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Abstract: An important hurdle in medical diagnostics is the high-quality and interpretable classi-
fication of audio signals. In this study, we present an image-based representation of infant crying
audio files to predict abnormal infant cries using a vision transformer and also show significant im-
provements in the performance and interpretability of this computer-aided tool. The use of advanced
feature extraction techniques such as Gammatone Frequency Cepstral Coefficients (GFCCs) resulted
in a classification accuracy of 96.33%. For other features (spectrogram and mel-spectrogram), the
performance was very similar, with an accuracy of 93.17% for the spectrogram and 94.83% accuracy
for the mel-spectrogram. We used our vision transformer (ViT) model, which is less complex but
more effective than the proposed audio spectrogram transformer (AST). We incorporated explainable
AI (XAI) techniques such as Layer-wise Relevance Propagation (LRP), Local Interpretable Model-
agnostic Explanations (LIME), and attention mechanisms to ensure transparency and reliability
in decision-making, which helped us understand the why of model predictions. The accuracy of
detection was higher than previously reported and the results were easy to interpret, demonstrating
that this work can potentially serve as a new benchmark for audio classification tasks, especially in
medical diagnostics, and providing better prospects for an imminent future of trustworthy AI-based
healthcare solutions.

Keywords: vision transformers (ViTs); infant cry classification; audio signals; image-based representations;
gammatone frequency cepstral coefficients (GFCCs); spectrogram; mel-spectrogram; explainable AI (XAI);
layer-wise relevance propagation (LRP); local interpretable model-agnostic explanations (LIME); audio
feature; medical diagnostics; healthcare AI

1. Introduction

The exploration of image-based audio representations for classification tasks takes
advantage of significant advancements in ViT [1] and explainable AI (XAI) techniques,
offering a new approach to combining audio and visual data for improved classification
accuracy. Unlike classical machine learning (ML) or deep learning (DL) methods, such as
Support Vector Machines (SVMs), which often require comprehensive feature engineering
and may struggle with complex, high-dimensional audio data, ViTs excel due to their ability
to model global context through self-attention mechanisms [2]. By converting audio signals
into audio features, which can be treated as images, ViTs, originally designed for image
classification, have shown excellent performance in various domains, including audio
classification [3]. This approach enhances accuracy and allows for greater explainability
and the possibility of integrating ViTs with other methods to boost performance further.
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Vision transformers have revolutionized the field of image classification by employing
a transformer-based architecture that processes image patches as sequences, akin to words
in natural language processing. The self-attention mechanism of ViTs allows them to
capture long-range dependencies and hierarchical representations more effectively than
traditional Convolutional Neural Networks (CNNs). This is particularly advantageous
for classification tasks where understanding the global context is crucial. Recent studies
have demonstrated the superiority of ViTs over CNNs in both accuracy and generalization,
particularly when trained on large datasets such as ImageNet and CIFAR-10 [4,5].

The rest of this paper is organized as follows: the Literature Review reflects the existing
work in image-based audio representations, vision transformers, and explainable AI-driven
strategies that can help improve model interpretability. The dataset is described in terms
of the origins, processing pipeline, and audio data representation and visualization. The
Materials and Methods section provides the structure of the vision transformers, training
details (where available), and the means by which explainable AI concepts are applied.
The Results and Discussion sections present model performance metrics, compare them
with traditional approaches, and provide the insights obtained using explainability tools.
The results and contributions of this study are followed by a Future Work section, which
suggests directions for further research in this domain. The Conclusion, which is followed
by Future Work, summarizes the results and outlines the contributions of this study, as
well as suggesting some directions for further research in this domain.

2. Literature Review

Transforming audio signals into visual representations, such as spectrograms, allows
for the application of image-based DL techniques to audio classification tasks. Spectro-
grams provide a time–frequency representation of audio signals, making them suitable
for processing with image-based models like ViTs. This methodology benefits from the
advanced feature extraction abilities of ViTs, which can identify complex patterns within the
spectrograms, enhancing classification performance in tasks such as speech recognition and
environmental sound classification [6,7]. Integrating XAI techniques with ViTs is important
for enhancing the interpretability of these models. Techniques such as LRP and attention
visualization have provided insights into model decisions by attributing importance to
input features. These methods are important for applications in critical domains such as
medical imaging, where understanding the rationale behind model predictions is vital
for trust and reliability [8,9]. Recent studies have focused on evaluating the explanations
provided by ViTs, particularly in medical imaging tasks. For instance, ref. [10] investigated
the performance of various interpretation methods on a ViT model applied to chest X-ray
classification. They introduced metrics for evaluating the faithfulness, sensitivity, and com-
plexity of ViT explanations, finding that LRP [11] outperforms other techniques regarding
accuracy and reliability.

In a related study, ref. [12] explored the underlying mechanisms of multi-head self-
attentions (MSAs) in vision transformers. Their research showed that MSAs improve
the accuracy and generalization by flattening the loss landscape. This improvement is
mainly attributed to data specificity rather than long-range dependency, highlighting the
importance of dataset quality in training ViTs. They also proposed a model called Alter-
Net, which replaces the convolutional blocks at the end of a stage with MSA blocks and
outperforms traditional CNNs in both large and small data settings. Moreover, ref. [13]
provided a foundational study on applying vision transformers to large-scale image recog-
nition tasks. Their work showed that ViTs, when trained on large datasets like ImageNet,
achieve state-of-the-art performance by treating image patches as sequences and leveraging
transformer architectures from natural language processing (NLP). This method allows
ViTs to capture comprehensive features and dependencies within image data, leading to
superior classification results compared to conventional CNNs. Also, ref. [6] extended the
use of transformers to audio data, introducing Audio Transformers designed for large-scale
audio understanding. By converting audio signals into spectrograms and processing them
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as images, the study showed significant improvements in audio classification. This ap-
proach has opened new possibilities for applying image-based techniques to audio-related
problems and showcases the versatility of transformer architectures.

Recent research, including [10], has shown that while ViTs can make highly accurate
predictions, there are still challenges with how well these predictions can be explained, es-
pecially in fields like healthcare. The study pointed out that current methods do not always
provide clear and understandable explanations for the decisions made by ViTs, which is
a problem when these models are used in critical areas where trust and transparency are
important. Our proposed model uses ViTs combined with advanced XAI techniques to
improve both prediction accuracy and the transparency of explanations. By using methods
like LRP and LIME, we aim to make the model’s decisions more transparent and easier to
understand. This approach is designed to make ViTs more suitable for use in important
fields like healthcare.

