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A B S T R A C T

Lack of standardization and various intrinsic parameters for magnetic resonance (MR) image acquisition results
in heterogeneous images across different sites and devices, which adversely affects the generalization of deep
neural networks. To alleviate this issue, this work proposes a novel unsupervised harmonization framework
that leverages normalizing flows to align MR images, thereby emulating the distribution of a source domain.
The proposed strategy comprises three key steps. Initially, a normalizing flow network is trained to capture the
distribution characteristics of the source domain. Then, we train a shallow harmonizer network to reconstruct
images from the source domain via their augmented counterparts. Finally, during inference, the harmonizer
network is updated to ensure that the output images conform to the learned source domain distribution,
as modeled by the normalizing flow network. Our approach, which is unsupervised, source-free, and task-
agnostic is assessed in the context of both adults and neonatal cross-domain brain MRI segmentation, as well
as neonatal brain age estimation, demonstrating its generalizability across tasks and population demographics.
The results underscore its superior performance compared to existing methodologies. The code is available at
https://github.com/farzad-bz/Harmonizing-Flows.
1. Introduction

Magnetic Resonance Imaging (MRI) serves as an indispensable tool
in modern medical diagnostics, enabling clinicians to obtain detailed
insights into anatomical structures and pathological conditions. How-
ever, the inherent variability in MRI data acquisition protocols across
different imaging sites poses significant challenges in achieving con-
sistent and reliable image interpretation. This variability can stem
from differences in scanner hardware, imaging parameters, and patient
populations (Takao et al., 2011), leading to inconsistencies in image
appearance and potentially confounding downstream analysis. For in-
stance, MRIs acquired from two different scanners or with different sets
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of parameters and configurations will often have noticeable appear-
ance differences, which can be considered as domain shift. Therefore,
pooling multi-centric clinic trials to address specific questions does not
necessarily enhance statistical power, as the introduced variance may
partially stem from non-clinical sources.

On the other hand, despite the considerable progress observed in
deep learning, these models still face challenges in coping with distribu-
tional shifts. The performance of deep neural networks in fundamental
visual problems, such as classification, segmentation, and regression,
largely degrades when they are applied to data acquired under varied
conditions, consequently limiting their broad applicability. Specifically,
models trained on data from a specific site often struggle to achieve
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similar performance when applied to images from other centers.
To mitigate this challenge, image harmonization tackles the prob-

lem of distributional drifts by mapping images from one domain to
nother, aiming at transferring contrast characteristics across diverse
atasets. MRI harmonization ensures the comparability of MRI data

collected from different scanners, facilitating accurate and consistent
nalysis for multi-center studies involving diverse imaging datasets.

However, many existing harmonization approaches rely on assump-
ions that could impede their feasibility and scalability in real-world

applications. For example, some methods involve acquiring imaging
data of the same anatomical targets from multiple sites or locations.
These methods, often referred to as using traveling subjects, aim to
dentify and quantify the transformations needed to harmonize the

data across different acquisitions settings (Dewey et al., 2019; Durrer
et al., 2023). Another family of approaches requires access to the
source images during harmonization or knowing the target domain in
advance (Pomponio et al., 2020; Modanwal et al., 2020; Liu et al.,
2021; Cackowski et al., 2023), which might not be feasible in practical
scenarios. It is worth mentioning that in this context, the source domain
refers to the domain that serves as the reference for harmonization,
representing the desired appearance or distribution that other domains
(referred to as target domains) are aligned to after the harmonization
process. Furthermore, several of these harmonization strategies require
annotated data associated with the downstream task (Delisle et al.,
2021; Dinsdale et al., 2021; Karani et al., 2021). This poses an addi-
ional challenge to the harmonization, as acquiring labeled data can be
esource-intensive and time-consuming, especially when dealing with
arge datasets and dense tasks such as segmentation. Finally, many har-
onization techniques require knowledge of the target domains during

he training phase, despite the common occurrence of unknown target
omains in real-world scenarios. Based on the limitations exposed
bove, we present the following contributions in this work:

• We alleviate the aforementioned constraints on MR harmoniza-
tion and introduce a novel harmonization approach that is un-
supervised, source-free ( ), task-agnostic ( ) and can cope with
unknown-domains ( ) without necessitating retraining for every
target distribution. In fact, our approach only requires MRIs from
one modality of the source domain during training, as opposed to
existing approaches.

• Specifically, we propose to leverage a modern family of genera-
tive models, known as normalizing flows, which have proven to
be highly effective in modeling data distributions for generative
purposes.

• Alongside the methodological novelty of the proposed method,
our empirical findings illustrate that it yields significant improve-
ments over existing harmonization techniques, while effectively
mitigating their limitations. More importantly, the comprehensive
experimental section on multiple tasks and datasets demonstrates
that the proposed approach successfully generalizes across target
tasks and population demographics.

