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ABSTRACT Optimizing hardware accelerators in high-level synthesis (HLS) relies on design space
exploration (DSE), which involves experimenting with different pragma options and trading off hardware
cost and performance metrics (HCPMs) to identify Pareto-optimal solutions. The exponential growth of
the design space, poor quality-of-results (QoR) estimation by HLS tools, and lengthy post-implementation
runtime have made the HLS DSE process highly challenging and time-consuming. Automating this process
could reduce time-to-market and associated development costs. Learning-based methods, particularly graph
neural networks (GNNs), have shown considerable potential in addressing HLS QoR/DSE problems by
modeling the mapping function from control data flow graphs (CDFGs) of HLS designs to their logic,
enabling early estimation of QoR during the compilation phase of the hardware design flow. However, there
is still a gap in terms of their prediction accuracy. Indeed, modeling HLS-related problems using GNNs
that efficiently capture the complex patterns arising from applied pragmas and low-level characteristics of
HLS specifications is challenging. This paper introduces a novel hybrid graph representation and learning
framework under a multi-task setting, featuring two distinct types of CDFGs derived from two different
sources. Furthermore, various models are proposed to fuse features and knowledge in joint, sequential,
and parallel learning architectures, aiming to improve the overall accuracy and generalization in predicting
QoR and approximating the Pareto frontier (PF). Experimental results show that our framework can attain a
higher level of performance than the state-of-the-art baseline models over unseen designs, with an average
relative improvement of 47.4% and 16.0% for resource utilization and performance metrics, respectively.
Additionally, considering various HLS designs with different design space sizes, a 26.8% enhancement in
DSE PF approximation is observed.

INDEX TERMS Electronic design automation (EDA), high-level synthesis (HLS), design space exploration
(DSE), machine learning (ML), graph neural networks (GNN), field-programmable gate array (FPGA).

I. INTRODUCTION
Hardware acceleration [1], [2] based on application-specific
integrated circuits (ASICs) and field-programmable gate
arrays (FPGAs) has gained particular importance in recent
years due to the obsolescence of Moore’s law [3] and the
breakdown of Dennard Scaling [4] era. This approach has
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emerged to meet the rising demand for high-performance and
energy-efficient computing platforms driven by the growth
of compute-intensive and data-driven applications across
various industries. The primary issue with this technology,
though, is the long design time and correspondingly high
costs. One potential solution involves enhancing existing
electronic design automation (EDA) tools at various stages of
the hardware design flow (e.g., behavioral description, logic
synthesis, verification, etc.) with the ultimate goal of reducing
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the development cycle from months and years to the shortest
feasible duration [5].

Hardware description languages (HDLs) like VHDL [6]
and Verilog [7] have been the mainstream approach for
hardware accelerator design at the register-transfer level
(RTL). However, using HDLs for modern algorithms with
increased complexity and scale is challenging and labor-
intensive.
High-level synthesis (HLS) [8], [9], [10], [11], [12]

has significantly improved the development process of
hardware accelerators by raising the abstraction level from
the RTL to the behavioral description. Indeed, HLS allows
hardware functionalities to be described in untimed or
loosely-timed high-level languages (e.g., C/C++/SystemC),
which are more understandable, verifiable, and portable.
Besides boosting design productivity, a key aim of
HLS has been to break the monopoly traditionally held
by hardware designers in developing domain-specific
accelerators.

Also, HLS enables users to create a multitude of configura-
tions for a design, leveraging diverse optimization directives,
aka pragmas. Designers can specify pragmas for various
code components e.g., loop pipelining/unrolling, memory
partitioning/merging, and function inlining/pipelining [13],
[14] without the need to change the high-level description
code. Consequently, the HLS tool is guided to manage par-
allelization, memories/resource types, and other factors w.r.t
the design specifications and product type. Corresponding
to configurations, micro-architectures are generated, main-
taining identical functionality but differ greatly in terms of
hardware costs and performance metrics (HCPMs). The costs
usually encompass metrics in the form of on-chip resource
utilization, including the number of look-up tables (LUTs),
flip-flops (FFs), digital signal processor units (DSPs), block
RAMs (BRAMs), and configuration logic blocks (CLBs).
Also, the most important performance measures, include
critical path timing (CP), which determines the maximum
frequency of the generated datapath, latency as the total
number of clock cycles (CCs) to perform one complete task,
and execution time, calculated as Texe = CP × CC.
Despite the considerable advantages of HLS, fundamental

challenges impede its wider adoption in the industry. More
specifically:
(1) The hardware design flow is inherently complex and time-
consuming.While the compilation, building, and execution of
a software function targeting a processor can be completed in
a few seconds, a similar process for a single HLS design entry
targeting FPGAs can take minutes to hours. This is due to the
need for designs to go through the HLS, post-synthesis (logic
synthesis), and post-implementation (includes translation,
technology mapping, and place&route) phases.
(2) The intermediate estimation of quality-of-results (QoR)
provided by current HLS tools is not sufficiently reliable and
accurate [15]. Nevertheless, the HLS stage itself takes a few
to dozens of minutes to complete concerning design size,

complexity, and applied pragmas, making agile HCPM trade-
offs challenging.
(3) Achieving highly efficient designs relies on design space
exploration (DSE) [16], [17], which entails iteratively re-
tuning pragmas, and trading off HCPMs. The main challenge
is that the size of the design space expands exponentially with
the inclusion of more pragmas and the range of exploration
values assigned to each. Therefore, following the brute
forcing approach makes exhaustive exploration impractical
due to the non-negligible run-time of the post-implementation
processes, which can take up to hours and days even for
small to medium-sized designs [18], [19]. In addition, DSE
is a multi-objective optimization problem (MOOP), where
only a few solutions are considered optimal in terms of
HCPMs. Taking into account that conflicts exist among
different design objectives, For example, reducing latency,
while minimizing area.
(4) The impact of pragmas on the final datapath is highly
complex and depends on many factors [19]. Determining
the appropriate pragma, or combination thereof, along with
their values with current HLS tools, necessitates designer
intervention. This demands highly specialized knowledge and
extensive experience.

Over the past decade, a considerable amount of research
has been devoted to automating the HLS DSE process.
A predominant portion of prior research works falls into
categories analytical model-based and AI-assisted methods.
Conventionally, analytical model-based DSE methods [20],
[21], [22], [23], [24], [25], [26], [27] rely on human
effort to model and formulate the knowledge that describes
the relationship between inputs (code and pragmas) and
HCPMs. On the other hand, AI-assisted methods are capable
of acquiring the knowledge automatically without human
intervention during (online) or before (offline) exploration of
design space [28], based on refinement-based [29], [30], [31],
[32], [33] and machine learning (ML)-based [18], [34], [35],
[36] methods, respectively.