This paper investigates how different image-based audio representations could impact
classification performance and add new understanding to the current state-of-the-art. The
models can learn from different types of representations, such as spectral, mel-spectral,
Gammatone Frequency Cepstral Coefficients (GFCCs), mel-frequency cepstral coefficients
(MFCCs), and Rasta-PLP, by currently published implementations. Also, temporal fea-
tures including tempograms, chroma, and raw waveform can feasibly be trained with
our model architecture. This study will utilize more robust XAI techniques to improve
the interpretability of model predictions and thereby increase the reliability for practical
applications. This study will be a valuable contribution to the ease of optimizing ViTs for
audio classification tasks and building more explainable AI.

3. Materials and Methods

In this study, a methodical approach was used to obtain a systematic and accurate
result, which is characterized by five general stages as shown in Figure 1. Crying infant
audio data were first gathered and segmented. The audio signals were converted into
feature images using various feature extraction techniques such as spectrogram, mel-
spectrogram, and MFCCs to transform the audio signals into feature images. These were
effectively used to cover the training and evaluation of a basic vision transformer model.
The feature list was evaluated using the same model architecture. The final phase was to
bring explainable AI techniques LIME and LRP to interpret and clarify model decisions,
thereby increasing the transparency and explanation of the results.
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3.1. Dataset Description

The dataset was collected at Al-Raee and Al-Sahel hospitals in Lebanon and Saint-
Justine Children’s Hospital in Montreal and has been used in several related research
studies [8,14,15]. The dataset consists of crying newborn infants between 1 and 53 days
of age from different locations and backgrounds. As shown in Table 1, it consists of
181 recordings from 83 newborns for the healthy class, 102 recordings from 33 newborns
for the Respiratory Distress Syndrome (RDS) class, and 53 recordings from 17 newborns
for the sepsis class. Each recording lasts an average of 90 s and was recorded five times
for each newborn. The recordings were then segmented and labeled according to the
model of previous researchers [3,14,16]. This labeling was performed using the WaveSurfer
software (1.8.8). Recordings were made using a 2-channel Olympus digital recorder with
16-bit resolution and a sampling rate of 44,100 Hz, positioned 10 to 30 cm away from
the infants [3]. The dataset includes a gender distribution of approximately 65% male
(11 infants) and 35% female (6 infants) [14]. The final dataset comprises 2000 WAV records
for each pathology, as shown in Figure 2.

Table 1. Dataset description.

Demographic Factors Details

Ages 1 to 53 days old
Gender 11 males and 6 females
Weight 0.98 to 5.2 kg

Race Arabic, African, Caucasian, Asian, Latino, Native Hawaiian,
and Quebec

Origin Canada, Algeria, Palestine, Bangladesh, Haiti, Portugal, Syria,
Lebanon, and Turkey

Information 2024, 15, x FOR PEER REVIEW 4 of 23 
 

 

 
Figure 1. The workflow of the proposed vision transformer model incorporating explainable AI 
techniques. 

Table 1. Dataset description. 

Demographic Factors Details 
Ages 1 to 53 days old 

Gender 11 males and 6 females 
Weight 0.98 to 5.2 kg 

Race Arabic, African, Caucasian, Asian, Latino, Native Hawaiian, and Quebec 
Origin Canada, Algeria, Palestine, Bangladesh, Haiti, Portugal, Syria, Lebanon, and Turkey 

 
Figure 2. Distribution of the three classes of samples. 

3.2. Feature Extraction 
In this research, six different audio feature images were extracted from the infant cry 

audio data to be used as input for the ViTs to investigate and evaluate the performance of 

Figure 2. Distribution of the three classes of samples.

3.2. Feature Extraction

In this research, six different audio feature images were extracted from the infant cry
audio data to be used as input for the ViTs to investigate and evaluate the performance of
the ViTs using these various features. These features include spectrogram, mel spectrogram,
waveform, chroma, MFCCs, GFCCs, and tempogram, each offering unique insights into
the audio signals. The spectrogram visually represents the spectrum of frequencies in a
signal as it varies over time [17]. The mel spectrogram applies a mel-scale filter bank to the
spectrogram, emphasizing how humans perceive sound [18]. Waveform captures the raw
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amplitude of the audio signal over time [15]. Chroma features capture the twelve different
pitch classes, making them useful for tasks involving harmonic content [19]. MFCCs repre-
sent the short-term power spectrum of a sound [20], and GFCCs more accurately model
human auditory processing [21]. The tempogram represents the variation in tempo (speed)
over time [22]. GFCC and mel spectrogram features were chosen for their effectiveness
in capturing audio characteristics relevant to pathology classification. GFCCs mimic the
human auditory system’s frequency sensitivity, while mel spectrogram enhances percep-
tual relevance, making both features suitable for detecting subtle variances in infant cries
associated with specific health conditions [18,21].

Each of the audio feature visualizations from Figure 3 was used individually with the
ViT model to explore its impact on classification performance. Each feature contributes
unique information about the audio signal. GFCCs were selected for their ability to closely
model human auditory perception by focusing on intensity in the frequency bands most
relevant to distinguishing subtle differences in infant cries. They are highly effective in
medical and speech-related tasks due to its biological alignment with human hearing,
though they can be computationally more intensive. Tempogram, which captures rhythmic
or tempo variations, is valuable for analyzing cyclic patterns or temporal dynamics in the
cries. However, it may not be as informative for tasks where rhythmic patterns are less
critical.
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Figure 3. Visualization of extracted audio features.

Chroma features were chosen for their ability to capture pitch content, including
harmonic and tonal elements, which can provide insights into the tonal characteristics of
infant cries. While effective for harmonic analysis, chroma features may be less useful
when pitch is not a primary aspect of the signal. Waveform captures the raw amplitude
of the audio signal over time, preserving fine temporal details, making it suitable for
tasks requiring high temporal resolution. However, raw waveforms can introduce noise
and be more difficult for the model to process compared to spectral features. MFCC, a
standard in speech recognition, was selected for its compact representation of the short-
term power spectrum, emphasizing the phonetic components of the signal. Its strength lies
in speech-related tasks, although it may struggle with capturing long-term dependencies.

