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Abstract: The importance of gas sensors is apparent as the detection of gases and pollutants is crucial
for environmental monitoring and human safety. Gas sensing devices also hold the potential for
medical applications as health monitoring and disease diagnostic tools. Gas sensors fabricated from
graphene-based fibers present a promising advancement in the field of sensing technology due
to their enhanced sensitivity and selectivity. The diverse chemical and mechanical properties of
graphene-based fibers—such as high surface area, flexibility, and structural stability—establish them
as ideal gas-sensing materials. Most significantly, graphene fibers can be readily tuned to detect a
wide range of gases, making them highly versatile in gas-sensing technologies. This review focuses
on graphene-based composite fibers for gas sensors, with an emphasis on the preparation processes
used to achieve these fibers and the gas sensing mechanisms involved in their sensors. Graphene
fiber gas sensors are presented based on the chemical composition of their target gases, with detailed
discussions on their sensitivity and performance. This review reveals that graphene-based fibers can
be prepared through various methods and can be effectively integrated into gas-sensing devices for a
diverse range of applications. By presenting an overview of developments in this field over the past
decade, this review highlights the potential of graphene-based fiber sensors and their prospective
integration into future technologies.

Keywords: gas sensor; fiber; nanofiber; fiber composite; graphene oxide; reduced graphene oxide;
electrospinning; wet-spinning; gas sensing mechanism; flexible electronics

1. Introduction

Gas sensors, devices designed to detect gases in a chosen environment, play a critical
role in applications ranging from environmental monitoring to industrial systems mon-
itoring and healthcare diagnostics [1–5]. Gas detection must be highly efficient, reliable,
and accurate, especially when concerning the safety of both the individual and the envi-
ronment [6]. For example, an occurrence such as a gas leak in an industrial setting can
quickly become catastrophic and require immediate action [7], while the rapid detection
and assessment of biomarkers must be precise for proper medical treatment [8]. Gas
sensing of pollutants is also crucial in maintaining human health and safety, as well as
ecosystem preservation and enabling effective regulation of harmful emissions [9–12]. The
need for gas sensors in these settings has resulted in increasing sophistication in both gas
sensor design and nanofabrication approaches [13]. In addition, as automated and remotely
operated equipment becomes more widely adopted, gas sensors have been proposed to
act as an electronic “nose” for these systems [14,15], underscoring the importance of the
continued development of these sensors and their place in modern technologies [16].

Gas sensors can be categorized as physical and chemical sensors or have elements of
both. Physical sensors rely on measurements of physical quantities, such as light or heat,
while chemical sensors rely on measurement of chemical interactions at the gas–sensor
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interface [17]. Although the change in resistance is a physical measurement, the mechanism
driving this effect may be physical absorption or chemical reaction, depending on the
interactions between the gas and the sensing material [18,19]. Gas sensor performance
can be influenced by the dimensionality of the sensor and the loading of the sensing
materials [20,21]. A higher specific surface area of a sensing material leads to higher
sensitivity, and several different fabrication techniques have been employed with the aim
of producing sensors with intricate and fine structures to maximize surface area [22,23].
Many factors affect the gas sensing mechanism of a sensor, including the reactivity and
atomicity of the gas, and the conductivity and morphology of the sensing material. Gas
molecules can influence the response of a gas sensor due to the rate of diffusion of gas
and the kinetics of collision between gas and surface [24,25]. Larger gas molecules may
exhibit higher reactivity due to their greater collision diameters, enhancing interactions
with the sensing material and generating a stronger response [26–28]. Conversely, smaller
gas molecules can more easily penetrate the pores of the sensing material and diffuse more
rapidly, resulting in faster response times [25,27,29]. These effects have led to efforts to tailor
sensing materials by modifying surface properties [30–32] and tuning pore sizes to target
specific gases based on molecular size [25,33–35]. As other areas of technology evolve, there
is great interest in developing sensors with efficient sensing materials that are suited to these
new technological landscapes [36,37]. A prominent example of this is the development of
sensors that follow the design tenets of flexible and wearable electronics [38].

Challenges in developing flexible gas sensing platforms often involve selecting suitable
sensing materials that can maintain their structure and functionality when strained [39].
Research focuses on optimizing these sensors to achieve comparable sensitivity to rigid
substrates, along with high selectivity, fast response and recovery, and durability, ensur-
ing consistent performance under repeated bending or stretching without damage [40].
Carbon-based materials offer mechanical stability and electronic properties and have been
demonstrated to be promising sensitive materials for sensing applications [41]. Among
these materials, graphene, defined as a single layer of sp2 carbon atoms, exhibits desirable
characteristics and has been thoroughly investigated for use in sensors [42–44]. Many
of the properties of graphene, including high conductivity, excellent chemical stability
at ambient temperature, flexibility, intrinsic high surface area, and low fabrication costs
make it an ideal candidate in gas sensing applications [45]. The large surface-to-volume
ratio of graphene offers numerous active sites for gas adsorption, while its exceptional
electrical conductivity enables fast response times, contributing to the sensitivity of the
sensor. The sensitivity of graphene is such that it has been shown to be able to sense a
single gas molecule [46].

Graphene materials, including pristine graphene, graphene oxide (GO), and reduced
graphene oxide (RGO) [47], also demonstrate distinct gas detection capabilities that can be
exploited in sensor fabrication [43]. GO can be produced at a low cost by chemically exfoli-
ating graphite in the presence of a suitable oxidant [48]. GO has semiconducting properties
superior to raw graphite and can be enhanced significantly by reduction to RGO using
chemical, thermal, or UV reduction processes [43,48]. RGO is particularly advantageous as
it possesses a defined band gap and has accessible functional groups capable of selectively
binding gas molecules [48]. The implementation of graphene materials in composite fibers
for gas sensing has garnered the most significant interest, as graphene and its derivatives
have been proven to be robust nanofillers [49].

Graphene-based composite fibers can be fabricated with a wide range of materials
including polymers, metal oxide nanoparticles, and even other 2D materials and synthetic
fibers [17,50]. Combining graphene with other semiconducting materials, such as con-
ductive polymers and metal oxides, often enhances sensing capabilities by increasing the
surface available for gas interaction [3,51]. Graphene is a competitive gas sensing material
due to its tolerance to humidity, unlike many polymers, and its broader operating tempera-
ture range, compared to some metal oxides [3]. Graphene-based fibers are advantageous
functional materials as they benefit from the high sensitivity and stability of graphene,
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along with their good electrical and mechanical properties [3,43,52]. While harnessing the
beneficial characteristics of graphene, graphene fibers provide increased flexibility and
structural integrity, making them well-suited for sensor fabrication. With the growing
interest in micro and nano gas sensors, graphene-based fibers are strong contenders owing
to their conductivity, compatibility, conformability, and ease of integration into lightweight,
flexible devices [53,54].

A popular method to fabricate nanofiber gas sensors is electrospinning, where an elec-
trostatic force is employed to draw threads from a composite solution to form nanofibers [55].
Electrospinning offers an advantage over other nanofiber fabrication methods, such as
chemical vapor deposition, sol-gel methods, and template-assisted fabrication, due to its
simplicity, cost-effectiveness, and versatility relative to these competing nanofabrication
techniques [17]. Another emerging technique for the fabrication of fibers is wet-spinning,
whereby a composite material is extruded through a spinneret into a coagulation bath
composed of a non-solvent [56,57]. In the coagulation bath, the material undergoes rapid
drawing, resulting in fiber formation through phase inversion [57,58]. Electrospinning
allows for more precise control of fiber diameter while wet-spinning can be more easily
scalable [59,60]. Fibers produced through spinning methods are distinguished by their
exceptionally high aspect ratio and surface area, as well as the ease with which graphene
materials can be uniformly integrated throughout the fiber, enhancing the performance of
the resulting sensor [61].

This review aims to provide an overview of the state-of-the-art graphene-based fiber
materials for gas detection sensors, focusing on advancements from the past decade. This
review will discuss both gas sensing systems designed to detect specific gases and those
capable of detecting multiple gases. It will cover the synthesis and processing methods for
these fiber sensors and delve into the sensing mechanisms, including response dynamics
and modes of detection. To demonstrate the scope and selectivity of these gas sensors, the
application of graphene-based fibers in sensing gases with varying atomicity (diatomic,
triatomic, and polyatomic gases) is described to illustrate the various modes to target
these different gases. Additionally, sensors designed to detect volatile organic compounds
(VOCs), at times termed gas vapors, are discussed. In addition to sensors fabricated to sense
one gas, detection systems for two or more gases are reviewed. These gases represent an
extensive range of gases with respect to their molecular size, atomic composition, thermal
conductivity, and oxidizing or reducing potential. This review distinguishes gas sensors
designed for various target gases, to spotlight the range of sensing capabilities of graphene
fibers and highlight their applicability in diverse settings and applications.

This review will focus on sensing systems that incorporate graphene and gas sensors
with a graphene fiber component, examining how graphene was integrated and how it
enhanced the overall performance of each system. This work will emphasize sensing
systems that utilize graphene fibers; however, in some cases, gas sensing performance relies
on the combination of graphene with other materials, such as metal oxides and polymers. In
these instances, we will focus on the role of graphene, while briefly discussing its interaction
with these materials in relation to sensor sensitivity. Throughout this review, research trends
in this field will be revealed and breakthrough findings will be highlighted. By examining
recent literature, it aims to showcase the potential of graphene-based composite fibers in
gas sensing systems and illustrate how these advances set a foundation for their integration
into diverse applications, including medical diagnosis, health management, environmental
monitoring, and wearable electronics.