Analytical model-based DSE methods are fast since
they don’t require HLS invocation, and leverage the
knowledge initially embedded in the prediction model.
However, such techniques have been provided for regular
code structures [20], [21], [22] with supporting a limited
number of pragmas [20], [24] or developed for only a
particular type of applications [26], [27]. Lin-Analyzer [23],
FlexCL [24], COMBA [25], and MPSeeker [37] presented
more comprehensive frameworks. However, these methods
exhibit generality, model management, and maintenance
limitations [38], [39], [40]. For example, in the case of
updating an HLS tool, the knowledge embedded into the
model needs to be re-defined. Furthermore, HLS tools show
highly complex behavior when multiple pragmas are applied
simultaneously, due to the inter-dependencies of pragmas and
the interactions between low-level data and operations inHLS
specifications. Modeling such scenarios analytically for a
diverse range of real-world applications is questionable.
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Refinement-based DSE methods acquire knowledge by
continuously learning from design space through sampling,
processing the feedback, and intelligently guiding the
algorithm to the optimal solutions [28]. Such models are
refined iteratively by focusing more on a sub-region of
design space to find Pareto-optimal cases. The primary
limitation of these methods lies in the need for several
invocations of the HLS tool during the DSE process.
Furthermore, as the refinement model runs independently for
each design, re-using and transferring the learned knowledge
are problematic.

ML algorithms enable computers to learn complex
mapping functions from data by identifying patterns and
correlations within them. In ML-based DSE methods, the
knowledge is gained before starting the DSE process in a
data-driven training process. These models can subsequently
be employed to predict HLSQoR.As an important advantage,
they can acquire knowledge automatically, unlike analytical
model-based methods, while providing the same capability
in terms of prediction speed. Additionally, the acquired
knowledge is transferable to another design and/or hardware
technology as demonstrated in [36], [41], and [42]. In the
domain ofML-basedDSEmethods, graph learning [40], [43],
[44] has shown substantially better prediction performance
compared to conventional ML models. This has been
achieved by representing programs as graphs, particularly,
control data flow graphs (CDFGs) [8], [45] and learning
CDFG-to-logic mapping function using graph neural net-
works (GNNs) [46], [47]. GNNs are powerful tools that can
capture both semantics and structural information within
graphs and encode the information to the lower dimension,
facilitating downstream prediction tasks.

There are twomain forms of CDFGs used to represent HLS
specifications. The first form is constructed using generic
software compilers targeting CPUs, while the second form
can be extracted from the front end of HLS compilers
targeting specific hardware. Among state-of-the-art (SOA)
works, [43] proposes a framework based on compiling the
HLS code with a generic software compiler, generating
CDFGs from the intermediate representation (IR), and
training a GNN model to learn over them. However, this
work only investigated the loop unrolling pragma. In a similar
approach, gnn4hls [40] was introduced, supporting a broad
spectrum of optimization directives.

It is worth noting that generic software compilers cannot
process HLS pragmas. As a result, CDFGs with identical
structure and size are used for all configurations of a given
HLS design. To tailor these CDFGs for HLS problems, the
incorporation of pragma information as a dedicated pragma
node within the CDFGs was proposed in [43]. In contrast,
the gnn4hls [40] integrates pragma information directly into
the node features of the CDFGs. Also, in [15], pragma
information was used as global graph attributes. Whilst,
in typical HLS tools, HLS specifications undergo various
hardware-specific optimizations and transformations [45].
Consequently, different configurations of an HLS design

result in CDFGs that differ in size, structure, and features. For
example, applying a loop unrolling pragma results in CDFGs
that contain copies of the loop body w.r.t the unrolling factor.
The Program-to-Circuit [44] utilized this form of CDFGs,
but it did so only for random and real-case functions without
considering any HLS pragmas.

Subsequent studies have shown that relying solely on
CDFGs is insufficient to achieve a high-accuracy model
using GNNs. For example, auxiliary nodes were introduced
in [48] to integrate program semantics and pragmas by
providing high-level hierarchical information. In [49], HLS
intermediate results were used as supplement information.

Despite significant advancements in leveraging GNNs
for HLS QoR/DSE challenges, a noticeable gap still exists
in achieving the level of prediction accuracy required by
the EDA industry [50]. This shortfall highlights the need
for further research and innovation to bridge this gap and
enhance the accuracy and generalization of GNN-based
DSE automation tools. In contrast with previous works, this
research addresses two primary emerging questions. Q1:
Which form of CDFGs are more suitable for GNN-based
models in the context of predicting different HCPMs in
HLS? Q2: Can a more accurate model be achieved by
integrating CDFGs from two distinct sources and/or fuse the
knowledge in hybrid models?. To do that, a novel hybrid
graph representation and learning framework is introduced
by emphasizing both HLS data representation and prediction
model to enhance DSE results using GNNs. The key
contributions of this paper are as follows:

A. STUDYING THE IMPACT OF HLS CDFG TYPES
Two distinct forms of CDFGs are explored to represent HLS
designs, derived from software-based and hardware-based
compilers. Our investigation reveals each yields different
prediction accuracy for different HCPMs when applied with
GNNs. This assessment is conducted during training as well
as in transfer learning on entirely unseen HLS designs.

B. NOVEL HYBRID GRAPH LEARNING MODELS
Leveraging multi-task architecture, three different hybrid
GNN models are proposed including 1)jointly-learning
and fusion, 2)sequential-learning with knowledge infused,
and 3)parallel learning and fusion models. Experimental
results show that our hybrid GNN models not only surpass
the baselines (single GNN model with a single type of
CDFGs as input) and the HLS tool (VitisHLS) in terms of
prediction accuracy but also exhibit the higher capability
of generalization to previously unseen designs (out of our
training dataset) by extending the learned knowledge.

C. ENHANCED DSE APPROXIMATION
Integrating the proposed hybrid GNN models for HLS QoR
prediction into our HLS DSE automation framework shows
enhanced capabilities in DSE Pareto frontier (PF) approxi-
mations compared to baseline models and commercial HLS
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tools. This improvement is shown by evaluations of designs
from various domains (image processing, searching, sorting
algorithms, etc.) and with diverse configuration sizes.

The rest of the paper is organized as follows. Section II
presents a theoretical problem formulation of the HLS DSE.
Section III outlines the proposed methodology, detailing
the two different forms of CDFGs, proposed multi-task,
and hybrid graph learning models. Section IV provides
the experiments setup, dataset, evaluation procedure, and
obtained results for HLS QoR estimation and DSE.

II. PROBLEM FORMULATION
This section presents the theoretical formulation of the HLS
DSE in the context of the discrete MOOP.