The mel-spectrogram was included for its ability to apply a mel-scale filter to the spec-
trogram, aligning with how humans perceive sound via emphasizing energy distribution
across the frequencies most relevant to human hearing. However, this can sometimes result
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in a loss of detail in higher frequency ranges. Finally, the spectrogram provides a com-
prehensive time–frequency representation, capturing both spectral features and temporal
changes in the signal. While it is powerful, the sheer amount of data it presents can be
computationally demanding.

By using each feature individually, this study evaluates how well the ViT model can
leverage different representations of the audio signal for classification tasks. Previous
studies have demonstrated the effectiveness of these features, such as GFCCs and spec-
trograms used in infant cry diagnosis systems [14], MFCCs for infant cry recognition [23],
and chroma for music genre classification [24]. Tempograms have been applied to music
structure segmentation [25], mel-spectrogram to audio forgery detection [26], and wave-
form to deep learning of music features [27]. These references underscore the validity and
effectiveness of using these features independently in machine learning models for audio
classification tasks.

3.3. Data Preprocessing

All extracted feature images were resized to 224 × 224 pixels to remain consistent
and compatible with the structure of the ViT model. Resizing ensured that the input
dimensions were compatible with the model’s requirements, making the processing and
analysis operations seamless.

The preprocessing involved a few important steps to extract the audio feature images
and prepare them for input to the ViT model. The data preprocessing stage consists of
resizing, normalization, and data splitting. Normalization was applied to ensure that all
input data are on a similar scale, which helps the model converge faster and perform better.
The resized images are normalized with each pixel value, along with the mean and standard
deviation of the ImageNet dataset (as the ViT model was pre-trained on ImageNet). The
normalization equation applied is as follows:

NormalizedValue =
x − µ

σ
, (1)

where x represents the original value, µ denotes the mean, and σ is the standard deviation
applied to standardize data for analysis.

The dataset was split into three subsets, i.e., training, validation, and testing, to
evaluate the performance and generalization of the model. The model was trained on a
dataset that comprised 80% of the data, with the remaining 20% used for hyperparameter
tuning to prevent overfitting and for the final purpose of testing the model when it is ready
for production. These preprocessing steps ensured that the data were standardized and
properly prepared for the ViT model to train and evaluate accurately and efficiently.

3.4. Vision Transformer

Given this critical role of the ViT model, in combination with previous researchers
that have employed the ViT with audio data [28,29], we used a ViT model that attempts to
revolutionize the field of computer vision by incorporating principles from transformers,
a type of architecture that was developed for natural language processing and has since
become the new standard for a variety of language-processing tasks. It introduces an
original way to move from old CNNs to new state-of-the-art transformer-based models
with excellent results. The key idea of ViT is to process images in patches to preserve
fine-grained and long-range structures within visual data [1].

This allows transformers, known for their sequential processing capabilities, to deal
with image data outside of the context of dimensionality while simultaneously bypassing
the need for predefined spatial feature extraction, an essential factor when working on more
intricate visual abstractions. Moreover, their unique design allows for parallel processing,
which speeds up training time drastically compared to CNNs. The self-attention mechanism
can handle connections at both local and global ranges of the input sequence, which is
more effective for some real-world tasks.
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3.4.1. ViTs Key Features and Architecture

The ViT model is just a regular 12-layer transformer encoder with multi-head self-
attention mechanisms and feed-forward neural networks. This arrangement helps the
model understand the image’s global context and long-range dependencies.

The sequence of embedded patches has a unique class token prepended. This token
gathers data from all patches and is fed into the output classification module. Patch
embeddings include position embeddings (necessary to preserve spatial information in
vision tasks).

As shown in Figure 4, the input image is divided into fixed-length patches (typically
16 × 16 pixels for the timm/vit_base_patch16_224 implementation) using the ViT model.
The patches are then flattened and associated with a vector, which is used to feed the
transformer as input tokens. The final output of the transformer encoder is fed through a
classification head to make predictions. This design takes advantage of the transformer’s
strengths in image classification, making it easy to implement and ready for transfer
learning, as shown in Figure 4 and Table 2.
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Table 2. Model specifications.

Feature Specification

Model Name ViT-Base Patch16 224
Patch Size 16 × 16 pixels
Image Size 224 × 224 pixels

Number of Layers 12 transformer encoder layers
Hidden Size 768

Number of Attention Heads 12
MLP Size 3072

Total Parameters Approximately 86 million

The timm/vit_base_patch16_224 model, a ViT available in the timm library, designed
for processing 224 × 224 images by dividing them into 16 × 16 patches, has shown excep-
tional performance across various image recognition tasks, often outperforming traditional
CNNs when trained on large-scale datasets. Its applications include image classification, ob-
ject detection, and semantic segmentation. ViTs are highly scalable, utilizing large datasets
and significant computational resources to improve performance. The self-attention mecha-
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nism effectively captures the global context compared to local convolutions, and ViTs can
be adapted to various vision tasks with minimal modifications.

In contrast to traditional audio features, which capture raw spectral characteristics
like frequency, amplitude, and time-based patterns, vision transformers (ViTs) construct
a ‘semantic space’ by learning high-level representations of the data. This semantic space
enables the model to abstract and group sounds based on contextual similarities, rather
than just physical attributes. While audio features depict the raw energy distribution and
frequency content of a signal, the ViT model transforms these into abstract tokens that
represent meaningful patterns, enabling more robust classification.

The ViT model is used in this study as it is an expert pattern recognition model for
multiclass classification of infant cry data. Extensive variability in audio feature images
like spectrograms, mel spectrograms, GFCCs, MFCCs, waveform, tempogram, and chroma
features helps improve the accuracy of classification of pathology classes like healthy, sepsis,
and RDS by the ViT model. In addition, XAI methods such as LIME, LRP, and attention
mechanisms are also considered to interpret why the model classified the results as such,
improving the transparency and interpretability of the classification results. This work not
only leverages the remarkable properties of ViTs for handling medical audio images but
also investigates their ability to highly enrich the processing of medical audio datasets into
more advanced forms of analysis and classification in healthcare studies.

3.4.2. Model Training and Evaluation

This section outlines the training procedure and evaluation metrics used for the
ViT model to classify infant cry audio feature images. The model was trained using the
‘timm.create_model’ function with the vit_base_patch16_224 architecture, pretrained on
ImageNet, and adapted to our specific number of pathology classes that are listed in
our dataset.

