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Abstract: Medical instruments are essential in pediatric intensive care units (PICUs) for
measuring respiratory parameters to prevent health complications. However, the assess-
ment of acute respiratory distress (ARD) is still conducted through intermittent visual
examination. This process is subjective, labor-intensive, and prone to human error, making
it unsuitable for continuous monitoring and early detection of deterioration. Previous
studies have proposed solutions to address these challenges, but their techniques rely
on color information, the performance of which can be influenced by variations in skin
tone and lighting conditions. We propose leveraging multi-modality data to address these
limitations. Our method integrates color and depth data using deep convolutional neural
networks with a late feature fusion scheme. We train and evaluate our model on a dataset
of 153 patients with respiratory illnesses, 86 of whom have ARD of varying severity levels.
Experimental results demonstrate that multi-modality data combined with simple late
fusion techniques are more effective with limited data, offering higher confidence scores
compared to using color information alone. Our approach achieves an accuracy of 85.2%, a
precision of 86.7%, a recall of 85.2%, and an F1 score of 85.8%. These findings suggest that
multi-modality data provide a promising solution for improving ARD detection accuracy
and confidence in clinical settings.

Keywords: acute respiratory distress; action recognition; deep learning; multi-modality;
transfer learning; two-stream network; video classification

1. Introduction
Acute respiratory distress (ARD) is a leading cause of infant admissions to the pe-

diatric intensive care unit (PICU) [1]. This life-threatening condition is characterized by
insufficient oxygen saturation levels in the bloodstream, often resulting from underlying
lung diseases [2]. In response to ARD, the brain activates accessory respiratory muscles
to ensure an adequate oxygen supply and maintain oxygen saturation in the bloodstream.
However, prolonged overuse of these muscles can lead to fatigue and, ultimately, respira-
tory failure. Therefore, early detection of ARD is crucial for timely interventions, such as
providing external respiratory support, to prevent severe health complications [1].

Patients with ARD exhibit several visible signs, including an elevated respiratory
rate (RR), reduced oxygen saturation levels, a distressed appearance, thoracic-abdominal
asynchrony (TAA), and chest retraction signs [3]. Traditionally, healthcare professionals
evaluate these parameters through visual examinations. This process, which involves
manually counting respiratory rate (RR) and observing signs like TAA, is labor-intensive,
subjective, and prone to human error. While advancements in medical technology have

Appl. Sci. 2025, 15, 1512 https://doi.org/10.3390/app15031512

https://doi.org/10.3390/app15031512
https://doi.org/10.3390/app15031512
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0007-7443-8485
https://orcid.org/0009-0008-7310-2661
https://doi.org/10.3390/app15031512
https://www.mdpi.com/article/10.3390/app15031512?type=check_update&version=1


Appl. Sci. 2025, 15, 1512 2 of 14

introduced devices such as respiratory inductance plethysmography (RIP) and pulse
oximeters for real-time measurement of RR, TAA, and oxygen saturation levels, these
methods are often uncomfortable for patients, requiring cooperation that can be challenging
in children. Additionally, they can cause skin irritation, restrict movement, and pose
usability challenges.

Therefore, contactless methods have gained attention as viable alternatives to tradi-
tional approaches, offering comfort, convenience, and reduced infection risk. Researchers
have developed contactless medical instruments for various applications, including respi-
ratory rate estimation by analyzing thoracic-abdominal region and face videos [4–8], heart
rate estimation [9–13], tidal volume estimation [14–17], and thoracic-abdominal asynchrony
(TAA) assessment [18–20]. Despite these advancements, a key indicator of ARD is still
visually assessed by healthcare professionals. Chest retraction, considered an early sign of
respiratory failure, is most commonly observed in infants and children but can also occur
in patients with conditions such as asthma and pneumonia. Accurate and timely detection
of chest retractions is essential, but reliance on visual examination poses challenges for
consistent and continuous monitoring, leading to potential inaccuracies in assessment and
outcomes.

