessment methods often
lack ecological validity, necessitating more comprehensive and adaptable evaluation techniques.
This research explores the use of inertial measurement units to assess postural balance in relation to
the Berg Balance Scale outcomes. We recruited 14 participants from diverse age groups and health
backgrounds, who performed 14 simulated tasks while wearing inertial measurement units on the
head, torso, and lower back. Our study introduced a novel metric, i.e., the volume that envelops
the 3-dimensional accelerations, calculated as the convex hull space, and used this metric along
with others defined in previous studies. Through logistic regression, we demonstrated significant
associations between various movement characteristics and the instances of balance loss. In particular,
greater movement volume at the lower back (p = 0.021) was associated with better balance, while
root-mean-square lower back angular velocity (p = 0.004) correlated with poorer balance. This
study revealed that sensor location and task type (static vs. dynamic) significantly influenced the
coefficients of the logistic regression model, highlighting the complex nature of balance assessment.
These findings underscore the potential of IMUs in providing detailed objective balance assessments
in the elderly by identifying specific movement patterns associated with balance impairment across
various contexts. This knowledge can guide the development of targeted interventions and strategies
for fall prevention, potentially improving the quality of life for older adults.

Keywords: balance assessment; Berg Balance Scale; elderly; fall prevention; inertial measurement
units; kinematics

1. Introduction

Falls among the elderly represent a significant public health concern with substantial
consequences. Falls can have a devastating impact on the lives of older adults, leading to
injuries, immobility, activity limitations, placement in nursing homes, health deterioration,
and increased risk of mortality [1]. Research indicated that nearly all hip fractures in
older adults result from falls [2], with a significant percentage leading to serious outcomes
such as long-term institutionalization or death. In addition, there can also be psychosocial
consequences such as the fear of falling again, increased healthcare costs, strain on family
relationships, and limited social participation [3]. The costs associated with fall-related
injuries are substantial. In the United States, healthcare expenses for fall-related injuries
among older adults were approximately 50 billion dollars annually [4]. Additionally, as the
elderly population grows, the incidence of non-fatal falls has risen significantly, increasing
demand for emergency and healthcare services [4]. In 2018 alone, an estimated 3 million
emergency department visits, over 950,000 hospital admissions or transfers to other facilities
(e.g., trauma centers), and around 32,000 deaths were attributed to fall-related injuries
among older adults [4].
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Maintaining postural balance is essential for mobility, independence, and quality of life
in older adults. Continuous monitoring of balance is, therefore, crucial to identify situations
that may lead to increased fall risk, such that we can put preventive interventions in place
before it happens. Balance assessment methods have evolved significantly over time,
ranging from simple clinical observations to more advanced technological approaches.
Traditional methods for evaluating balance include clinical assessments performed by
physiotherapists, which involve observation of gait, posture, behavior, facial expressions,
and emotional responses [5]. Traditional methods may also include functional tests such as
the six-minute walk test [6], the Timed Up and Go (TUG) test [7], the Berg Balance Scale
(BBS) test [8], and the Star Excursion Balance Test (SEBT) [9]. Each one was designed to
evaluate different aspects of balance and mobility. However, clinical observation faces
inherent limitations due to its subjective nature. Inter-observer variability is a major
challenge, potentially impacting the reliability of assessments [10]. As demonstrated in a
previous study using SEBT [9], there were disagreements among clinicians in identifying
movement abnormalities. Despite their practicality and simplicity, these functional tests
still lacked the precision and objectivity offered by more advanced techniques involving
direct measurements.

The more advanced quantitative techniques that were developed and validated are
force platforms [11] and motion capture systems [12] for estimating the center of pressure
or mass. Force platforms have been used to measure postural sway and center of pressure
movements during quiet standing and various balance tasks [11]. Motion capture systems
include marker-based optical systems and markerless video-based systems, which allow
for detailed analysis of body movements. Nevertheless, both clinical observations and
advanced technologies primarily operate within controlled clinical environments. These
methods are constrained in their ability to capture the dynamic nature of balance in real-
world scenarios. Specifically, previous research highlighted a critical issue that force plate
measures often exhibit a limited correlation with actual balance performance outside the
laboratory [11]. Recognizing this limitation underscores the need for assessment tools
that offer greater ecological validity, capable of providing metrics for postural balance
assessment in everyday life situations. Considering this limitation, wearable devices that
can capture similar measures may be more appropriate.

Inertial Measurement Units (IMUs), consisting of miniaturized accelerometers, gy-
roscopes, and magnetometers, have emerged as a promising solution. Their portability
enables balance assessment in more natural settings, capturing movement data during
a wider range of activities in both laboratory and real-world settings, such as residen-
tial homes, workplaces, and public spaces [13–15]. IMUs offer continuous monitoring
capabilities, allowing for the detection of subtle balance fluctuations that might be missed
during brief, clinically-based assessments. Previous research has demonstrated the feasi-
bility of using IMUs to assess various aspects of balance. De Groote (2020) showed that
a smartphone-embedded IMU could effectively measure postural stability, with results
moderately correlating with gold-standard force platform assessments [13]. In addition,
Nouredanesh and Tung (2015) explored the use of IMUs combined with machine learn-
ing to automatically detect compensatory balance responses during lateral perturbations,
achieving high classification accuracy [16]. Moreover, Pickle et al. (2018) demonstrated
the potential of these devices for estimating segmental contributions to total body angular
momentum in individuals with Parkinson’s disease, using a limited set of sensors [17].
With a large dataset and machine learning models, postural balance characteristics derived
from IMU data were found to be useful. For instance, Liuzzi et al. (2023) [18] were able
to evaluate the balance of stroke and Parkinson’s patients from placing the IMUs on them
while they performed the 6-minute walk test. Also, IMUs may be used complementarily
with other sources. A study by Silva (2020) [19] combined IMU and force plate data from
403 elderly participants performing the TUG test and employed machine learning and deep
learning models to predict and detect falls among older adults.
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The research presented in this paper was built upon these promising findings, with the
first objective to further explore the potential of IMUs for evaluating postural balance in
the elderly during their daily living. Particularly, we developed a straightforward and
practical protocol for using IMU sensors, including the steps of calibration, body placement,
data recording, and calculation of kinematic features; then, we identified IMU-derived
features that are sensitive to variations in postural balance. Our hypothesis was that
the features derived from an IMU placed on the lower back will be predictive of fall
risk due to its proximity to the body’s center of mass and its capacity to capture overall
postural oscillations.