2. Graphene-Based Fiber Sensors for Diatomic Gases

It is imperative to detect diatomic gases, such as hydrogen (H2) and carbon monoxide
(CO), for a plethora of reasons related to safety concerns that endanger human health
and the environment. H2 is a non-toxic, colorless, odorless gas; however, it is primarily
produced by fossil fuels and is highly flammable [17,62]. This is due to its low ignition
energy, where even an H2 volume fraction of 4% in the air can trigger explosions [63,64].
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H2 gas is also susceptible to leakage into the atmosphere, making its safe transportation
and storage very challenging, especially in industrial settings [64]. Similarly to H2, CO is a
colorless, odorless, and flammable gas generated from fossil fuels and industrial processes,
as well as vehicle exhaust emissions and wildfires [17,65]. However, CO exposure is toxic to
humans and can be lethal in high concentrations, while lower concentrations exposure can
lead to adverse symptoms, including headache, nausea, and dizziness [65]. This occurs as
CO binds to hemoglobin in blood with high affinity, competing with oxygen and reducing
its capacity to carry oxygen by displacing it [66]. In addition to being colorless and odorless,
both H2 and CO gas are less dense than air, which enables their accumulation in enclosed
spaces; therefore, efficient sensors for these gases are essential [64,66].

2.1. H2 Gas Sensor

While graphene alone has demonstrated effective gas-sensing properties, numerous
studies are focused on optimizing these capabilities by combining graphene with other
sensing materials [46,52,67]. Extensive research has focused on enhancing the sensitivity
and selectivity of gas sensors by incorporating graphene and its derivatives with metal
oxides, forming nanocomposite materials [50,68]. Kim et al. employed reduced graphene
oxide to enhance the gas sensing capabilities of zinc oxide (ZnO) nanofibers for the selective
detection of hydrogen gas [69]. The electrospun nanofibers were constructed from RGO-
loaded ZnO, produced by incorporating RGO nanosheets with zinc acetate, and had an
average diameter of 190 nm. The sensor exhibited the highest response of 2542 (Ra/Rg,
where Ra is the resistance in the absence and Rg is the resistance in the presence of hydrogen)
to 10 ppm H2 gas at 400 ◦C (Table 1). At the lowest concentration of H2 of 100 ppb, a
response of 866 is shown by the sensor. The study suggests that there are electrical potential
barriers at the interfaces of RGO/ZnO, RGO/Zn, and Zn/ZnO at equilibrium (Figure 1a).
When introducing H2 gas to RGO-ZnO nanofibers, ZnO became n-type and was reduced to
metallic Zn at the surface of the nanofiber, as hydrogen atoms reacted with surface oxygen
ions of bulk ZnO. An energy potential barrier at the RGO/Zn interface prevented the flow
of electrons into RGO, thus the addition and removal of H2 is a resistance modulation and
generates a sensing signal. The high sensitivity of RGO-loaded ZnO nanofibers stands in
contrast to SnO2 nanofibers fabricated in the same study, which are less responsive than
the ZnO counterparts. Following similar methodologies, the same research group also
fabricated RGO-ZnO nanofibers for sensing various other gases and reported their findings
in a separate paper [70].

2.2. CO Gas Sensor

Incorporating graphene into a sensing system can amplify the overall electrical
properties of the sensor, increasing its conductivity due to the high electron mobility of
graphene [20,71]. Additionally, doping a graphene-based system with other semiconduct-
ing materials, or doping graphene itself, can further elevate the sensitivity and response
time of the sensor, enabling more accurate and rapid detection of target gases [52,72].
Shams et al. electrospun cadmium-doped tin oxide and reduced graphene oxide composite
nanofibers to function as a carbon monoxide gas sensor [73]. They reported the best-
performing sensor, containing 1.6% cadmium, had a band gap of 2.80 eV and a diameter
of 200.57 nm. In the presence of CO gas, the Cd-doped RGO-SnO2 nanofibers were able
to respond after 25 s at 100 ◦C, while the nanofibers consisting of SnO2 alone showed a
delayed response at 35 s (Table 1). The sensing mechanism of this system is enhanced
by RGO due to its energy level, which lies between the LUMO orbital of CO and the
conduction band of SnO2, and it exhibits p-type behavior relative to SnO2 (Figure 1b). This
facilitates the transfer of electrons and decreases the resistance. In addition, the authors
note that doping with Cd allowed for more sites for oxygen adsorption, which promoted
the oxidation of Cd and generated more electrons back to the nanofiber. Therefore, a
combination of RGO with Cd dopant further optimized the adsorption and desorption
kinetics of the gas sensing system. To promote personal safety by minimizing potential
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hazards, this study presents a method for the rapid detection of toxic gases using sensors
based on graphene-enhanced composites.
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Figure 1. Examples of graphene-based fiber sensors for diatomic gases: (a) Schematic illustration
of RGO-ZnO sensing mechanism for H2 gas [69]; (b) Schematic diagram of Cd/RGO/SnO2 sensing
mechanism to CO gas [73].

Table 1. Summary of graphene-based fiber gas sensors for H2 and CO gas.

Gas Conc. Material Response Temp. Ref.

Hydrogen
(H2) 100 ppm RGO-ZnO 2542 400 ◦C [69]

Carbon
Monoxide

(CO)
100 ppm Cd/SnO2/RGO 25 s 100 ◦C [73]

3. Graphene-Based Fiber Sensors for Triatomic Gases

Triatomic gases like carbon dioxide (CO2), hydrogen sulfide (H2S), and nitrogen
dioxide (NO2) are gases that can come from anthropogenic sources, and high concentrations
of each gas in the atmosphere are considered undesirable [74,75]. CO2 is a colourless and
odourless gas and is the most prevalent greenhouse gas in our atmosphere [17]. The
absorption of infrared radiation from the sun by atmospheric CO2 is understood to be the
primary driver of climate change [76]. On a smaller scale, control of CO2 concentration
in systems, enabled by quick and accurate measurements, is important in air quality,
food preservation, and early fire detection [77]. Atmospheric CO2 levels remained at
approximately 250 ppm from human evolution until the Industrial Revolution but doubled
between the years 1813 and 2019 [78]. Prolonged exposure to CO2 levels up to 1000 ppm
poses health risks to humans [79], making the detection and management of CO2 essential
both indoors and outdoors. H2S is a highly toxic and flammable gas, largely generated
from petroleum refineries and oil and gas drilling operations [17,80–82]. Exposure to H2S
at low concentrations of 10 ppm should not exceed more than 10 min, while exposure to
100 ppm can cause instantons death [83]. Additionally, the distinct “rotten egg” odor of H2S
is unpleasant; however, anosmia, or olfactory desensitization, can sometimes prevent the
human olfactory system from detecting this gas. [84–86]. NO2 is a particularly important
gas to detect as it is one of the primary emissions from the manufacturing and automobile
industries [17]. Global average NO2 levels are on the rise, with motor vehicle exhaust
contributing up to 80% of NO2 emissions in certain cities [87,88]. NO2 is associated with
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smog, and while not a greenhouse gas, it is toxic to humans, with the lethal dose being
only 174 ppm [89]. NO2 gas detection is thus critical, especially in densely populated urban
areas [77]. Given these factors, it is therefore essential to rapidly detect any present in the
environment for the protection of individuals and the Earth. The presence of hazardous
gases in the atmosphere, such as CO2, NO2, and H2S, necessitates constant environmental
monitoring and emphasizes the need for high-performing gas sensors [90].

3.1. CO2 Gas Sensor

Al-Thani et al. reported CO2 sensors composed of polyaniline (PANI)-coated and RGO-
PANI-coated electrospun polystyrene (PS) nanofibers, respectively [91]. The PS nanofibers
underwent a plasma treatment, followed by coating with GO and PANI, whereby PANI was
directly polymerized onto the fibers (Figure 2). The sensors containing GO were subjected to
hydrogen reduction to convert to RGO with PANI-coated PS nanofibers. Although both sets
of sensors showed sensitivity towards CO2 gas, the sensors containing RGO showed higher
sensitivity, with a more distinct change in resistance, when exposed to 60 ppm of CO2 gas at
room temperature. This behavior is credited to the broad electrochemical potential window
and fast electron transfer rate of graphene [92]. The repeatability of the nanofiber sensors
was examined, where the sensors exhibited a CO2 gas sensing response and recovery time
of 65 s (Table 2). Furthermore, the selectivity of the nanofibers was investigated, where
the RGO/PANI/PS sensor exhibited a high response of 0.8 ((Rg − Ra)/Ra, where Rg and
Ra are resistance in the presence of an analyte gas and N2, respectively) to CO2 and lower
responses towards methanol, ethanol, and ammonia.
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3.2. H2S Gas Sensor

Kim et al. fabricated H2S sensors using electrospun RGO-CuO nanofibers [93]. By
testing RGO loadings ranging from 0.05 wt% to 1.5 wt%, they identified 0.5 wt% RGO-
CuO as the optimal composition, which exhibited the highest sensitivity of 1.95 (Rg/Ra,
where Ra is resistance in air and Rg is resistance in the presence of target gas) to 10 ppm
of H2S at 300 ◦C. The RGO-CuO nanofibers also demonstrated selectivity for H2S when
tested against other gases, including CO, C6H6, and C7H8, where the interfering gases
showed minimal activity. The gas sensing efficiency was considerably influenced by the
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morphology of these nanofibers, which consist of nanoscale grains [94]. These nanograins
play a critical role in determining the gas-sensing mechanism and enlarging the surface
area of the fiber sensor. In the case of RGO-CuO, the varying RGO loadings alter the surface
structure of the nanograins, leading to a distinct sensing response (Figure 3).
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Kim et al. reported nanofibers for H2S detection based on non-oxidized graphene
(NOGR), whereby pore size and distribution were controlled by a polymeric templating ap-
proach [95]. In the fabrication of their sensors, a composite containing colloidal polystyrene
with tungsten precursor was electrospun, and the resulting nanofibers underwent a calci-
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nation procedure (Figure 4). In the process, the W precursor was oxidized, and PS colloids
were decomposed. By tuning the size of the PS colloids, the size and distribution of pores
can be controlled within the nanofibers as the PS colloids act as sacrificial templates and
become void domains following the thermal treatment. In parallel, NOGR flakes were
obtained through the chemical exfoliation of graphite intercalation compounds and subse-
quently combined with the PS-WO3 nanofibers. The resulting PS/WO3/NOGR nanofibers
exhibited a sensitivity of 65.6 (Rair/Rgas) to 5 ppm of H2S gas at 300 ◦C (Table 2), and this
was achieved with only 0.1 wt% loading of NOGR flakes. The selectivity of sensors was
also examined by exposing the nanofibers to various gases, including acetone, NO, toluene,
ethanol, NH3, CO, and pentane, where the sensor showed the highest response towards
H2S. The conductivity of NOGR contributes to the sensing performance as it facilitates the
transport of charge carriers, as well as the pores on the nanofibers that allow for higher
surface area and gas penetration [96,97].
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Hieu et al. developed RGO/ZnFe2O4 nanofiber sensors for H2S gas detection. The prepa-
ration of the sensors involved an on-chip electrospinning technique, wherein nanofibers were
directly collected and assembled onto a microelectrode chip equipped with interdigitated
electrodes [86]. The nanofiber sensors achieved a response of 147 (Ra/Rg, where Ra and
Rg were the resistances of the sensors in the air and H2S, respectively) to 1 ppm of H2S
at 350 ◦C (Table 2) [98]. The gas detection mechanism was attributed to the movement
of electrons from RGO to ZnFe2O4 and the multi-porous structure of the sensor. The
nanofibers were composed of nanograins, which induce the formation of depletion regions
and potential barriers: one at the heterojunction between RGO and ZnFe2O4, and another
at the boundaries between ZnFe2O4 nanograins (Figure 5). In the presence of air, oxygen
molecules adsorb onto the surface of the nanofiber, capturing electrons from the conduction
band to form oxygen ions. Upon exposure to H2S, the gas molecules react with these oxy-
gen ions, generating the electrons back into the conduction band. This interaction reduces
the heterojunction and grain boundary barriers, leading to a decrease in the resistance of
the sensor. The response of the sensor occurs owing to the heterojunction between RGO
and ZnFe2O4 within the nanofiber.