In our previous work [21], we proposed an end-to-end ARD detection system that
leveraged color temporal visual information in conjunction with advanced 3D deep convo-
lutional neural networks, achieving high accuracy. However, this approach relied solely
on color (RGB) temporal data, whose performance could be affected by variations in skin
tone and lighting conditions. To overcome these limitations, we propose the use of multi-
modality (RGB-D) temporal visual information for ARD detection. Compared to RGB data,
RGB-D information provides additional depth insights that significantly enhance detection
accuracy and model robustness. To effectively utilize this multi-modality information, we
employ a two-stream model architecture combined with a late feature fusion scheme.

To sum up, this paper contributes to this field in the following ways:

1. We propose the use of multi-modality data to improve the performance of acute
respiratory distress detection systems.

2. We introduce straightforward yet effective data pre-processing techniques to normal-
ize the depth modality to ensure uniform scaling.

3. We investigate various feature fusion methods to effectively integrate information
from both RGB and depth modality. Our experimental results demonstrate that simple
feature fusion techniques are especially beneficial when working with limited data,
resulting in significant improvements in detection performance.

The rest of this paper is structured as follows: Section 2 reviews relevant literature on
current techniques for analyzing respiratory parameters and methods for multi-modality
feature fusion. Section 3 provides an overview of the proposed model, detailing the
pre-processing techniques, feature extraction module, and multi-modality feature fusion.
Section 4 describes the database, implementation details, and presents the experimental
results. Finally, Section 6 discusses the findings and provides concluding remarks.

2. Related Work
2.1. Methods for Respiratory Parameter Analysis

Methods for analyzing respiratory parameters are generally classified into two cate-
gories: contact-based and contactless approaches. Contact-based methods involve direct
physical sensors attached to the body, such as respiratory inductance plethysmography
(RIP) and pulse oximeters. In contrast, contactless methods employ non-invasive tech-
niques, such as cameras or radar, which offer greater comfort and are particularly suitable
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for newborns. These methods have garnered increasing interest due to their potential for
improved functionality and integration with advancing technologies.

For example, Mateu et al. [22] used two color cameras to capture visual information
and applied dense optical flow analysis to track motion for respiratory parameter estima-
tion. Similarly, Rehouma et al. [17] utilized two 3D cameras to capture temporal point-cloud
data, applying surface reconstruction techniques to accurately model the thoracoabdominal
surface. They then calculated the volume for each frame and measured the respiratory
rate through a volume–time graph. In another study, Rehouma et al. [18] proposed a
method to assess thoracic-abdominal asynchronous motion using a single RGB-D camera,
which calculates the 3D scene flow between consecutive frames to analyze motion. Addi-
tionally, V. Ottaviani et al. [20] developed a contactless method utilizing depth cameras
to monitor infants’ breathing patterns and thoracoabdominal asynchronous movements.
Nawaz et al. [21] employed an RGB camera to capture the visual temporal information
of patients, which was subsequently analyzed using 3D convolutional neural networks
(CNNs). This approach aimed to non-invasively identify respiratory distress conditions
by recognizing subtle visual cues associated with thoracoabdominal movements. It is
important to note that only a limited number of studies have explored the ARD detection
task through either contact-based or contactless methods.

2.2. Multi-Modality Fusion Techniques

Deep convolutional neural networks (DCNNs) are designed to capture data features.
However, their performance can be influenced by variations in skin tone [23,24] and lighting
conditions [25], particularly when trained on limited or biased RGB datasets that fail to
adequately represent such diversity. In contrast, depth information remains consistent
regardless of these factors, offering greater robustness, while depth data may lack the rich
detail present in RGB images. It provides complementary information that can enhance
overall performance when combined with RGB data. To fully leverage the strengths of both
modalities, it is essential to fuse them into a comprehensive set of discriminative features.