The placement of IMUs on the body is a critical consideration in balance assessment.
Previous studies have explored various sensor locations. Since securing an IMU on the
lower back can be challenging in real-world settings as the person may sit or lean on it,
it would be interesting to see if we can change the location of a single IMU to another
body part. A systematic review by Ghislieri et al. (2019) found that the majority of studies
(80.9%) place sensors in the lower back region, particularly at the L5/S1 level, which is
close to the body’s center of mass [20]. The use of IMUs in this location was also validated
in the real-world setting; for example, among Parkinson’s patients living at home [21].
Besides the L5/S1, Shin and Yoo (2019) demonstrated the importance of sacrum-placed
sensors in evaluating standing posture and balance [22]. Their study revealed a strong
correlation between the sacrum angle and overall lumbar lordosis, which is important in
maintaining postural alignment and stability. As for other locations, Scheltinga et al. (2022)
highlighted the relevance of sternum-placed sensors for estimating vertical ground reaction
forces during running [23]. Last but not least, using the head as a reference was proven
effective for assessing vestibular disorders [24] and vision troubles [25]. Janc et al. (2021)
showed the utility of head-mounted accelerometers together with a force plate in assessing
the balance of patients with vestibular disorders [24]. Depra et al. (2019) established a
relationship between postural balance measured at the head and visual tracking accuracy,
observing that postural stability decreased in challenging visual conditions while standing
on one leg [25].

Building on this foundation, the second aim of our study was to investigate the impact
of sensor placement, especially the torso and the head, on the interpretation of balance
assessment results. Recognizing the complex, multi-segmental nature of balance control,
our research aimed to find which sensor locations could provide the most informative data
about balance performance. We compared balance parameters derived from data collected
from IMUs positioned on the head, torso, and lower back.

2. Materials and Methods
2.1. Participants

Fourteen persons (6 women, 8 men) with an average age of 59 (SD 10.2) years par-
ticipated in this study. The participants were recruited through a convenient sampling in
an urban neighborhood, and were meant to represent the middle age (40–65 years old) as
well as elderly population (65 years and above). The participants represented a diverse age
range; that is, two individuals were in the 40–49 age range, seven were in the 50–59 range,
four were in the 60–69 range, one was in the 70–79 range, and one was in the 80–89 range.
Participants’ weight ranged from 52 kg to 98 kg (average 75.13 kg, SD 15.04 kg), and height
from 157 cm to 183 cm (average 170.87 cm, SD 9.20 cm).

The participants’ medical history revealed a range of conditions potentially influencing
balance performance. Eight participants reported vision disorders, seven had cardiovascu-
lar issues (three cardiopathy and four hypertension), and six had endocrine disorders (three
diabetes and three thyroid problems). Ten participants reported respiratory conditions
(seven had allergies and three had asthma). Five participants had a history of prior surgery.
There were no reported cases of Parkinson’s disease, hypotension or stroke.
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2.2. Instruments for Data Collection

We used three IMUs (SXT, NexGen Ergonomic, Montreal, QC, Canada). Each IMU
integrated tri-axial accelerometers (±16 g range), gyroscopes (±2000°/s range), and magne-
tometers, sampled at 128 Hz. The three IMUs were synchronized prior to the data collection.

The IMUs were positioned on the participants’ head (behind the right ear), sternum,
and low back at the L5/S1 level, as shown in Figure 1. The lower back placement was
chosen for its proximity to the body’s center of mass and reduced susceptibility to non-
postural movements.

Figure 1. IMU placement locations: head (top left), torso (bottom left), and lower back (right).

At the beginning of the data collection, the IMU’s initial state was collected when
participants stood still for 10 s and was referred to as “Ipose”. Median acceleration values
during this pose served as reference points. The accelerations throughout the entire data
collection were then subtracted from these median accelerations, as shown in Equation (1):

aX = araw,X − āipose,X

aY = araw,Y − āipose,Y

aZ = araw,Z − āipose,Z

(1)

where aX , aY, and aZ are accelerations to be further used, araw,X , araw,Y, and araw,Z are the
raw accelerations, and āipose,X , āipose,Y, and āipose,Z are the median reference accelerations
for each axis.

2.3. Balance Assessment Tasks

Participants performed 14 standardized tasks in the Berg Balance Scale (BBS) test [8],
which is a widely used clinical tool for assessing functional balance. Through observation
by two researchers, the outcome of each task was scored on an ordinal discrete scale
from 0 to 4, with higher scores reflecting better balance performance. Table 1 provides a
comprehensive overview of these tasks, illustrating the diverse range of balance challenges
presented to the participants.
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Table 1. Berg Balance Scale tasks.

Task Description

1 Sit to stand
2 Standing unsupported
3 Sitting unsupported
4 Stand to sit
5 Transfers
6 Standing with eyes closed
7 Standing with feet together
8 Reaching forward with outstretched arm
9 Retrieving object from floor
10 Turning to look behind
11 Turning 360 degrees
12 Placing an alternate foot on stool
13 Standing with one foot in front
14 Standing on one foot

2.4. Data Processing

Data were saved and then exported from the IMU buit-in software (TK Motion Man-
ager, NexGen Ergonomic, Montreal, QC, Canada), initially in .h5 format, then converted
to .csv for analysis. A custom Python script was developed to automate data organiza-
tion. This script extracted relevant data columns (time, acceleration, angular velocity),
renamed files using a standardized convention (participant ID_sensor location_task_date),
and organized them into a hierarchical folder structure.