Hieu et al. extended their work on H2S gas sensors by fabricating RGO/α-Fe2O3
nanofiber sensors employing their previous on-chip electrospinning method [99]. The
RGO/α-Fe2O3 nanocomposite was synthesized using poly(vinyl alcohol), a ferric salt
precursor, and RGO reduced from GO. The nanofiber morphology was revealed to be
significantly affected by changes in precursor concentration and annealing temperature
while being independent of changes to the graphene content. The optimal sensor config-
uration, which yielded the highest response of 9.2 to 1 ppm H2S gas at 350 ◦C (Table 2),
consisted of nanofibers containing 1.0 wt% RGO, 11 wt% PVA, and 4 wt% Fe(NO3)3·9H2O,
and was annealed at 600 ◦C. The sensitivity of the sensor was attributed to the morphology
of the RGO/α-Fe2O3 nanofibers and the presence of nanograins, along with the large
surface-to-volume ratio provided by the RGO. It was noted that the sensing mechanism
involved potential barriers at both heterojunctions and homojunctions, consistent with the
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mechanisms described in their previous work [98]. This study presents a straightforward
approach for the detection of toxic gases and environmental monitoring.
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Given rising concerns about air quality in our environment, accurate gas detection is
critical in a multitude of settings. However, advancements must also focus on designing
environmentally conscious sensing systems that can monitor gas in the environment
without causing further harm to it. The environmental impact of graphene production
itself must, therefore, also be evaluated. There are ongoing efforts to explore the production
of graphite from biomass waste and the recycling of graphite from batteries to meet the
demand for graphene [100,101]. With this, the lifespan of graphene-based sensors must be
evaluated in future studies to ensure that they not only maintain optimal performance over
their intended use but also that their materials can be reused to reduce the need for new
production at the end of their operational life.

3.3. NO2 Gas Sensor

Promising improvements in sensor performance have been made by extending the
investigation of polymeric substrates and polymer composites to electrospun nanofiber-
based gas sensors [102,103]. Shi et al. reported reduced graphene oxide and polymer
composite nanofibers for the fabrication of nitrogen dioxide gas sensors [104]. The elec-
trospun nanofibers were composed of a poly(vinyl alcohol) (PVA) and poly(ether imide)
(PEI) polymer mixture and deposited onto an interdigitated electrode. The nanofibers were
then dip-coated in a GO nanosheet solution, enabling the self-assembly of GO onto the
nanofibers and were subsequently reduced to form RGO-polymer nanofiber gas sensors.
The sensor showed repeatability over multiple cycles with exposure to NO2 gas and N2,
where it reached 90% of the maximum response (∆G/G0, the ratio of conductance change
of sensor in target gas to N2) upon exposure to 500 ppb of NO2. At the highest NO2 concen-
tration of 5 ppm, the conductance increased by 159.4%, demonstrating that a higher NO2
concentration resulted in a greater sensing response. This trend was primarily attributed to
the accessibility of the RGO surface to NO2 gas molecules [105,106].

Lee et al. also employed polymeric nanocomposites for the development of stretchable
devices for the detection of NO2 gas [107]. They described sensors fabricated from RGO,
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where GO was chemically reduced with hydrazine, layered onto electrospun polyurethane
(PU) nanofibers, and assembled on polydimethylsiloxane (PDMS). During the electrospin-
ning process, the collected fibers were rotated to form nanofibers in orthogonal directions
with varied electrospinning times and number of fiber layers. The mechanical stability of
the sensors was tested by stretching at 50% elongation up to 10,000 cycles. When consider-
ing both stretchability and gas sensitivity, the overall best-performing sensor exhibited a
response of 176% (∆I/I, where I is the dynamic current intensity measured under stretching
tests) to 5 ppm of NO2 gas at room temperature (Table 2) and was comprised of five layers
that were electrospun for 8, 3, 3, 3, and 1 min. This study illustrated an approach toward
high-performing wearable gas sensors that maintain sensing capabilities under high strains.

As previously mentioned, a widely popular approach to obtaining gas-sensing materi-
als is through the formation of nanocomposites with graphene derivatives and metal ox-
ides [108–110]. Wang et al. demonstrated this with the fabrication of RGO-In2O3 nanofiber
gas sensors for NO2 detection [111]. These nanofibers were produced via electrospinning,
incorporating In2O3 with RGO to form a composite material. The sensors containing
2.2 wt% RGO exhibited an enhanced gas response, with a sensitivity of 42 (Rg/Ra, where
Rg is the resistance of the sensor in NO2 and the Ra is the sensor resistance in the air) to
5 ppm NO2 at 50 ◦C. The sensing mechanism of RGO-In2O3 nanofibers was influenced by
the high surface area, structural defects, and functional groups of RGO, which provided
ample adsorption sites for NO2 gas molecules [112,113]. Additionally, RGO enhances the
resistance modulation of the sensor through the formation of RGO-In2O3 heterojunctions
(Figure 6). When the sensor is in the open air, oxygen molecules are adsorbed at the surface
and between the juncture of adjacent In2O3 nanoparticles at the nanograin boundaries.
Potential barriers and depletion layers are formed at the nanograin boundaries between
In2O3 nanoparticles, as well as between In2O3 and RGO heterojunctions when oxygen
species are generated. When the nanofiber is exposed to NO2, the gas reacts with the
adsorbed oxygen and expends electrons from the conduction band. This results in the
expansion of the depletion layer, thereby altering the resistance of the sensor and producing
a sensing signal.

The research group of Kim et al. are recognized for their work on RGO-loaded metal
oxide electrospun nanofibers for gas sensing applications [69,70,93,114]. In two separate
studies, the authors examined the gas sensing properties of electrospun RGO-SnO2 and
RGO-ZnO nanofibers, evaluating their response to various oxidizing gases (NO2, SO2, O2)
and reducing gases (CO, C6H6, C2H5OH) [70,114]. Although both nanofibers demonstrated
sensitivity to a range of gases, the studies primarily focused on NO2 due to the notably
high response observed. The high response was attributed to the inherent high reactivity of
NO2 molecules as opposed to the selectivity of the nanofibers for NO2 [70,114].

In their investigations, nanofibers with RGO concentrations ranging from 0.04 to
1.04 wt% were evaluated. It was found that nanofibers with 0.44 wt% RGO exhibited the
optimal sensing performance for both SnO2 and ZnO [70,114]. The authors suggest that
increasing RGO concentrations beyond this optimal level reduced gas sensing performance
due to percolation effects, wherein RGO forms conducting networks that interfere with
the sensor. The optimal RGO concentration in the preparation of RGO-SnO2 nanofibers
resulted in the most pronounced resistance modulation and a response of approximately
100 (Rg/Ra, where Rg is the resistance of the sensor in NO2 and Ra is the resistance in the
air) when exposed to 5 ppm NO2 at 200 ◦C (Figure 7a, Table 2) [114]. Similarly, in the RGO-
ZnO study, nanofibers with the same RGO loading exhibited the highest response, with a
maximum response of 150 when exposed to 5 ppm NO2 at 400 ◦C (Figure 7b, Table 2) [70].

Scaling up the production of graphene-based fibers presents several challenges, partic-
ularly in transitioning spinning techniques to industrial-scale manufacturing. The studies
discussed thus far all fabricated nanofibers using electrospinning methods, underlining
the popularity of this technique for producing graphene fibers [49,115,116]. Despite the
successful employment of this technique in the literature, it has been less widely adopted
at an industrial scale due to its relatively slow production rates and challenges with main-
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taining consistency [117,118]. Wet-spinning fabrication techniques are currently regarded
as a promising approach for the scalable production of microscale graphene composite
fibers [57,119]. Although wet-spinning has been employed in the production of textiles
such as viscose rayon fibers [120], adapting this technique for more complex functional
materials remains an area of active research [60,121]. Further efforts are needed to optimize
spinning techniques, enabling large-scale production while achieving precise control over
fiber morphology and ensuring the functional performance of the fibers.
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Han et al. used a continuous wet-spinning technique to synthesize Cu-Cu2O and Ni-
NiO graphene fibers [122]. In this process, a GO dispersion was extruded into a coagulation
bath containing a catalytic solution with Cu or Ni ions, followed by thermal treatment
of the fibers (Figure 8). The metal cations aid in binding the GO into fiber assemblies,
making the wet-spinning technique suitable due to the even dispersion of cations in the
coagulation bath. In addition, this preparation method allowed for sensors with flexibility
and compatibility, enabling the fibers to be integrated into other fabrics. The resulting
Cu/Cu2O/RGO and Ni/NiO/RGO fiber sensors demonstrated sensitivities of 18.90% and
0.82% ((Rair − Rgas/Rair) × 100) respectively, to exposure of 5 ppm of NO2 gas at 150 ◦C
(Table 2). Although the Ni/NiO/RGO fibers exhibited lower sensitivity compared to the
Cu/Cu2O/RGO fibers, they outperformed other Ni-containing graphene fibers, showing
double the response of NiO-graphene fibers. The gas sensing mechanism of the fibers
involves the spillover effect, whereby adsorbed gas molecules are dissociated by metal into
more reactive species and subsequently dispersed onto the adjacent surface [123,124].
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Figure 8. Schematic illustration of Cu/Cu2O/graphene and Ni/NiO/graphene fiber (M/MO/GF)
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Kim et al. also utilized the wet-spinning technique to fabricate graphene fibers, in-
corporating tunicate cellulose nanofiber (TCNF) with GO to create TCNF-GO fibers [125].
These wet-spun fibers were then treated with a tungsten (W) precursor and subjected to ther-
mal processing, resulting in reduction and calcination to produce porous RGO/WO3/TCNF
fibers. The inclusion of TCNF facilitated the formation of mesopores and created a wrinkled
surface morphology, which increased the surface area of the fiber. The maximum response
observed by the sensor was a sensitivity of 9.67% ((Rair − Rgas/Rair) × 100) towards 5 ppm
of NO2 at 100 ◦C (Table 2), although they remained functional at room temperature. To
further demonstrate the practical application of these fibers, the authors integrated them
into wearable devices, showcasing the potential of the fibers in wearable sensing systems
(Figure 9).

