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A B S T R A C T

As bridge spans continue to increase, wind-induced vibrations become a major concern for structural integrity 
and serviceability. Buffeting, caused by the impinging turbulence, significantly impacts fatigue life and 
serviceability of long-span bridges. Consequently, accurate and rapid assessment of buffeting-induced responses 
is crucial for various applications, including real-time monitoring and risk assessment. This study introduces a 
novel hybrid machine learning framework designed to simulate the buffeting-induced response of long-span 
bridges over time, addressing key limitations in existing approaches. Unlike previous studies, which often 
focused on localized predictions, limited wind scenarios, frequency-domain analysis, and suffered from error 
accumulation over time, the proposed framework captures the complete time-history response across multiple 
degrees of freedom, providing a more comprehensive understanding of the bridge’s dynamic behavior. The 
framework combines autoencoders and Long Short-Term Memory (LSTM) networks to enhance the efficiency 
and accuracy of time-series prediction. Initially, autoencoder networks compress the high-dimensional wind 
speed and bridge displacement data into lower-dimensional latent spaces, capturing essential features while 
reducing computational cost. Subsequently, an LSTM network leverages these compressed representations to 
model temporal dependencies within the buffeting response, predicting the bridge’s response based on encoded 
wind speed. The final predictive model integrates both autoencoders and the trained LSTM: the first autoencoder 
encodes raw wind speed, the LSTM predicts the latent bridge response from this encoding, and the second 
autoencoder reconstructs the final predicted bridge response vector. The model’s effectiveness is evaluated 
through a simplified representation of the Lysefjord Bridge, rigorously assessing both interpolation and 
extrapolation performances. The proposed model achieves a good simulation accuracy on both training and 
testing sets, making it a compact and computationally efficient tool for real-time monitoring and assessment of 
bridges under various wind conditions.

1. Introduction

Long-span bridges present a unique engineering challenge due to 
their inherent flexibility and susceptibility to wind-induced vibrations. 
Buffeting, which results from the interaction between turbulent wind 
fields and the bridge, is one of the most commonly observed wind- 
induced forces [1–5]. Continuous buffeting can lead to localized struc
tural fatigue, impacting the bridge’s lifespan and serviceability [6]. 
Therefore, there is an increasing demand for precise computational 
modeling and prediction of the buffeting response of bridges.

The determination of the buffeting-induced response can be typically 
achieved using three major approaches, namely wind tunnel experi
ments, numerical simulations, and field measurements. While wind 

tunnel testing remains a cornerstone technique [7–10], due to its ability 
to characterize the aerodynamic characteristics, estimate key parame
ters, and assess stability, several limitations can arise with this approach. 
For example, it is significantly challenging to accurately replicate the 
complex on-site wind turbulence in a controlled environment. In addi
tion, the significant expense and time associated with model construc
tion and testing can limit its application for existing bridges. On the 
other hand, numerical simulations have gained more popularity due to 
their outstanding performances in predicting the bridge buffeting re
sponses. They typically involve two techniques, namely computational 
fluid dynamics (CFD) [11], which simulate the complex wind flow 
around the bridge structure and provide the aerodynamic loads on the 
bridge, and computational structural dynamics (CSD) which model the 
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structural response of the bridge due to the aerodynamic loads [12]. 
While traditionally applied in a decoupled manner, recent efforts focus 
on fluid-structure interaction (FSI) coupling, where CFD and CSD sim
ulations are dynamically linked to capture the intricate interplay be
tween wind and structure [13]. However, the computational power 
required for accurate simulations remains a significant hurdle. This 
constraint impedes the application of numerical simulations in proba
bilistic and risk assessment, and near-real-time predictions. Field mea
surements offer the most direct and accurate assessment of bridge 
buffeting response as they capture the actual behavior under natural 
wind excitation [14]. This method has been instrumental in validating 
and refining analytical and numerical models, providing valuable in
sights into buffeting characteristics for bridges like the Tsing Ma sus
pension bridge [15], Runyang suspension bridge [16], Sutong Bridge 
[17,18], Stonecutters bridge [19], Lysefjord Bridge [20], and Hardanger 
bridge [21]. However, several limitations inherent to field measure
ments require careful consideration. For instance, the measurements 
become feasible only after bridge construction, hindering their use in the 
design phase for optimizing aerodynamic performance. In addition, 
extensive instrumentation, specialized personnel, and prolonged moni
toring periods contribute to significant costs and logistical challenges. 
Moreover, the measured data reflects the specific wind conditions and 
bridge characteristics at the site, limiting its generalizability to other 
locations or bridge geometries.