To ensure data quality and reliability before calculating the parameters of interest, we
implemented several pre-processing steps. First, linear interpolation was applied to replace
missing values in the IMU data. Then, a 6th order Butterworth low-pass filter with a cutoff
frequency of 3.667 Hz was applied to attenuate high-frequency noise while preserving
significant movement components. This choice of the cutoff frequency came from its ability
to remove noise in this dataset without altering the detection of movement, which was also
explored through trial and error, and supported by a previous research study [26].

Additionally, BBS scores in each of the fourteen tasks, originally collected in the range
from 0 to 4, were transformed. Individual task scores were dichotomized such that the
scores of 0–3, indicating potential balance difficulties, were re-coded as 1 (poor balance),
while the score of 4, representing good balance, was re-coded as 0 (good balance).

2.5. Postural Balance Parameters

Several characteristics from the pre-processed IMU data were calculated as follows.

2.5.1. Total Path Length

Total path length, the cumulative distance traveled by the body segment during the
recording period, was calculated. First, the displacement of the body segment was obtained
through double integration of the pre-processed acceleration data, as shown in Equation (2).

d(t) =
∫∫

a(t)dtdt (2)

where a(t) is the acceleration and d(t) is the displacement.
The total path length L is then calculated by summing the absolute displacements

across the three orthogonal axes, i.e., the 3D Cartesian coordinate system (X, Y, Z), as shown
in Equation (3). It is necessary to use absolute values to ensure no effect of the directions of
the changes was included in the sum of the distance.

L = ∑ |Dx|+ ∑ |Dy|+ ∑ |Dz| (3)
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where Dx, Dy, and Dz are displacements in the X, Y, and Z axes, respectively. This metric
was chosen as it provides a simple yet informative measure of the amount of movement,
which could be indicative of balance strategy or overall postural stability [27]. Greater total
path lengths might indicate less efficient or more compensatory movements, suggesting
poorer balance.

2.5.2. Jerk

Jerk, the rate of change of the acceleration, could indicate abrupt or uncontrolled move-
ments, potentially signifying instability or difficulty in maintaining postural control. Jerk
was calculated by differentiating pre-processed acceleration data as shown in Equation (4).

Jerkx =
dax

dt

Jerky =
day

dt

Jerkz =
daz

dt

(4)

Higher jerk values may reflect less coordinated or controlled movements, which could
increase the person’s fall susceptibility [28].

2.5.3. Root Mean Square Accelerations and Angular Velocities

Apart from the linear accelerations that the IMUs provided, this study also evaluated
the postural balance based on the angular velocities (ω), which refer to the rate of change of
an object’s rotational position with respect to time, measured around a specific axis. That is,
ω quantifies how fast a sensor or a body part rotated and in which direction. For example,
angular velocity along the X-axis represents side-to-side tilting, along the Y-axis represents
forward and backward rotation, and along the Z-axis represents twisting of the trunk from
the original standing posture.

Root Mean Square (RMS) values quantify the average magnitude of a fluctuating
signal. From the collected and filtered signals of tri-axial linear accelerations and tri-axial
angular velocities obtained from the IMUs, the RMS magnitudes of the acceleration and
angular velocity were calculated as shown in Equations (5) and (6), respectively.

RMSAcceleration =
√

Mean((aX)2 + (aY)2 + (aZ)2) (5)

RMSAngularVelocity =
√

Mean((ωX)2 + (ωY)2 + (ωZ)2) (6)

where aX, aY, and aZ are accelerations in the X, Y, and Z axes, respectively, and ωX, ωY,
and ωZ are angular velocities in the X, Y, and Z axes, respectively. Higher RMS values
provide insight into the overall intensity of movement and the amount of energy spent
during a task.

2.5.4. Areas

To assess movement variability, we calculated three distinct area measures. These
measures quantify the spatial dispersion of acceleration data.

Area under the acceleration magnitude curve, or area under the curve, was calculated
using the trapezoidal method, as shown in Equation (7).

Area =
N−1

∑
i=0

(ai + ai+1)

2
× dt (7)

where ai and ai+1 are consecutive acceleration magnitudes, and dt is the time interval
between samples. This measure quantifies the cumulative acceleration over time, providing
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a temporal assessment of motion intensity. However, due to the discretization inherent in
the trapezoidal method, this measure is more prone to errors than spatial metrics.

Ellipse area was calculated by fitting an ellipse to the acceleration data, using the
standard deviations of the accelerations along the X and Y axes as the semi-axes to quantify
the distribution of motion in the horizontal plane. The calculation of the ellipse area is
shown in Equation (8).

Areaellipse = π × σX × σY (8)

where σX and σY represent the standard deviations of acceleration data on the X and Y
axes, respectively. Mathematically, σX and σY represent the spread of the data in each
direction. These deviations correspond to the semi-major and semi-minor axes of the ellipse
that best fits the data. This approach was expected to provide a robust indicator of data
dispersion [29]. A larger ellipse area indicates greater dispersion of acceleration values,
suggesting a wider range of motion or more complex movement patterns.

Bounding box area represents the minimal rectangular area that encloses all accelera-
tion data points, calculated as shown in Equation (9).

Areabox = (maxX − minX)× (maxY − minY) (9)

where maxX , minX , maxY, and minY are the maximum and minimum acceleration values
on the X and Y axes, respectively. Unlike the ellipse area, which provides a more precise
representation of the distribution of acceleration data, the bounding box area has been
known for its simplicity and computational efficiency, which is particularly suitable for
real-time applications [30]. A larger bounding box area reflects a wider range of motion
across a selected plane.

For example, Figure 2 presents the 2D projections of acceleration data in the XY plane
during task execution. All in all, these area measures provide complementary perspectives
on movement variability, capturing both the concentration of movement (ellipse area) and
the overall range of motion across different planes (bounding box area and area under
the curve).

It is worth noting that potential multicollinearity between these area measures was
addressed during statistical analysis, and only one type of the three areas ended up being
used in the prediction.

Figure 2. The 2D projection of accelerations in the horizontal (XY) plane; example for task 10. The
black lines envelope the Convex Hall Area.
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2.5.5. Volume

To capture the three-dimensional nature of movement, we introduced a novel volume
metric that quantifies the space occupied by the acceleration data. This was calculated as
the volume of the convex hull, which represents the smallest convex shape that encloses all
acceleration data points [31], effectively capturing the boundaries of the movement space.
The volume was calculated using Equation (10).