A preliminary conference version of this work has been presented at
IPMI 2023 (Beizaee et al., 2023). This manuscript provides a substantial
xtension of the conference version, which includes (i) an extended

literature review on methods addressing the problem of distribution
shift, and a comprehensive empirical validation of the proposed ap-
roach, including (ii) additional recent approaches for harmonization,
iii) extensive ablation studies to validate our choices, (iv) assessing the
erformance of our approach in multiple tasks and population demo-
raphics, (v) including additional adult datasets in the experiments, (vi)
mploying additional evaluation metrics to assess the performance from
 harmonization standpoint, (vii) and complimentary plots and results
o better understand the overall performance of the different studied
ethods.
2

2. Related work

Image harmonization. In the medical domain, various methods have
een proposed to harmonize images, with a particular focus on MRI
ata. Traditional post-processing procedures like intensity histogram
atching (Nyúl et al., 2000; Shinohara et al., 2014) help mitigate

biases across scanners, but may also eliminate informative local in-
ensity variations. Statistical harmonization approaches, on the other

hand, can model both image intensity and dataset bias at the voxel
level (Fortin et al., 2016, 2017; Beer et al., 2020). However, when the
ariations in data distribution are more complex and localized, they
ypically lead to sub-optimal harmonization outcomes. Additionally,
hese methods must often be adjusted each time images from new
ites are provided, further compromising their performance in real-
orld applications. Modern strategies for image harmonization, using
eep learning techniques, hold significant promise as an alternative
olution for this problem (Dewey et al., 2019; Zhu et al., 2017; Liu

et al., 2021; Zuo et al., 2021; Delisle et al., 2021; Dinsdale et al.,
2021). Yet, these approaches often rely on unrealistic assumptions,
which pose significant barriers to scalability when applied to exten-
ive multi-site harmonization endeavors. First, some methods require
mages of the same target anatomy across different sites, known as
traveling subjects, to identify intensity transformations among different
sites (Dewey et al., 2019; Durrer et al., 2023). This means that a
given number of subjects being scanned at every site or scanner is
employed for training, a condition rarely met in practice. The most
widely used models for MR harmonization are GANs and autoecoders,
which have shown promising results in reducing multi-site variation
through image-to-image synthesis. GANs perform domain translation
by learning domain invariant features. One issue of such models is
that they are limited to mapping between two specific scanners for
most studies. Also, target domains are required to be known at the
raining time (Zhu et al., 2017; Liu et al., 2021) which is a limiting

factor for the scalability of the harmonization process. Additionally,
each time a new domain is added, these approaches must be fine-tuned
to accommodate the characteristics of this domain. Autoencoder-based
methods (Torbati et al., 2021; Dewey et al., 2020; Zuo et al., 2021,
2023; Wu et al., 2023; Cackowski et al., 2023), on the other hand,
aim to harmonize data in terms of disentangled representations. This
group of harmonization methods attempted to extract scanner-related
features for harmonization. Similar to GANs, data from multiple sources
and target domains are required for training. CALAMITI (Zuo et al.,
2021), and HACA3 (Zuo et al., 2023), which are two key methods of
this category, require paired multi-modal MRIs for training, thereby
restricting their applicability, particularly in single-modality scenarios.
DLEST (Wu et al., 2023) and Imunity (Cackowski et al., 2023) try to
solve the problem of requiring multi-modal data for latent disentangle-
ment. However, training these methods can be challenging due to the
instability of their adversarial learning strategy. Lastly, task-dependent
methods leverage labels associated with each image for a particular
downstream task to optimize the harmonization for this specific prob-
lem (Delisle et al., 2021; Dinsdale et al., 2021). These methods often
ely on task-specific features or assumptions, making them less effective
hen applied to new tasks or unseen data. Additionally, task-dependent
armonization approaches require large amounts of annotated data for
raining, which can be costly and time-consuming to acquire.

Test-time Domain Adaptation. Traditional solutions to the problem of
distributional shift use labeled samples from a source domain and unla-
beled ones from the target domain for adapting a source-trained model
to perform well on the target. Several strategies for this task, known
s unsupervised domain adaptation (UDA), work by explicitly aligning
he feature distributions of the source and target domains (Wang et al.,

2023; Wu and Zhuang, 2020). Another popular approach consists in
learning a domain-agnostic representation, for example using adver-
sarial networks (Dou et al., 2019; Kamnitsas et al., 2017). Generative
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Fig. 1. Harmonizing flows pipeline. Our method comprises three primary steps. Initially, normalizing flow (NF) is utilized to capture the distribution of the source domain.
Subsequently, a harmonizer network undergoes pre-training to reconstruct the original images from augmented counterparts, facilitating initial harmonization. In the third stage
(test time), the trained NF is leveraged to update the parameters of the harmonizer network, ensuring maximal alignment between the harmonized outputs and the learned NF
distribution. Notably, steps 1 and 2 are independent of each other and can be executed interchangeably.
adversarial networks (GANs) can also be employed in style transfer
methods to change the appearance of images from the target to the
source while also preserving their semantic structures (Chen et al.,
2020; Zhao et al., 2021).

A major limitation of UDA methods is their need to have source
examples during the adaptation phase, which may be impracticable
in medical applications due to data sharing restrictions. Source-free
domain adaptation (SFDA) approaches (Bateson et al., 2022; Yang
et al., 2022; Stan and Rostami, 2024) relax this constraint and instead
adapt the source-trained model using only unlabeled data from the
target domain. However, these approaches are usually task-dependent
and require an explicit adaptation process for each new target domain,
hence are not compatible with the harmonization setting investigated
in this work.