Khalid et al. [26] proposed a multi-modal three-stream fusion network, drawing inspi-
ration from the success of two-stream fusion networks [27,28]. This approach incorporates
RGB spatial information, dense optical flow (temporal) data, and pose features to enhance
model performance. Similarly, Islam et al. [29] introduced a multi-modal human activ-
ity recognition method that utilizes both RGB and depth temporal information. They
employed a multi-modal feature fusion approach, specifically leveraging a self-attention
mechanism to improve activity recognition accuracy.

Das et al. [30] designed an attention mechanism specifically to fuse spatial-temporal
features with pose features, aiming to enhance the understanding of human actions.
Joze et al. [31] developed the multi-modal transfer module (MMTM), a technique designed
to progressively fuse features from both RGB and depth modalities, thereby improving
model performance. Additionally, Hu et al. [32] utilized a bilinear pooling layer to effec-
tively combine multi-modal features, further enhancing overall model efficacy.

Xu et al. [33] proposed a bilinear-pooling attention network to fuse RGB and skeleton
features for action recognition tasks, showcasing the effectiveness of this fusion approach.
Kini et al. [34] adopted an ensemble modeling strategy to leverage multi-modal information,
achieving first place in the ICIAP-W 2023 challenge. Numerous other fusion [35–38]
schemes have been proposed to effectively combine multi-modal information, highlighting
the growing interest and research in this area.
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3. Proposed Model
In this paper, we propose a two-stream network for detecting acute respiratory distress

(ARD) by leveraging multi-modal data that incorporates both RGB and depth temporal
visual (video) data. Our approach utilizes two identical 3D convolutional neural networks
(CNNs) to independently extract spatiotemporal features from each modality, enabling a
more comprehensive analysis of the visual cues associated with ARD conditions. By uti-
lizing the strengths of both RGB and depth data, our network mitigates the limitations
inherent in using only the RGB modality. These features are subsequently fused using a
neural network, enabling the model to integrate complementary information and enhance
overall ARD detection system performance. An overview of the proposed architecture is
shown in Figure 1.

Figure 1. Illustration of the proposed network architecture for detecting acute respiratory distress,
featuring the integration of RGB and depth temporal visual data through identical 3D convolutional
neural networks.

In this section, we first formulate the problem and outline the data processing pipeline
for both RGB and depth videos, describing the pre-processing steps implemented to prepare
the data for analysis. Next, we describe the feature extraction strategy, where 3D convolu-
tional neural networks are employed to capture the spatiotemporal characteristics of the
input data. Lastly, we discuss the feature fusion techniques used to effectively combine the
extracted features from both modalities, enhancing the model’s overall performance.

3.1. Problem Formulation

The detection of acute respiratory distress (ARD) is defined as a video classification
task, as the signs of retraction begin to appear at the start and continue throughout the
inspiration cycle. To accurately detect ARD, our objective is to analyze the patient’s video
information over the entire inspiration cycle. A previous study [21] has demonstrated that
a 6.4 s video clip is sufficient for accurate detection, as the respiratory cycle of an adult
typically lasts up to 6.4 s. This duration ensures a high likelihood of capturing at least one
full inspiration cycle, making it suitable for the ARD detection task.

3.2. Data Pre-Processing Module

For our experimental study, we use data collected from Sainte-Justine Hospital in
Montreal, Canada. The data are captured using Microsoft Azure sensors, which simultane-
ously record RGB and depth information. The RGB data are captured using a 12-megapixel
sensor, while the depth data are captured using a 1-megapixel sensor. The depth videos are
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recorded at resolution of 512 × 512 in NFOV binned mode. In this mode, the sensor has an
operational range of 0.50 to 5.46 m. The physical pixel size is approximately 0.0087 mm
at 1 m. However, the physical pixel size varies depending on the distance to the object.
RGB and depth videos were not spatially aligned and as they were recorded at different
resolutions. For instance, the RGB videos have a resolution of 1080 × 1920 and a depth
have 512 × 512.