Volume =
1
3 ∑ Ai × hi (10)

where Ai is the area of the i-th face of the convex hull and hi is its corresponding height.
We utilized the ConvexHull class from the library SciPy in Python for efficient computation.
This volume metric provides insights into movement complexity and adaptability, poten-
tially reflecting a greater range of motion strategies used to maintain balance. A larger
volume might indicate a more efficient postural control system, enabling exploration of a
wider range of movements without losing balance. For instance, in post-stroke rehabili-
tation, an increase in trunk acceleration data volume over time could indicate improved
postural control recovery [32]. This measure offers unique perspectives on balance as-
sessment by capturing movement characteristics that may not be evident in traditional
two-dimensional analyses.

Figure 3 shows a 3D visualization of the acceleration data points in all x, y, and z axes,
the movement trajectory that was earlier computed through the application of Equation (2),
and the calculated volume metric as described in Equation (10).

Figure 3. The 3D visualization of accelerations, movement trajectory, and convex hull volume;
example for task 10.

2.6. Statistical Analysis

For the first objective to identify poor balance from the movement characteristics at
the person’s center of mass, we employed a logistic regression of the dichotomized BBS
scores on the parameters derived from the lower back IMU data. The logistic regression
model was formalized as shown in Equation (11).

logit(P) = log
(

P
1 − P

)
= β0 + β1X1 + · · ·+ βkXk (11)

where P is the probability of losing balance and β0, β1, . . . , βk are coefficients of independent
variables X0, X1, . . . , Xk representing movement characteristics derived from lower back
IMU data. Each coefficient was evaluated at the significance level of 0.95.
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To address multicollinearity and prevent overfitting, we examined the correlations
among independent variables. The variables showing strong correlations with other
variables were systematically eliminated from the logistic regression model, while we
retained those strongly correlated with the binary outcome of poor balance.

For the second research objective to explore how sensor placement and task type affect
the balance assessment, we analyzed data from different IMUs (head, torso, and lower
back) separately as well as categorized the tasks as static or dynamic based on their nature.
We then applied logistic regression to each combination of sensor and task type to identify
predictive characteristics specific to each sensor location and task type.

3. Results
3.1. Descriptive Statistics and Correlation Analysis of IMU-Based Parameters

Table 2 presents descriptive statistics of movement characteristics extracted from IMU
data collected from sensors on participants’ lower back, torso, and head. The mean Z-
acceleration for the head (−9.19 m/s², SD = 0.66) was close to the Earth’s gravitational
value (−9.81 m/s²), showing small vertical movement. In contrast, the standard deviation
of Y-acceleration (2.53 m/s²) indicates greater variability in lateral head movements.

The acceleration area under the curve exhibited high variability, with significant stan-
dard deviations (e.g., 88,354,176.31 m/s for the lower back). These high values likely
reflected the composite nature of this metric, integrating movement across all directions.
The trapezoidal method used for calculation tends to produce larger values for repeated
or oscillating movements. Standard deviations for bounding box and ellipse areas var-
ied across body locations. These values indicated considerable variation in movement
distribution across body regions.

Jerk values were small, indicating subtle rather than abrupt movement changes.
The RMS angular velocity for the head showed a significant mean (25,390.09 rad/s) and high
standard deviation (94,164.83 rad/s). This variability suggested considerable differences in
movement strategies and postural stability among individuals.

The correlation matrix (Figure 4) further revealed significant relationships between
these variables. The 2D-related characteristics (acceleration area under the curve, ellipse
area, bounding box area) showed strong inter-correlations (coefficients 0.8–1.0). These
associations indicated a close link between spatial dimensions and movement variabil-
ity. Larger movement areas corresponded to greater variability across different surface
measures, reflecting the sensitivity of area calculations to acceleration changes over time.

The RMS acceleration strongly correlated with the bounding box area (0.91), as greater
acceleration variability led to wider dispersion of acceleration values in the XY plane.
The total path length and the ellipse area had a strong correlation (0.83), which might have
been due to the integration method used in the path calculation.

The volume metric correlates with both bounding box area (0.91) and ellipse area
(0.83), suggesting that increased movement volume relates to larger movement areas in the
horizontal plane and greater X–Y directional variability.

3.2. Identification of Poor Balance Indicators Derived from Data Measured at Lower Back

In the independent variable selection process for the logistic regression model, several
IMU-derived characteristics were excluded to mitigate multicollinearity issues. The ellipse
fitting area and bounding box area were omitted due to their high correlation (r > 0.99)
with the area under the acceleration magnitude curve. RMS acceleration was eliminated
due to its strong correlation (r > 0.98) with both area measures and mean acceleration
X. Mean acceleration X was also excluded, owing to its high correlation with multiple
variables. These exclusions aimed to reduce redundancy while retaining a diverse set of
1D, 2D, and 3D measures that capture distinct aspects of movement. As shown in Table 3,
after adjusting for confounding factors (age, sex, weight, and height), key findings from the
logistic regression include the following:



Appl. Sci. 2024, 14, 11312 10 of 19

• The area under the acceleration magnitude curve was positively correlated with poor
balance (coef = 0.78, p = 0.002), indicating that increased movement activity and more
pronounced accelerations were associated with a higher risk of fall.

• RMS angular velocity showed a positive effect on poor balance (coef = 0.32, p = 0.004),
suggesting that faster and more varied rotations may indicate balance instability.

• Total path length was negatively correlated with poor balance (coef = −1.82, p = 0.0006),
implying that more extensive movement paths were associated with better stability.

• Movement volume was negatively correlated with poor balance (coef = −0.52, p = 0.02),
suggesting that larger movement volumes indicate better balance control within our
experimental context.

Table 2. Descriptive statistics (mean, standard deviation, minimum, Q1, Q3, and maximum) of the
parameters from IMUs attached at the lower back, torso, and head.