The training process was carried out using a set of predefined hyperparameters with
numerous tests to identify the optimal hyperparameters. The model was initialized with
pretrained weights and adjusted for the required number of output classes, as shown
in Table 3. A learning rate of 7.9 × 10−5 was chosen due to its balance between speed
and accuracy to prevent a global minimum. The weight decay, which acts as the L2
norm, was set to 6 × 10−3 to avoid overfitting and ensure the generalization of new data,
while choosing a batch size of 32 helped capture sufficient data in each training step. The
model was fully converged within 60 epochs, as shown later in the validation and training
loss graphs.

Table 3. Hyperparameters of the transformer model.

Hyperparameter Value

Number of Epochs 60
Learning Rate 7.9 × 10−5

Batch Size 32
Weight Decay 6 × 10−3

Optimizer AdamW
Scheduler OneCycleLR

The CrossEntropyLoss function was employed for its effectiveness in multi-class
classification, and the AdamW optimizer was selected for its effective handling of weight
decay. To optimize memory usage and computational efficiency, mixed precision training
was applied using PyTorch’s GradScaler. Additionally, a OneCycleLR scheduler was used
to dynamically adjust the learning rate throughout the training process, facilitating better
convergence and preventing the model from getting trapped in local minima.

CrossEntropy = −
M

∑
i=1

yi · logpi, (2)
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where M is number of classes, yi is the true label, and pi is the predicted probability.
The training loop, which iterated over the specified number of epochs, followed a

structured process. The model was set to training mode during each epoch, and training
data were loaded in batches. The optimizer gradients were zeroed, and forward and
backward passes were performed with mixed precision. The loss was scaled, the gradients
were computed, and the optimizer step was updated. After each batch, the learning rate
scheduler was stepped. The training loss was accumulated and logged for each epoch,
ensuring a systematic tracking of the training progress.

Hyperparameters were fine-tuned by starting with default parameters based on prior
ViT studies. We gradually adjusted values like the learning rate, batch size, and weight
decay, observing how the model converged with different numbers of epochs, optimizers,
and schedulers. We performed multiple experiments to determine the optimal settings
based on the model’s convergence behavior and performance metrics.

Cross-validation was applied to ensure robust performance. The dataset was divided
into k-fold subsets, with the model trained on k-1 folds and validated on the remaining
fold. This approach ensured that the model was not overfitting to any particular subset
and provided a better evaluation of its generalization capabilities.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1 = 2 × Precision × Recall
Precision + Recall

, (6)

where TP is the true positives, TN is the true negatives, FP is the false positives, and FN is
the false negatives.

These metrics were calculated at the end of each epoch for the validation dataset. We
observed the accuracy, recall, precision, and F1-score for various audio features across
the validation split during the training process. The best-performing model, based on
the highest validation accuracy, was saved for further training. These evaluation metrics
allowed us to closely monitor the model’s performance and ensure that the results were
robust and reliable.

The ViT model achieved high accuracy and moderate robustness across a range of
classification metrics of infant cry audio feature images. The model was able to adequately
discern between healthy, sepsis, and RDS categories. The evaluation process proved that
this model can be implemented in this complex classification problem.

3.5. Explainable AI

This section delves into the XAI techniques applied to interpret the ViT model’s deci-
sions in classifying infant cry audio feature images. The goal is to enhance the transparency
and comprehensibility of the model’s predictions, which is crucial for clinical applications.

3.5.1. Local Interpretable Model-Agnostic Explanations (LIME)

LIME was utilized as one of the primary XAI techniques. LIME is designed to explain
individual predictions by locally approximating the complex model with an interpretable
one. The method, used in a previous study [10], involves perturbing the input data and
observing the resulting changes in the model’s predictions, thereby identifying the features
that most significantly influence the outcome. By applying LIME, we could determine the
contribution of various audio features (such as spectrograms, mel spectrograms, GFCCs,
MFCCs, waveforms, tempogram, and chroma features) to the classification results.
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The optimization objective of LIME can be formally represented as

ξ(x) = arg min
g∈G

L( f , g, πx) + Ω(g), (7)

where ξ(x) is the explanation, for instance, x; f is the original black-box model; and g is
the interpretable model (e.g., a linear model) from the family of interpretable models G.
The term L( f , g, πx) is the loss function that measures how well g approximates f in the
locality defined by πx, which is the locality around the instance x, typically defined by a
kernel function. Finally, Ω(g) is a complexity term to ensure that the interpretable model g
remains simple preventing overfitting or overly complex explanations. The kernel function
for computing the weights is

πx(z) = exp

(
−distance(x, z)2

σ2

)
, (8)

where σ is a kernel width parameter that controls the locality. This function ensures that
points closer to the instance x have a more significant influence on the explanation, making
the model’s interpretation more relevant and focused.

3.5.2. Transformer Interpretability Beyond Attention Visualization

In addition to LIME, we employed a novel interpretability method tailored for trans-
former models [30]. This approach addresses the limitations of existing attention-based
visualization techniques by offering a more robust relevance propagation framework. The
process assigns local relevance scores based on the Deep Taylor Decomposition principle.
It propagates these scores through the transformer layers, considering the complexities
introduced by self-attention mechanisms and skip connections.

This method integrates relevance and gradient information to produce class-specific
visualizations, overcoming non-linearity challenges and maintaining overall relevance
across layers [30]. This technique enables a detailed examination of which parts of the
input image (converted from audio features) contribute most to the model’s predictions.
Combining this approach with LIME ensured comprehensive and accurate explanations
for the ViT model’s decisions.

LRP, a popular XAI technique, was used to unpack the decisions of our model. LRP
propagates the prediction score backward through the network layers to assign a relevance
score to each input feature. This method effectively decomposes the prediction, returning
the output to the input features in their contributions to the final decision. Using LRP
allowed us to identify which parts of the input (e.g., regions in spectrograms or types of
audio features like MFCC or chroma) the model relied on to make its classifications. These
relevance scores allowed us to look deeper into the model’s decision-making and begin to
understand its behavior [30].