Let S be an HLS specification, which principally is a
synthesizable format of a design developed in a high-level
programming language, aiming at being implemented on
hardware. Considering H as an HLS vendor tool followed
by the post-synthesis and post-implementation processes, S
is directly received by H as the primary input. Additionally,
some global knobs (aka global constraints) are determined,
such as the target clock period and hardware technology,
represented by KCP and KHW, respectively. These constraints
impact the entire behavioral description [16], having a fixed
value in this research across all designs. Moreover, a set
of local knobs is defined in an encoded form of ⟨ code
component/label name, pragma type (e.g., loop unrolling),
and pragma setting (e.g., factor = 2) ⟩, denoted by KP.
Code. 1 shows stencil2d HLS specification from MachSuit
benchmark [51] and a set of example local knobs associated
with this function is given in Table 1.
Let d = (d1, d2, · · · , dn) ∈ D be a design vector, where di

is a design variable that specifies the value for the i-th knob
(ki ∈ KP), n is the total number of design variables (which
is equal to the number of local knobs), the D is the design
space (aka solution space). Accordingly, N = |D| represents
the size of design space, which is equivalent to the Cartesian
product among all setting sets within KP.
Given d,KCP and KHW, synthesizing S by H forms a

mapping described as H : (S, d,KCP,KHW) → y, such
that y = (y1, y2, · · · , ym) = (f1(d), f2(d), · · · , fm(d)) is the
target function consisting of m objective functions that are
to be optimized simultaneously. An example of this mapping
formulation, having two design variables is illustrated in
Fig. 1. Consequently, the exhaustive implementation of S
over D is defined as H : (S,D,KCP,KHW) → Y , where
Y = {y1, y2, · · · , yN } is objective space as a result of the
projection of the design space. In reality, |Y| ≤ |D| because
applying some d ∈ D to S may not be applicable or lead to
a successful implementation. Lastly, the optimization goal is
defined as minimizing a target function y as (1). Although,
this study focuses on a dual-objectives DSE task, in which
different resource utilization include the number of LUTs,
FFs, DSPs or BRAMs served as a cost function, denoted by
fc while CP, CC, and TExe serve as the performance function,

denoted by fp.

argmin
D

Y = f (d) =

(
f1 (d), f2 (d), · · · , fm (d)

)
(1)

Among all d ∈ D, the designer is interested in a subset of
D named solution set D∗, containing Pareto design vectors
(d∗) that result in Pareto-optimal implementations. TheD∗ is
defined as:

D∗
= {d | d ∈ D and d is Pareto} (2)

Formally, d∗
∈ D is said to be Pareto optimal if and only

if there does not exist any other d ∈ D that dominate it, i.e.:

fc(d) ≤ fc(d∗) with at least one strict inequality, and

fp(d) ≤ fp(d∗) with at least one strict inequality.

CODE 1 Stencil2d HLS specification (S) from MachSuite [51]
benchmark

TABLE 1. The list of local knobs (KP ) for Stencil2d HLS specification. The
design space size for this example is 4096.

The Pareto front (PF) is a set of non-dominated solutions
in the objective space, showing the trade-offs between
the conflicting objectives. Consequently, answers to such
problems should aim to find D∗ and approximate the PF
rather than a single solution. An example of first-rank PF is
depicted as dashed red lines in Fig. 1.
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FIGURE 1. An example 2-dimensional mapping from design space for a
design vector d based on d1 and d2 pragma values (served as two design
variables) to the objective space, considering a performance (fp) and a
cost (fc ) functions. The true PF is shown by a dashed red line that needs
to be approximated accurately in the HLS DSE process.

III. PROPOSED METHODOLOGY
Accurately approximating the PF in the HLS DSE process
requires precise prediction of the QoR. Focusing on enhanc-
ing the accuracy of GNN-based HLS QoR/DSE prediction
models, this section provides a detailed description of the
proposed framework, including methods for representing
HLS code as CDFGs, the baseline multi-task prediction
model, and three different fusion-based GNN models.

A. METHODS FOR REPRESENTING HLS SPECIFICATIONS
AS GRAPHS
Employing graphs as a language-independent structure has
been a natural and efficient way to represent programs in the
front end of compilers, simplifying analysis and optimization
processes without directly involving syntax and rules of
codes [45].
Mathematically, a graph is expressed asG = (V, E), where

V = {υ1, υ2, υ3, . . . , υν} is the set of vertices (or nodes),
and E is the set of edges (or links). Let υi, υj ∈ V , then
eij =

(
υi, υj

)
∈ E denotes an edge from υi to υj. The

neighborhood of a node υ is defined as N (υ) = {u ∈ V |

(u, υ) ∈ E}, N (υ) ⊆ V . For a finite graph with ν = |V|

nodes, there exists an ν × ν adjacency matrix (A), also called
a connection matrix. The elements of A obtain 1 or 0 values,
depending on whether a direct path exists between pairs of
vertices or not. Each node υ ∈ V possesses an initial feature
vector with a dimension of a, denoting as xυ ∈ Ra. Hence,
X = {x1, x2, . . . , xν} is a set of feature vectors of nodes,
stored as amatrixX ∈ Rν×a called graph node featurematrix.
Conversely, Xe

∈ R|E |×b is graph edge feature matrix with
xeu,υ ∈ Rb representing the feature vector of the edge (u, υ)
with size b.
One standard abstract representation of codes is CDFGs,

formed by combining control flow graphs (CFGs) and data
flow graphs (DFGs). CDFGs are directed graphs in which
nodes represent the basic blocks (BB) of a program, and
the edges indicate both the flow of control between BBs
(i.e., the program’s execution sequence) and the dependencies
between data elements. An abstract example of a CDFG is
presented in Fig. 2. In this diagram, different types of nodes
are shown: basic blocks (BBs) as rectangles, variables as
circles, and constants as rhombuses. The graph also includes

FIGURE 2. An abstract CDFG example with different types of nodes and
edges is illustrated.

various edges to indicate control, data, and call flows, shown
as black, red, and green arrows, respectively. Each basic block
(BB) contains a distinct operation code (Opcode), reflecting
the function’s low-level operations.

This research explores two different methods for modeling
HLS data, each producing distinct forms of CDFGs. The
first form is generated from a generic software compiler
(in our case, Clang [52]), inspired by SOA works. The
second form is obtained directly from the front end of an
HLS compiler. Using the first method, CDFGs are generated
with structures and sizes that remain independent of the
applied pragmas across different configurations of a given
HLS design. In contrast, the second method results in CDFGs
with varying structures and sizes. To customize the first
form of CDFGs for HLS-related problems, the pragma
information is incorporated into the node feature vectors.
This is while in typical HLS design flow, the abstract
representation of the high-level functionalities undergoes
several hardware-specific optimizations and loop transfor-
mations [45]. For example, partitioning a BRAM port by
a factor of N results in the generation of N ports (each
with 1/N the length of the original array) in the generated
CDFGs, with the associated read/write operations duplicated
for each array. Our framework exploits VitisHLS [53],
an open-source HLS frontend to extract the post-IRs of
HLS specifications and represent them as CDFGs. The
proposed framework leverages both forms of CDFG in a
hybrid manner. Throughout this paper, the former CDFGs are
denoted with Gsw and the latter with Ghw that reflect the rich
hardware-specific structural information.

The initial feature of nodes for Gsw and Ghw is detailed in
Table 2. As shown, both share some common features, such
as node type, opcode category, and data width. The ‘‘opcode’’
corresponds to the low-level virtual machine (LLVM) [54],
[55] operation code (e.g., load, allocate, add), while the
‘‘opcode group’’ in this table denotes their categorization
(e.g., memory operation, binary operation, etc.). In addition,
the pragma feature in Gsw contains status and values for
all applied pragma for each graph component. This feature
is a vector with a size of 10. Overall, Gsw and Ghw have
initial node feature sizes of 15 and 4 respectively. No global
attributes are considered in the proposed CDFGs for HLS
representation.
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TABLE 2. List of node features.

The edge features of each form of CDFGs are given in
Table 3. Accordingly, Gsw and Ghw have an edge feature
vector with sizes of 3 and 2, respectively.

TABLE 3. List of edge features.