Variable Lower Back Torso Head

1D-based variables
Mean acceleration X (m/s2)

Mean (SD) 1.94 (2.24) 1.98 (2.34) 0.53 (0.86)
[Q1, Q3] [0.63, 3.38] [0.85, 3.49] [0.36, 0.93]
[Min, Max] [−4.04, 7.12] [−5.82, 5.64] [−3.22, 3.21]

Mean acceleration Y (m/s2)
Mean (SD) 0.25 (1.20) 0.84 (0.46) 0.44 (2.54)
[Q1, Q3] [−0.36, 1.03] [0.61, 1.10] [−1.23, 2.34]
[Min, Max] [−3.30, 2.73] [−1.83, 2.25] [−5.55, 5.88]

Mean acceleration Z (m/s2)
Mean (SD) −9.19 (0.66) −9.14 (0.56) −9.41 (0.61)
[Q1, Q3] [−9.65, −8.99] [−9.50, −8.91] [−9.82, −9.25]
[Min, Max] [−9.92, −6.68] [−9.79, −6.04] [−10.24, −7.14]

Jerk X (m/s3)
Mean (SD) 1.16 × 10−7 (6.55 × 10−7) 2.96 × 10−7 (7.66 × 10−7) 5.30 × 10−8 (2.06 × 10−7)
[Q1, Q3] [−8.51 × 10−9, 1.50 × 10−7] [1.75 × 10−8, 3.81 × 10−7] [−4.29 × 10−9, 1.12 × 10−7]
[Min, Max] [−2.42 × 10−6, 5.70 × 10−6] [−3.14 × 10−6, 2.80 × 10−6] [−5.20 × 10−7, 8.87 × 10−7]

Jerk Y (m/s3)
Mean (SD) −2.23 × 10−8 (4.05 × 10−7) −1.12 × 10−7 (4.43 × 10−7) 1.10 × 10−7 (5.32 × 10−7)
[Q1, Q3] [−3.92 × 10−8, 6.78 × 10−8] [−1.60 × 10−7, 2.75 × 10−8] [−3.26 × 10−8, 1.57 × 10−7]
[Min, Max] [−3.07 × 10−6, 1.20 × 10−6] [−2.29 × 10−6, 1.17 × 10−6] [−1.68 × 10−6, 2.36 × 10−6]

Jerk Z (m/s3)
Mean (SD) −9.50 × 10−9 (2.15 × 10−7) 2.68 × 10−8 (2.42 × 10−7) −3.60 × 10−8 (2.09 × 10−7)
[Q1, Q3] [−9.55 × 10−9, 1.12 × 10−8] [−2.98 × 10−8, 8.56 × 10−9] [−3.88 × 10−8, 8.19 × 10−9]
[Min, Max] [−1.11 × 10−6, 8.63 × 10−7] [−8.88 × 10−7, 1.23 × 10−6] [−1.10 × 10−6, 1.04 × 10−6]

2D-based variables
Area under the curve (m/s)

Mean (SD) 5.66 × 107 (8.84 × 107) 4.03 × 107 (4.75 × 107) 8.14 × 107 (8.87 × 107)
[Q1, Q3] [1.08 × 107, 5.19 × 107] [1.29 × 107, 4.84 × 107] [1.83 × 107, 1.19 × 108]
[Min, Max] [6.93 × 105, 5.55 × 108] [2.29 × 106, 2.72 × 108] [6.93 × 105, 4.87 × 108]

Ellipse fitting area (m2/s4)
Mean (SD) 2.11 (3.09) 3.00 (5.98) 3.84 (4.97)
[Q1, Q3] [0.093, 2.71] [0.183, 2.88] [0.750, 5.17]
[Min, Max] [0.0031, 15.87] [0.0117, 40.23] [0.0491, 25.01]

Bounding box area (m2/s4)
Mean (SD) 27.08 (40.54) 28.49 (29.46) 38.85 (36.69)
[Q1, Q3] [2.67, 31.48] [9.77, 36.59] [11.05, 53.60]
[Min, Max] [0.030, 311.65] [0.448, 156.16] [0.948, 182.40]

3D-based variables
RMS acceleration (m/s2)

Mean (SD) 2.20 (1.60) 2.55 (2.44) 3.41 (2.19)
[Q1, Q3] [0.92, 3.12] [0.84, 3.65] [1.79, 5.02]
[Min, Max] [0.08, 7.67] [0.14, 10.30] [0.58, 9.91]

RMS angular velocity (rad/s)
Mean (SD) 0.92 (0.33) 0.94 (0.35) 2.54 × 104 (9.42 × 104)
[Q1, Q3] [0.77, 0.95] [0.76, 1.01] [0.87, 1.13]
[Min, Max] [0.45, 3.29] [0.60, 3.47] [0.35, 4.16 × 105]

Total path length (m)
Mean (SD) 1.19 × 107 (3.37 × 107) 7.47 × 106 (1.88 × 107) 1.18 × 107 (2.58 × 107)
[Q1, Q3] [1.38 × 104, 4.59 × 106] [1.36 × 104, 3.90 × 106] [1.64 × 104, 8.04 × 106]
[Min, Max] [93.69, 2.32 × 108] [439.44, 1.03 × 108] [161.80, 1.85 × 108]

Volume (m3)
Mean (SD) 72.67 (194.99) 38.86 (59.57) 70.92 (109.32)
[Q1, Q3] [0.76, 58.90] [3.41, 47.28] [11.06, 69.49]
[Min, Max] [0.0020, 1980.91] [0.0660, 404.50] [0.1431, 582.92]
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Figure 4. Correlation matrix of IMU-derived movement characteristics.

The final model included these variables along with jerk measures and selected mean
accelerations, ensuring a comprehensive, yet non-redundant, representation of postural con-
trol characteristics. Finally, the model’s AUC of 0.73 indicated an acceptable discriminative
ability of this logistic regression model.

Table 3. Mean (SD) of the coefficients of the predictors of poor balance among various movement
characteristics calculated from IMU data measured at the lower back.