The basic LRP rule for a fully connected layer can be expressed as

R(l)
j = ∑

k

a(l)j w(l,l+1)
jk

∑j′ a(l)j′ w(l,l+1)
j′k + ϵ · sign

(
∑j′ a(l)j′ w(l,l+1)

j′k

)R(l+1)
k , (9)

where R(l)
j is the relevance score of neuron j in layer l, R(l+1)

k is the relevance score of

neuron k in layer l + 1, a(l)j is the activation of neuron j in layer l, and w(l,l+1)
jk is the weight

connecting neuron j in layer l to neuron k in layer l + 1. The term ε is a small stabilizer to
avoid numerical issues. LRP, along with LIME and attention-based methods, ensures the
ViT model’s decision-making process is transparent and interpretable, enhancing reliability
and trustworthiness in classifying infant cries.

This equation ensures that the contribution of each neuron in a given layer to the final
decision is systematically traced back through the network. By assigning relevance scores,
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LRP makes it possible to understand which features the model considers most important
in its decision-making process. The stabilizer ϵ helps prevent division by tiny numbers,
which could otherwise change the relevance scores.

3.5.3. Attention Mechanisms

Attention XAI was used with a ViT in a previous study to classify chest X-ray im-
ages [10]. We integrated attention mechanisms as one of the critical XAI techniques to
further improve the interpretability of the model. The mechanism helps the model attach
different attention levels to different parts of the input data, which tends to represent the
part that the model focuses on to make predictions. Similarly, attention maps allowed us to
visualize which parts of an audio signal spectrogram (or visual representation of a wave-
form) of the signal carried the most weight in a model’s decisions. These attention maps
tell us which audio features (e.g., pitch modulations, frequency components, temporal
patterns, etc.) the model focuses on when determining the sound type, which can be easily
interpreted for the classification results.

3.5.4. Visualization of Model Decisions

The interpretability methods were applied to visualize the model’s decision-making
process in classifying infant cries into pathology classes, including healthy, sepsis, and
RDS. The visualizations generated by LIME, LRP, and the transformer-specific relevance
propagation method provided insights into how the model distinguishes between different
conditions based on the audio features.

For example, using LIME, we identified specific segments of the spectrogram or mel
spectrogram that significantly impacted the model’s classification. This allowed us to
understand which features are the most important in predictions. Similarly, the relevance
propagation method revealed the inner workings of the attention mechanisms, highlighting
the patches of the input image that the ViT model focused on when making predictions.

By employing these advanced XAI techniques, we ensured that the ViT model’s
decision-making process was transparent and interpretable, enhancing the reliability and
trustworthiness of the classification results. These visual explanations not only validate the
model’s performance but also provide valuable insights for further improving the model
and understanding the underlying patterns in infant cry audio features.

4. Experimental Results
4.1. Evaluation of ViT Model Performance Using Various Audio Features
4.1.1. Training and Validation Loss Analysis

The training and validation loss curves for the top three models provide additional
insights into the model performance and generalization capabilities. For the GFCC-based
model, the training and validation loss curves show a steady decrease in training loss,
reaching near zero, and a corresponding decrease in validation loss, stabilizing over time.
This indicates that the model effectively learns from the training data and generalizes well to
unseen data, minimizing overfitting. The spectrogram-based model also shows a decreasing
trend in training loss, with the validation loss stabilizing after initial fluctuations. Although
there are some oscillations in the validation loss, it eventually levels off, suggesting that the
model can generalize effectively despite the initial variability.

Similarly, the mel spectrogram-based model exhibits a continuous decrease in training
loss and a stabilization of validation loss. The validation loss curve shows some fluctuations,
but overall, it trends toward stabilization, indicating good generalization, as shown in
Figure 5.
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Figure 5. Training and validation loss for spectrogram, GFCC, and mel spectrogram models.

The training and validation loss curves for all three models demonstrate effective
learning and generalization, with the GFCC-based model showing the most stable per-
formance. These results, combined with the confusion matrices and ROC curve analysis,
confirm that GFCC, mel spectrogram, and spectrogram features are highly effective in
predicting infant pathologies, providing robust and reliable classification performance.
These findings emphasize the importance of selecting and analyzing appropriate audio
features for improving the accuracy and robustness of machine learning models in medical
diagnosis tasks. By leveraging these insights, future research can continue to enhance the
performance and applicability of such models in clinical settings.

4.1.2. Performance Metric Comparison

The experimental evaluation used a ViT model on various audio feature representa-
tions of infant crying signals. The features considered include GFCC, mel spectrogram,
spectrogram, MFCC, chroma, waveform, and tempogram images. The performance of each
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model was evaluated in terms of accuracy, F1 score, precision, and recall. The results are
summarized in Table 4.

Table 4. Performance metrics of vision transformer models on different audio feature representations
of infant crying signals.

Audio Feature Accuracy F1 Score Precision Recall

GFCCs 96.33% 0.96 0.96 0.96
Mel Spectrogram 94.83% 0.95 0.95 0.95

Spectrogram 93.17% 0.93 0.93 0.93
MFCCs 80.83% 0.81 0.81 0.81
Chroma 67.83% 0.68 0.68 0.68

Waveform 63.5% 0.64 0.64 0.64
Tempogram 42.5% 0.42 0.42 0.42

Table 4 highlights that the top-performing models utilized GFCC, mel spectrogram,
and spectrogram images and achieved the highest test accuracy and F1 scores. Specifically,
GFCC images demonstrated the best performance with a test accuracy of 96.33% and an
F1 score of 96%. This indicates a high model precision and recall level, suggesting that
GFCC features are highly effective for this classification task. Similarly, mel spectrogram
images also performed exceptionally well, with a test accuracy of 94.83% and an F1 score
of 95%, confirming their suitability for predicting infant pathologies. Spectrogram images
achieved a respectable performance with a test accuracy of 93.17% and an F1 score of
93%, highlighting their effectiveness in the classification process. Overall, GFCC, mel
spectrogram, and spectrogram images achieved high F1 scores and accuracy, validating
their suitability for classification. These features enabled the ViT model to leverage its
ability to handle complex audio data, making these features the most accurate in classifying
infant pathologies.

In contrast, other features such as MFCC, chroma, waveform, and tempogram images
exhibited significantly lower performance metrics, indicating their limited utility in this
specific task. MFCC images, for example, showed a substantial drop in performance with a
testing accuracy of 80.83% and an F1 score of 0.81. Chroma and waveform images followed
with even lower accuracies of 67.83% and 63.50%, respectively. Tempogram images, with
the lowest performance metrics, demonstrated a testing accuracy of 42.50% and an F1 score
of 0.42, highlighting their ineffectiveness in this context.