Another strategy for addressing distribution shift, more closely re-
lated to our method, is test-time adaptation (TTA) (Boudiaf et al., 2022;
Mummadi et al., 2022; Liang et al., 2020; Wang et al., 2021a; Niu
et al., 2022, 2023). Unlike SFDA, which performs adaptation in an
offline step, this strategy adapts a pre-trained deep neural network
to domain shifts encountered during inference on test samples. One
of the earliest TTA approaches, called TENT (Wang et al., 2021a),
updates the normalization layers of the network by minimizing the
Shannon entropy of predictions for test samples. In Mummadi et al.
(2022), entropy minimization has been changed by optimizing a log-
likelihood ratio and considering the normalization statistics of the test
batch. EATA (Niu et al., 2022) instead introduces an active sample
selection criterion to identify reliable and non-redundant samples. The
model is then updated based on these samples to minimize entropy
loss for test-time adaptation. In Niu et al. (2023), authors propose
a sharpness-aware and reliable entropy minimization method called
SAR, further stabilizing the TTA process. Moreover, SHOT (Liang et al.,
2020) adapts the entire feature extractor with a mutual information
loss, while using pseudo-labels to provide additional test-time guidance.
Instead of updating the network parameters, LAME (Boudiaf et al.,
2022) uses Laplacian regularization to do a post-hoc adaptation of the
softmax predictions. Recent works have explored the potential of TTA
for cross-site/modality segmentation of medical images. Authors of Hu
et al. (2021) propose a TTA method for segmentation using a regional
nuclear-norm loss to improve the discriminability and diversity of
predictions and a contour regularization term to enforce segmentation
consistency between nearby pixels. Contrary to this paradigm, where
typically the target-task network (e.g., classification or segmentation)
is adapted at inference based on surrogate losses on the network pre-
dictions, our work focuses on modifying the image appearance instead,
which offers a more general solution, which is agnostic to the task at
hand.
3

Furthermore, while Karani et al. (2021) uses the reconstruction
error of an auto-encoder applied on segmentation outputs to normalize
input images, it requires segmentation masks for the adaptation, which
makes of this strategy task and annotation dependent.

Normalizing flows. Popular methods for generative tasks include gen-
erative adversarial networks (GANs) (Goodfellow et al., 2020) and
Variational Auto-encoders (Kingma and Welling, 2014). Despite their
popularity and wide acceptance, these methods present several impor-
tant limitations, including mode (Salimans et al., 2016) and posterior
collapse (Lucas et al., 2019), training instability (Salimans et al., 2016),
and the incapability of providing an exact evaluation of the proba-
bility density of new data points. Recently, normalizing flows (NF)
have emerged as a popular approach for constructing probabilistic
and generative models due to their ability to model complex distri-
butions (Dinh et al., 2017). Normalizing flows involves mapping a
complex distribution, often unknown or poorly characterized, to a
simpler distribution, typically the standard normal distribution. This is
accomplished through a series of invertible and differentiable transfor-
mations. These transformations allow for efficient density estimation,
sampling, and generative modeling. One of the key advantages of
normalizing flows is their ability to capture intricate dependencies
within data while providing tractable likelihood estimation, enabling
a wide range of applications across domains. While the majority of
current literature has utilized NFs for generative purposes (e.g., im-
age generation (Ho et al., 2019; Kingma and Dhariwal, 2018), noise
modeling (Abdelhamed et al., 2019), graph modeling (Zang and Wang,
2020)) and anomaly detection (Gudovskiy et al., 2022; Kirichenko
et al., 2020), recent findings also indicate their effectiveness in aligning
a given set of source domains (Grover et al., 2020; Usman et al., 2020;
Osowiechi et al., 2023). Closely related to our problem, and up to the
best of our knowledge, only a few attempts have investigated using
normalizing flows to harmonize MR images. In particular, Wang et al.
(2021b) presented a strategy that harmonizes pre-extracted features,
i.e., brain ROI volume measures, and not image harmonization as
in this work. In addition, extracting these ROIs requires pixel-wise
labels, making of this approach task-dependent, contrary to our method
which is task-agnostic. Furthermore, Jeong et al. (2023) is a concurrent
approach that appeared after the conference version of this work was
published. As discussed in their work, and shown empirically in our
evaluation, although this method also leverages normalizing flows
to harmonize images, it fails in the presence of large domain drifts
between source and target sites.

3. Methodology

We first define the problem addressed in this study. Consider  =
{𝐱 }𝑁 as a collection of unlabeled images from the source domain
𝑛 𝑛=1
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, where each image 𝑖 is represented by 𝐱𝑖 ∈ R|Ω|, with Ω indicating
ts spatial domain (i.e., 𝑊 ×𝐻). Likewise, let  = {𝐱𝑛}𝑀𝑛=1 be the

set of unlabeled images within a target domain  .1 The objective of
nsupervised data harmonization is to discover a mapping function
𝜃 ∶  →  without relying on labeled images or paired data from
ither domain.

We introduce a solution based on normalizing flows to address this
problem. The proposed framework, which comprises three separate
steps, is illustrated in Fig. 1. In Step 1, we first utilize Normalizing
lows, renowned for their ability to accurately learn data likelihoods, to
apture the source domain’s distribution. In Step 2, we then employ an
uto-encoder as a harmonizer network, pre-training it by reconstruct-

ing original images from the augmented source domain counterparts.
Finally, during testing, we update the parameters of the harmonizer
etwork using images from the unseen target domain, ensuring that the
armonized outputs align with the learned distribution using NF model.
he following sections present each of these steps in greater detail.