Variable Coefficient Std. Error p-Value

Confounding Variables
Age (years) 0.783 0.162 <0.0001
Sex (0 = female, 1 = male) 0.576 0.177 0.001
Weight (kg) −0.542 0.197 0.006
Height (cm) −0.038 0.196 0.84

IMU-Derived Predictors
Area under the curve (m/s) 0.780 0.254 0.002
Jerk X (m/s3) −0.250 0.146 0.08
Jerk Y (m/s3) 0.054 0.139 0.69
Jerk Z (m/s3) −0.031 0.133 0.81
Mean acceleration Y (m/s2) 0.145 0.141 0.31
Mean acceleration Z (m/s2) −0.110 0.123 0.38
RMS angular velocity (rad/s) 0.320 0.110 0.004
Total path length (m) −1.820 0.528 0.0006
Volume (m3) −0.521 0.226 0.02
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3.3. Influence of the Sensor Position on the Balance Predictors for Different Activity Types

The logistic regression models conducted separately for two activity types (static
and dynamic) and different sensor placements revealed varying relationships between
movement characteristics and balance. Table 4 summarizes predictors for each sensor
location and task type combination. Our observations were as follows:

• For IMU attached to the head, vertical acceleration (Z-axis) was associated with
better balance during static tasks but poorer balance during dynamic tasks, suggesting
different control strategies for different task contexts. The overall results were different
from when using the IMU at the lower back.

• For IMU attached at the torso, lateral acceleration (Y-axis) was negatively correlated
with fall risk in dynamic tasks, while the movement volume and anterior–posterior
jerk (X-axis) were positively correlated with fall risk.

• Larger movement volume from the IMU attached at the torso was associated with
better balance in only dynamic tasks but not static ones. This was different from the
results for the IMU at the lower back when pooling all tasks together.

• Total path length was an important predictive parameter when attaching the IMU to
the torso, similarly to the lower back. However, the total path length could not help
predict the risk of falls if the IMU was attached to the head.

These findings emphasize the importance of considering both sensor placement and
task context when interpreting IMU data for balance assessment. These varying relation-
ships between movement characteristics and balance across different body locations and
task types suggest that a comprehensive balance assessment may incorporate multiple
sensor locations, and that static and dynamic tasks should be analyzed separately.

Table 4. Confidence intervals of the balance predictors by sensor location and task type.

Confidence Interval of the Coefficients

Variable Lower Back Torso Head

Static Tasks
Area under the curve (m/s) [−0.57, 0.07] [−0.56, 0.10] [−0.17, 0.31]
Jerk X (m/s3) [−0.21, 0.26] [−0.37, 0.08] [−0.17, 0.04]
Jerk Y (m/s3) [−0.13, 0.14] [−0.43, 0.04] [−0.12, 0.12]
Jerk Z (m/s3) [−0.18, 0.25] [−0.15, 0.08] [−0.11, 0.10]
Mean acceleration Y (m/s2) [−0.18, 0.05] [−0.11, 0.15] [0.17, 0.51]
Mean acceleration Z (m/s2) [−0.19, 0.05] [−0.18, 0.08] [−0.30, −0.06]
RMS angular velocity (rad/s) [−0.13, 0.09] [−0.22, 0.04] [−0.16, 0.15]
Total pathway length (m) [0.001, 0.61] [0.001, 0.65] [−0.19, 0.20]
Volume (m3) [−0.24, −0.01] [−0.11, 0.12] [−0.18, 0.13]

Dynamic Tasks
Area (m/s) [−0.28, 0.10] [−0.17, 0.12] [−0.22, 0.15]
Jerk X (m/s3) [−0.10, 0.11] [0.06, 0.33] [−0.19, 0.08]
Jerk Y (m/s3) [−0.13, 0.10] [−0.12, 0.12] [−0.06, 0.22]
Jerk Z (m/s3) [−0.12, 0.10] [−0.16, 0.07] [−0.03, 0.23]
Mean acceleration Y (m/s2) [−0.07, 0.14] [−0.23, −0.01] [−0.03, 0.31]
Mean acceleration Z (m/s2) [−0.09, 0.12] [−0.15, 0.07] [0.06, 0.38]
RMS angular velocity (rad/s) [−0.13, 0.07] [−0.16, 0.07] [−0.04, 0.22]
Total pathway length (m) [−0.09, 0.28] [−0.08, 0.16] [−0.08, 0.21]
Volume (m3) [−0.06, 0.15] [0.03, 0.28] [−0.10, 0.19]

4. Discussion

This section begins with providing the interpretation of our results, focusing on how
various movement parameters influenced the fall risk. Then, we contextualize our findings
with previous studies to present the validity and relevance of our study.
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4.1. Factors Influencing Postural Balance

It is essential to account for individual factors that might have acted as confounders.
These factors, including age, sex, weight, and height, could influence both the movement
characteristics measured by the IMUs and the risk of falls. For instance, age was a significant
predictor of fall risk (p-values < 0.0001), i.e., there was an increased risk of imbalance with
advancing age. Similarly, sex and weight impacted postural stability (p-values = 0.001 and
0.006). By incorporating these confounding factors into our model, we were able to better
isolate the specific effect of IMU-derived variables on fall risk as follows.

4.1.1. Area

The significant association between a larger area derived from the IMU at the lower
back and an increased risk of poor balance could be explained by the dynamic nature of the
14 BBS tasks. These tasks demand constant postural adaptation and rapid reorganization
of the motor responses. Similarly, Zhou et al. (2023) [33] found that balance control dys-
functions affected older adults’ ability to maintain a safe gait. While their study specifically
examined a gait, it highlighted the difficulties encountered during dynamic movements
and the muscle tensions that disrupt stability. This aligns with the challenges observed in
our study during dynamic BBS tasks, such as getting up from a chair, transferring between
chairs, and bending to pick up an object.