Machine learning (ML) techniques have recently emerged as 
increasingly popular tools in wind engineering applications [22], pri
marily due to their efficiency and accuracy. Complementary to existing 
methods, ML leverages various data sources, including wind tunnel 
tests, numerical simulations, and field measurements, to learn complex 
relationships between wind and bridge response. Once trained, these 
models can be utilized for a range of operational applications, from 
real-time monitoring and digital twin creation to risk simulations 
[23–30]. While ML applications in wind engineering are diverse, its use 
in bridge buffeting simulation remains limited. For example, Castellon 
et al. [31] employed Support Vector Regression (SVR) to predict the root 
mean square (RMS) value of buffeting response of the Hardanger bridge, 
demonstrating superior accuracy compared to Multilayer Perceptrons 
(MLPs). Zhang et al. [32] leveraged Quantile Random Forest with 
Bayesian optimization to predict the RMS of acceleration response of a 
long-span bridge under typhoon conditions, enabling uncertainty 
quantification. Laima et al. [33] proposed a dual-network approach to 
predict the power spectral density (PSD) and RMS of buffeting re
sponses, achieving high accuracy. While recent applications of ML for 
bridge buffeting prediction show promise, significant challenges remain 
in capturing the full complexity of the phenomenon. The majority of 
studies have focused on estimating the RMS of the buffeting response or 
its behavior in the frequency domain. These approaches offer valuable 
insights, but they fail to provide the complete picture of the time-history 
response, which is crucial for comprehensive structural assessment and 
risk mitigation strategies. Li et al. [34] attempted to address this limi
tation by utilizing a Long Short-Term Memory (LSTM) network to 
simulate the time-history of buffeting response. However, their 
approach faced two key challenges: 1. The prediction was only applied 
to a few specific locations on the bridge, neglecting the potentially 
diverse response across the entire structure; and 2. The ML model suf
fered from error accumulation over time, resulting in decreased pre
diction accuracy and limiting the achievable prediction length. 
Therefore, it is important to address these challenges for unlocking the 
full potential of ML in bridge buffeting prediction.

This study proposes a novel hybrid machine learning (ML) frame
work to simulate the buffeting-induced response of long-span bridges 
over time, addressing key limitations in prior approaches. Unlike 
existing methods that primarily focus on root mean square (RMS) re
sponses or frequency-domain analysis, this framework captures the 
complete time-history response across multiple degrees of freedom, of
fering a more comprehensive understanding of bridge dynamics under 

buffeting excitation. Unlike previous studies, which typically focused on 
localized predictions, limited wind scenarios, and frequency-domain 
analysis, the proposed framework provides a comprehensive spatio- 
temporal response across multiple degrees of freedom under buffeting 
loads. The approach leverages the strengths of both autoencoders and 
LSTM networks to achieve efficient and accurate time-series prediction. 
The autoencoder networks first compress both wind speed and bridge 
displacement data into lower-dimensional latent spaces, capturing 
essential features and reducing computational burden. An LSTM 
network then leverages these compressed representations to model the 
temporal dependencies within the buffeting response, predicting the 
latent bridge response based on the encoded wind speed. Finally, the 
final predictive model employs both autoencoders and the trained 
LSTM: the first autoencoder encodes raw wind speed into the latent 
space, the LSTM predicts the latent bridge response from this encoding, 
and the second autoencoder reconstructs the final predicted bridge 
response vector. The proposed hybrid model’s capabilities are evaluated 
on the Lysefjord Bridge through a case study. A simplified numerical 
model capturing the bridge’s essential dynamic and aerodynamic 
characteristics is constructed to generate training and testing data. Wind 
speed time series are simulated using the Kaimal spectrum and Daven
port coherence model for realistic wind conditions. The model’s per
formance will be rigorously assessed via both interpolation and 
extrapolation tasks. A detailed analysis will be provided, highlighting 
the model’s accuracy, limitations, and potential for real-world bridge 
response prediction under diverse wind conditions.

2. Buffeting analysis

2.1. Reference bridge model

The selected bridge’s structural design draws inspiration from the 
Lysefjord Bridge in Norway. A simplified model is employed, focusing on 
capturing the critical dynamic and aerodynamic behaviors relevant to 
the specific bridge under study [20]. Table 1 presents the key structural 
and dynamic characteristics of this simplified model. The full specifi
cations and details of the bridge model can be retrieved from Cheynet 
[35].

The bridge is idealized as a streamlined horizontal beam, with a 
coordinate system defined in Fig. 1. The modal shapes of the structure 
are extracted using the Galerkin method. The resulting modal shapes 
and natural frequencies have been compared to those obtained from a 
high-fidelity finite element model by Cheynet et al. [20]. The compar
ison demonstrates good overall agreement, suggesting that the simpli
fied model effectively captures the bridge’s global dynamic behavior. 
This model will subsequently serve as the platform for generating 
training and testing data for the proposed machine learning model.

2.2. Hazard analysis

Within the wind-fixed coordinate system, the wind vector is resolved 
into three orthogonal components: along-wind (U = U + u), lateral- 
wind (V = V + v), and vertical-wind (W = W + w). Here, U, V and 
W denote the mean wind components, while u, v and w represent the 
fluctuating components. Notably, for this study, V and W are assumed to 

Table 1 
Bridge structural parameters [35].