3.1. Learning the source domain distribution

We have leveraged normalizing flows (Dinh et al., 2017) to model
the source domain distribution. NFs are a modern family of gener-
ative models capable of modeling complex probability density 𝑝𝑥(𝐱)
(i.e., the source domain distribution) through applying a sequence of
transformation functions, denoted as 𝑔𝜙 = 𝑔1◦𝑔2◦… 𝑔𝑇 , on known
simple probability density 𝑝𝑢(𝐮) such as standard normal distribution.
Source image can be represented as 𝐱 = 𝑔𝜙(𝐮), where 𝐮 ∼ 𝑝𝑢(𝐮) and
𝑝𝑢(𝐮) denotes the base distribution of the normalizing flow model. An
essential condition for the transformation function 𝑔𝜙 is its requirement
to be invertible, with both 𝑔𝜙 and 𝑔−1𝜙 being differentiable. With these
prerequisites met, the density of the original variable 𝐱 is well-defined,
allowing for the exact computation of its likelihood using the change
of variables rule, expressed as:

log 𝑝x(𝐱) = log 𝑝z
(

𝑔−1𝜙 (𝐱)
)

+ log ||
|

|

det
(

𝐉𝑔−1𝜙 (𝐱)
)|

|

|

|

= log 𝑝z
(

𝑔−1𝜙 (𝐱)
)

+
𝑇
∑

𝑡=1
log ||

|

det
(

𝐉𝑔−1𝑡 (𝐮𝑡−1)
)

|

|

|

(1)

The first component of the right side corresponds to the log-likelihood
within the simple distribution and 𝐉𝑔−1𝑡 (𝐮𝑡−1) indicates the Jacobian
matrix corresponding to the transformation 𝑔𝑡. In order to train the
Normalizing flow model and learn the source domain distribution,
model parameters 𝜙 are learned by maximizing the likelihood of the
transformed data under the simpler distribution. This is achieved by
minimizing the negative log-likelihood in Eq. (1) which leads to the
following loss function:

𝑁 𝐹 = − log 𝑝x(𝐱) (2)

Building the Normalizing Flow. Constructing a bijective transforma-
tion function neural network for the Normalizing Flow (NF) model
often involves the stacking of affine coupling layers, as highlighted
by Dinh et al. (2017) and Kingma and Dhariwal (2018). This approach
has been established as an efficient strategy. Coupling layers offer
computational symmetry, meaning they are equally rapid in both eval-
uation and inversion processes. This characteristic addresses usability
concerns inherent in asymmetric flows, such as masked autoregres-
sive flows, which makes the coupling layers a preferred choice. Their
balanced computational efficiency enables smoother integration into
various applications, contributing to their widespread adoption in NF
architectures. Suppose 𝐳 ∈ R𝐷 serves as the input to the coupling
layer, which is partitioned disjointly into (𝐳𝐴, 𝐳𝐵) ∈ R𝑑 × R𝐷−𝑑 . The

1 For simplicity, we assume a single domain exists here. However, our
formulation can be readily extended to accommodate 𝑇 distinct domains.
4

s

partitioning can be done along spatial dimensions (e.g. checkerboard
asking strategy) or channels (channel masking strategy). Then, the

ransformation function 𝑔(⋅) ∶ R𝐷 → R𝐷 can be expressed as:

𝐲𝐴 = 𝐳𝐴, 𝐲𝐵 = 𝐳𝐵 ⊙ exp
(

𝑠
(

𝐳𝐴
))

+ 𝑡
(

𝐳𝐴
)

(3)

where 𝐲𝐴 and 𝐲𝐵 represent the transformed parts of the input data and
is element-wise multiplication. This formulation divides the input

nto two parts (𝐳𝐴 and 𝐳𝐵), and transforms only the latter part, leaving
he former unchanged. This setting offers simplicity for calculating
he Jacobian determinant, which makes it possible to use complex

neural networks as shift 𝑠(⋅) and scale 𝑡(⋅) networks. Note that the
ransformation in Eq. (3) is invertible and therefore allows for efficient
ecovery of 𝐳𝐴 and 𝐳𝐵 from 𝐲𝐴 and 𝐲𝐵 . The work in Dinh et al.

(2017) presented coupling flows on simpler tasks and datasets which
demanded less complex representations. However, our current task ne-
cessitates pixel-to-pixel mappings on more challenging data. Therefore,
we replace the simple convolutional blocks in Dinh et al. (2017) with
hallow U-shaped convolutional neural networks to find the scale and
hift parameters of the affine transformation, as they capture broader
ontextual information and provide higher representational capacity.
oreover, given that NFs rely on the change of variables rule, which

perates within continuous space, it is important to ensure that the
nput is continuous. Traditionally, dequantization involves adding uni-
orm noise 𝑢∈𝑈 [0, 1] to discrete values to convert them into continuous
epresentations. However, it could lead to a hypercube representation
ith sharp borders. Such sharp borders pose a challenge for mod-
ling with a flow, as it relies on smooth transformations. Recently,
 variational framework was introduced (Ho et al., 2019) to expand

dequantization to more sophisticated distributions. This was achieved
by substituting the uniform distribution with a learnable distribution.
This learnable distribution can be optimized alongside other parameters
f the normalizing flow, allowing for end-to-end training and seamless
ntegration into the density estimation process.