Graphene can be utilized to elevate existing commercially available fiber materials,
presenting straightforward approaches to high performance composites [126,127]. These
graphene fiber composites not only offer cost-effective and widely accessible fabrication
methodologies, but also have the potential to support large-scale production of wearable
electronics [128,129]. Ren et al. developed RGO-enhanced mesoporous ZnO nanosheet
hybrid fibers using cotton and elastic thread and evaluated their sensing response to NO2
gas [128]. The synthetic process involved treating the cotton and elastic treads with an
adhesive and annealing treatment, followed by immersion in GO, a chemical reduction reac-
tion, and subsequent coating with ZnO to produce RGO/ZnO/thread sensors (Figure 10a).
These hybrid fibers demonstrated effective gas sensing capabilities, exhibiting a 44% re-
sponse (R (%) = (Rg − Ra)/Ra × 100, where Ra is the initial resistance value in air and Rg is
the resistance value in NO2) to 15 ppm of NO2 at room temperature, with response and
recovery times of 140 and 630 s, respectively (Table 2). To explore practical applications,
the RGO/ZnO sensors were integrated into fabric, forming a wearable multi-sensor array
network, which was successfully tested for NO2 detection (Figure 10b).
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The group of Lee et al. carried out extensive studies using commercially available
fiber materials and coating them with graphene for various applications [129–131]. They
reported the development of RGO-decorated cotton and polyester yarns [129]. The yarns
were dip-coated in GO, which self-assembled onto the fibers. Subsequently, the GO-
coated yarns were reduced to RGO through a low-temperature chemical reduction process.
Utilizing these RGO fibers, they constructed devices capable of selectively detecting NO2
gas at concentrations as low as 0.25 ppm at room temperature. The RGO-cotton yarn sensors
exhibited a response of −7.0% (R (%) = (Rg − Ra)/Ra × 100, where Rg and Ra denote the
electrical resistance upon exposure of NO2 and air, respectively), whereas RGO-polyester
yarn sensors yielded a response −6.0% (Figure 11a, Table 2). When RGO-yarn sensors are
exposed to NO2, the resistance of the sensors decreases. This decline was attributed to an
increase in hole concentrations, resulting in the observed negative response.

Following their initial report, they investigated the use of cotton yarn coated with
RGO and MoS2, utilizing similar processing methods [130]. This study revealed that
incorporating MoS2 into RGO-containing fibers increased their sensitivity to NO2 by a
factor of four compared to fibers containing only RGO. When exposed to 0.45 ppm of NO2,
RGO/MoS2/yarn had a response of 28% (∆R/R0 (%) = (Rg − R0)/R0 × 100, where R0 and
Rg are resistances of the yarn sensor before and after exposure to NO2, respectively), while
fibers without MoS2 only exhibited a response of 6% (Figure 11b, Table 2). This improved
sensitivity was ascribed to the large surface area of the RGO-MoS2 composite and the
synergistic interaction between RGO and MoS2 [132,133].

Building on their previous reporting, Lee et al. further examined the use of elastic yarn
coated with RGO, employing techniques consistent with earlier studies (Figure 11c) [131].
In this investigation, the sensors demonstrated a response of 50–55% (R (%) = (Rg −
Ra)/Ra × 100, where Rg and Ra denote the electrical resistance upon exposure to NO2
and air, respectively) to 5 ppm of NO2 even under 200% strain (Table 2). Leveraging this
performance, they fabricated wearable gas-sensing wristbands, thereby highlighting the
potential of these RGO-coated fibers for integration into wearable electronics.

In another study led by Yun et al., nylon-6, a widely used industrial synthetic polymer,
was fabricated into a mesh fabric through electrospinning [134]. This technique resulted in
the fabrication of nanofibers, which were subsequently functionalized with GO using a self-
assembly dip-coating method. Following this coating process, a chemical reduction was
applied, converting the GO to RGO, thereby creating RGO/nylon-6 nanofibers (Figure 11d).
The resulting nanofibers demonstrated sensitivity to NO2 gas, detecting concentrations at
1 ppm and exhibiting a response of 13.6% (|Rg − R0|/R0, where R0 and Rg are resistances
of the gas sensor before and after exposure to NO2, respectively) at room temperature
(Table 2). This response was attributed to the swelling of the hydrophilic and porous
polymer, along with the high surface area of the nanofiber [135,136]. The bendability of the
nanofibers was also examined, where a negligible change in response was observed for the
sensors in flat and bent positions. These findings set a stage for the use of RGO-containing
nanofibers in flexible electronics and electronic textiles applications.
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Table 2. Summary of graphene-based fiber gas sensors for CO2, NO2, and H2S gas.

Gas Conc. Material Response Temp. Ref.

Carbon dioxide
(CO2) 60 ppm RGO/PANI/PS 0.8 RT [91]

Hydrogen Sulfide
(H2S)

10 ppm RGO-CuO 1.95 300 ◦C [93]
5 ppm PS/WO3/NOGR 65.5 300 ◦C [95]
1 ppm RGO-ZnFe2O4 147 350 ◦C [98]
1 ppm RGO/α-Fe2O3 9.2 350 ◦C [99]

Nitrogen Dioxide
(NO2)

5 ppm RGO/PVA/PEI 159.4% RT [104]
5 ppm RGO-PU 176% RT [107]
5 ppm Cu/Cu2O/RGO 18.90% 150 ◦C [122]
5 ppm Ni/NiO/RGO 0.82% 150 ◦C [122]
5 ppm RGO/WO3/TCNF 9.67% 100 ◦C [125]
5 ppm RGO-In2O3 42 50 ◦C [111]
5 ppm RGO-SnO2 100 200 ◦C [114]
5 ppm RGO-ZnO 150 400 ◦C [70]

15 ppm RGO/ZnO/thread 44% RT [128]
0.25 ppm RGO-cotton yarn −7.0% RT [129]
0.25 ppm RGO-polyester yarn −6.0% RT [129]
0.45 ppm RGO/MoS2/yarn 28% RT [130]

5 ppm RGO-elastic yarn 55% RT [131]
1 ppm RGO/nylon-6 13.6% RT [134]
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4. Graphene-Based Fiber Sensors for Polyatomic Gases

The polyatomic gas, ammonia (NH3), is an important feedstock for fertilizer, energy,
and fine chemicals [137]. NH3 is toxic and exposure to the gas should be restricted to
35 ppm for 10 min [138]. Other polyatomic gases, such as methane (CH4) and propyl
radical (C3H7), which are components of natural gas, have thermal conductivities that
differ significantly from that of air, making calorimetric gas sensors highly effective for
detecting these gases [139,140]. However, the thermal conductivity of NH3 is similar to
that of air, and detection of this gas by measuring thermal conductivity is difficult [139].
Substantial efforts have therefore been dedicated to the gas sensing of NH3 gas using
alternative methods [139,141]. In addition, as the normal concentration of NH3 in a healthy
person ranges from 0.5 to 2 ppm, NH3 in human breath has been explored as a biomarker,
showing considerable potential for liver and kidney disease screening [141,142].

NH3 Gas Sensor

Gaskov et al. developed NH3 gas sensors by encapsulating Co3O4 nanocrystals within
a matrix of RGO [143]. The nanofibers were synthesized by combining cobalt, GO, and
polyvinyl pyrrolidone (PVP). During the electrospinning process, GO enveloped cobalt
ions, while PVP formed the nanofiber structure (Figure 12). Subsequent calcination resulted
in the reduction of GO to RGO, carbonization of PVP into amorphous carbon, and the
aggregation of cobalt oxide into larger crystals, ultimately forming RGO-Co3O4 nanofibers.
The sensor demonstrated a sensitivity of 53.6% (Rg − Ra)/Rg) to 50 ppm of NH3 at room
temperature (Table 3). The strong affinity of RGO for NH3 contributed to the response of
the sensor [144,145]. When NH3 is adsorbed onto the nanofiber surface, it donates electron
density in the relatively high energy lone pair orbital to the sp2 carbon of graphene, which
increases resistance by reducing the number of electron holes.
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electrospinning and calcination process [143].

Expanding on this work, Wang et al. reported nanofibers of amorphous carbon and
Co3O4 encapsulated graphene for NH3 sensing [146]. In their study, a mixture containing
GO, Co3O4, PVP, and a cobalt salt precursor was electrospun to form nanofibers. These
nanofibers were then calcined, followed by an additional thermal treatment. The nanofibers
subsequently underwent a carbon exfoliation process for varying durations, ranging from
0 to 580 s, during which amorphous carbon and RGO aggregated around the cobalt ions,
forming carbon/RGO/Co3O4 nanofibers. It was observed that the sensor thermally etched
for 250 s exhibited the highest response, with a 123% (Rg − Ra)/Ra) sensitivity to 50 ppm of
NH3 at room temperature (Table 3). Compared to the earlier work by Gaskov et al., the
carbon/RGO/Co3O4 sensors demonstrated a significant improvement in performance,
with over a 50% increase in sensitivity achieved through optimized carbon exfoliation.