4.1.2. RMS Angular Velocity

The RMS angular velocity, with its positive correlation (coef = 0.3182, p = 0.004),
indicated that faster and more varied movements at the lower back are generally associated
with an increased risk of poor balance. According to Donath et al. (2016) [34], older
adults with high RMS angular velocities during balance tasks exhibited reduced postural
stability. Although their study primarily focused on static balance tasks and used surface
electromyography to measure muscle activity rather than kinematics directly, it reinforced
the idea that high RMS angular velocity measures might be associated with deficiencies in
the ability to maintain balance. Higher angular velocities may reflect excessive or poorly
controlled postural adjustments, necessary to stabilize a less efficient neuromuscular system
in older adults. Their findings and ours both suggested that RMS angular velocity could be
a valuable metric for assessing balance control in the elderly. In practical terms, this could
lead to the development of targeted interventions focusing on improving the control and
smoothness of movements, particularly at the lower back, to enhance overall balance and
reduce fall risk.

4.1.3. Total Path Length

Our analysis revealed an interesting association that a greater total path length at the
lower back is linked to better stability, reflected by a perfect BBS score. That is, individ-
uals with better balance were capable of exploring a larger movement space, as greater
confidence in their postural abilities allowed them to move more freely without fear of
losing balance. This observation aligns with Horak’s [35] theories on the importance of
confidence and motor competence for optimal performance on the BBS. A greater path
length could indicate better flexibility, coordination, and motor planning, as well as efficient
use of different movement strategies to maintain balance. According to Horak (2006) [35],
confidence in one’s postural abilities allows an individual to move with more assurance
and explore a larger movement space without excessive apprehension.

The practical implication of this finding is significant as it suggests that balance training
programs for the elderly should focus on not only stability but also movement confidence
and range. This could involve exercises that encourage exploration of different movement
patterns within a safe environment, potentially improving overall balance performance
and reducing fall risk.
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4.1.4. Volume

Based on our analysis, a larger movement volume measured at the lower back was
correlated with better stability. This finding agreed with the previous observation on
the total path length, i.e., that greater exploration of the movement space was associated
with better balance. A larger volume could indicate a greater variability and a more
diverse exploration of the movement in space during the BBS tasks. This ability of the
participants to adapt their movements more flexibly and efficiently to the different task
requirements was matched with a higher BBS score. Melecky et al. (2016) [36] supported this
interpretation. They introduced the use of the convex hull volume, calculated directly from
three-dimensional acceleration data, as a new method to quantify trunk postural stability;
that is, they demonstrated the sensitivity of the volume metric to the participant’s balance
deficiency. Although their analysis focused on the movement of the trunk (equivalent
to our torso measure), while our analysis used the lower back as the reference, both
approaches shared the same fundamental principle of quantifying postural balance in the
three-dimensional space explored through the convex hull volume of the acceleration data.

The volume metric provided a comprehensive measure in all three directions, offering
insights into the overall mobility and adaptability of an individual’s balance strategies.
This finding on the volume metric has important implications for balance assessment in the
elderly, similar to the total path length.

In conclusion, our findings suggest that while high-intensity, high-frequency move-
ments often predict instability, the ability to control and modulate movement within a
broader range is equally critical for balance. This comparative perspective broadens the
potential applications of IMU-derived measures, emphasizing not only risk identifica-
tion but also the development of intervention strategies that optimize balance through
control-focused exercises.

4.2. Sensor Position and Balance in Relation to Activity Type
4.2.1. Lower Back

Our results during static tasks indicate that a larger movement volume was associated
with better balance. This, once again, suggested that individuals with good balance
explored a wider range of movement, effectively using the available space to find the
optimal posture for stability. This corresponded to a previous study by Pourghayoomi et al.
(2020) [37] using an indicator of postural stability based on the presence of the center of
pressure in different rectangular functional areas to predict the intensity of fear of falling in
patients with Parkinson’s disease. This emphasized the importance of the volume metric in
movement analysis for assessing postural stability.

In dynamic tasks, it is interesting to note that the measurement at the lower back
did not reveal any statistically significant characteristics. This could indicate that while
the sensor placement at the lower back as an approximate center of mass might play a
crucial role in static balance, its contribution to assess dynamic balance was more subtle and
probably integrated with the actions of other body segments, as suggested by Hansen et al.
(2021) [38] on the reliability of IMU-derived balance parameters.

4.2.2. Torso

In our results during static tasks, a greater total path length measured at the torso
suggested unsecured balance. This emphasized the fact that the trunk has a crucial role
in maintaining vertical posture and stabilizing the center of mass. Likewise, Hossein-
imehr et al. (2010) [39] demonstrated that the proprioception of trunk muscles, when
disturbed by vibrations, affected dynamic postural control.

During dynamic tasks, trunk movements became more complex, and their influence
on postural balance was more nuanced. The analysis revealed a complex interaction
between trunk stability and mobility. Increased mean Y-acceleration was associated with
better balance. This result may seem paradoxical, as another study by Ge et al. (2021) [40]
showed that increased lower back acceleration was generally associated with poorer balance.
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Notwithstanding, a previous study by Ringhof and Stein (2018) [41] on dynamic balance
found that the balance skills depended on the tasks.

The interpretation when considering the IMU placed at the torso was different from
when the IMU was placed at the lower back. This suggested that the two sensor positions
were complementary. In addition, Doi et al. (2013) [42] demonstrated that the harmony of
upper and lower trunk acceleration was a good predictor of falls in older adults, and that
their measure of balance at the upper trunk, equivalent to the torso position in our study,
could alone predict the incidence of falls well. Despite using different measures, their study
is relevant to ours, as we also found that measures derived from torso IMUs were more
discriminative than those from lower back IMUs.

4.2.3. Head

During static tasks, the head, essential for spatial perception and motor coordination,
played a crucial role in maintaining balance. The higher mean acceleration on the medio-
lateral axis (Y) indicated instability, often due to body oscillations or frequent postural
adjustments. These results were confirmed by Noamani et al. (2023) [43] who found that
measures such as RMS acceleration and frequency at the center of pressure particularly
revealed balance impairment in older adults. On the contrary, increased acceleration on the
vertical axis (Z) suggested better posture and more effective postural control. This result
could be explained by the fact that higher vertical acceleration indicated a more stable
postural alignment with the gravity.