B. HLS RESOURCE AND PERFORMANCE PREDICTION
MODEL BASED ON GRAPH NEURAL NETWORKS
Traditional neural networks are primarily able to handle
vectorized (e.g, sound) or grid-like data structures (e.g.,
images), whereas graph-structured data is inherently irregular
and non-Euclidean, making it challenging for such networks
to process [56]. This challenge has been addressed by the
introduction of GNNs, which are end-to-end deep learning
models capable of performing various prediction tasks on
graph data using the same feed-forward back-propagation
structure.

Our methodology for HLS QoR prediction employs
supervised graph-level regression, where a labeled set of
training points (CDFG with available post-implementation
resources and performance results) is used to train a model
and learn a mapping function from input data points (CDFG)
to output variables. In this regard, each graph in the training
dataset is an independent and identically distributed (i.i.d)
data point.

In graph-level prediction using GNNs, the objective is to
encode of the input graph into a low-dimensional Euclidean
space while simultaneously capturing the relevant contextual
information. Indeed, GNNs optimize this learning to attain
the most effective representative model such that the quality
of the results is heavily reliant on the encoding process. For
this reason, devising a method that effectively incorporates
both local (individual nodes and their immediate neighbors)
and topological information (the structural properties and
relationships between nodes) in entire graph data is an

important step in GNN models. The process of graph
embedding relies on node embedding and pooling stages.
The node embedding itself works based on message-passing
(MP) framework, which generalizes spatial convolution on
structure data through message propagation and recursively
updates the features (hidden state) of nodes by exchanging
information with their neighbors (neighbor aggregation).
At each iteration (or layer) denoted by ℓ, an MP layer
operation on target node u is defined as:

m(ℓ)
N (u) = 3

(ℓ)
2

(
{h(ℓ)

υ , ∀υ ∈ N (u)}
)

h(ℓ+1)
u = 9

(ℓ)
2

(
h(ℓ)
u ,m(ℓ)

N (u)

)
(3)

where h(ℓ+1)
u ∈ Rc is the hidden state of the target node u

in the next iteration, and h(ℓ)υ ∈ Rc is the hidden state of
neighborhood nodes υ at layer ℓ. In both terms, c is the hidden
feature size that in our implementation is considered the same
across all layers. In addition, 3

(ℓ)
2 and 9

(l)
2 are arbitrary

differentiable functions with learnable parameters, called
AGGREGATE and UPDATE, respectively. Fig. 3 presents a
conceptual representation of themessage-passingmechanism
applied to node 1 within the input graph. As shown, Each
node in the graph is initially assigned a 4-dimension feature
vector. During the message-passing phase, the neighboring
nodes’ feature vectors are aggregated through a designated
aggregation function, which consolidates the relevant infor-
mation. Subsequently, the aggregated data, in conjunction
with the current state of node 1, is processed by an update
function that refines the node’s representation. This process
results in an updated 8-dimension feature vector for node 1.
The same procedure is applied for all nodes within the graph
to propagate information and enhance node-level feature
representations.

FIGURE 3. An abstract graphical example for message passing framework.

In graph-level prediction models, the matrix of all node
hidden representations (graph feature matrix) is indicated

VOLUME 12, 2024 189579



P. Taghipour et al.: Hybrid Graph Representation and Learning Framework for High-Level Synthesis DSE

FIGURE 4. Single-input multi-task GNN model (L = 4), served as the baseline model in this study.

by H (ℓ)
∈ Rν×c, that each node corresponding to a

row in the matrix. Additionally, the initial hidden state
of nodes is regarded as their initial feature vector, i.e.,
h(0)u = xu∀u ∈ V or, H (0)

= X . After completing a
pre-specified number of iterations (L), the entire graph’s
representation, denoted by z ∈ Rc is obtained by aggregating
node embeddings through a readout function �2 where
z = �2 (hυ | υ ∈ V). This method is called graph pooling
(GP), which is performed using simple permutation invariant
functions like max/mean/sum or other sophisticated pooling
mechanisms [57]. Learning an embedding of the entire graph
using this technique in a supervised manner lies principally
on the set-based concept [58].

C. SINGLE-INPUT MULTI-TASK GNN-BASED MODEL
This part describes the single-input multi-task GNN model,
which is trained and evaluated independently on each variant
of the proposed HLS CDFGs data. This model serves as the
baseline model in our study.

Amulti-task model leveraging hard parameter sharing [59]
architecture is utilized to jointly learn multiple tasks. Here,
the term ‘‘task’’ refers to a regression task, which involves
learning to map inputs to a continuous or numerical output
variable. In this case, having T different prediction tasks
associated with various HLS resource and performance
metrics, the combined objective function of the model is
defined as:

Ltotal =

T∑
τ=1

L
(
yτ , ŷτ

)
(4)

where yτ denotes a ground truth label for task τ , ŷτ is the
corresponding model prediction output, and L is the loss
function. The total loss(Ltotal) is the sum of the losses from
each task.

The overall diagram of the proposed baseline model is
depicted in Fig. 4. Node and edge feature matrix along with
adjacency matrix serve as the input of the model. Essentially,
the proposed GNNmodel consists of shared and task-specific
parts. The shared part begins with an encoder, which is a
3-layer MLP that converts the feature from its initial size

to the embedded size. This is followed by some MP layers.
Generally, sharing parameters acts as a form of regularization
by enforcing the learning of more underlying commonalities
that are useful across multiple tasks. Alternatively, task-
specific parts have some dedicated layers, tailored to the
unique aspects of each task. This allows the model to capture
task-specific nuances that shared layers might miss. This part
for each task begins with one MP layer followed by a GP
and a FC layer. It should be noted that we use superscripts
(ℓ) to denote the elements of the shared component, whereas
the notation (ℓ, τ ) is employed to represent the task-specific
components in the rest of the paper.

The performance of GNN models heavily relies on the
message-passing algorithm and the number of layers used.
Indeed, the MP algorithms define HOW information is
captured from neighbors, and HOW the current state of the
node is updated. Having a GNN model with L layers, allows
information to be captured from UP to L-hop neighbors.
Meanwhile, the chosen method must be theoretically sound
and capable of generalizing to previously unseen graph data
with varying sizes, structures, or features. In our GNNmodel,
graph convolution networks (GCNs) [60] is employed, which
serves as a middle ground between spatial and spectral-based
GNNs. GCN is a first-order approximation of spectral-based
convolutions on graphs. It provides a linear conception of the
spectral ChebNet [61] by applying a localized filter (ϑθ ) on
directly connected one-hop neighbors of a node in a graph.
The GCN [60] model uses the following spectral convolution
formulation:

X ∗ ϑθ = 20 + 21 (L− IN )X

= 20X − 21D
−1
2 AD

−1
2 X (5)

where 20 and 21 are two parameters shared over the graph,

L = IN − D
−1
2 AD

−1
2 is the normalized graph Laplacian

matrix, I is the identity matrix, and D is the corresponding
degree matrix of the adjacency matrix A. However, [60]
proposed an improvement to the GCN equation in order
to reduce the complexity and computational consumption
of the model. Accordingly, for a GNN model consisting of
L successive GCN layers, the learned parameters in each
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FIGURE 5. Proposed hybrid GNN models: (a) jointly-learning and fusion model (JLFM), (b) sequential-learning with knowledge infusion model (SLKIM),
(c) parallel learning and fusion model (PLFM). In this figure, ‘‘GNN Channel’’ refers to the non-trained model described in III-C, omitting the FC layers,
while the GNN model (gray boxes) represents the pre-trained model that provides resource and performance prediction (in inference mode).