Constraining the source-distribution learning. Optimizing the ob-
ective in Eq. (2) solely with source images could potentially bias
the model towards emphasizing characteristics of subjects, such as
age and gender, rather than focusing on source-specific attributes like
ontrast and brightness. To address this concern, we propose a strategy
imed at facilitating the learning of the source domain distribution.
or this purpose, in each iteration, we randomly select 𝑁 ′ images
f the source dataset  and apply a series of augmentations 𝑓𝑎𝑢𝑔(⋅)
n such a way that the resulting image exhibits a dissimilarity in
ppearance compared to the original image, as measured by the mean
quared distance, surpassing a predetermined threshold. These images
an be served as out-of-distribution samples, to guide the normalizing
low model to learn source-specific characteristics. In particular, we
mploy different types of contrast augmentation, brightness changes,
ultiplicative transformations, and random monotonically increasing
apping functions to augment these images. Then, the overall learning

bjective of our model can be defined as follows.

𝑇 = −
𝑁−𝑁 ′
∑

𝑛=1
log 𝑝x(𝐱𝑛)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Source distribution modeling

−
𝑁 ′
∑

𝑛=1
min

(

c,− log 𝑝x(𝑓𝑎𝑢𝑔(𝐱𝑛))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Guiding term

. (4)

The first term is the learning objective in Eq. (2) over the source
images, while the second one encourages the NF model to reduce
he likelihood of the augmented images, which facilitates the learning
f domain-specific characteristics rather than subject-related features.
urthermore, to prevent divergence of the negative log-likelihood for
n augmented sample to infinity, we employ a constant margin in the
econd term denoted as c.
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3.2. Achieving image harmonization

Harmonizer network. The goal of our harmonizer network ℎ𝜃(⋅) is
o perform image-to-image translation of MRIs from the target to the
ource domain in such a way that: 𝑝𝐱(𝐱) = 𝑝𝐱′ (ℎ𝜃(𝐱′)). It is important

to highlight that the input and output of the harmonizer network must
hare the same spatial dimensions. Here 𝜃 denotes the set of learnable
arameters within the harmonizer network, and 𝐱 and 𝐱′ represent the

samples from the source domain and target domains, respectively. This
mplies that the harmonizer network aims to shift the distribution of the
arget images so that they align with the distribution of source images.
onetheless, we want the proposed method to operate effectively on
nseen domains, necessitating that the target domains remain unknown
uring training. To this end, at first, the harmonizer network was
rained to restore the original MRIs of the source domain from its
ugmented version. As in the previous step, we used different types
f contrast augmentation, brightness changes, multiplicative transfor-
ations, and random monotonically increasing mapping functions. In

contrast to the first step, there are no restrictions on how much the
image can be altered as long as the augmented image is logical and
details are not eliminated. To train this model, we employed the sum
of two commonly used standard reconstruction loss functions: SSIM
(Structural Similarity Index Measure) loss (Wang et al., 2004) and
L1 loss (mean absolute error). SSIM loss is more appropriate when
preserving structural similarity and perceptual quality is important,
while L1 loss is suitable for tasks where exact pixel-wise accuracy is
required, regardless of perceptual differences. The learning objective
for the harmonizer network thus becomes:

𝜃𝑖𝑛𝑖𝑡 = argmin
𝜃

1
𝑁

𝑁
∑

𝑛=1

(

‖

‖

‖

𝐱𝑛 − ℎ𝜃
(

𝑓𝑎𝑢𝑔(𝐱𝑛)
)

‖

‖

‖

+ 𝑆 𝑆 𝐼 𝑀 (

𝐱𝑛, ℎ𝜃
(

𝑓𝑎𝑢𝑔(𝐱𝑛)
))

)

(5)

A simple UNet has been considered as the harmonizer network.
lso, it is important to emphasize that the conducted augmentations
ay not perfectly represent potential unseen target domains. So, di-

ectly using the trained parameters 𝜃𝑖𝑛𝑖𝑡 for image-to-image translation
ields sub-optimal harmonization. Nevertheless, it provides a good
tarting point for the next phase.

Adapting the harmonizer network leveraging the Normalizing
Flow. So far, we have obtained an initial harmonizer network that gives
us the possibility of transforming image appearance across domains,
while bearing in mind that the output is sub-optimal. Also, we have
learned the exact distribution of the source domain using a normalizing
flow model, where we ensured that it focuses on domain-specific
characteristics. The final step involves refining the harmonizer network
o effectively map images from the target domain onto the distribution
f the source domain. For this purpose, firstly, we stack the trained
F model at the top of the pre-trained harmonizer network as Fig. 1.