Property (unit) Symbol Value

Deck height (m) D 2.76
Deck width (m) B 12.3
Main span length (m) L 446
Girder mass (kg/m) mg 5350
Main cables mass (kg/m) mc 408
Mass moment of inertia of the girder and cables (kg m2/m) Iθ 82,430
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be zero, while U holds a non-zero value. The corresponding wind com
ponents in the bridge-specific coordinate system are readily obtained by 
projecting the wind vector onto the bridge axes, leading to Vx = Vx +

vx, Vz = Vz + vz, and W = w, as illustrated in Fig. 1.
This study employs a spectral approach to generate 26 wind speed 

time series, encompassing varying mean wind speeds from 5 m/s to 
30 m/s with 1 m/s increments [36]. Each time series incorporates both 
mean and fluctuating wind components. The fluctuating components of 
the wind velocity were generated based on relevant turbulence statistics, 
including the power spectral density (PSD) and coherence function. The 
fluctuating wind components were obtained by applying the inverse 
Fourier Transform (IFT) to the chosen PSD while incorporating spatial 
coherence. The Davenport coherence function [1] modeled the spatial 
correlation of wind velocity fluctuations across the simulated domain. 
The Kaimal spectrum [37] served as the PSD model for generating in
dividual wind components (u, v, w). This approach ensures realistic wind 
field representation with spatial and spectral characteristics mimicking 
the chosen turbulence models. The resulting time series spanned a total 
simulation time of 710 s with a sampling frequency of 18 Hz (period of 
0.0556 s).

2.3. Buffeting analysis

The Lysefjord Bridge’s dynamic response (lateral, vertical, and 
torsional) was evaluated in the time domain using generated turbulent 
wind velocity time series. A simplified model with three degrees of 
freedom (DOFs), for each cross section, representing lateral displace
ment (rx), vertical displacement (ry), and deck rotation (rθ) was 
employed. A total of 40 nodes distributed along the bridge span ensured 
detailed structural representation. Both quasi-steady and strip theory 
methods were adopted to estimate the bridge response. Modal coupling 
between the three DOFs was considered to capture the full dynamic 
interaction. Notably, the quasi-steady theory was modified to incorpo
rate aerodynamic damping, with the torsional motion specifically 
incorporating the expression kθBṙθ, where kθ represents the horizontal 
distance between the aerodynamic and shear center [20,35]. Fig. 2 de
picts the bridge cross-section exposed to wind loads. In the wind coor
dinate system, these loads are: drag force FD, lift force FL and pitching 
moment FM. The corresponding forces in the bridge coordinate system 
are: lateral force Fx, vertical force Fy and torsional moment Fθ = FM.

The dynamic response of the bridge deck is governed by the equation 
of motion: 

Mr̈+Cṙ+Kr = F (1) 

where M ¼ mass matrix; C ¼ damping matrix; K ¼ stiffness matrix; F 
= total force vector acting on the deck; and r = [rx rz rθ]

T. The 
wind load, in its linearized form, can be expressed as [20,35]: 

F = F0[U] +F1

[
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w

]
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where Cae = aerodynamic damping; and Kae = aerodynamic stiffness. 
All remaining components, including Cae and Kae, can be expressed as 
[20,35]: 
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where CD = drag coefficient; CL = lift coefficient; and CM = moment 
coefficient. A modal approach is adopted to compute the bridge’s buf
feting response. This method involves the determination of the struc
tural response in the modal base [35]. The modal coupling between 
different modes is then incorporated to capture the full dynamic inter
action. The Newmark method of time integration is employed to solve 
the equation of motion.

3. Proposed simulation framework

This study proposes a novel machine learning (ML) approach to 
simulate the buffeting-induced response of the selected bridge. The 
approach leverages two key components: 1. Dimensionality reduction 
where both the input (wind speed) and output (bridge displacement=
[
rx ry rθ

]
) data are compressed using separate autoencoders; 2. Time 

series simulation with Long Short-Term Memory (LSTM) Network to 
capture the temporal dependencies present in the buffeting response 
time series. The compressed input data from the autoencoders is fed into 
the LSTM, enabling it to learn and predict the bridge displacements [38]. 
By utilizing autoencoders to reduce the dimensionality of both the input 
wind speed and output bridge displacement data, the learning process 
for the LSTM is simplified [38]. This allows the LSTM to focus on 
capturing the most relevant temporal dependencies, leading to more 
accurate and efficient predictions. Additionally, autoencoders help filter 
out noise and irrelevant information, improving the model’s robustness. 
This hybrid approach overcomes the limitations of using LSTMs alone, 
especially when dealing with high-dimensional and noisy data, making 
it well-suited for modeling complex, real-world phenomena like bridge 
buffeting. The detailed architecture of the proposed model will be pre
sented after a brief summary of each component.

Fig. 1. Wind and bridge-based coordinate systems.

Fig. 2. Cross-section of the bridge subjected to the wind load.
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3.1. Autoencoder neural networks

Autoencoders are a type of neural network architecture employed for 
unsupervised learning tasks. They excel at compressing high- 
dimensional data into a lower-dimensional latent space while preser
ving essential features. This capability is particularly valuable when 
dealing with extensive spatial dimensions in both input and output data. 
The autoencoder architecture comprises two key functions: An encoder 
(φ) which maps the input data (x) into a reduced-dimensional latent 
representation (z) such that z = φ(x); and a decoder ψ which re
constructs the original input data from the latent representation (x̂ =
ψ(z)). The training process aims to minimize the reconstruction error 
between the original input (x) and the reconstructed output (x̂). This 
forces the autoencoder to learn a compressed representation (z) that 
captures the salient features of the input data. Compared to linear 
dimensionality reduction techniques like Principal Component Analysis 
(PCA), autoencoders can handle complex non-linear relationships 
within the data, leading to more effective representation learning [39, 
40], especially for tasks like bridge buffeting response modeling.