layer can be reduced to 2t
= 2t

0 = −2t
1 as well

as normalizing IN + D
−1
2 AD

−1
2 to D̂ where D̂ is the

corresponding diagonal degree matrix used for normalizing
the adjacency matrix Â = A + IN (self-loop added to each
node). The normalization term decreases the instability based
on the degree of nodes involved [62]. The final formulation
of the hidden representation of nodes is then:

h(ℓ+1)
u = σ

(
D̂

−
1
2 ÂD̂

−
1
2 h(ℓ)u W (ℓ)

)
(6)

where,W (ℓ) is the weight matrix learned during training.
However, we implemented (6) in the form of message-

passing network [63] as (7) by considering the edge feature
(xeu,υ ) and adding root embedding, denoted by R(u). In this
equation, di is the degree of node i,W (ℓ)

e is the weight matrix
to transfer the edge feature, ReLU is rectified linear unit [65]
function, and ω(ℓ) ∈ R1 is the root embedding weight. R(u)
plays an important role in maintaining a direct contribution
of the node’s original feature to its updated hidden state,
independent of the aggregation from its neighbors.

m(ℓ)
N (u) =

∑
υ∈N (u)

1
√
dv du

(
h(ℓ)υ W (ℓ)

+ xeu,υW
(ℓ)
e

)
,

R(u) = ReLU
(
h(ℓ)u W (ℓ)

+ ω(ℓ)

)
1
du

,

h(ℓ+1)
u = ReLU

(
m(ℓ)
N (u)

)
+ R(u) (7)

D. HYBRID GNN MODELS
In order to improve the prediction accuracy, three different
hybrid GNN models are developed under the multi-task
setting by exploiting the two different forms of CDFGs,
as described in section III-A. The use of two different
CDFG graph representations is intentional and advantageous
for several reasons. By incorporating Gsw, a consistent
structural representation is leveraged that remains unaffected
by various HLS optimization directives, allowing the model
to maintain a stable framework where pragma information is
encoded directly into node features. This stability facilitates
pattern recognition across different HLS configurations
without structural variability. Conversely, Ghw introduces
a more dynamic representation, capturing the nuanced
structural and feature changes induced by hardware-specific

optimizations. This dual-representation strategy provides a
comprehensive understanding of both high-level program
behavior and low-level hardware-specific characteristics,
thereby enhancing the model’s ability to generalize across
diverse HLS designs. This combined approach allows us
to capture a richer set of patterns and dependencies,
thus maximizing predictive performance while addressing
the limitations inherent in using a single type of graph
representation. In the following, a detailed description of
the proposed models is provided. It should be noted that
the model names were assigned according to the training
order.

1) JOINTLY-LEARNING AND FUSION MODEL (JLFM):
In JLFM, each channel leverages the GNN architecture
described in Sec. III-C, tough, omitting the FC lay-
ers (Fig. 5a). Indeed, each channel plays the role of feature
extractor by encoding each input graph data to a set of graph
vectors, corresponding to each prediction task (task-specific
graph representation vector). Consequently, the model con-
currently processes both inputs and optimizes the network
to enhance representation by integrating the information
from each channel. The final graph representation vector
for Gsw and Ghw inputs is denoted by z(τ )sw , and z

(τ )
hw, where

τ is the index of task. Accordingly, for each task (τ =

1, 2, 3, . . . ,T ), there exist two different graph representa-
tion vectors. The ultimate graph representation in JLFM,
represented as z(τ )fus, is derived by utilizing a fusion block.
Despite the variety of fusion techniques available in ML,
the sum and weighted-sum fusion are adapted due to their
simplicity and effectiveness, making them suitable for our
initial exploration of combining software and hardware graph
representations.

Summing two vectors involves element-wise addition,
resulting in a single vector of the same dimensionality as the
input vectors. A weighted sum involves scaling each vector
by a weight factor before performing element-wise addition.
The associated equations related to the above-mentioned
fusion techniques are given in (8) and (9). In these equations,
⊕ shows the element-wise addition, and ω

(τ )
fus ∈ R1 is a

fusion weight to combine the graph representations of task τ .
Indeed, ω

(τ )
fus is optimized during the training process to

achieve an optimal balance between the two vectors and is
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TABLE 4. The detailed description of the dataset used in this study.

constrained within the interval [0, 1].

z(τ )fus = z(τ )sw ⊕ z(τ )hw (8)

z(τ )fus = ω
(τ )
fusz

(τ )
sw ⊕ (1 − ω

(τ )
fus )z

(τ )
hw (9)

2) SEQUENTIAL-LEARNING WITH KNOWLEDGE INFUSION
MODEL (SLKIM)
In SLKIM, a multi-task GNN model (as described in III-C)
is initially trained with Gsw input to predict relevant metrics.
In the subsequent stage, the output predictions from this
model are concatenated with the graph representation vector
of a GNN channel that encodesGhw. This combined represen-
tation is then passed through an FC layer for final prediction.
This sequential learning approach effectively infuses knowl-
edge from the initial model into the second stage. The overall
diagram of this model is illustrated in Fig. 5b.

3) PARALLEL-LEARNING AND FUSION MODEL (PLFM)
In our third proposed model, each single-input GNN model
is trained on its respective input graphs. Then, a fusion model
is introduced that receives the prediction results from both
models and is trained to learn from them. Indeed, the output
of each single-input pre-trained GNN model is a vector with
size of T denoted by ŷsw and ŷhw, corresponding to themodels
with Gsw and Ghw inputs. The high-level diagram of the
PLFM is depicted in Fig. 5c.

Regarding the fusion of the two vectors, a tensor product
(outer product) fusion technique is employed by concate-
nation of the outputs of the two pre-trained models. This
approach allows us to capture the multiplicative interactions
between the predictions of the two models, potentially
enhancing the model’s ability to better learn the highly
non-linear relationships between tasks.

qfus = 0(ŷsw ⊗ ŷhw)||ŷsw||ŷhw (10)

where ⊗ denote the outer multiplication, 0 is the flatten
function that transfers a 2D tensor to a vector, and || is the
concatenation operation. Consequently, the output qfus is a
vector of size T2

+ 2T.

IV. EXPERIMENTS AND RESULTS
This section provides a detailed overview of our experiments
and describes the evaluation procedures used to assess the
accuracy and generalization of the proposedmodels. To begin
with, information on the dataset, environment setup, training
setting, and evaluation procedure is included. This is then
followed by a comprehensive overview that aims to offer
clear insights into the experimental process, demonstrating
the robustness and adaptability of our GNN-based HLS DSE
framework and supporting its effectiveness with empirical
evidence.