Note that as we aim to leverage the learned distribution by the NF
odel which is already trained with the source data, its parameters

should remain frozen during the adaptation of the harmonizer. Then
we try to optimize the parameters of the harmonizer network, such that
harmonizer network outputs exhibit a high likelihood of aligning with
the source domain distribution under the supervision of the trained NF

odel. The learning objective of the adaptation stage is to increase
he likelihood of the harmonizer outputs for images from the target
omain, based on the density estimation provided by the NF model.
his objective is encapsulated in a defined loss function, which can be
xpressed as follows:

𝐴𝑑 𝑎𝑝 = −
𝑀
∑

𝑚=1
log 𝑝x

(

𝑔𝜙
(

ℎ𝜃(𝐱𝑚)
))

(6)
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As a stopping condition for updating the harmonizer, we assess
two potential alternatives: One criterion involves assessing the Shannon
ntropy of the predictions generated by the target downstream task
sing the harmonized images (e.g., classification or segmentation), and
topping the adaptation when the entropy plateaus. Additionally, we

take into account the bits per dimension (BPD), which is a scaled
variation of the negative log-likelihood commonly utilized for assessing
generative models:

𝐵 𝑃 𝐷 = − log 𝑝x(𝐱) ⋅
(

log 2 ⋅
∏

𝑖
Ω𝑖

)−1
(7)

where Ω1, . . . , Ω𝑇 , are the spatial dimensions of the input images. More
concretely, we can stop updating the harmonizer network when the
reached BPD value matches the BPD observed for the source images
using the trained NF model. In practice, the source BPD value can be
determined during the training time using a validation set.

4. Experiments

4.1. Experimental setting

First, we resort to the cross-site brain MRI segmentation task to eval-
uate the harmonization performance of different methods. We chose
this task as it allows us to assess not only how effectively the proposed

ethod aligns target domain images with the source domain, but also
to evaluate whether the structural details are preserved well during the
armonization process. Furthermore, we investigate how well the pro-
osed approach performs across different populations, encompassing
oth neonates and adults, and imaging modalities (i.e., T1-weighted
nd T2-weighted MRI). Last, to demonstrate the generalizability of our
ethod, we explore its performance on the distinct task of neonatal

rain gestational age estimation.

Datasets

MRI harmonization. It is important to recall that even though the
mpirical validation showcases the results across all the available sites,
he proposed model only has access to a unique domain, i.e., the
ource, during the training steps and a unique target domain during
he harmonization step. The details of the different datasets used for
ach task are provided below.

Adult brain MRI segmentation. In the context of adult brain MRI segmen-
ation, we utilized data from a total of seven different sites. 2 Four of

these sites are drawn from the Autism Brain Imaging Data Exchange
ABIDE) (Di Martino et al., 2014) dataset, which includes: California

Institute of Technology (CALTECH), Kennedy Krieger Institute (KKI),
University of Pittsburgh School of Medicine (PITT), and NYU Langone
Medical Center (NYU) sets. Out of the remaining sites, Staten Island
(SI) and Rutgers University (RU) sites are sourced from the Healthy
Brain Network (HBN) (Alexander et al., 2017) dataset, which we refer
to as HBNSI and HBNRI in this paper, along with data from the Open
Access Series of Imaging Studies (OASIS) (Marcus et al., 2007). We
selected T1-weighted MRIs of a healthy control population from each
site, which were skull-stripped, motion-corrected, and quantized to
256 intensity levels. For each site, 60% of the images are used as the
training set, 15% as the validation set, and the remaining 25% for
testing, which are exploited in a 2D manner using the coronal plane
slices. Also, the dimensionality of each 2D brain MRI slice is 256 × 256.
with resolutions mentioned in Table 1. Moreover, following other large-
scale studies (Dolz et al., 2018), we used Freesurfer (Fischl, 2012)
to obtain the segmentations and grouped them into 15 labels: back-
ground, cerebral GM, cerebral WM, cerebellum GM, cerebellum WM,

2 Please note that in the conference version of this work (Beizaee et al.,
2023), only four datasets were employed in the experiments, which explains
the differences in the empirical results from both versions.
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Table 1
Acquisition parameters across different sites. Scanner details and phenotypic information for each site used in this study. y : years; gw: gestation
weeks.

Sites # used MRIs Scanner TR (ms) TE (ms) Flip angle Voxel size (mm3) Age

CALTECH 19 Siemens 1590 2.73 10 1.0 × 1.0 × 1.0 17–56 y
KKI 20 Phillips 8 3.70 8 1.0 × 1.0 × 1.0 8–13 y
NYU 20 Siemens 2530 3.25 7 1.3 × 1.0 × 1.3 6–39 y
PITT 20 Siemens 2100 3.93 7 1.1 × 1.1 × 1.1 9–35 y
HBNSI 77 Siemens 2730 1.64 7 1.0 × 1.0 × 1.0 5–21 y
HBNRU 57 Siemens 2500 3.15 8 0.8 × 0.8 × 0.8 5–21 y
OASIS 117 Siemens 9.7 4.0 10 1.0 × 1.0 × 1.25 18–96 y
DHCP T1-w 280 Philips 4795 8.7 N/A 0.8 × 0.8 × 0.8 37–45 gw
DHCP T2-w 333 Philips 12 000 156 N/A 0.8 × 0.8 × 0.8 37–45 gw
V2LP T1-w 122 Siemens 2100 3.39 9 1.0 × 1.0 × 1.0 37–45 gw
V2LP T2-w 122 Siemens 8910 152 120 1.0 × 1.0 × 1.0 37–45 gw
d
n
t
t
d
a
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CSF, ventricles, brainstem, thalamus, hippocampus, putamen, caudate,
pallidum, amygdala and ventral DC.