This study highlights the important role of dimensionality reduction 
due to the inherent high dimensionality of both inputs and outputs 
associated with the large-scale bridge structure. Dividing the bridge 
span into 40 nodes leads to an expansive input dimension when multi
plied by the number of wind components. Similarly, the number of 
bridge response DOFs defines the output dimension, resulting in both 
input and output spaces being highly multi-dimensional. Consequently, 
employing a single neural network directly on such high-dimensional 
data becomes computationally intractable. By leveraging dimension
ality reduction techniques, a lower-dimensional subspace is identified, 
also known as the latent space, capturing the essential information of the 
original data. This facilitates the implementation of reduced-order 
models based on the low-dimensional representation, enabling effi
cient analysis and prediction of the bridge response while overcoming 
the limitations imposed by high dimensionality. Fig. 3 presents a sche
matic diagram illustrating the architecture of a standard autoencoder 
model.

3.2. LSTM networks

Long Short-Term Memory (LSTM) networks belong to a class of 
recurrent neural networks (RNNs) renowned for their ability in 
capturing long-range dependencies within sequential data. This char
acteristic positions them uniquely for sequence prediction tasks, making 
them highly prevalent in applications like machine translation, speech 
recognition, and time series analysis. Conventional RNNs are hampered 
by the vanishing/exploding gradient problem, rendering them ineffec
tive in learning long-term dependencies. In contrast, LSTMs circumvent 
this limitation by employing a sophisticated gating mechanism that 
selectively retains relevant information across extended temporal 
stretches. This ability to effectively manage long-range dependencies 

significantly empowers LSTMs in sequence-to-sequence modeling 
compared to traditional RNNs. Fig. 4 visualizes the typical architecture 
of an LSTM network, incorporating multiple hidden layers composed of 
both LSTM units and fully connected layers, sandwiched between the 
input and output layers.

Within the temporal domain (τ = 1, 2,…, t), the LSTM network es
tablishes a pairwise mapping between input sequences and their corre
sponding output sequences. Each LSTM layer is comprised of a collection 
of memory cells characterized by their weight parameters and bias 
terms. These cells utilize a sophisticated gating mechanism consisting of 
an internal cell state, input gate, output gate, and forget gate. This 
combined system empowers selective information retention, forgetting, 
and update through time, rendering LSTMs adept at capturing long- 
range dependencies in sequential data.

3.3. Proposed model

This study proposes a hybrid machine learning model to efficiently 
capture the complex relationship between bridge wind speed compo
nents and corresponding buffeting-induced responses. The true function 
f representing this relationship maps an input vector of wind speed 
components X ∈ ℝⁿ to an output vector of bridge responses Y ∈ ℝᵐ, 
where n and m denote the dimensions of the input and output spaces, 
respectively, such that: 

f(X) = Y (7) 

Directly modeling f can be challenging due to the high dimension
ality of X and Y. Therefore, the proposed approach introduces two latent 
spaces, namely the input latent space (zin ∈ Rp) and the output latent 
space (zout ∈ Rq), with reduced dimensions p and q compared to n and m. 
An autoencoder architecture is employed to learn low-dimensional 
representations of the input and output data. The encoder components 
φin and φout map the original input X and output Y to their corresponding 
latent vectors zin (zin = φin(X)) and zout (zout = φout(Y)), respectively. 
Subsequently, an LSTM model g is trained to predict the output latent 
space zout from the input latent space zin (i.e., g(zin) = ẑout). This LSTM 
model captures the temporal dynamics of the bridge response under 
varying wind conditions. Finally, a decoder component ψout reconstructs 
the original output space Y from the predicted latent output ẑout. The 
overall architecture of the proposed hybrid model, including the 
autoencoder components, the LSTM model, and the decoder, is pre
sented in Fig. 5.

Following training, the final predictive model, as illustrated in Fig. 5, 
leverages components from both autoencoders and the LSTM network: 
1. encoder (φin) from the first autoencoder which maps the raw wind 
speed data (X) to the low-dimensional latent space; 2. LSTM network 
which predicts the latent bridge response (ẑout) based on the input latent 
representation from φin; and 3. decoder (ψout) from the second autoen
coder which reconstructs the final predicted bridge response vector (r =
[
rx ry rθ

]
) from the predicted latent output (ẑout). The hybrid model 

effectively predicts the structural response of bridges under wind exci
tation by combining the dimensionality reduction capabilities of 
autoencoders with the temporal forecasting abilities of the LSTM 
network. The resulting predictive model offers a compact and compu
tationally efficient tool for real-time monitoring and assessment of 
bridge health under diverse wind conditions.

4. Results and discussion

4.1. Data preparation

A total of 26 wind speed time series were generated for training and 
testing the proposed hybrid machine learning model. These time series 
cover a range of mean wind speeds from 5 m/s to 30 m/s, with an 
increment of 1 m/s. The fluctuating wind components (u, v, w) were Fig. 3. Architecture of typical autoencoders.
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generated using the methodology described in Sect. 2.2, which combines 
the Kaimal spectrum with the Davenport coherence model. The Kaimal 
model requires the friction velocity (u∗), which is calculated using the 
logarithmic mean wind profile as: 

u∗ = κ ∗ U
/

log(
zref

z0
) (8) 

where κ = 0.4 the von Karman constant; zref = 55m reference height of 
the bridge deck; and z0 = 0.05m roughness height. The Davenport 
coherence model utilizes the following empirical decay coefficients Cz

u =

7, Cy
u = 10, Cz

v = 7, Cy
v = 10, Cz

w = 6.5, and Cy
w = 3 [35]. These co

efficients influence the spatial correlation between wind speed compo
nents at different locations on the bridge, ensuring realistic wind field 
representation. Each generated time series encompasses a total simula
tion time of 710 s, discretized with a sampling period of 0.0556 seconds. 
Fig. 6 presents an example of bridge response at mid-span, in terms of r 
=