4.1.3. Confusion Matrix Analysis

To investigate the performance of the best three models mentioned earlier—GFCCs,
mel spectrogram, and spectrogram—confusion matrices revealed the difference in correctly
predicted classes on the scale (healthy, RDS, sepsis) in Figure 6. The GFCC-based model
contained the lowest number of misclassification errors and the highest number of correct
ones over all classes overall, with 194 healthy, 187 RDS, and 190 sepsis cases, and there was
only slight confusion due to misclassification between the healthy and sepsis classes, indi-
cating that the model performed well in distinguishing between the different pathologies.
The mel spectrogram-based model performed well and predicted 194 healthy, 188 RDS,
and 187 sepsis cases, which is slightly more than the GFCC model, and still, the number of
misclassifications was kept low, which means it was able to predict this task. In the third
order of effectiveness, the spectrogram-based model performed the highest number of
misclassifications, but it is still reported as good and reliable in this task because it showed
the best performance compared to the others. It also identified 187 healthy, 182 RDS, and
190 sepsis cases, as shown in Figure 6.
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Figure 6. Confusion matrices for GFCC, mel spectrogram, and spectrogram models, respectively.

The confusion matrices underscore the superior performance of the GFCC, mel spec-
trogram, and spectrogram features in the context of infant pathology prediction. The high
accuracy and low misclassification rates highlight the robustness of these audio features
in accurately identifying different pathological conditions. These results emphasize the
importance of selecting appropriate audio features for improving model accuracy and
robustness in medical diagnosis tasks.

4.1.4. ROC Curve Analysis

ROC curves were generated for the top three models to further evaluate the model
performance, providing a visual representation of the true positive rate versus the false
positive rate for each class. The area under the curve (AUC) was calculated for each class to
quantify the ability of the model to discriminate between the different conditions. As shown
in Figure 6, the ROC curve for the spectrogram-based model shows AUC values of 0.95 for
healthy, 0.94 for RDS, and 0.96 for sepsis, indicating a solid ability to differentiate between
the classes, with particularly good performance in identifying sepsis cases. The GFCC-
based model exhibited even higher AUC values, with 0.98 for healthy, 0.96 for RDS, and 0.97
for sepsis, demonstrating exceptional performance and reliability in classifying different
pathologies, especially in distinguishing between healthy and sepsis cases. Similarly, the
ROC curve for the mel spectrogram-based model shows AUC values of 0.98 for healthy,
0.95 for RDS, and 0.95 for sepsis, indicating high effectiveness in differentiating between
the classes with consistent performance across all categories, as shown in Figure 7.
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The ROC curves and AUC values further validate the superior performance of the
GFCC, mel spectrogram, and spectrogram features for predicting infant pathologies. The
high AUC values across all classes highlight the robustness and reliability of these audio
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features in accurately identifying different pathological conditions. These results emphasize
the importance of careful feature selection in developing effective machine learning models
for medical diagnosis tasks.

4.1.5. Explainable AI Results

The ViT model was analyzed using the XAI methods of LRP, LIME, and attention.
It was also applied to three different audio features, i.e., GFCCs, spectrogram, and mel-
spectrogram, with various accuracies. The insights are mainly based on how well the XAI
methods visualized the important regions for the healthy, RDS, and sepsis classes and how
these visualizations relate to the performance of the model.

Figures 8–11 illustrate how the XAI methods (LRP, LIME, and attention) highlight the
critical regions within the audio features that the model relies on for classification.

LRP (Layer-wise Relevance Propagation): Brighter colors in LRP visualizations indi-
cate areas that contribute most significantly to the model’s decision. These regions often
appear as concentrated vertical bands in GFCCs or spectrograms, representing specific
frequency bands crucial for distinguishing between conditions.

LIME (Local Interpretable Model-agnostic Explanations): LIME provides broader,
dispersed color regions, signifying approximate areas that affect the model’s predictions.
Unlike LRP, which pinpoints exact frequencies, LIME offers a general overview of important
regions. LIME was chosen for its ability to provide interpretable, localized explanations,
which are essential in medical diagnostics for building clinician trust and ensuring model
transparency. By showing how changes in the input influence the model’s output, LIME
allows users to validate the reliability of the model’s predictions.
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Attention maps: Attention-based visualization highlights focal points within the
audio features which the model ‘attends’ to the most during classification. This can be
observed as specific, sharp points in the maps, indicating the most relevant parts of the
audio spectrogram that influence the model’s decision for each class.

In the case of the GFCC feature, which achieves a remarkable 96.33% accuracy, LRP
consistently reflects some vertical bands for all classes. Brighter colors in the LRP visual-
izations represent areas of higher importance, typically appearing as concentrated vertical
bands in specific frequency ranges critical for each class. The areas of interest for the healthy
class are localized in the different frequency bands, which reflect their importance. The
RDS pathology also shows a vertical band structure similar to the synthetic class, which
arises when specific frequencies are more important for the model’s decisions. Within
the sepsis class, the bands are less uniformly dense and cover more specific frequency
ranges, corresponding to the representation the model has learned to prioritize within these
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ranges. In contrast, LIME outputs broader, dispersed color regions, indicating general areas
that influence the model’s predictions rather than pinpointing specific frequencies. This
provides a general idea of how important each feature is in making the decision for part
classification. The attention maps for GFCCs highlight sharp focal points, showing where
the model concentrates most during classification. These focal points are more distinct in
GFCCs, reflecting a high precision of interpretation, as shown in Figure 8.

Figure 9 shows the LRP visualizations for spectrogram features, which obtained an
accuracy of 93.17%, showing vertical bands similar to GFCCs and specifically indicating the
relevance of frequency. Brighter colors signify higher relevance areas in the frequency bands.
The healthy class would instead have some clean vertical bands, indicating high regions
of interest that stand out as the most important frequencies. RDS shows more diffuse
highlights than the healthy class but is also more specific, implying valuable frequencies.
Sepsis class bands are more ambiguous because they overlap, producing less distinct,
sparser bands that would visually indicate a wider, less fine-tuned range of frequencies.
LIME’s broad regions highlight approximate areas contributing to model decisions across
all classes, providing a global approximation of attribute importance. Attention maps for
spectrogram features depict clear focal solid points in the healthy class, sharp but scattered
highlights in the RDS class, and precise but more dispersed foci for the sepsis class, showing
a generalized focus.