Wu et al. developed nanofiber sensors for NH3 gas based on polyaniline, nitrogen-
doped graphene quantum dots (N-GQD), and In2O3 [147]. The N-GQDs were synthesized
through a hydrothermal process, while hollow In2O3 nanofibers were fabricated via elec-
trospinning (Figure 13). The N-GQDs were subsequently combined with In2O3 nanofibers
through electrostatic interaction, and PANI/N-GQD/In2O3 nanofibers were prepared



Materials 2024, 17, 5825 17 of 37

through in-situ chemical oxidative polymerization. The assembly of the nanofiber sensors
was completed by depositing them onto gold-interdigitated electrodes. In assessing the
effect of N-GQD loading, it was found that sensors with 20 wt% N-GQD exhibited the
highest response, achieving a sensitivity of 15.2 (Rg/Ra) to 1 ppm NH3 at room temper-
ature (Table 3). This enhanced sensitivity was attributed to the increased surface area
provided by the N-GQDs and hollow In2O3 nanofibers, which facilitate greater interaction
with PANI and offer numerous adsorption sites for NH3 gas. Notably, the sensor demon-
strated effective NH3 gas detection at room temperature concentrations ranging from 0.6
ppm to 2.0 ppm, the range in which kidney or liver diseases can be identified in human
breath [148,149].
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Figure 13. Schematic illustration of (a) The preparation of hollow In2O3 nanofibers, N-GQDs, and
PANI/N-GQD/In2O3 nanofibers, and (b) nanofiber sensor fabrication [147].

Correa et al. also employed In2O3 in their preparation of sensors for NH3 detec-
tion [150]. In their study, In2O3 nanofibers were fabricated via electrospinning, followed
by a calcination procedure, while RGO was synthesized by partial chemical reduction of
GO using sodium citrate. RGO was combined with In2O3 via ultrasonication to obtain
RGO-In2O3 nanofibers, which were then cast onto gold interdigitated electrodes to form
gas sensing devices. The sensors displayed a sensitivity of 95% ([(Ra − Rg)/Rg] × 100,
where Ra is the sensor resistance in air while Rg is the sensor resistance after being exposed
to the gas) in response to 15 ppm of NH3 gas at room temperature (Table 3). The sensors
demonstrated selectivity for NH3, showing a higher response to it compared to other gases
such as acetone, ethanol, methanol, triethylamine, trimethylamine, and monomethylamine.
The gas sensing performance is attributed to the formation of a depletion layer and p-n
heterojunction between RGO and In2O3, where oxygen molecules from the air are adsorbed
onto the surface of the nanofiber and electronics flow from n-type In2O3 to p-type RGO
until equilibrium is reached (Figure 14). When exposed to NH3, gas molecules react with
the oxygen species, which generate electrons and eject them back into the nanofiber, thereby
decreasing the resistance of the sensor and providing a sensing signal. RGO contributes to
this response as it inherently provides the sensor with active sites at the surface and allows
for more gas adsorption as it creates an interconnected structure with In2O3 [151,152].
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Han et al. also contributed advancements in NH3 gas sensors through their work on
wet-spun RGO/Ti3C2Tx MXene hybrid fibers [153]. In addition to previously mentioned



Materials 2024, 17, 5825 18 of 37

metal oxides, Ti3C2Tx MXene, an emerging class of 2D material, is also recognized for its fa-
cilitation of gas adsorption [154,155]. The Ti3C2Tx was synthesized by etching Ti3AlC2 and
combined with GO, then the resulting composite was wet-spun into fibers and subjected
to thermal reduction (Figure 15a). MXene and GO undergo galvanic displacement, where
oxygen atoms from GO transfer to the MXene surface, while electrons of MXene reduce GO,
driven by the difference in their relative potentials [156,157]. The sensors demonstrated a
sensitivity of 6.77% (∆R/R0) in response to 50 ppm of NH3 at room temperature (Table 3).
When tested for selectivity, the fibers demonstrated a notably higher response to NH3,
while sensitivity to other gases remained low at approximately 1%. (Figure 15b). The
potential of these fibers as wearable sensors was further explored by integrating them into
a lab coat. The woven RGO/Ti3C2Tx MXene sensor demonstrated a response of 7.21%
when exposed to 100 ppm of NH3 gas, underscoring the promise of these fibers for use in
wearable and flexible sensing devices.
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MXene to NH3 in comparison to other gases [153].

Dong et al. introduced an innovative approach to fabricating coatings for a quartz
crystal microbalance (QCM), a technique used to determine the mass of an analyte ab-
sorbed by measuring the frequency changes related to adsorption activity on a quartz
crystal [158,159]. They developed an NH3 gas sensor by utilizing electrospun nanofibers
made from polystyrene doped with carboxyl graphene (G-COOH) as the QCM coating [158].
G-COOH was specifically chosen for its high surface area and porosity, which serve to
enhance the mass loading of NH3 molecules onto the QCM [160,161]. The G-COOH
and PS composite was electrospun and directly deposited onto the QCM, forming a G-
COOH/PS/QCM sensor. When tested with NH3 concentrations ranging from 1 to 40 ppm
at room temperature, the sensor exhibited a decrease in frequency as ammonia concen-
tration increased (Figure 16a). The sensor, exhibiting an inherent frequency of 5 MHz,
achieved a sensitivity of 17.67 ng Hz−1.

This work was further expanded upon by Li et al., as they proposed that improved
dispersibility of graphene could enhance the response of the sensor [162]. They described
their approach as an electrostatic layer-by-layer self-assembly technique, whereby negatively-
charged electrospun cellulose acetate (CA) nanofibers were encased with a layer of positively-
charged poly(ether imide) and a layer of negatively-charged GO. The resulting nanofiber
membrane was utilized as sensing coatings for QCM to form CA/PEI/GO/QCM NH3 gas
sensors. With this modified method, the inherent frequency of the sensor was 5 MHz and the
sensitivity of the sensor increased to 53.01 ng Hz−1 (Figure 16b). When exposed to 1 ppm of
NH3, the sensor observed a higher response of 0.9 Hz, compared to a response of 0.3 Hz by
the previously reported G-COOH/PS QCM sensor (Table 3) [158]. This effect was attributed
to the improved uniformity of GO, which was more evenly distributed on the nanofiber as a
coating, rather than being mixed into a spinning solution. The authors also attributed this
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enhanced sensitivity to the 3D structure of the layered fiber, with the CA nanofibers providing
permeable space for gaseous NH3 molecules.
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Table 3. Summary of graphene-based fiber gas sensors for NH3 gas.

Gas Conc. Material Response Temp. Ref.

Ammonia
(NH3)

50 ppm RGO-Co3O4 53.6% RT [143]
50 ppm Carbon/RGO/Co3O4 123% RT [146]
1 ppm PANI/N-GQD/In2O3 15.2 RT [147]
15 ppm RGO-In2O3 95% RT [150]
50 ppm Ti3C2Tx MXene/RGO 6.77% RT [153]
1 ppm G-COOH/PS/QCM 0.3 Hz RT [158]
1 ppm CA/PEI/GO/QCM 0.9 Hz RT [162]

5. Graphene-Based Fiber Sensors for Volatile Organic Compounds

Volatile organic compounds (VOCs) are a class of organic compounds that vaporize
and aerosolize readily due to a relatively high vapor pressure at standard temperature
and pressure [163]. VOCs are emitted from both natural and anthropogenic sources, with
several being acutely toxic to humans [164]. Their release into the atmosphere can also
lead to the formation of harmful secondary pollutants [165], thus there is a need to monitor
levels of these compounds to assess indoor and outdoor air quality. Formaldehyde is a
toxic VOC found in common products like paint and preservatives, while chlorobenzene,
although less prevalent, is associated with carcinogenic effects [166,167]. Additionally, the
emerging interest in using certain gases as biomarkers for human health highlights the
importance of detecting and quantifying these gases [168–171]. Analyzing breath samples
for the presence or absence of VOCs, such as acetone and ethanol, has shown that they are
useful indicators of disease and adverse health conditions [172].

5.1. Acetone

Wang et al. realized porous GO-WO3 electrospun nanofibers for the gas sensing
of acetone [173]. In this study, various volumes of GO ranging from 0 to 1.5 mL were
added to a tungsten precursor solution and processed using electrospinning. The resulting
nanofibers were calcined to obtain CO-WO3 nanofiber sensors. The sensor exhibiting the
highest response contained nanofibers fabricated from 1 mL of GO-WO3, with a sensitivity
of 35.9 (Ra/Rg) to 100 ppm of acetone vapor at 375 ◦C (Table 4). The enhanced sensing
performance of GO-WO3 nanofibers is primarily due to the formation of ohmic contact
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between conductive GO nanosheets and WO3 nanograins, which facilitates electron mi-
gration and resistance modulation [174]. The morphology of the nanofibers, including
high surface area and porosity, enables better adsorption and faster diffusion of acetone
molecules, leading to quicker response and recovery times [175].

Ghafarinia et al. developed RGO-ZnO nanofibers for the detection of acetone gas via
electrospinning [176]. The nanofibers were prepared with different ratios of zinc acetate
and GO, facilitated by PVA, followed by a calcination treatment (Figure 17). The sensors
were fabricated by depositing the nanofibers onto a silicon wafer. It was determined
that the sensor containing a zinc acetate concentration of 4 weight fractions and a GO
concentration of 0.07 weight fractions performed the best. The sensor exhibited a sensitivity
of 4 (Rair/Rgas) to 200 ppm of acetone at 200 ◦C (Table 4). Interestingly, a study of the
sensors containing ZnO without RGO revealed that the addition of graphene decreased the
optimal operating temperature from 400 ◦C to 200 ◦C. This improvement was attributed to
the efficient charge transfer capabilities of RGO that refine electrical conductivity [177].
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Figure 17. Schematic illustration of the preparation of RGO-ZnO nanofiber sensors [176].