A. EXPERIMENTAL SETUP
1) DATASET
Supervised graph learning prediction models require a sig-
nificant volume of labeled data to achieve effective training
and optimization. To fulfill this need, a diverse set of 11 HLS
designs from 7 distinct benchmarks, spanning various
domains such as encryption algorithms, matrix multiplica-
tion, image processing, etc., has been explored. These designs
were originally sourced from the MachSuite [51] HLS
benchmarks. This was accomplished by applying a diverse
range of pragmas, resulting in the generation of hundreds
of configurations and corresponding micro-architectures for
eachHLS design. Table 4 provides a comprehensive overview
of the benchmarks utilized, including design/function names,
and their high-level characteristics such as the number
of ports, the presence of local memory, sequential loops,
or nested loops. Additionally, it outlines the number of local
knobs (|KP|), a list of pragmas, and design space size (|D|)
determined for each design. However, a subset of the design
space was successfully implemented, resulting in a total of
12,400 labeled design points, with a minimum of 800 for
viterbi and a maximum of 1,500 for AES. It is pertinent to
note that our study adhered to a target clock period of 10ns,
and the XCZU9EG FPGA from the AMD/Xilinx ZYNQ
ULTRASCALE+ family as the target hardware platform.
To extract and represent the software-based CDFGs,

the HLS specifications were compiled using Clang [52],
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FIGURE 6. The QoR prediction and DSE process and evaluation within our GNN-based framework.

a generic and standard C/C++ compiler. The resulting
LLVM-based IR was then converted to CDFG format using a
modified version of PrograML [64], with pragma information
annotated to nodes. Regarding hardware-based CDFGs,
VitisHLS [53] is used, as an open-source HLS frontend,
which is essentially built upon Clang [52]. The raw graph
data is extracted following compilation, transformation,
scheduling, and building phases (before RTL generation),
and then featured as described in (III-A) using our frame-
work. The ground truth values (actual resource usage and
performance metrics) were obtained from implementing each
configuration using AMD Vivado Design Suite [65].
Due to the substantial difference in the range of labels

across different tasks, all ground-truth labels are uniformly
scaled using 10Log10, for the sake of ensuring stability during
model optimization. This normalization is carried out across
all tasks except for CP.

2) TOOLS AND HARDWARE SPECIFICATIONS
Our framework is deployed in Python (v3.8.4) [66]. Mean-
while, PyTorch (v2.0) [67] and PyTorchGeometric (v2.0)ML
frameworks [68] are used for implementing the ML models.
The dataset is processed on the Lenovo Thinkstation P620
workstation equipped with an AMD Ryzen Threadripper
PRO 3945WX CPU and 60 GB RAM running Linux Ubuntu
(v22.4) [69]. The training and optimization of the model are
performed on the NVIDIA RTX A6000 graphical processing
unit (GPU) with 48 GB dedicated memory.

3) EVALUATION PROCEDURE
To evaluate the prediction accuracy of the HLS GNN models
discussed in section III and the final HLS DSE Pareto
optimal approximation, a rigorous assessment is conducted
through a series of distinct experiments. Each experiment is
structured into three phases, illustrated in Fig. 6. Accordingly,
in the first phase, CDFGs associated with configurations of
10 out of the 11 designs from our dataset are used as the
primary graph dataset, while the CDFGs associated with
configurations of the remaining design serve as the unseen
data.

The primary dataset is divided into training, validation,
and testing by randomly sampling 70%, 20%, and 10%
of the CDFGs of each 10 HLS design, respectively. The
training set was used to train the model with initial weights

(θ0), enabling the underlying patterns and relationships
within the graph data to be learned. The validation set
was employed to monitor the model’s performance during
training and to adjust hyperparameters accordingly. The
test set was utilized to assess the model’s performance
on unseen configurations from the primary dataset. Once
the model acquires the knowledge, it is then employed
in the second phase to explore an unseen design, thereby
extending its knowledge. To do that, a small portion (10%
of the design space in our case) of the unseen design’s
labeled graph data is exploited to extend the knowledge by
fine-tuning the pre-trainedmodel (θ1). This involves exposing
the model to new patterns and intricacies specific to the
unseen design, which it had not encountered during the first
phase. Subsequently, in the third phase, the fine-tuned model
(θ2) is leveraged to explore and predict the full design space
of the unseen design. To ensure a comprehensive evaluation,
this procedure is repeated for each of the 11 HLS designs in
the dataset. Each design is sequentially designated as unseen
and subjected to the same rigorous evaluation process. For
each experiment, the models are executed five times, each
with a different random seed number, to thoroughly test and
validate the model’s performance across diverse HLS design
scenarios.

4) MODEL AND TRAINING SETTINGS
The hidden dimension of 100 is chosen consistently for all
message-passing layers. Regarding the FC layer, an MLP
prediction head following a structure of 100-ReLU-200-
ReLU-100-1 is used for each prediction task. Considering a
batch size of 100 CDFGs, the model is trained in an inductive
setting [70]. This means the model is trained on one set of
graphs and evaluated on entirely unseen graphs, allowing
the model to generalize its learned patterns to new, unseen
data, making it robust and versatile in practical applications.
The Adam gradient-based optimization algorithm [71] was
utilized in our model, Known for its efficiency and effec-
tiveness in handling large-scale data and sparse gradients.
A learning rate of 1e-2 was used, scheduled to automatically
decrease during the training process by a factor of 0.5 with
patience of 5, with a maximum of 250 epochs. Also, a weight
decay 1e-3 was set. The root mean squared error (RMSE)
was employed as the loss function in the multi-task setting,
as defined in (4).
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TABLE 5. Accuracy of baseline and proposed hybrid models for eight different prediction tasks on the test set of the primary HLS graph dataset,
measured in MAPE (%) – lower values indicate better performance.

FIGURE 7. Evaluation results on the primary test set.

B. EVALUATION RESULTS ON THE PRIMARY TEST SET
This section presents the evaluation results of both baseline
models as well as our proposed hybrid models, each lever-
aging various input types and architectural configurations
detailed in Section (III). The models were assessed across
eight different HLS prediction tasks based on the primary
test set (at the end of the training phase), providing a
thorough comparison of their performance. Table 5 shows
the prediction accuracy quantified based on the mean
absolute percentage error (MAPE). For each task, the
results are averaged over all experiments, as explained in
Section (IV-A3). To ensure a fair comparison, uniformity is
maintained by employing an identical number of layers (L =

4) and adhering to consistent experimental settings across
all the compared models. This approach establishes a level
playing field, allowing us to specifically isolate the impact of
architectural and feature input variations on the performance
of the GNN in our application. In this table, Base-SW and
Base-HW denote the two baseline models, each employing
a multi-task GNN fed by software-based and hardware-
based CDFGs, respectively. Additionally, the results of our
four hybrid models are presented: JLFM with sum and
weighted sum (WS) fusion blocks, SLKIM, and PLFM.
Also, Fig. 7 summarizes this table by separately depicting
the average prediction accuracy across five resources, three
performances, and all eight tasks, overall.