[
rx ry rθ

]
. The mean wind speed in this example is U = 9m/s. As 

Fig. 6 demonstrates, the along-wind response rx exhibits consistently 
positive values. In contrast, the vertical ry and torsional response rθ 

fluctuate around zero, reflecting their inherently dynamic nature under 
wind excitation.

The generated time series data was divided into training and testing 
sets to evaluate the proposed hybrid machine learning model. A subset 
of 6 time series, carefully chosen to represent diverse wind conditions 
within the anticipated operational range (7, 14, 17, 24, 26, and 29 m/s), 

was allocated for training. This selection ensures the model can handle 
scenarios within its intended domain. The remaining 20 time series, 
encompassing wind speeds ranging from 5 to 30 m/s, constitute the 
testing set, allowing assessment of both extrapolation capabilities 
beyond the training range (below 7 m/s and above 29 m/s) and inter
polation within the range. Each time series consists of wind speed 
components (inputs) and bridge response vectors (outputs) recorded at 
40 nodes along the bridge span. Due to fixed boundary conditions at the 
ends, only 38 internal nodes with non-zero response were retained for 
analysis. Furthermore, considering the negligible influence of the lateral 
wind component (v) on the overall bridge response, only the along-wind 
(U) and vertical wind (w) components were utilized as model inputs. 
This choice leads to 76 input nodes for the first autoencoder (processing 
wind speed components). The second autoencoder, processing bridge 
response, has 114 input nodes corresponding to the three degrees of 
freedom (rx ry rθ) measured at each of the 38 retained nodes.

4.2. Model training

The initial step in constructing the hybrid model involves training 
two independent autoencoders: one for the wind speed components and 
another for the bridge response. Each autoencoder aims to learn low- 
dimensional representations of the respective input data by mini
mizing a loss function that penalizes deviations from the original input 
during reconstruction. The commonly employed autoencoder loss 
function, as expressed in Eq. (9), utilizes the L2 norm (denoted by ‖.‖2

2) 

Fig. 4. Architecture of a standard LSTM network (left) and an LSTM cell (right).

Fig. 5. Architecture of the proposed hybrid model.
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to measure the reconstruction error: 

L AE = ‖X − ψ(φ(X)) ‖2
2 (9) 

where L AE = autoencoder loss; and X = input data to the autoencoder 
(either wind speed components or bridge response). Effective training of 
both autoencoders necessitates careful selection of various hyper
parameters, such as the network architecture, activation function, 
learning rate and network size. These hyperparameters significantly 
influence the autoencoders’ learning capability and ultimately, the 
quality of extracted features. While advanced optimization techniques 
like Bayesian optimization exist, this study employed a trial-and-error 
approach for hyperparameter tuning. Extensive evaluation revealed 
superior performance from separate autoencoders for the along-wind 
(U) and vertical wind (w) components. Each wind autoencoder em
ploys a 38–24–12–3–12–24–38 architecture. Similarly, individual 
autoencoders were trained for each of the three bridge response com
ponents (rx ry rθ). Each response autoencoder adopts a 
38–24–12–2–12–24–38 architecture. For all autoencoders, the Adam 
optimization algorithm [41] was employed due to its efficient handling 
of sparse gradients and high-dimensional parameters. The Tanh activa
tion function was selected for all layers except the bottleneck layer, 
which serves as the latent space representation. A learning rate of 
0.0001 was selected based on empirical testing to ensure proper 
convergence and training stability. All input data (wind components and 
bridge responses) were normalized between 0 and 1. This normalization 
facilitates faster convergence and avoids biases towards features with 
larger initial scales. The performance of the trained autoencoder models 
was evaluated using quantitative metrics, summarized in Table 2. For 
clarity, AEU

1 and AEw
2 denote the autoencoder models trained on the 

along-wind (U) and vertical wind (w) components, respectively. The 
AErx

3 , AEry
4 , and AErθ

5 represent the autoencoder models trained on the 

three bridge response components, rx, ry and rθ, respectively.
As evident from Table 2, the Mean Squared Error (MSE) values for all 

models are relatively low, indicating satisfactory performance that jus
tifies their use in the subsequent step of the hybrid model. Following 
autoencoder training, the low-dimensional latent space representations 
produced by AEU

1 (along-wind) and AEw
2 (vertical wind) are concate

nated, resulting in a 6-dimensional input vector for the LSTM model. 
Similarly, the combined latent space dimensions from AErx

3 , AEry
4 , and 

AErθ
5 generate a 6-dimensional output vector for the LSTM. The LSTM 

architecture comprises a single cell with a 25-dimensional hidden state 
vector and a Tanh activation function. A dense layer with a linear acti
vation function is subsequently added after the LSTM cell as the output 
layer. All training data were normalized between − 1 and 1. The training 
process utilizes truncated backpropagation through time (BPTT) as 
proposed by Simpson et al. [36]. Fig. 7 presents the training curve of the 
LSTM network, showcasing a decreasing loss function over training 
epochs. The final loss value (MSE) after convergence is 1.32e-06.