Lu et al. reported RGO/α-Fe2O3 nanofibers for acetone gas detection [178]. The
nanofibers were fabricated with different loadings of RGO via electrospinning. The optimal
sensor, containing 1 wt% of RGO/α-Fe2O3 nanofibers, reached a maximum of 8.9 (Ra/Rg)
to 100 ppm acetone at 375 ◦C (Table 4), which was 4.5 times higher than the sensors
without RGO. The formation of RGO and Fe2O3 heterojunctions generated ohmic contacts,
enhancing the sensing signal, while defects and functional groups in RGO provided strong
adsorption sites for gas molecules. The sensing mechanism is also influenced by the
catalytic effect of RGO in adsorption, where the pores between layers of RGO nanosheets
are efficient gas diffusion channels, offering active sites for acetone gas molecules [51].

Shen et al. recognized the potential of RGO-poly(vinylidene fluoride) (PVDF) nanofibers
for sensing and energy storage applications [179]. The nanofibers were fabricated by elec-
trospinning a composite of PVDF and GO, followed by the reduction of GO to RGO using
hydrazine, resulting in RGO-PVDF nanofibers. These nanofibers were employed in the
fabrication of three sensor types, including pressure, photodetector, and gas sensors, as well
as three micro-supercapacitors. For each sensor, nickel film electrodes were placed on two
ends of the nanofibers at different distances between the electrodes, depending on the type
of sensor. All device types were integrated onto a single PDMS substrate with thermally
evaporated Ni and Ag tape electrodes serving as electrical interconnections. The entire
structure was then encapsulated with an additional PDMS layer, exposing only the sensing
materials to air, to create a self-powered multifunctional electronic skin system. The gas
sensing function of the electronic skin (e-skin) demonstrated a response of 0.25 (S = ∆I/I0,
where ∆I is the difference current between in the air and in the target gas, I0 is the current
in the air) to 500 ppm of acetone at room temperature (Table 4), with rapid response and
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recovery times of 5.5 and 30 s, respectively (Figure 18). This work establishes a promising
platform for advancing e-skin technologies and integrating sensors into wearable devices.

Materials 2024, 17, x FOR PEER REVIEW 22 of 39 
 

 

 
Figure 18. Gas sensor on e-skin device: (a) Response of gas sensor to different concentrations of 
acetone vapor; (b) Response of gas sensor to increasing acetone concentrations; (c) Response and 
recovery time of gas sensor; (d) sensing stability of device under different bending states in 500 ppm 
of acetone vapor (each color on the plot represents the response for different bending states) [179]. 

5.2. Chlorobenzene 
Park et al. described chlorobenzene gas sensors made from RGO fibers embedded 

with copper iodide and metallic copper, developed using an innovative wet-spinning 
method [180]. They began with a GO liquid crystal dispersion, extruding it into a CuCl2-
ethylene glycol coagulation solution where the GO aligned due to shear forces and formed 
fibers with Cu cations through ionic and van der Waals interactions (Figure 19). A portion 
of the Cu cations is converted to copper hydroxide, which was subsequently reduced to 
metallic Cu via a redox reaction with hydrogen iodide and acetic acid. This process led to 
the formation of CuI alloys, with any residual iodine rinsed away. The resulting RGO-Cu 
fibers served dual purposes as both gas and temperature sensors, where the response of 
the sensors was measured by the change in conductance (ΔG) upon varying rates of chlo-
robenzene evaporation. As gas sensors, the fibers showed increased conductance in re-
sponse to rising chlorobenzene evaporation rates, with sensors containing higher Cu con-
centrations displaying greater conductance change at 20 °C. The conductance of the sensor 
reached 12.5 × 10−6 G when exposed to chlorobenzene vapor, with response and recovery 
times of approximately 70 s (Table 4). The gas sensitivity of RGO-Cu fibers is likely due to 
the activation of surface oxygen ions in the encapsulated oxidized Cu particles. The 
change in conductance results from gas molecules absorbed on the surface of Cu, which 
increase hole conductivity by accepting electrons from the oxygen ions. Additionally, 
these electrical properties and large accessible surface area for gas activity are promoted 
by RGO in the fiber sensor [181]. 
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of acetone vapor (each color on the plot represents the response for different bending states) [179].

5.2. Chlorobenzene

Park et al. described chlorobenzene gas sensors made from RGO fibers embedded
with copper iodide and metallic copper, developed using an innovative wet-spinning
method [180]. They began with a GO liquid crystal dispersion, extruding it into a CuCl2-
ethylene glycol coagulation solution where the GO aligned due to shear forces and formed
fibers with Cu cations through ionic and van der Waals interactions (Figure 19). A portion
of the Cu cations is converted to copper hydroxide, which was subsequently reduced to
metallic Cu via a redox reaction with hydrogen iodide and acetic acid. This process led to
the formation of CuI alloys, with any residual iodine rinsed away. The resulting RGO-Cu
fibers served dual purposes as both gas and temperature sensors, where the response
of the sensors was measured by the change in conductance (∆G) upon varying rates of
chlorobenzene evaporation. As gas sensors, the fibers showed increased conductance in
response to rising chlorobenzene evaporation rates, with sensors containing higher Cu
concentrations displaying greater conductance change at 20 ◦C. The conductance of the
sensor reached 12.5 × 10−6 G when exposed to chlorobenzene vapor, with response and
recovery times of approximately 70 s (Table 4). The gas sensitivity of RGO-Cu fibers is likely
due to the activation of surface oxygen ions in the encapsulated oxidized Cu particles. The
change in conductance results from gas molecules absorbed on the surface of Cu, which
increase hole conductivity by accepting electrons from the oxygen ions. Additionally, these
electrical properties and large accessible surface area for gas activity are promoted by RGO
in the fiber sensor [181].
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sensors demonstrated superior gas response and selectivity to formaldehyde vapor, com-
pared to SnO2 nanofiber sensors and SnO2 with other nanocarbons (Figure 21a). The opti-
mal operating temperature was 120 °C, where the sensors containing 1 wt% GO achieved 
a response value of 32 (Ra/Rg) to 100 ppm of formaldehyde (Table 4), which is four times 
higher than that of nanofibers without GO (Figure 21b). The sensing mechanism of GO-
SnO2 involves the interaction of gas molecules with the surface of metal oxides, leading to 
changes in electrical conductivity [187]. Hollow SnO2 nanofibers with porous morphology 
allow gas molecules to permeate, facilitating gas adsorption and electron transfer. With 
the addition of GO, the selectivity and sensitivity of the sensor are enhanced by lowering 

Figure 19. Schematic depicting RGO-Cu fiber preparation illustrating the content of Cu in the
fiber [180].

5.3. Ethanol

In et al. reported the fabrication of GO-SnO2 nanofibers for the detection of ethanol
gas [182]. The process of preparing GO-SnO2 nanofibers involved electrospinning SnO2
nanofibers, followed by GO dip-coating and thermal annealing. The optimal operating
temperature of the sensors was determined to be 300 ◦C, with a response of 85.3 (Ra/Rg) to
100 ppm of ethanol vapor (Table 4). Additionally, the functionality of the sensors persisted
under high relative humidity conditions of 96%, showing a response of 51.75 to 100 ppm
ethanol gas (Figure 20a). This impact from humidity decreases the response of the sensor
by affecting conductivity, as water molecules compete with the target gas for adsorption
sites [183]. The selectivity of the sensor for ethanol vapor was also demonstrated by testing
against other gases such as ammonia, acetone, methanol, and ammonia acetate (Figure 20b).
The interaction between graphene and SnO2 was proposed to contribute to the gas sensing
mechanism, as electron transfer from SnO2 to graphene increases the number of active sites
that are available for ethanol molecule adsorption [184,185].
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5.4. Formaldehyde

Yang et al. investigated electrospun hollow SnO2 nanofibers with carbon materials,
including graphene, carbon nanotubes, and graphene oxide, and the resulting nanofibers
were examined as gas sensors for formaldehyde [186]. The study found that the GO-
SnO2 sensors demonstrated superior gas response and selectivity to formaldehyde vapor,
compared to SnO2 nanofiber sensors and SnO2 with other nanocarbons (Figure 21a). The
optimal operating temperature was 120 ◦C, where the sensors containing 1 wt% GO
achieved a response value of 32 (Ra/Rg) to 100 ppm of formaldehyde (Table 4), which is
four times higher than that of nanofibers without GO (Figure 21b). The sensing mechanism
of GO-SnO2 involves the interaction of gas molecules with the surface of metal oxides,
leading to changes in electrical conductivity [187]. Hollow SnO2 nanofibers with porous
morphology allow gas molecules to permeate, facilitating gas adsorption and electron
transfer. With the addition of GO, the selectivity and sensitivity of the sensor are enhanced
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by lowering the energy barrier for electron transfer and providing active sites for oxygen
species generation [188].
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Table 4. Summary of graphene-based fiber gas sensors for VOCs.

Gas Conc. Material Response Temp. Ref.

Acetone
(C3H6O)

100 ppm GO-WO3 35.9 375 ◦C [173]
200 ppm RGO-ZnO 4 200 ◦C [176]
100 ppm RGO/α-Fe2O3 8.9 375 ◦C [178]
500 ppm RGO-PVDF 0.25 RT [179]

Chlorobenzene
(C6H5Cl) 4.72 µg/s RGO-Cu 12.5 × 10−6 G 20 ◦C [180]

Ethanol
(C2H6O) 100 ppm GO-SnO2 85.3 300 ◦C [182]

Formaldehyde
(CH2O) 100 ppm GO-SnO2 32 120 ◦C [186]

6. Graphene-Based Fiber Sensors for Detection of Multiple Gases

Thus far in this review, the focus has been placed on gas sensors specifically designed
for the detection of individual gases. However, gas sensing systems capable of detecting
two or more gasses are also extremely advantageous in real-world, complex environments.
Similarly to single gas detection systems, sensing systems for multiple gases can be useful
for different scenarios where it is desirable to detect many gases, such as environmental
monitoring for air pollutants [189]. Furthermore, multi-gas sensors have been increasingly
used in human health diagnoses based on breath, which can contain many trace gases,
several of which are biomarkers for disease and adverse health conditions [190–192].