Neonatal brain MRI segmentation and age estimation. We employed T1-
weighted and T2-weighted MRIs from the developing Human Con-
nectome Project (DHCP) (Makropoulos et al., 2018), VIBES2 (Spittle
t al., 2014) and LaPrem (Cheong et al., 2021) datasets. As VIBES2

and LaPrem datasets are acquired with the same imaging device and
parameters, we have combined them and considered them as one site,
which we refer to as V2LP hereafter in this paper. All MRIs were
sourced from a healthy control population aged between 37 and 45
weeks of gestational age. For neonatal brain MRI segmentation, we
utilized the coronal view 2D slices, while the axial view 2D slices were
chosen for brain age estimation due to their richer information content.
Also, similar to adults, the dimensionality of 2D slices is 256 × 256.
The preprocessing and data splitting procedures for neonates were
consistent with those used for adults, with the only difference being the
inclusion of contours of 35 regional structures obtained from M-CRIB-
S (Adamson et al., 2020). Image acquisition parameters and device,
umber of used MRIs, and population age can be found in Table 1

for both adults and neonatal datasets. These values showcase how the
selected datasets have distinct imaging devices and parameters.

Harmonization baselines. The proposed method is compared to a
et of harmonization and image-to-image translation approaches. First,
e apply either the segmentation or age regression network directly

on non-harmonized images, which we refer to as a ‘‘Baseline’’, so we
can assess the improvement gained using the harmonized images. Fur-
thermore, our comparison also includes the following harmonization
strategies: Histogram Matching (Nyúl et al., 2000), Combat (Pomponio
et al., 2020), SSIMH (Guan et al., 2022), two popular generative-
based approaches, i.e., Cycle-GAN (Modanwal et al., 2020) and Style-

ransfer (Liu et al., 2021), a source free latent-disentanglement har-
onization (Imunity) (Cackowski et al., 2023), and a recent method

for harmonization based on normalizing flows (BlindHarmony) (Jeong
et al., 2023).

Test time domain adaptation and generalization baselines. In ad-
dition to the existing harmonization methods, the proposed approach
is benchmarked against several test time domain adaptation and gen-
eralization methods. These methods include: aleatoric uncertainty esti-
mation (AUE) (Wang et al., 2019), which uses test time augmentation
to adapt to the target domain; BigAug (Zhang et al., 2020), which
uses heavy augmentations on MRIs for generalization; and TENT (Wang
et al., 2021a) and SAR (Niu et al., 2023), which are test-time adaptation

ethods based on the segmentation’s output confidence, i.e., entropy.
he comparison with these methods aims to shed light on the impor-
ance of MRI harmonization and to reveal whether MRI harmoniza-
ion can be replaced by domain generalization or test-time adaptation
ethods.

Evaluation metrics and protocol. Segmentation. To evaluate the per-
formance of the proposed MRI harmonization approach on adult cross-
site brain MRI segmentation, we train a segmentation neural network
6

𝑆𝛷(⋅) using the training set of the source domain. Then for each target
omain, the segmentation performance is evaluated using the harmo-
ized images, where the segmentation performance is measured with
he Dice Similarity Coefficient (DSC) and 95th percentile Hausdorff Dis-
ance (HD95). We repeat these steps considering each site as a source
omain and the remaining sites as the target domains in each iteration,
nd then we report the average of these metrics. The evaluation on
eonatal brain MRI segmentation follows the same protocol as that of

the adults, which is repeated for each of the two modalities considered,
i.e., T1-weighted and T2-weighted.

Neonatal brain age estimation. The neonatal brain gestational age es-
timation task follows the same procedure, except that instead of the
segmentation model, a deep regression network has been trained. Fol-
lowing the nature of the task, the metrics used to assess its performance
are the Mean Absolute Error (MAE) and the Mean Square error (MSE).

Harmonization performance. Last, following Parida et al. (2024), we
resort to the Wasserstein distance (WD) (Kantorovich, 1960) between
the normalized intensity histograms of harmonized images and those
of the source domain. The WD calculates the smallest ‘‘cost’’ to change
one distribution into the other, taking into account both the amount of
change needed and how far the changes need to be shifted. Thus, the

asserstein distance between two normalized histograms tells us how
ifferent they are by considering not only the differences in terms of
hange magnitudes (such as the KL divergence does), but also how far
part the differing parts are. In our experiments, and as stated earlier,

we consider one single site as a source domain (while all the remaining
domains/sites remain unknown). Furthermore, we report the average of
the WD for all source-domain pairs.