To address this issue, we first align the RGB and depth videos using the Open3D
library [39], which leverages the Azure Kinect Sensor SDK for alignment. Specifically, we
align the depth videos to match the RGB videos’ resolution. In addition, the collected data
contain unnecessary background information that can negatively impact the performance
of video analysis algorithms. This extraneous information can lead to overfitting, especially
when working with limited data and high memory usage. To mitigate this issue and help
our model focus solely on the relevant areas of the patients, we cropped both the RGB and
depth videos to isolate these specific regions, as shown in Figure 2. This step is inspired by
previous studies [21,33,40,41], which demonstrated that deep learning models trained on
relevant regions of interest outperform those trained on full-frame data. Therefore, we have
adopted a similar approach, extracting the thoracic-abdominal regions, where retraction
signs typically appear.

Further, we spatially normalize the depth videos to a range of 0 to 1 for consistent
scaling. We first remove outlier pixel values greater than 4000 (since the distance between
the camera and the patient is not greater than that) by replacing them with zeros. Then, we
compute the average distance of the thoracic-abdominal region by taking the mean of the
non-zero pixels and selecting pixel values within a range of ±400 from this mean. Finally,
the selected values are divided by 800. The pseudocode for the depth video normalization
process is presented in Algorithm 1.

Algorithm 1: Pseudo code for depth video normalization process.

1 Input: Depth video (D)
2 Output: Normalized depth video (Dnorm)
3 foreach Frame in depth video D do
4 Replace pixel values greater than 4000 with 0 (D1);
5 Compute the mean M of non-zero pixels of thoracic-abdominal region (D1) ;
6 Select pixels of (D1) in the range [M − 400, M + 400] and set 0 ;
7 Scale selected pixel values by dividing by 800;
8 end
9 Return normalized depth video Dnorm;

(a) RGB (b) Depth

Figure 2. RGB-D videos’ cropping: (a) RGB and (b) depth.

3.3. Feature Extraction Module

We use two X3D [42] (Expanding Architectures for Efficient Video Recognition) net-
works as feature extractors. X3D is a neural network architecture designed for video
recognition tasks. It builds upon the 2D ConvNet architecture and progressively expands
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it along multiple axes, including depth, width, resolution, and frame rate, to efficiently
capture spatiotemporal features. By employing a series of lightweight 3D convolutional
layers, X3D achieves high performance with fewer trainable parameters, which reduces
computational resource requirements compared to traditional 3D-CNNs. This makes it
particularly suitable for cases with limited data and real-time video analysis applications.
We first train the two separate networks in an end-to-end manner for each modality using
the ARD dataset. These models are trained to learn modality-specific features pertinent
to the detection of ARD. After training, we use these networks as feature extractors in
our model.

3.4. Feature Fusion Module

Numerous feature fusion techniques have been proposed, such as bilinear pooling [32]
and self-attention networks [33]. However, these methods often involve additional fully
connected layers with a large number of parameters, which can lead to overfitting, particu-
larly when dealing with limited data. Considering the constraints (limited data) of our task,
we chose to adopt a simpler approach. In this study, we employ a straightforward yet effec-
tive late fusion scheme based on feature concatenation, which demonstrates competitive
results [33].

Models trained separately on the ARD dataset for the ARD task are then used to extract
features by removing the classification layer. The extracted features are concatenated into a
single 1D feature vector of size 4096, effectively combining the complementary information
from both RGB and depth data. Figure 1 shows the feature fusion process. Finally, a simple
single-layer neural network is trained to process the concatenated feature vector and make
the final decision regarding the presence of ARD. This approach is characterized by its
simplicity and effectiveness.