Kim et al. reported a gas-sensing system capable of detecting H2S and acetone with
RGO-SnO2 nanofibers [193]. SnO2 nanofibers were obtained via electrospinning and
subsequently calcined via thermal treatment. The resulting nanofibers were combined
with GO, followed by a thermal reduction to achieve an RGO-SnO2 nanofiber composite
(Figure 22). Sensors containing 0.01 wt% of RGO exhibited a response of 34 (Rair/Rgas) to
5 ppm of H2S at 200 ◦C, while sensors containing 5 wt% RGO displayed a response of 10 to
5 ppm of acetone at 350 ◦C (Table 5). It was found that at low RGO loading concentrations,
the sensing properties were predominately influenced by the SnO2 component, whereas the
RGO component determined the electrical transport at higher RGO concentrations. Notably,
the sensors were examined in a humid atmosphere at the respective optimal operating
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temperatures to investigate the interference of water vapor. As the sensors were able to
detect the gases in humid air, this shows the potential of these sensors for breath analyzers
that use acetone and H2S as biomarkers for the diagnosis of diabetes and halitosis [194,195].
This gas sensing system is notable as the loading of RGO in the nanofiber composite results
in greater sensitivity to one gas, rather than the other. In addition, it underscores the
challenges of gas sensing in the presence of interfering substances.
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Fabricating gas sensors often encounter problems related to susceptibility to envi-
ronmental changes, such as humidity and temperature [196]. A primary limitation of gas
sensors is achieving high selectivity to detect a specific gas amid interfering substances, as
cross-sensitivity remains a persistent challenge in both single-gas and multi-gas sensors,
affecting accuracy in real-world conditions [197]. Addressing this problem involves con-
trolling the morphology of sensing materials to enhance the detection of particular gases.
It is necessary to optimize the sensing material by fine-tuning its surface properties and
nanostructure to achieve better interaction with gases while taking into account the chemi-
cal composition, molecular size, and reactivity of the target gas molecule. It is significant
to note that ongoing research involving gas sensors, including electronic nose technology,
is exploring artificial intelligence and machine learning algorithms in sensing systems to
enhance the accuracy and precision of gas detection and differentiation [15,198]. Further
research is required to mitigate cross-sensitivity issues and facilitate precise discrimination
between gases in multi-gas sensing applications.

Ren et al. also fabricated electrospun RGO-SnO2 nanofibers and studied their sens-
ing behavior to NO2 and sulfur dioxide (SO2) under different intensities of UV light
illumination [199]. RGO-SnO2 sensors were prepared through electrospinning, follow-
ing calcination, and ultrasonic treatments, where different concentrations of SnO2 were
combined with RGO, and the resulting sensors were investigated from dark to UV light
irradiation with different light intensities. The sensor containing a mass ratio of RGO:SnO2
at 1:40 showed relatively similar responses of 23% and 22% ((Rg − Ra)/Ra × 100%, where
Rg and Ra are the resistance values in the gas and air, respectively) to 3 ppm of NO2 and
30 ppm SO2, respectively, in a dark environment at room temperature (Table 5). Interest-
ingly, under 97 mW/cm2 of UV illumination, the sensor exhibited the highest response of
102% to NO2 but also the lowest response of 11% to SO2. In the presence of UV light, SnO2
absorbs UV light and collects photo-electrons, whereas RGO accepts these photo-electrons
and facilitates charge transport. The enhanced selectivity is likely due to photocatalytic
oxidation and photochemical desorption effects, leading to varied responses depending on
the gas [200]. The findings of this study suggest that sensor selectivity can be improved by
optimizing the intensity of excitation light, presenting the role of UV light in improving
gas detection for specific gases.

Kim et al. presented nanofibers composed of RGO and SnO2, loaded with platinum
(Pt) or palladium (Pd), for the selective detection of benzene and toluene, respectively [201].
Unlike the previously discussed study that modulates graphene to target different gases,
this approach optimized the gas-sensing properties of the sensor by varying the type of
metal used. The sensors were fabricated by incorporating either Pt or Pd nanoparticles,
grown via UV irradiation, into a SnO2 and RGO composite, which was then processed
into nanofibers using electrospinning. The RGO/Pd/SnO2 sensors exhibited the highest
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sensitivity to benzene, with a response of 12.3 (R = Ra/Rg, where Ra and Rg are the
resistances in the presence of air and target gas) at 5 ppm at 200 ◦C. In contrast, the
RGO/Pt/SnO2 nanofibers demonstrated the strongest response to toluene, achieving
a sensitivity of 16.0 at 5 ppm, which is 255% greater than their response to benzene
(Table 5). This behavior can be attributed to toluene generating more hydrogen molecules
than benzene, enabling Pt to dissociate toluene more efficiently, resulting in a stronger
response in Pt-loaded sensors [202,203]. In the case of Pd-loaded sensors, Pd nanoparticles
demonstrate higher catalytic activity for benzene decomposition owing to their lower
adsorption energy [204,205]. Conversely, the adsorption of toluene by Pt is electronically
favorable, while benzene dehydrogenation is thermodynamically unfavorable [205]. RGO
also contributes to the gas sensing mechanism by absorbing electrons from adjacent SnO2,
which increases the resistivity within the nanofibers, thereby reducing their conductivity
and intensifying resistance modulation [124]. Electron flow through the connected SnO2
nanograins and p-n junctions at the SnO2 and RGO interfaces alters resistance as the
depletion region contracts upon gas exposure (Figure 23).

Materials 2024, 17, x FOR PEER REVIEW 26 of 39 
 

 

highest sensitivity to benzene, with a response of 12.3 (R = Ra/Rg, where Ra and Rg are the 
resistances in the presence of air and target gas) at 5 ppm at 200 °C. In contrast, the 
RGO/Pt/SnO2 nanofibers demonstrated the strongest response to toluene, achieving a sen-
sitivity of 16.0 at 5 ppm, which is 255% greater than their response to benzene (Table 5). 
This behavior can be attributed to toluene generating more hydrogen molecules than ben-
zene, enabling Pt to dissociate toluene more efficiently, resulting in a stronger response in 
Pt-loaded sensors [202,203]. In the case of Pd-loaded sensors, Pd nanoparticles demon-
strate higher catalytic activity for benzene decomposition owing to their lower adsorption 
energy [204,205]. Conversely, the adsorption of toluene by Pt is electronically favorable, 
while benzene dehydrogenation is thermodynamically unfavorable [205]. RGO also con-
tributes to the gas sensing mechanism by absorbing electrons from adjacent SnO2, which 
increases the resistivity within the nanofibers, thereby reducing their conductivity and 
intensifying resistance modulation [124]. Electron flow through the connected SnO2 
nanograins and p-n junctions at the SnO2 and RGO interfaces alters resistance as the de-
pletion region contracts upon gas exposure (Figure 23). 

 
Figure 23. Schematic illustration of gas sensing mechanism of RGO/(Pt or Pd)/SnO2 (the change in 
the potential barrier is presented by the black and red curves) [201]. 

The same research group also reported RGO and ZnO nanofiber sensors following 
similar methodologies for the gas sensing of CO and benzene [206]. The preparation of 
the sensors involved the synthesis of Au and Pd nanoparticles through UV radiation and 
incorporation with RGO and ZnO (Figure 24). The resulting composite solution formed 
nanofibers via electrospinning, and the as-spun nanofibers were subjected to a calcination 
treatment. The nanofibers containing Au exhibited a higher response to CO, whereas the 
sensors with Pd demonstrated a greater sensitivity to benzene. The RGO/Au/ZnO sensor 
showed a response of 23.5 to 1 ppm of CO, while RGO/Pd/ZnO had a response of 11.8 to 
1 ppm of benzene at 400 °C (Table 5). This sensitivity is due in part to the high catalytic 
efficiency of Au nanoparticles for CO oxidation by lowering the oxidation barrier and the 
small kinetic diameter of CO, which allows molecules to permeate into the sensor and 
result in an amplified response. This gas sensing system is notable for its ability to achieve 
a stronger response to one gas over another by adjusting the type of metal nanoparticle 
employed. 

 
Figure 24. Schematic illustration of the synthesis of RGO/(Au or Pd)/ZnO [206]. 

Figure 23. Schematic illustration of gas sensing mechanism of RGO/(Pt or Pd)/SnO2 (the change in
the potential barrier is presented by the black and red curves) [201].

The same research group also reported RGO and ZnO nanofiber sensors following
similar methodologies for the gas sensing of CO and benzene [206]. The preparation of
the sensors involved the synthesis of Au and Pd nanoparticles through UV radiation and
incorporation with RGO and ZnO (Figure 24). The resulting composite solution formed
nanofibers via electrospinning, and the as-spun nanofibers were subjected to a calcination
treatment. The nanofibers containing Au exhibited a higher response to CO, whereas
the sensors with Pd demonstrated a greater sensitivity to benzene. The RGO/Au/ZnO
sensor showed a response of 23.5 to 1 ppm of CO, while RGO/Pd/ZnO had a response
of 11.8 to 1 ppm of benzene at 400 ◦C (Table 5). This sensitivity is due in part to the
high catalytic efficiency of Au nanoparticles for CO oxidation by lowering the oxidation
barrier and the small kinetic diameter of CO, which allows molecules to permeate into
the sensor and result in an amplified response. This gas sensing system is notable for its
ability to achieve a stronger response to one gas over another by adjusting the type of metal
nanoparticle employed.
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Ruiz-Valdepeñas et al. also realized the sensing properties of graphene-doped SnO2
nanofibers, utilizing graphene synthesized through a liquid phase exfoliation process,
whereby direct exfoliation of graphite was achieved in water-based solutions without the
use of stabilizing agents [207,208]. The sensors consisted of electrospun nanofibers with a
diameter of around 50 nm and nanoribbons approximately 1 µm in diameter deposited onto
interdigitated electrodes. When exposed to various gases, the sensor exhibited responses
exceeding 35% ((Ra − R) × 100/R, where Ra and R are sensor resistance under exposure to
air and selected gas, respectively) for acetone and ethanol gases at temperatures ranging
from 25–300 ◦C, with peak responses of approximately 85% to 4 ppm of acetone and 90%
to 2 ppm of ethanol at 300 ◦C (Table 5). The sensor demonstrated negligible responses for
CO and NO gases, thereby displaying a preference for acetone and ethanol. This behavior
does not indicate selectivity for specific gases but rather shows a stronger sensitivity to
certain gases compared to others. Although sensitivity is optimal at higher temperatures,
varying the temperature allows for different sensor responses, facilitating their use in
multi-sensor systems. It was proposed that the presence of graphene increases both the
detection of the sensors at low temperatures and the response to gases. This enhancement
was attributed to the existence of n-p heterojunctions that form potential barriers influenced
by gas adsorption, while the porous structure of the nanofibers and nanoribbons improves
gas penetration, thereby increasing sensitivity [209].