In dynamic tasks, increased vertical acceleration (Z) was associated with reduced
postural stability, suggesting a greater solicitation of the vestibular system and visual–
motor reflexes. Extended head movements could provoke sensory conflicts, affecting
sensory integration and motor coordination that are essential for stabilizing the body.
Lacour et al. (2018) [44] found that patients with bilateral vestibular hypo-function rely
more on extra-ocular signals from eye movements to stabilize their posture, especially in
tasks requiring visual tracking.

All things considered, by providing a comparative assessment of these sensor locations,
this study highlights the limitations of relying on a single IMU location to assess balance
across varied activity types. This approach aligns with the need for task-specific balance
metrics and demonstrates the value of integrating multiple sensor data points to create a
comprehensive view of postural stability. Additionally, this study contributes to a more
personalized approach to balance assessment, as different sensor placements may suit
different individuals and balance challenges.

4.3. Practical Implications

The findings from our study can draw a complex picture of balance control in the
elderly and the interplay between different aspects of motor function.

Firstly, our results pinpointed that postural balance is not simply about minimizing
the movement, but rather the efficient and adaptive control of the movement. The findings
regarding the area under the acceleration curve and the RMS angular velocity suggested
that excessive or poorly controlled movements indicated balance issues. Meanwhile,
the total path length and volume metrics showed that a larger range of controlled movement
can be indicative of better balance. Thus, balance evaluation should incorporate measures
that capture sufficiently diverse measures.

Secondly, the differences observed between static and dynamic tasks emphasized that
balance control strategies are highly task-specific, which is aligned with the observations
by Ringhof and Stein (2018) [41]. Therefore, comprehensive balance assessments should
include a variety of tasks to capture the full spectrum of an individual’s balance capabilities.
Also, given the task-specific nature of balance control, interventions should be tailored to
address individual deficits in specific types of tasks or movements.

Thirdly, as we found varying contributions of the IMUs placed at different body
locations, it might be necessary to use several sensors together in balance assessment.
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The measurement of each body part, i.e., lower back, torso, and head, could uniquely give
insights about balance control, and their interactions could be important, as also mentioned
by Doi et al. (2013) [42]. Using IMUs in multiple body locations, if possible, could be a
promising approach for monitoring postural balance in daily life and for the early detection
of balance issues for timely intervention.

Lastly, the positive associations between larger movement volumes, longer path
lengths, and better balance scores supported Horak’s [35] theories on the importance of
confidence and motor competence in balance control. This suggests that balance interven-
tions such as training should focus on not only stability but also encourage the exploration
of movement to build confidence and competence.

4.4. Limitations and Considerations for Future Work

Despite the contributions of our study, several limitations should be acknowledged.
Our sample size (N = 14) is relatively small, potentially limiting the generalizability of our
findings. Gherbi and Thamsuwan (2024) [45] determined that at least 19 participants would
be necessary to discriminate, with adequate statistical power, the participant’s fall history
using BBS scores. This suggested that our study may be underpowered, which could
increase the risk of Type II errors and reduce the reliability of our results. Notwithstanding,
our participant recruitment from the community with diversity in ethnicity, gender, age,
and health background ensured this study’s generalizability.

Moreover, IMUs could be subject to inherent measurement errors. These include drift,
where small errors accumulate over time leading to gradually increasing inaccuracies,
as well as noise, which can introduce random fluctuations in the data. To mitigate this, we
only used the gyroscopes’ data for one movement metric (the RMS angular velocity) and
applied a low-pass filter to eliminate the noise in the acceleration data. Also, as such errors
can affect the accuracy of long-term measurements [46], we chose a short-duration data
collection where most tasks lasted for less than two minutes; thus, we expected these errors
to be marginal.

Furthermore, our study focused on balance during specific BBS tasks, which may
not fully capture all aspects of balance control in daily life. For example, task no. 12
(placing an alternate foot on a stool) was easier than actually climbing up or down the
stairs. We did not account for factors such as environmental conditions (e.g., uneven
surfaces, poor lighting), cognitive load (e.g., dual-task conditions), and fatigue, which can
significantly influence balance performance [47]. For instance, cognitive load can divert
attention from balance maintenance, while fatigue may impair muscle response times
critical for maintaining stability.

Additionally, IMU data from the head and torso may be influenced by non-balance-
related movements, requiring careful interpretation. These extraneous movements could
potentially mask or mimic balance-related signals, complicating the analysis and potentially
leading to misinterpretation of the data. Addressing these limitations in future research
will be crucial for advancing the use of IMUs in balance assessments and fall prevention
strategies for the elderly population.

Finally, the cross-sectional nature of our study limits our ability to assess changes in
balance over time or the long-term predictive value of our IMU-derived metrics. A longitu-
dinal study design would provide more robust evidence for the prognostic capabilities of
these measures in fall risk assessment [48].

5. Conclusions

This study contributed to the assessment of postural balance through the use of
IMUs. We developed a new movement volume metric, which was proven to be a sensitive
indicator of balance. We also identified the lower back as a crucial measurement point for
static balance assessment, with the movement volume and total path length serving as
significant predictors of poor balance. Meanwhile, IMUs placed at the head and the torso
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could provide complementary data, valuable for better understanding the balance under
the dynamic activities.

Our research opens several avenues for future investigation. These include longitudi-
nal studies to examine how IMU-derived balance measures change over time, the effect
of balance training or other interventions on these measures, and the development of
standardized protocols for IMU-based balance assessment. We envision the creation of
user-friendly wearable devices, such as small unobtrusive sensors integrated into clothing,
that could provide continuous balance monitoring and early warning systems for fall risk.

This research demonstrated the potential of IMUs to enhance continuous balance
assessments in older adults, and ultimately the early identification of fall risks and person-
alized interventions. However, challenges may arise when auxiliary tasks are misaligned
with the main task of balance assessment, potentially complicating data interpretation.
To address this, future studies should consider designing protocols that isolate primary
balance measurements or use task-specific filtering techniques to differentiate core balance
data from auxiliary movements. Ensuring alignment between task demands and sensor
placement could also help clarify the interpretation of IMU data in complex scenarios. Re-
searchers and clinicians may build upon these findings and explore innovative applications
of IMU technology in balance assessment and fall prevention to improve quality of life for
the elderly population.
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