1) EVALUATION RESULTS OF BASELINE MODELS
The comparison between the Base-SW and Base-HW mod-
els, evaluated on the test set of the primary dataset, indicates
that Base-HW outperforms Base-SW for three out of five

HLS resource metrics (LUT, FF, CLB) while showing higher
error for DSP and BRAM metrics (Table 5).
When considering the average MAPE across all five

resource utilization metrics (Fig. 7), Base-HW demonstrates
a slightly better average MAPE of 3.46 compared to 3.54 for
Base-SW. Regarding average over three performance metrics
(Fig. 7), Base-HW exhibits superior prediction accuracy
compared to Base-SW, with an average MAPE of 2.82 versus
4.34 for Base-SW. Base-HW also has a better average
MAPE (3.22 ) compared to Base-SW (3.84 ), overall. The
results highlight that the source and type of input graph
can significantly impact the prediction performance of
GNN models. Indeed, CDFGs derived from the front end
of the HLS compiler, which are optimized for hardware,
offer a more effective representation, leading to consistent
predictions by GNNs, especially for performance-related
HLS metrics.

2) EVALUATION RESULTS OF PROPOSED HYBRID GNN
MODELS
Looking at our four proposed hybrid models, evaluated on
the primary test set, exhibit significant advancements over the
best-performing baseline models for all resource prediction
metrics (Table 5). Considering average MAPE values across
the five resource prediction tasks (Fig. 7), the JLFM-Sum,
JLFM-WS, SLKIM, and PLFM models achieve average
MAPE values of 2.81 , 2.57 , 2.35 , and 1.66 , respectively.
While the best MAPE among the two baselines is 3.46 (Base-
HW). These evaluation results represent substantial relative
improvements of 18.79%, 25.72%, 32.08%, and 52.02%
respectively compared to the best-performing baseline.
This prediction performance enhancement underscores the
effectiveness of our models in more accurately predicting
resource utilization metrics.

Regarding performance metric prediction, an improved
prediction accuracy for the CP metric is obtained for all
proposed models compared to the best of baselines value of
6.56 (Table 5). The improvements are incremental: a slight
improvement is shown by JLFM-Sum with a MAPE of 6.48 ,

followed by JLFM-WS at 6.35 , and SLKIM at 6.28 Themost
substantial enhancement is achieved by PLFM, with a MAPE
of 5.77. Although our hybrid GNN models enhanced the
prediction accuracy of CP relative to the baseline, still higher
level of error is still seen for CP compared to other metrics.
This implies that predicting CP accurately is inherently
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TABLE 6. Accuracy of baseline and our two top-performing models for eight different prediction tasks on unseen designs after fine-tuning stage using
labeled CDFGs. This is performed by using a 10% random sampling from design space of unseen designs, measured in MAPE (%) – lower values indicate
better performance.

more complex due to its interdependencies and non-linearity,
coupled with HLS optimizations and the dynamic nature
of FPGA routing. Regarding CC and Texe, JLFM-Sum and
JLFM-WS achieve results close to the best of baselines.
However, a slight degradation is observed. On the other hand,
while SLKIM achieved the same value as the best baseline,
PLFM surpasses the baseline with a MAPE of 0.88 for CC
and 0.81 for Texe, 7.36% and 15.62% relative enhancement.

C. COMPLEXITY OF MODELS
Herein, an analysis of the computational cost associated with
each model, quantified by the total number of parameters
is presented. Understanding the parameter count is crucial
for evaluating the trade-offs between model complexity
and performance, providing insight into the computational
resources required for training and inference. The analysis
of model costs reveals distinct differences in parameter
counts across the various models. Base-SW and Base-HW
have relatively lower parameter counts, at 449 524 and
481 624 , respectively. JLFM-Sum and JLFM-WS exhibit
a higher complexity, with 603 124 and 603 132 parameters,
respectively. SLKIM presents a moderate increase with
535 512 parameters. In contrast, PLFM significantly exceeds
the other models with 4 659 748 parameters, reflecting its
increased model complexity. This substantial parameter
count for PLFM indicates a higher computational cost,
which must be taken into account apart from its superior
performance.

D. EVALUATION RESULTS ON UNSEEN HLS GRAPH DATA
In the second phase of the evaluation process, the prediction
accuracy of two baseline models along with our top two
hybrid GNN models (SLKIM and PTFM) is assessed on
unseen HLS graph data (unseen designs). Indeed, when
a model is trained on the primary dataset (knowledge
acquisition phase), it is intended to be applied to other HLS
applications and designs that were not part of the training
set. Here, we consider a scenario where users have already
explored and synthesized a few random samples from the
configuration space. These samples can then be utilized to
extend the model’s knowledge through transfer learning.
To do so, the models are fine-tuned using a few labeled data.
Knowledge transfer capability is one of the most significant
advantages of ML-based HLS DSE compared to analytical

model-based and refinement-based methods, enabling to
adapt the model to different domains and settings.

Table 6 shows the average MAPE for each task across
all unseen designs, and Fig. 8 represents the MAPE based
on resource, performance, and overall (average over eight
prediction tasks). As is shown in Table 6, the Baseline-SW
outperforms Baseline-HW in predicting LUT, CLB, BRAM,
and CP metrics, demonstrating a stronger ability to predict
these resource and performance characteristics. Conversely,
Baseline-HW excels in predicting FF, DSP, CC, and Texe,
with particularly notable improvements in CC and Texe. This
analysis underscores the varying strengths of each baseline
model when it comes to transfer learning, with Baseline-SW
being more effective for certain resource metrics, while
Baseline-HW offers significant advantages in performance-
related predictions. In terms of overall MAPE (Fig. 8),
Baseline-HW outperforms Baseline-SW. The overall MAPE
for Baseline-HW is 3.46 , while for Baseline-SW, it is
4.12. Baseline-HW achieves a lower MAPE across all tasks,
making it the more accurate model overall.

FIGURE 8. Evaluation results of fine-tuning models on unseen CDFG data
(from unseen designs).

In contrast, our proposed SLKIM and PLFM models
consistently outperform both baselines across all resource
prediction tasks (Table 6). This demonstrates the effective-
ness of our models in accurately predicting key hardware
resources and timings, highlighting their robustness and
superior generalization capabilities compared to the baseline
approaches. The SLKIM model achieved average MAPE
values of 2.87 for resources, 3.12 for performance, and
2.96 overall (Fig. 8). This represents relative improvements
of 18.92%, 5.74%, and 14.45%, respectively, compared
to the best-performing baselines. Meanwhile, the PLFM
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TABLE 7. MAPE (%) of resource and performance prediction reported by HLS tools and SOA frameworks.

model demonstrated even greater accuracy, with average
MAPE values of 2.24 for resources, 2.78 for performance,
and 2.44 overall. These results show the substantial rela-
tive improvements of 47.41%, 16.01%, and 29.47% for
resources, performance, and overall, respectively, compared
to the best-performing baseline models.

These results underscore the effectiveness of our proposed
models and highlight the advantage of incorporating fusion
techniques to enhance HLS resource and performance
prediction accuracy using GNNs. The analysis reveals that
prediction accuracy is significantly influenced by the level of
knowledge fusion employed. Specifically, given higher levels
of knowledge, fusion improves performance, showing that
integrating more sophisticated knowledge representations
within the GNN framework leads to higher accuracy in
predicting HLS metrics.