Cheng et al. investigated the effects of varying types of RGO on gas sensitivity
performance by fabricating nanofibers from polyaniline, camphorsulfonic acid (HCSA),
polyethylene oxide (PEO), and different RGO forms, including thermally reduced (trGO),
chemically reduced (crGO), chemically reduced for 6 h (crGO-6), and chemically reduced
for 24 h (crGO-24) [210]. These electrospun nanofibers were deposited onto interdigitated
microelectrodes to fabricate sensors, which were then tested for responses to aliphatic
alcohol vapors: methanol, ethanol, and 1-propanol. The sensor with crGO-6 exhibited the
highest resistance modulation, showing the strongest response to 1-propanol, followed
by methanol and ethanol. It exhibited responses of 22.6, 7.9, and 2.1 (∆R/R0, where R0
is baseline resistance and ∆R is change in resistance upon exposure to analyte vapor) to
200 ppm of 1-propanol, methanol, and ethanol, respectively, at room temperature (Table 5),
outperforming the other sensors containing differing RGO variants. Upon adsorption of
vapor molecules, the nanofiber swells, increasing the separation between PANI chains,
widening the electron transport gap, and increasing the resistance, with larger analytes
amplifying this effect. The enhanced response of crGO-6 compared to crGO-24 suggests that
hydrogen bonding between vapor molecules and RGO plays a role in resistance modulation
and contributes to the overall sensing mechanism [211]. This study not only examines the
impact of various reduction methods but also points to the effects of gas molecule size on
the gas-sensing response.

He et al. developed an RGO-MoS2 composite fiber with NO2 and NH3 gas-sensing
properties [212]. The synthetic approach involved wet-spinning a composite containing
GO and sodium molybdate, followed by treatment with L-cysteine, hydrothermal process,
then thermal annealing. The resulting RGO-MoS2 fiber consists of MoS2 domains anchored
onto the surface of graphene. It is observed that the sensor displayed a sensitivity of −85%
(S (%) = 100 × ∆R/R0 = 100 × Rg − R0/R0, where Rg is the resistance under target gas
exposure and R0 is the initial resistance under N2 exposure) to 100 ppm of NO2 and 100%
to 100 ppm of NH3 gas (Table 5). RGO-MoS2 conjugates facilitate rapid charge transfer,
leading to fast resistance fluctuations. When the sensor is exposed to NO2 gas, the p-type
dopant accepts electrons from MoS2, resulting in a decrease in the resistance of the sensor
(Figure 25a). When exposed to NH3 gas, an n-type dopant, electrons are donated to MoS2,
resulting in an increase in the resistance (Figure 25b). This study demonstrates a gas-sensing
system achieved by a singular fiber material that exhibits an inverse response to either
NO2 or NH3. It should be noted that while selectivity between these two gases is high,
the detection of either of these gases from the ambient atmosphere, where cross-selectivity
poses challenges, was not tested in this study. However, these findings, particularly the



Materials 2024, 17, 5825 27 of 37

sensitivity measured by resistance changes, warrant further study to identify potential
response patterns that could enable differentiation between gases from the sensor. As
demonstrated in this study, different gases interact uniquely with the sensing material,
resulting in characteristic resistance changes. This distinction can be employed in sensors
to improve pattern recognition and enhance the selectivity of sensing systems [213,214].
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Yoo et al. reported fiber sensors composed of RGO and ZnO composites with the
ability to sense NO2 and H2S gas [215]. The preparation of the fibers involved the wet-
spinning of GO suspension into a coagulation bath containing calcium chloride, followed
by hydrothermal treatment with zinc nitrate to obtain RGO-ZnO fibers (Figure 26a). The
sensors were constructed by depositing the fibers onto interdigitated gold electrodes and
adhering them with tape. The fiber sensor exhibited a sensitivity of 1.65 ((Ra − Rg)/Rg] ×
100 (%), where Ra and Rg are the resistances of the sensor material when air and gas were
injected into the sensor, respectively) when exposed to 4 ppm of NO2 and 2.68 to 20 ppm
of H2S at room temperature, respectively (Table 5). When exposed to CO2 and H2 gases,
the sensor showed low sensitivity, thus demonstrating greater responses towards NO2
and H2S. The stability of the sensor was evaluated by subjecting the sensor to continuous
NO2 and H2S exposure for 10 days, where the sensor performance was observed to be
constant for both gases. The fiber sensor possesses p-type semiconductor characteristics,
which causes the formation of a hole accumulation layer in the open air (Figure 26b).
Electron transfer from the fiber increases hole concentration upon exposure to NO2. In
contrast, exposure to H2S causes electrons to be transferred to the fiber and reduces the
hole concentration, thereby inducing n-type behavior in the fiber [216,217]. The sensing
mechanism is further influenced by the morphology of ZnO and RGO, which possess a
high surface area of catalytic sites for gas adsorption and desorption. This work presents a
promising platform for real-time human health monitoring, leveraging H2S as a biomarker,
as well as in environmental monitoring, as NO2 is considered a hazardous gas. Crucially,
the stability of these nanocomposites is demonstrated, marking a significant advancement
towards the development of lightweight and robust sensors with potential applications in
wearable electronics and automated portable devices.

Although graphene itself is known for its chemical stability and mechanical durability,
the longevity of graphene-based fibers is influenced by interfacial properties between
graphene and fiber-forming composite materials [218,219]. Ensuring long-term operational
stability under various conditions is crucial for sensor performance reliability. While
graphene itself demonstrates mechanical and chemical stability, the long-term stability of
graphene-based composite fibers often depends on the non-graphene components, such
as metal oxides or polymers [113,218]. In the case of polymer-containing composites, the
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durability of these fibers is influenced by the interaction between graphene sheets and the
polymer matrix, which serves as the fiber-forming framework [218]. Therefore, the strain
on this matrix plays a critical role in determining the overall stability and performance of
the fiber. However, in composites consisting of metal oxides, graphene can enhance the
structural integrity and improve the stability of the overall network owing to synergistic
effects [220]. Continued research into these composite materials will aid in developing
graphene fibers with optimal stability to achieve the best performance.
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Figure 26. (a) Schematic illustration of wet-spinning of GO fiber and fiber sensor; (b) Schematic
illustrating the sensing mechanism of RGO-ZnO fiber [215].

It is evident that sensor systems for multiple gases demonstrate significant potential
across various applications, owing to their ability to target a wide range of gases. As
mentioned, this versatility enables their use in diverse fields such as environmental moni-
toring, industrial safety, and medical diagnostics, where the detection of multiple gases
simultaneously is crucial for accurate assessments and timely responses. The examples
presented in this review showcase the current framework and obstacles to overcome for
the expansion of more sophisticated systems with high sensitivity and selectivity.
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Table 5. Summary of gas sensing systems for multiple gases.

Material Gas Conc. Response Temp. Ref.

RGO-SnO2
H2S 5 ppm 34 200 ◦C

[193]Acetone 10 350 ◦C

RGO-SnO2|UV light NO2 3 ppm 102%
RT [199]SO2 20 ppm 11%

RGO/Pd/SnO2 Benzene 5 ppm 12.3
200 ◦C [201]RGO/Pt/SnO2 Toluene 16.0

RGO/Au/ZnO CO 5 ppm 35.8
400 ◦C [206]RGO/Pd/ZnO Benzene 22.8

Graphene-SnO2
Acetone 4 ppm 85%

300 ◦C [207]Ethanol 2 ppm 90%

RGO/PANI/HCSA/PEO
1-propanol

200 ppm
22.6

RT [210]Methanol 7.9
Ethanol 2.1

RGO-MoS2
NO2 100 ppm −85%

RT [212]NH3 100%

RGO-ZnO
NO2 8 ppm 1.86

RT [215]H2S 0.87

7. Conclusions and Perspectives

This review highlights a decade of advancements in graphene-based composite fibers
for gas sensing applications. It explores their preparation, fabrication into sensors, and gas
sensing mechanisms, emphasizing graphene’s ability to enhance sensitivity and selectiv-
ity through its high surface area, electrical conductivity, and chemical tunability. These
fibers also offer flexibility and mechanical strength, enabling integration into wearable and
flexible electronics. The performance of these fibers in detecting various gases, including
diatomic (H2, CO), triatomic (CO2, NO2, H2S), polyatomic (NH3), and VOCs (acetone,
ethanol, formaldehyde) is detailed, with multi-gas sensing systems summarized for broader
applications. As graphene-based fiber sensors continue to evolve, their seamless incorpora-
tion into everyday objects as wearable and portable devices holds great potential to enable
real-time monitoring in fields such as industrial safety, environmental monitoring, and
medical diagnostics.

Despite their promise, challenges persist. Environmental factors like temperature and
humidity, as well as cross-sensitivity, impact real-world accuracy. Optimization of material
morphology and surface properties is critical to enhancing selectivity and performance.
Key hurdles in practical deployment include ensuring long-term stability, scalability for
industrial production, and sustainable manufacturing. Stability depends on the interactions
between graphene and other components within the composite, such as polymers or
metal oxides. Scaling up production requires refining techniques like wet-spinning and
electrospinning for consistent, high-quality output. Sustainability efforts must focus on
renewable graphene production and recycling to minimize environmental impact.

Continued research is vital to overcoming challenges and driving innovation, paving
the way for environmentally conscious, next-generation gas sensing technologies. This
review has presented the versatility of graphene-based fibers and the significant potential
these materials hold for gas sensing systems, highlighting the foundation established for
the next breakthrough in the field.
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