To mitigate overfitting and underfitting, several strategies were 
employed during the model training. First, autoencoders were utilized to 
compress high-dimensional wind and response data into lower- 
dimensional latent spaces, enabling the model to focus on the most 
relevant features while reducing noise and less significant variations. 
This dimensionality reduction simplified the input and output spaces 

Fig. 6. Time series of the wind speed (left) for the case scenario of U = 9m/s and the corresponding bridge response (right).

Table 2 
Performance of the training and testing for the autoencoders.

Performance 
(MSE)

Input Output

AEU
1 AEw

2 AErx
3 AEry

4 AErθ
5

Training 6.3e− 03 4.7e− 03 2.06e− 04 1.79e− 04 3.80e− 04
Testing 8.4e− 03 5.3e− 03 6.33e− 04 2.63e− 04 5.88e− 04
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and prevented the model from keeping irrelevant details in the training 
data. Regularization techniques, such as dropout layers, were applied to 
the LSTM network to reduce reliance on specific neurons, encouraging 
the learning of generalized patterns. Moreover, early stopping was 
implemented to monitor and halt training when performance ceased to 
improve, minimizing the risk of overfitting. Validation was performed 
on both interpolation and extrapolation tasks to ensure generalization 
across a range of wind scenarios, including conditions beyond the 
training data. Additionally, extensive hyperparameter tuning optimized 
the model parameters such as the number of layers, neurons, and 
learning rate, achieving a balance between model complexity and pre
diction accuracy while avoiding overfitting and underfitting. The 
training dataset incorporated diverse wind scenarios spanning various 
intensities and conditions, promoting generalization and reducing 
overfitting by exposing the model to a broad spectrum of buffeting re
sponses. These strategies collectively enabled the model to accurately 
capture the complexities of buffeting response while avoiding over
fitting and underfitting.

4.3. Application

Following successful training of the individual components, the 
hybrid model is assembled as depicted in Fig. 8. This combined archi
tecture leverages the dimensionality reduction benefits of autoencoders 
to efficiently handle complex input data and the LSTM network’s ability 
to learn and predict the temporal evolution of the bridge response. 

Specifically, the hybrid model consists of two input encoders φU and φw 
followed by an LSTM network, then three output decoders ψ rx

, ψ ry 
and 

ψ rθ 
as illustrated by Fig. 8.
As depicted in Fig. 8, the hybrid model leverages both autoencoders 

and the LSTM network for bridge response prediction. The process can 
be described in three key steps: 1. The first set of encoders, φU and φw 
process the wind speed time series data. Each encoder performs 
dimensionality reduction, mapping the high-dimensional wind speed 
components (U and w) to separate lower-dimensional latent represen
tations; 2. The concatenated latent representations from φU and φw are 
fed into the LSTM network. This network, due to its inherent capability 
in handling temporal sequences, analyzes the dynamic relationship be
tween wind speed variations and the resulting bridge response. By 
learning from historical data, the LSTM is able to capture the evolving 
temporal patterns within the wind and their impact on the bridge 
structure; 3. The final stage involves three decoders, ψrx

, ψ ry 
and ψrθ

. 
Each decoder receives the predicted latent representation of the bridge 
response from the LSTM network and maps it back to the original high- 
dimensional space. This reconstruction provides the predictions for the 
along-wind (rx), vertical (ry), and torsional (rθ) components of the bridge 
response.

The hybrid model demonstrated strong performance on the inde
pendent test set, achieving a low root mean squared error (RMSE) of 
0.085 across the entire bridge, as calculated from the normalized output 
values. This result highlights the good generalization capability of the 
proposed hybrid model. To further investigate the model’s performance, 
specific scenarios are selected from the test set. Fig. 9 showcases the 
predicted bridge response for a moderate wind speed of 21 m/s. The 
predicted response, represented by the vector 

[
rx ry rθ

]
, is visualized 

at two key locations: the mid-span and a point near one-third of the span. 
Additionally, a zoomed-in plot highlights the time-series response at 
these locations, allowing for a closer examination of temporal dynamics.

Fig. 9 demonstrates the hybrid model’s effectiveness in replicating 
bridge response time series due to buffeting. Quantitative assessment 
confirms this, with RMSE values at the mid-span location being 0.047 m, 
0.026 m, and 3.4e-04 rad for rx, ry and rθ, respectively. Similar results 
are observed near the third of the span, with RMSE values of 0.037 m, 
0.029 m, and 2.6e-04 rad for rx, ry and rθ, respectively. Additionally, 
visual inspection of PSDs suggests the model captures the signal’s fre
quency content well, indicating successful training. These findings 
demonstrate the model’s capability to accurately predict the bridge 
response under buffeting conditions. It should be noted that there are 
some discrepancies in rx, which was anticipated due to its unique tem
poral and spectral characteristics compared to ry and rθ. To enhance the 
simulation results for rx, an alternative approach will be presented in 
Sect. 4.4.