4. Experimental Analysis
4.1. Datasets

To evaluate the effectiveness of using multi-modalities for the ARD task, we conduct
experiments on an ARD patient dataset. The dataset was collected at the Sainte-Justine
Hospital Pediatric Intensive Care Unit (PICU) with approval from the Review Ethics Board
(REB) (Ste-Justine REB number 2016-1242, approved on 31 March 2016) and parental
consent.

Videos were recorded for each patient with a respiratory illness for a duration of 30 s.
In total, we collected 210 videos in the PICU, with each video representing a unique patient.
However, videos where the patient’s torso region was covered, of poor quality, or with
excessive noise were excluded. The remaining videos were labeled by two professionals
using the Silverman scoring system [43], where the presence of at least one retraction
indicated ARD. One professional labeled the data in real time during the recording process,
and the second analyzed the videos to ensure information is captured effectively. Videos
with labeling conflicts were also removed, resulting in a final dataset of 153 patients.
Out of the 153 patients, 133 are aged 6 years or younger, with 63.16% exhibiting ARD,
while the remaining 20 patients are older than 6 years, with 11.11% exhibiting ARD.
The data distribution of ARD and Non-ARD patients categorized by age group, retraction
type, and overall totals is presented in Figure 3. The figure on the left presents the ARD
patients’ statistics with respect to age. The figure in the middle presents the distribution
of retraction signs in ARD patients. The figure on the right presents the overall class-
wise data distribution. Of the 153 patients, 86 exhibit ARD, with signs of retractions
distributed as follows: subcostal (74), intercostal (28), substernal (40), and suprasternal (16).
The remaining 67 patients show no signs of chest retraction, indicating the absence of ARD.
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Figure 3. Data distribution of ARD and non-ARD patients categorized by age group, retraction type,
and overall totals.

4.2. Implementation Details

We conduct all experiments using the PyTorch 2.5.1 framework on a NVIDIA Tesla
V100-PCIE-32GB GPU. For model training and testing, we first split the data into training
and validation sets using an iterative data splitting technique [44], based on the information
of the chest retraction signs. The dataset of 153 patients (86 ARD and 67 non-ARD) is
divided into 70% for training (60 ARD and 47 non-ARD) and 30% for testing (26 ARD and
20 non-ARD), ensuring balanced group allocation. The training dataset is further expanded
by segmenting each video into 13 overlapping clips of 6.4 s, yielding a total of 1498 clips: 780
from ARD patients and 718 from non-ARD patients. We then spatially crop the videos to the
shorter side to maintain the aspect ratio and resize them to 256 × 256 pixels. Additionally,
we temporally sub-sample the videos to 10 frames per second (fps). We normalize the RGB
and depth videos to a 0–1 pixel range. All data processing techniques are similar for both
modalities, except for depth modality videos, which undergo spatial normalization (0–1),
as described in Sections 3–3.2. We use stochastic gradient descent with a fixed learning rate
of 0.0005 and a momentum of 0.9. The batch size is set to 64, using gradient accumulation
techniques and binary cross-entropy loss is employed. We train the model for 40 epochs,
saving the best checkpoints by monitoring the validation loss. During training, we apply
temporal and spatial data augmentation techniques such as random spatial cropping to
224 × 224, temporal jittering, random rotation (±30 degrees), and horizontal and vertical
flipping. During inference, we divide each video into four non-overlapping clips of 6.4 s,
applying similar data pre-processing techniques as during training. The final prediction for
each patient is determined by averaging the scores of the four clips.

4.3. Evaluation Metrics

To ensure a fair comparison, we maintain consistent training and testing configurations
in the data splits. Additionally, we employed a five-fold cross-validation approach due to
the limited size of the dataset. For the evaluation, we used standard metrics commonly
used in classification tasks, including accuracy, precision, recall, and the F1 score.