Figure 10 shows the LRP visualizations for mel-spectrogram features, which obtained
an accuracy of 94.83%, showing prominent vertical bands similar to GFCCs, marking fre-
quency ranges that are most significant for model decisions. Brighter colors indicate regions
of higher relevance. The healthy class has very clean vertical bands, which stand out as
key frequencies. RDS shows more diffuse highlights, implying valuable frequencies, while
the sepsis class has overlapping, sparser bands, suggesting a broader range of frequencies
the model focuses on. LIME shows broader, distributed areas across all classes, indicat-
ing approximate importance over larger regions. Attention maps for mel-spectrogram
reveal specific focal points for the healthy class, sharp but scattered highlights for RDS,
and more dispersed foci for sepsis, indicating the model’s generalized focus on relevant
frequency bands.

LRP methods provide the most focused and fine-grained visualizations for all indi-
vidual features. It searches for specific frequency bands that can be vital to the model’s
decisions. In contrast, LIME offers a more extensive perspective on the importance of differ-
ent features over large regions of the audio signals. There was a good balance of attention,
as seen in the attention maps: clear focal points with some spreading out represent where
the model thinks about most.

Overall, LRP provides fine-grained details, with bright spots signifying critical fre-
quency bands; LIME offers a broader perspective on feature importance, and attention maps
highlight specific focal points, enhancing interpretability across the different audio features.
This comprehensive approach using multiple XAI methods ensures the transparency and
reliability of the model’s classification decisions.

Figure 11 shows how explainable AI classifies the three pathology classes via LRP
on GFCC audio features. The six figures are pairs of original GFCC spectrograms and
LRP maps, indicating parts of the input that have the most critical impact on the model
predictions. The GFCC features were chosen over other features because of their highest
accuracy with the ViT model. This visualization helps us understand how the model sepa-
rates various classes and highlights its decisions’ key informative areas. The effectiveness
of these XAI methods depends critically on the accuracy measurement of each feature type
when using the ViT model. Models with higher accuracy standards, like GFCCs, provide
much shorter and sharper explanations. Conversely, low-accuracy models based on other
audio features cause non-uniform visualization. This indicates that the performance of the
XAI method is influenced by the model’s performance, and more transparent explanations
correspond to a better-performing model.
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Across these pathologies, the clarity and focus vary for each XAI method and feature
type. This shows important details of how the model understands different audio features
differently. These findings explain the strengths and weaknesses of each XAI method
according to their consistency in model performance, which is particularly inspiring in the
cases of complex models such as ViT, as shown in Figure 11.

The regions of interest depend on the feature types and the methods related to XAI,
and these change in their clarity and focus for each pathology, indicating the subtlety in
the way audio features are interpreted by our model. These analyses show the importance
and shortcomings of each XAI approach to each other and the actual model, which gives
concrete explanations of interpretability aspects of deep models like ViT.

5. Discussion

In this research, we aimed to study the effects of image-based audio embeddings on
classification tasks for ViTs and XAI. The experimental results demonstrate the effectiveness
of ViTs in various audio features (GFCCs, mel-spectrogram, and spectrogram), as we can
observe high classification accuracy using these methods. These feature representations
were then compared with each other, and the GFCC-based model performed the best
with an accuracy rate of 96.33%, followed by mel-spectrogram (94.83%) and spectrogram
(93.17%). This shows how the chosen audio feature representation significantly affects
its performance for classification tasks with ViTs. GFCCs perform better overall because
they capture the most important aspects of the audio signal that are needed to separate
between different pathologies in newborns and how human auditory processing occurs.
GFCCs’ ability to capture the phonetic nuances of infant cries, such as subtle frequency
variations related to different pathologies, enhances their effectiveness in distinguishing
between healthy and pathological cries. In contrast, the mel-spectrogram and spectrogram
provide broader frequency ranges, but they may not isolate the critical frequency bands as
effectively, leading to less precision in differentiating pathologies. The high classification
performance of the mel spectrograms could also be partially attributed to the fact that
they also encode properties related to how humans perceive sound frequencies. MFCCs,
chroma, waveform, and tempogram did not perform as well, suggesting that they are less
useful for this specific task.

The results obtained from earlier study models [3,14,16,31,32] designed to classify
various audio data of infant cries into different pathologies highlight the significance of the
proposed model in this research, as shown in Table 5.

Table 5. Comparison of performance metrics across different studies and the proposed model.

Metric Model [16] Model [14] Model [31] Model [32] Model [3] Proposed Model

Classes 2 classes 3 classes 3 classes 4 classes 3 classes 3 classes

Audio features GFCCs, HR GFCCs, HR,
spectrogram Spectrogram

Linear Frequency
Cepstral Coefficients

(LFCCs)
Spectrogram GFCCs

ML algorithm Multilayer
perceptron

Fusion deep
learning (CNN) SVM + CNN XGBoost Transformer Transformer

Accuracy 95.92% 97.50% 92.50% 92% 98.69% 96.33%
Precision 95% 97.51% 88.80% - 98.73% 0.96

Recall 95% 97.53% 89.30% - 98.71% 0.96
F1 score 95% 97.52% 88.90% 92.30% 98.71% 0.96

Each model utilizes different approaches and combinations of audio features and
ML algorithms for classifying infant cries into different pathologies. Model [16] uses a
multilayer perceptron (MLP) algorithm along with audio features such as GFCCs and
heart rate (HR), achieving a high accuracy of 95.92% with a simplified classification of
two classes. Model [14] employs fusion DL using CNN, GFCC, HR, and spectrogram
features, achieving an impressive accuracy of 97.50% for classifying into three pathologies.
Model [31] combines SVM with CNN for classification, using spectrogram features and
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achieving an accuracy of 92.5% for three classes. Model [32], which utilizes XGBoost with
Linear Frequency Cepstral Coefficient (LFCC) features, reaches an accuracy of 92% for four
classes. Model [3] employs the spectrogram feature, which uses an audio spectrogram
transformer (AST) and achieves an impressive accuracy of 98.69% for three classes. Finally,
in this study, the proposed model utilizes the GFCC feature, employs a ViT, and achieves an
accuracy of 96.69% for three classes, demonstrating the significance of using the ViT model.
From the perspective of previous studies, however, the advancement of the proposed model
and model [3] lies in their capability to achieve high results, suggesting that transformers
could be the best model in audio classification tasks. In comparing models for classifying
infant cries into various pathologies, the transformer model proposed in this study and
in [3] outperform previous research regarding accuracy, F1, precision, recall, and score.