E. COMPARISON WITH SOA
Comparing our proposed models with SOA tools and frame-
works is challenging due to the numerous factors that impact
the final prediction accuracy. These factors encompass the
benchmarks used, dataset size, dataset splitting, the number
of knobs explored and the type of explored pragmas, and the
type and features of CDFGs used to represent HLS codes.
Additionally, differences in model design and architecture
along with experimental settings further complicate direct
comparisons. Despite these challenges, here, the VitisHLS
report is taken as one of the basis for direct comparison by
computing the reported error (inMAPE) at the end of theHLS
process for all HLS configurations in our dataset. In addition,
the GNN model with hardware CDFG inputs presented in
open source Program-to-Circuit [44] framework is taken and
re-evaluated based on our dataset. This framework utilized a
single-task GNN model (one independent regression model
for each prediction objective) with five message-passing
layers and a hidden dimension size of 300. For a fair
comparison, the GCN [60] is used as the graph convolution
algorithm as like as used in our models. On the other hand,
the MAPE reported by MPSeeker [37], an analytical model-
based tool, and gnn4hls [40], an SOAGNN-based framework
are considered for indirect comparison, only by relying
on the results provided in their publication based on their
data and experiment settings. The latter one (gnn4hls [40])
is constructed based on software-based CDFGs and the

model uses the statistical range of applied pragma and their
values as graph global features. Moreover, each propagation
layer in the proposed GNN model leverages two attention
mechanisms. Using a multi-head structure, it lacks task-
specific MP layers.

The MAPE for each of the aforementioned models is
detailed in Table 7. The CLB metric is excluded from this
table, as none of these tools considered this prediction task in
their framework. In addition, the MAPE for CC in VitisHLS
is shown by zero, reflecting the accurate computation of CC
byVitisHLS, which is actually the ground truth for this metric
in our dataset.

The data in this table reveals that both of our
top-performing hybrid models (SLKIM and PLFM) signif-
icantly outperform the VitisHLS tool for all regression tasks,
except for CC. also surpass MPSeeker in all available results.
When compared to the Program-to-Circuit framework, our
SLKIM and PLFM models demonstrate better performance
for all regression tasks. This superiority extends to the
prediction of LUT, FF, and Texe when compared to gnn4hls,
a single-input GNN HLS framework. Our PLFM model
estimates LUT, FF, and Texe with MAPE (rounded to one
decimal place for standardized comparison) of 1.2 , 1.4 , and
1.1 , respectively, whereas gnn4hls reported 2.6 , 4.8 , and
2.1MAPE values, respectively.

F. FINE-TUNING TIME EVALUATION
In ML-based solutions for HLS DSE, fine-tuning plays
a crucial role by enabling transfer learning and allowing
pre-trained models to adapt to new or unseen HLS designs.
The fine-tuning time is an important factor, as it directly
influences the total DSE runtime. The average fine-tuning
times for both baseline models and our two top-performing
models were measured on an NVIDIA RTXA6000 GPU (see
Fig. 9). To obtain these measurements, each model was run
20 times, using 200 randomly selected labeled CDFGs.

Among baseline, Base-SW demonstrates achieved the
quickest fine-tuning time, suggesting it is highly efficient
in adapting to new or unseen HLS designs. Its speed
makes it particularly advantageous when rapid iteration and
real-time adjustments are necessary during the DSE process.
Base-HW still offers a relatively fast fine-tuning time.
This indicates a balance between efficiency and potentially
improved predictive accuracy. The increased time compared
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FIGURE 9. The average fine-tuning time (in minutes) for the two baseline
models and our two top-performing models, run on the NVIDIA RTX
A6000 GPU.

to Base-SW is due to the size and higher complexity of
hardware-based CDFGs and feature extraction processes.
The proposed SLKIM and PLFM models have longer
fine-tuning times due to the higher complexity of models
while delivering significantly better accuracy in predictions.
The choice between these models should be guided by the
specific requirements of the HLS DSE process, balancing the
need for speed with the demand for precision.

G. DESIGN SPACE EXPLORATION
The last part of our evaluation aims to assess the fine-tuned
models on unseen designs in terms of Pareto optimal
approximation. In this regard, the average distance from
the reference set (ADRS) figure of merit is used. This
metric quantifies the average distance between corresponding
points in a reference Pareto point set (R) and approximated
Pareto point set (A) by providing a measure of the overall
dissimilarity or error between the prediction and the ground
truth:

ADRS(R,A) :=
1

|R|

∑
r∈R

(
min
a∈A

{dis (r, a)}
)

(11)

where dis( ) is a function that returns the Euclidean distance
between two points. Lower ADRS values represent better
quality of DSE.

In real-case scenarios, designers choose various pragmas
or sets of values for exploration. Thus, taking this into
account and ensuring a robust evaluation, we randomly
sampled between 40% to 100% of design space for each
HLS design and computed the average ADRS. This process
iterated 200 times for each DSE assessment, incorporating
SLKIM and PLFM as our most effective predictive models,
the two GNN-Baseline models, and the VitisHLS tool in our
setup. As a case study, we considered the number of LUT
utilization as the cost function and the execution time as the
performance function. The PF approximation evaluation is
given in Table 8.

The results presented in Table 8 demonstrate that both
of our proposed models, SLKIM and PLFM, outperform
the baseline models (Base-SW and Base-HW) and the
VitisHLS tool in terms of Pareto frontier approximation.

TABLE 8. Average ADRS (lower is better) across all designs (fc = LUT,
fp = Texe).

Specifically, the PLFM model achieves the lowest ADRS
value of 2.24 , indicating the highest quality of design space
exploration. SLKIM follows with an ADRS of 2.73 , showing
a moderate improvement over the baseline models. Base-
HW and Base-SW have ADRS values of 3.06 and 3.34 ,

respectively, while VitisHLS lags behind with the highest
ADRS of 5.5 In terms of relative improvement, PLFM shows
a 26.8% improvement over Base-HW, a 32.9% improvement
over Base-SW, and a significant 59.3% improvement over
VitisHLS. These results highlight the effectiveness of our
models in providing more accurate PF approximations,
thereby enhancing the design space exploration process.

V. CONCLUSION
We presented a novel hybrid graph representation and learn-
ing framework for enhancing the HLS QoR/DSE problems.
Our approach specifically examined the influence of different
input graphs on the prediction accuracy of GNN models for
various hardware resource and performance prediction tasks,
targeting FPGAs. We proposed three distinct GNN-based
fusion models that leverage two different forms of CDFGs
derived from two different sources, integrated within a
multi-task learning architecture.

Our framework demonstrated substantial improvements
in both resource utilization and performance estimation
compared to single-input baseline models and other SOA
methods. Notably, our models achieved better Pareto frontier
approximations, enhancing the ability to balance hardware
cost and performance trade-offs during the HLS design
process. These advancements underscore the potential of
our hybrid GNN framework to significantly streamline and
optimize HLS DSE, offering more accurate and efficient
solutions for FPGA-based system design.

In future research, we plan to explore GNN-based multi-
fidelity methods that account for the non-linear relationships
present during HLS synthesis, post-synthesis, and post-
implementation stages. This approach aims to further
enhance prediction accuracy and efficiency by integrating
multiple levels of fidelity into the modeling process, ulti-
mately leading to more robust and reliable HLS DSE.
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