4.4. Ablation Study

To evaluate the effectiveness of multi-modal approaches, we first established baseline
models for each modality. This step allowed us to establish a reference point for comparison
before exploring the potential benefits of integrating multiple data modalities. Subsequently,
we evaluated various feature fusion techniques, including early fusion through channel
concatenation, late fusion methods such as feature concatenation, feature concatenation
with a frozen backbone, and score averaging. We then compared the results to understand
the contribution of multi-modal data to model performance.
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4.4.1. Baseline

To establish baseline results, we evaluate three popular video analysis deep learning
algorithms: X3D convolutional neural networks, channel-separated convolutional neural
networks (CSNs) and R(2+1)D convolutional neural networks. We train all three algorithms
independently on both RGB and depth modalities. Table 1 presents the experimental
results of these three architectures. The results are reported for each evaluation metric as
the minimum (min), average (avg), and maximum (max) score across five folds.

Table 1. Five-fold cross-validation results for three video analysis algorithms, X3D, CSN, and R(2+1)D,
on RGB and depth modalities. Performance metrics (accuracy, precision, recall, and F1 score) are
reported as the minimum (min), average (avg), and maximum (max) scores across five folds.

Model
Accuracy Precision Recall F1 Score

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

X3D
RGB 0.783 0.822 0.870 0.818 0.872 0.95 0.72 0.777 0.833 0.783 0.821 0.864

Depth 0.696 0.757 0.826 0.639 0.716 0.808 0.840 0.910 0.958 0.750 0.799 0.840

CSN
RGB 0.783 0.835 0.891 0.792 0.911 1.0 0.75 0.769 0.792 0.792 0.832 0.884

Depth 0.565 0.665 0.739 0.593 0.668 0.750 0.640 0.745 0.875 0.615 0.701 0.750

R(2+1)D
RGB 0.717 0.796 0.826 0.7 0.793 0.84 0.792 0.835 0.875 0.764 0.812 0.857

Depth 0.565 0.730 0.804 0.559 0.729 0.826 0.792 0.808 0.833 0.655 0.763 0.809

For the RGB modality, X3D achieves an average accuracy of 0.822, precision of 0.872,
recall of 0.777, and an F1 score of 0.821. For the depth modality, X3D attains an average
accuracy of 0.757, precision of 0.716, recall of 0.910, and an F1 score of 0.799. R(2+1)D also
performs well on both RGB and depth modalities. It achieves an average accuracy of 0.796,
precision of 0.793, recall of 0.835, and an F1 score of 0.812 for the RGB modality. For the
depth modality, R(2+1)D attains an average accuracy of 0.730, precision of 0.729, recall
of 0.808, and an F1 score of 0.763. CSN shows better performance on the RGB modality,
achieving an average accuracy of 0.835, precision of 0.911, recall of 0.769, and an F1 score
of 0.832. For the depth modality, CSN achieves an average accuracy of 0.665, precision of
0.668, recall of 0.745, and an F1 score of 0.701.

4.4.2. RGB-D Acute Respiratory Distress Detection

The experimental results in Table 1 show that the depth modality alone lacks sufficient
information to capture chest retraction signs, which are crucial for ARD detection. Therefore,
it is recommended to integrate the depth with RGB to enhance model robustness. To assess
the effectiveness of multi-modality integration, we conduct experiments with two widely
used fusion schemes: early fusion and late fusion. In the early fusion approach, the depth
channel is integrated with the RGB channels, treating the depth data as a fourth channel,
a method referred to as channel concatenation (CC). For the late fusion approach, we
evaluate three variations: feature concatenation (FC), score averaging (SA), and feature
concatenation with frozen base models for both modalities (FCF). The block diagram of the
different types of multi-modality fusion schemes is presented in Figure 4.
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Figure 4. Block diagram illustrating the various types of multi-modality fusion schemes: (a) early
fusion, where input modalities are combined at the input level; (b) score averaging, where individual
modality predictions are averaged; (c) late fusion, where features are combined after independent
processing of each modality w/o base-model freezing.