Fig. 10 investigates the hybrid model’s ability to extrapolate beyond 
the training data range. Two scenarios are chosen: Scenario 1 repre
sented by a weak intensity with a mean wind speed of 6 m/s (below 
training range); and Scenario 2 represented by a high intensity with a 
mean wind speed of 30 m/s (above training range). Due to their po
tential impact on bridge stability, only the vertical (ry) and rotational 
(rθ) bridge responses are visualized in Fig. 10.

Fig. 10 demonstrates good agreement between the bridge response 
predicted by the hybrid model and the corresponding responses ob
tained through finite element simulations. Specifically, for the U = 6m/s 
scenario, the obtained RMSE values are 0.053 m and 2.6e-04 rad for ry 

and rθ, respectively. Additionally, for the U = 30m/s scenario, the RMSE 
values are 0.021 m and 2.9e-04 rad for ry and rθ, respectively. This 
observation, particularly for scenarios beyond the training data range, 
highlights the robustness and generalizability of the hybrid model for 
predicting the bridge response under unseen wind conditions.

To investigate the time-dependent prediction error, Table 3 sum
marizes the Mean Absolute Error (MAE) values at five different time 

Fig. 7. Performance of the training process of the LSTM network.

Fig. 8. Architecture of the predictive hybrid model.
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Fig. 9. Time-series bridge response and PSD at midspan (left column) and third of the span (right column) for a 21 m/s mean wind speed.

Fig. 10. Time-series bridge response and PSD at midspan for U = 6m/s (left column), and U = 30m/s (right column).
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steps for two wind scenarios (U= 9 m/s and U = 27 m/s) for all nodes 
across the bridge. The results indicate that the prediction errors remain 
consistently low, particularly at larger time steps. For instance, the 
maximum MAE values for rx, ry and rθ are 8.9e-02 m, 2.9e-02 m, and 
3.3e-02 rad, respectively. Notably, the absence of error accumulation 
demonstrates the model’s stability and its ability to maintain accurate 
predictions over extended time periods.

4.4. Discussion

Long-span bridges are susceptible to buffeting which significantly 
impacts the fatigue life of structural components and can synergistically 
interact with other wind loads, potentially leading to major structural 
deficiencies [24]. Therefore, accurate assessment of buffeting is critical 
for ensuring long-term bridge serviceability. Traditional methods to 
simulate the buffeting-induced response can be computationally 
expensive, limiting their applications in areas like real-time risk pre
diction, probabilistic risk assessment, and digital twin integration [32]. 
This study proposes a novel hybrid machine learning model for efficient 
and accurate simulation of the 3D displacement response (rx, ry and rθ) 
of long-span bridges under buffeting excitation. The model combines 
autoencoder networks for dimensionality reduction of both the input 
wind components and the 3D displacement outputs. This compression 
step facilitates efficient processing and reduces model complexity. 
Subsequently, an LSTM network learns the complex non-linear rela
tionship between the low-dimensional wind representation and the 
corresponding bridge displacement representation. This approach le
verages the strengths of autoencoders in handling high-dimensional data 
and the capability of LSTMs in capturing temporal dependencies present 
in wind turbulence and bridge response.

Dimensionality reduction via autoencoders serves as a crucial pre
processing step for the subsequent LSTM network, the central compo
nent of the hybrid architecture. The autoencoders’ effectiveness in 
uncovering informative latent spaces directly impacts the overall model 
performance. Inaccurate latent representations compromise the LSTM’s 
ability to learn the complex temporal dynamics between wind compo
nents and bridge response, potentially leading to suboptimal pre
dictions. This study employs separate autoencoders for both input wind 
components (U and w) and bridge response outputs (rx, ry, and rθ). While 
a combined input-output autoencoder architecture is feasible, separate 
encoders were chosen to enhance training and testing performance 
based on distinct time-frequency characteristics of the data. For 
instance, the temporal and spectral signatures of rx differ significantly 
from ry, and rθ, posing challenges in finding an optimal latent space 
within a single autoencoder. Leveraging this non-linear dimensionality 
reduction technique, the input wind components are compressed from 
76 to 6 features and the bridge response outputs from 114 to 6 features. 
This substantial reduction in both input and output dimensions signifi
cantly improves the robustness of the subsequent LSTM model training. 
High-dimensional data can exacerbate computational costs and over
fitting in LSTM training. By effectively capturing critical information in 
lower-dimensional spaces, the model achieves better training and 
testing performance compared to scenarios with uncompressed data.

Despite achieving satisfactory performance during training and 

testing as evidenced by overall model metrics, discrepancies remain, 
particularly evident for the rx response (Fig. 9). This was anticipated due 
to the distinct temporal and spectral characteristics of rx compared to ry 

and rθ. To further enhance the simulation accuracy, an alternative 
approach utilizing a separate LSTM model dedicated solely to rx pre
diction was explored. Fig. 11 presents the results of this dedicated rx 
prediction model for a moderate wind speed of 21 m/s at two different 
locations (midspan and the third of the span), demonstrating improved 
performance for this specific response component.

The RMSE values for rx prediction by the dedicated LSTM model are 
9.85e-03 m and 8.31e-03 m for the midspan and third of the span, 
respectively. These results represent a significant improvement 
compared to the combined LSTM model, which achieved RMSE values of 
0.047 m and 0.037 m for the same locations. Notably, the dedicated 
model achieved 79.1 % and 77.5 % reductions in RMSE for the midspan 
and third of the span, respectively, demonstrating its effectiveness in 
capturing the unique dynamics of rx compared to the combined 
approach.