One of the critical aspects of our experiment is the ease of use and excellent per-
formance of ViT compared to more complex models used in existing works. For in-
stance, [14,16] are rich, complex approaches, including a deep learning model-based flat
first impression monitor that achieves extremely high accuracy with heavier settings. In
contrast, our experiments demonstrate that using the ViT architecture combined with only
one feature type per model run (GFCC, mel-spectrogram, spectrogram), our proposed
simple method achieves competitive or superior performance. This simplifies the feature
extraction task and makes the model more aromatic. In the case of our study, feature extrac-
tion relies on transforming audio signals into images (e.g., spectrograms, mel-spectrograms,
GFCC) before being processed by the ViT. The vision transformer (ViT) demonstrated
strong performance compared to the audio spectrogram transformer (AST), likely due to its
ability to capture global dependencies in image-based audio features through self-attention.
This architecture enables effective processing of high-dimensional data with reduced com-
plexity. Although AST processes raw audio data and achieves slightly higher accuracy, it
requires significantly more computational resources and training time. Thus, ViT provides
a balanced approach with competitive accuracy and simplified feature extraction.

XAI methods such as LRP, LIME, and attention made ViT predictions in this study
much more interpretable. LRP identifies which parts of the audio are crucial for the
model’s predictions, helping users understand why the model makes certain decisions by
producing pixel-level visualizations that highlight the exact frequency bands where deeper
models tunnel their predictions. LIME shows how changes in the input affect the model’s
output, helping users assess the model’s reliability across different scenarios. It provides a
comprehensive view of feature importance as the input data are perturbed and the model’s
predictions are analyzed before and after those changes. Attention maps reveal which parts
of the audio the model focuses on, ensuring the model is concentrating on the most relevant
features. These insights make the model easier to interpret and use effectively, providing a
better understanding of the key audio components driving the classifications.

This has wide-ranging implications for medical diagnostics, where near-perfect accu-
racy and interpretability in the ViT models of image-based audio representations such as
stethoscope recordings were noted. Realizing this potential, we are now focused on devel-
oping a classification system of infant cry sounds that can be used as an early diagnostic
tool for effective neonatal healthcare. XAI techniques provide transparency that enables
healthcare professionals to trust and understand the model’s predictions, thus promoting
the uptake of these AI-based tools in clinical care.

This study’s limitations are as follows: Although the results of this study are very
promising, it has some limitations. One limitation is that the embryo dataset may need to
fully capture the range of natural variability in infant cries of different populations and
conditions. In the future, more diverse and representative samples should be explored
to supplement the dataset. In addition, investigation into other advanced audio feature
extraction techniques and hybrid models may be beneficial to enhance classification per-
formance. Optimizing the ViT architecture and training process to work better with more
extensive and more complex datasets is also future work. An insight into the joint analysis
of multimodal data, i.e., from applications such as audio and vision fusion, could be a more
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holistic study for medical diagnostics. Further development of XAI methods is important
to ensure that explanations generated by these models are transparent, consistent with the
underlying model logic structure, and valuable for clinical practice.

Overall, this study shows the effectiveness of incorporating vision transformers for
image-based audio representation to classify infant cries and achieve high accuracy with
features such as GFCC and mel-spectrogram. Incorporating such explainable AI techniques
helped us gain important insights into the model’s decision-making process. Also, it
improved transparency and trust, with a significant increase in verifiability and replicability.
These results imply that data-driven models like AI-based tools have the potential to assist
in medical diagnostics, providing us with significant leverage to facilitate widespread health
screening; however, the same result also draws attention to the necessity for selecting rather
than creating features and understanding those we want if robust and trustworthy models
are required.

6. Conclusions and Future Work

This research highlights the performance of the ViT model in classifying infant crying
signals by converting audio signals into image-based representations. The GFCC feature
provided the best results among various features, achieving an accuracy of 96.33% and an
F1 score of 96%. This highlights the critical role of audio feature representation in enhancing
the performance of ViTs, particularly in classifying infant pathologies. Integrating XAI
techniques, such as LRP, LIME, and an attention layer, improved the transparency and
interpretability of the ViT model’s predictions. Among these, LRP appeared as the most
effective XAI method for determining the three pathologies (healthy, sepsis, and RDS),
providing the models’ most detailed and accurate visualizations. This level of interpretabil-
ity is crucial for medical applications, where understanding the model predictions builds
trust and ensures reliability. Overall, the ViT approach showed significant advantages
over other complex models, simplifying the processing pipeline while delivering accurate
classification results. The combination of high performance and enhanced interpretability
makes this approach a promising tool for medical diagnostics, offering both precision and
transparency in critical healthcare applications.

Several areas could be improved for ViT models to demonstrate better performance
and applicability in medical diagnostics after future studies have been conducted. The
data need to be updated for more excellent coverage and more generalizability. Hopefully,
this approach will capture a larger cross-section of infant crying sounds from many cities,
countries, and conditions, thus improving the model’s generalizability. Moreover, using
other sophisticated feature extraction from audio profiles and ensemble models can further
enhance the classification results. This can be improved either by combining them with
several other features or by deriving new feature extraction mechanisms specifically for
the given pathologies. For example, modeling multimodal data integration, like combin-
ing audio and visual signals, could provide a more holistic way of medical diagnosis,
incorporating the surrounding elements that single modal models might fail to consider.

Finally, optimizing the ViT architecture and training pipelines to deal with larger
datasets should also be considered in the future. Playing around with different numbers
of layers, attention heads, or embedding dimensions can also help to refine the model’s
performance and efficiency. We need continuous refinement of XAI techniques to ensure
that model explanations remain interpretable, precise, and actionable in clinical decision-
making. The main limitation we have with this is that, by definition, the interpretability
of audio-controlled input–output pairs cannot be stripped down from many types of XAI
methods. Hence, there will always be an opportunity for some XAI method to develop
new or better explanation methods that can help us understand the how and why at least a
little bit more. Lastly, the models need to be implemented in practice on real-life patients.
This also includes the front end of user interfaces, data privacy and security, and clinical
trials to test the effectiveness of the model in real-world applications.
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