4.4.3. Early Fusion

In our first approach, we adapt a single deep learning-based video analysis algorithm
to handle four-channel input by modifying the input and the first convolutional layer.
Specifically, we use a pre-trained X3D model, expanding its first convolutional layer to
accommodate the additional depth channel while maintaining the same number of filters
and filter sizes. The layer weights are initialized by averaging the weights from the RGB
model. The results of this channel concatenation (CC) fusion scheme are presented in the
second row of Table 2. The results are reported for each evaluation metric as the minimum
(min), average (avg), and maximum (max) score across five folds. The model achieved an
average accuracy of 0.756, a precision of 0.762, a recall of 0.818, and an F1 score of 0.788.

Table 2. Performance comparison of different feature fusion techniques across five folds (CC—
channels concatenation, FCAT—feature concatenation, SA—score averaging and FCAT-F, feature
concatenation with freezing base-model). Performance metrics, including accuracy, precision, recall,
and F1 score, are presented as the minimum (min), average (avg), and maximum (max) scores across
the five folds.

Fusion
Method

Accuracy Precision Recall F1 Score

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Baseline 0.783 0.822 0.870 0.818 0.872 0.95 0.72 0.777 0.833 0.783 0.821 0.864

CC 0.696 0.765 0.848 0.667 0.762 0.870 0.792 0.818 0.833 0.741 0.788 0.851

FCAT 0.804 0.830 0.848 0.800 0.821 0.840 0.833 0.868 0.917 0.816 0.843 0.863

SA 0.804 0.830 0.848 0.759 0.808 0.846 0.875 0.893 0.917 0.830 0.847 0.863

FCAT-F 0.804 0.852 0.913 0.808 0.867 0.917 0.760 0.852 0.917 0.809 0.858 0.917

4.4.4. Late Fusion

Due to the shortcomings of our initial approach, we adopt a late fusion strategy and
evaluate three different schemes: feature concatenation (FCAT), score averaging (SA),



Appl. Sci. 2025, 15, 1512 10 of 14

and feature concatenation with frozen base models (FCAT-F). In the FCAT approach, we
employ a two-stream network to independently extract features from both RGB and depth
modalities. These features are then concatenated at a later stage and used for classification.
For the SA approach, we utilize two identical models to predict ARD condition scores for
each modality, similar to the previous approach. These scores are aggregated and used for
the final detection. Both FCAT and SA models are trained end-to-end. In contrast to the
previous approaches, the FCAT-F method involves first training the models independently
on each modality. Once trained, these models are used as feature extractors by removing
their classification layers. The features from both modalities are then concatenated and
passed to a single-layer neural network. During training, the weights of the base models,
which were trained on the hospital dataset, are frozen, allowing only the fully connected
single-layer neural network to be trained.

The experimental results of the late fusion schemes are presented in the last three rows
of Table 2. The third row presents the results of the FCAT technique, which achieved an
average accuracy of 0.830, a precision of 0.821, a recall of 0.868, and an F1 score of 0.843,
which is better than the RGB model. The fourth row shows the results of the SA technique,
which achieved an average accuracy of 0.830, a precision of 0.808, and a recall of 0.893,
The results of the FCAT-F technique are shown in the fifth row, demonstrating superior
performance with an average accuracy of 0.852, a precision of 0.867, a recall of 0.852, and an
F1 score of 0.858.

4.4.5. Performance Analysis Across Age Groups

For this analysis, we group the dataset into two age groups: 1 (<6 years) and
2 (≥6 years). As the dataset is biased toward the younger age group, similar trend in
model performance is observed. The model exhibits strong performance in the first group
(<6 years) with high accuracy (0.85) and precision (0.9047), while its performance in the
second group (≥6 years) is less favorable, with lower precision and all metrics. The im-
balance between the groups likely influence the observed results. As there are only three
positive examples in whole dataset for patients above 6 years old (2 for training and 1 for
testing). The results presented in Table 3 represent the average performance across five-fold
cross-validation. The average recall, precision, and true-positive rate (TPR) suggest that the
model is unreliable for patients older than 6 years.