The generalizability of ML-based models is a critical consideration. 
While the proposed hybrid framework combining autoencoders and 
LSTM has the potential for broader application, its predictive accuracy is 
inherently tied to the quality and specificity of the training data. To 
ensure accurate predictions for other long-span bridges, the model 
should be retrained with data capturing their unique geometric, aero
dynamic, and dynamic properties. However, transfer learning tech
niques can potentially accelerate the training process for bridges with 
similar characteristics. This study focuses on the Lysefjord Bridge, 
demonstrating the model’s capability to accurately predict buffeting 
responses for a wide range of wind scenarios, significantly out
performing traditional numerical simulations in terms of computational 
efficiency. This rapid prediction capability has significant potential for 
real-time monitoring, digital twin integration, and structural optimiza
tion. The model’s strong interpolation and extrapolation performance 
within the Lysefjord Bridge’s aerodynamic and dynamic range un
derscores its robustness. While retraining with bridge-specific data is 
necessary for other structures to ensure accuracy, the methodology 
presented in this study offers a powerful and efficient foundation for 
modeling buffeting responses across various long-span bridges. This 
research underscores the potential of ML-based approaches to advance 
bridge aerodynamics and structural response prediction.

While this study used a trial-and-error approach for identifying 
suitable hyperparameters, adopting advanced optimization techniques 
such as Bayesian optimization could further improve model perfor
mance. Bayesian optimization automates the hyperparameter search, 
enabling efficient identification of optimal settings compared to manual 
methods. Additionally, the training and testing datasets were generated 
using a simplified buffeting model. This approach neglected unsteady 
effects in the buffeting response calculations, which could potentially 
impact the simulation results. To enhance the dataset’s accuracy, more 
advanced data generation techniques could be employed. These could 
incorporate recent theoretical findings, CFD simulations, wind tunnel 
experiments (e.g., for unit-step or unit-impulse response functions), or 
field measurement data. This would help ensure that the model is 
trained and evaluated on data that closely mirrors real-world bridge 
behavior under wind loading. Incorporating physics-informed learning 
into the model framework could also be beneficial, as it would enable 
the integration of governing physical equations directly into the model. 
By embedding scientifically valid principles, the model’s predictions 
could be further constrained, potentially resulting in more robust and 
generalizable simulations [42–44]. Expanding the methodology to 
include a wider range of bridge configurations would also enhance its 
applicability and generalizability. This could involve training and 
testing on data from different bridge types to ensure the model’s ability 
to predict buffeting responses across diverse structural designs. More
over, the current framework focuses on predicting buffeting responses 
and does not account for other aerodynamic forces, such as 

Table 3 
Mean absolute error of predicted response components at different time steps for 
two wind scenarios for all DOFs across the bridge.

t(s) 32.6 111.0 278.6 528.4 667.2

Scenario 1 
(U =
9m/s)

rx(m) 7.6e− 02 3.1e− 02 4.5e− 02 3.1e− 02 4.1e− 02
ry(m) 2.5e− 02 2.7e− 02 2.1e− 02 1.9e− 02 2.4e− 02
rθ(rad) 3.3e− 02 0.9e− 02 1.1e− 02 0.6e− 02 3.0e− 02

Scenario 2 
(U =
27m/s)

rx(m) 7.1e− 02 3.4e− 02 8.9e− 02 3.9e− 02 2.4e− 02
ry(m) 2.9e− 02 1.3e− 02 1.8e− 02 0.6e− 02 1.7e− 02
rθ(rad) 1.5e− 02 1.9e− 02 2.0e− 02 3.6e− 02 0.9e− 02
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motion-induced forces or vortex-induced vibrations. Considering these 
effects in future work would be beneficial for modeling the full range of 
wind-induced responses. Finally, while this study used vanilla autoen
coders for dimensionality reduction, this approach may be suboptimal 
for handling large and complex datasets. Convolutional autoencoders 
(CAEs) offer enhanced spatial feature extraction, reduced computational 
load through parameter sharing, and improved generalization by 
capturing localized features in high-dimensional data. CAEs can help 
reduce the risk of overfitting and increase model robustness and reli
ability, especially under real-world conditions that may introduce noise.

5. Conclusion

This study presented a novel hybrid machine learning framework for 
real-time prediction of buffeting-induced responses in long-span 
bridges. This framework, combining autoencoders and Long Short- 
Term Memory (LSTM) networks, achieved efficient and accurate time- 
series prediction. Autoencoders effectively compressed high- 
dimensional data while retaining key features, leading to reduced 
computational demands. The LSTM network utilized these compressed 
representations to capture temporal dependencies, enabling accurate 
response prediction based on encoded wind speed. The final model 
seamlessly integrated both autoencoders and the trained LSTM. The 
evaluation on a simplified model of the Lysefjord Bridge demonstrated 
good simulation accuracy across both training and testing sets. Specif
ically, the model achieved a low RMSE values of 0.085 across the entire 
bridge, on the testing set, suggesting good over all performance. This 
showcases the proposed framework’s potential as a compact and 
computationally efficient tool for real-time bridge health monitoring 
and assessment under diverse wind conditions, paving the way for 
proactive measures to ensure safety and serviceability.
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