Table 3. Model performance across age groups (1: <6 years, 2: ≥6 years).

Age Group Accuracy Precision Recall TP_Rate TN_Rate

1 0.788 0.863 0.767 0.767 0.820

2 0.744 0.166 0.400 0.400 0.796

5. Discussion
The experimental results highlight the importance of using multi-modality data for

detecting ARD. Figure 5 presents the average accuracy, precision, recall, and F1 score of the
ARD detection system using different modality and different modality fusion schemes. It
was found that the depth modality lacks the necessary information required for detecting
chest retraction signs, a critical indicator of ARD. This limitation is primarily due to the
low resolution of the depth camera (1 megapixel), which struggles to capture fine details,
such as the subtle changes in lung pressure associated with chest retraction. Consequently,
models relying on the depth modality face difficulties in learning crucial low-level, task-
specific features. All three video analysis algorithms support the conclusion that the model
struggles to perform with the depth modality alone (Table 1). However, networks using
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the depth modality were able to make predictions based on the motion features caused
by patient restlessness. However, these motion features are not discriminative, as they
appeared in both non-ARD and ARD cases, limiting their value for distinguishing between
the two conditions.

Figure 5. Performance comparison of ARD detection (X3D) system using different modality and
different modality fusion schemes. The bars represent the average performance, with error bars
indicating the min–max range of each metric across five folds.

Secondly, the experimental outcomes of integrating RGB-D data through early fusion
scheme is even worse than using the RGB modality alone. A primary reason for the poor
performance is the limited data size, which caused the model to overfit quickly, resulting in
suboptimal performance. And, the re-initialization weights of the first convolutional layer
of the network limited the potential benefits of transfer learning. In contrast, the integration
of RGB-D information through late fusion schemes demonstrated significantly improved
performance over single-modality approaches. Specifically, the FCAT-F approach emerged
as the most effective fusion strategy in this study, achieving the highest average accuracy
and F1 score across all other fusion methods. This improvement is indicative of the benefits
of independently training separate models for each modality. By doing so, each model is
able to learn more distinct and task-specific features before combining them, leading to a
more comprehensive and effective feature representation. This contrasts with end-to-end
trained two-stream models (FCAT & SA), where feature learning may be less specialized.
In summary, this study shows that using multi-modality information with an effective
feature fusion scheme significantly improves ARD detection system performance.
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6. Conclusions and Future Work
This study presented a two-stream multi-modal acute respiratory distress detection

system utilizing 3D convolutional neural networks to analyze both RGB and depth data.
The proposed system employs a late feature fusion scheme (feature concatenation) to in-
tegrate information from both modalities effectively. Experimental results demonstrate
that the depth modality alone does not provide sufficient information for the ARD detec-
tion task. Furthermore, the results show that early fusion techniques are less effective for
ARD detection, likely due to the limitations of the dataset size. In contrast, late fusion
techniques, particularly the feature concatenation with freezing base models (FCAT-F)
approach, substantially improve performance by effectively combining multi-modal infor-
mation. The superior performance of FCAT-F underscores the advantages of leveraging
pre-trained models and carefully integrating features from multiple sensors. However,
the proposed method exhibits biased toward younger age groups (less than six years old),
as only limited instances are available for patients aged more than 6 years.

For future work, we plan to explore pre-trained action recognition models specifically
trained on RGB-D data, combined with advanced feature fusion techniques. In particular,
we aim to investigate multi-level slow fusion and late fusion methods by initially training
on large-scale datasets such as NTU RGB+D 120 and subsequently fine-tuning on our ARD
dataset. This approach aims to leverage the rich features from larger datasets to address
the challenges posed by limited data and enhance detection accuracy and robustness.
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