Implementation details.
Normalizing Flow (FL). The NF model has been trained for 20,000
iterations with Adam optimizer and a batch-size of 32, an initial
learning-rate of 1 × 10−3, and using a weight-decay of 0.5 every 2000
iterations. We employ a U-shaped architecture within the coupling
layers, comprising four different scales with a scaling factor of 2. Each
layer consists of an activation function followed by a convolutional
layer and a normalizing layer. The activation function used in each
scale is a modified version of ELU, i.e., concat[ELU(𝑥), ELU(−𝑥)], which
makes it easier for the NF model to map to normal distribution due
to its symmetry properties. Additionally, there are 16, 32, 48, and
64 kernels in each scale, respectively. To construct the NF model,
we initially employ four sequential coupling layers with checkerboard
masking, aimed at capturing the noise distribution through variational
dequantization. Then, this is followed by four identical coupling layers
and a squeezing function as explained in Dinh et al. (2017) to de-
crease the spatial dimension. Then, we subsequently incorporate four
more coupling layers employing a channel-masking strategy, and an
additional layer of feature squeezing, followed by a final series of four
coupling layers employing channel-masking. The overall architecture of
the flow model is shown in Fig. 1. Also, the margin c used for guiding
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Table 2
Performance overview on the cross-site adult MRI segmentation task. Segmentation performance, in terms of DSC and HD95
metrics, across different harmonization approaches. To facilitate the strengths and weaknesses of different methods, we also
indicate whether they are source-free (  ), task-agnostic ( ), and can handle unknown-domains ( ), as well as the different
strategy they fall in. The best results are highlighted in bold.

Method Strategy       DSC (%) HD95 (mm)

Baseline – – – – 36.3 ±4.8 43.1 ±5.3
Hist matching (Nyúl et al., 2000) Harmonization ✓ ✓ ✓ 63.7 ±4.8 12.3 ±2.7
Combat (Pomponio et al., 2020) Harmonization ✗ ✓ ✗ 73.0 ±4.3 6.3 ±2.6
Cycle-GAN (Modanwal et al., 2020) Harmonization ✗ ✓ ✗ 75.0 ±2.8 5.5 ±1.7
Style-transfer (Liu et al., 2021) Harmonization ✗ ✓ ✗ 70.8 ±5.7 8.2 ±2.6
SSIMH MLMI’22 (Guan et al., 2022) Harmonization ✗ ✓ ✓ 59.4 ±5.1 12.3 ±2.9
ImUnity MedIA’23 (Cackowski et al., 2023) Harmonization ✗ ✓ ✓ 58.2 ±4.6 17.0 ±3.3
BlindHarmony ICCV’23 (Jeong et al., 2023) Harmonization ✓ ✓ ✓ 62.2 ±6.1 13.7 ±3.2
AUE (Wang et al., 2019) Test time augmentation ✓ ✗ ✓ 35.4 ±3.6 24.5 ±3.6
BigAug TMI’20 (Zhang et al., 2020) Generalization ✓ ✗ ✓ 82.0 ±2.1 3.2 ±0.8
TENT ICLR’21 (Wang et al., 2021a) Test time adaptation ✓ ✗ ✓ 72.8 ±3.4 7.4 ±2.2
SAR ICLR’23 (Niu et al., 2023) Test time adaptation ✓ ✗ ✓ 70.9 ±4.0 9.9 ±2.6

Harmonizing flows Harmonization ✓ ✓ ✓ 82.9 ±2.3 3.1 ±1.0
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the NF model (Eq. (4)) is empirically set to 1.2. For adapting the
harmonizer network using images of the target domain during test time,
the Normalizing Flow model is frozen, and the harmonizer model is
pdated slightly using Adam optimizer with a learning rate of 5 × 10−7,
nd a batch-size of 32 until the epoch where the stopping criterion has
een reached. All the models were implemented on PyTorch using two

NVIDIA RTX A6000 GPU cards.

Harmonizer. The utilized UNet network as harmonizer consists of five
different scales with a scaling factor of 2, where each scale includes
a layer of the modified ELU activation function, i.e., concat[ELU(𝑥),
ELU(−𝑥)], followed by two convolutional layers. The number of kernels
f the convolutional layers for each scale is 16, 32, 48, 64, and 64
espectively.

Segmentation and regression models. The segmentation network em-
ployed in our empirical validation is nn-UNet (Isensee et al., 2021)

ith batch-normalization, stride 2, and kernel size of 3, whereas
ResNet18 (He et al., 2016) serves as the age estimation network.
Furthermore, all the segmentation, age estimation, and harmonizer
networks are trained for 5000 iterations with Adam optimizer with
n initial learning rate of 1 × 10−3, a weight decay of 0.5 every 500
terations, and a batch-size of 64. Last, the model at the best iteration,
ased on an independent validation set, is utilized.

It is worth mentioning that we did not use any type of contrast or
intensity augmentation in the training of segmentation and regression
networks, to better capture the effect of the harmonization methods
nd make them more sensitive to distribution shifts.

4.2. Results

In this section, we reported the empirical results of the experiments
performed. In particular, we first resorted to the cross-site brain MRI
segmentation results to evaluate the performance of different harmo-
nization approaches, as the segmentation task is a good indicator of
harmonization performance. Following the main results, we conducted
a series of comprehensive ablation studies to empirically support our
choices. Then, to show the task-agnostic nature of our method, we
evaluated different harmonization strategies on the task of neonatal
cross-site brain age estimation. Last, we took a closer look at the
distance between the intensity histograms of the harmonized images
with the source images. Surprisingly, closer intensity histograms be-
tween harmonized images with the source domain does not necessarily
correlate with better harmonization performance or higher target task
performance, such as segmentation or regression.

4.2.1. Performance on the segmentation task
Main results To evaluate the proposed harmonization method, cross-
site brain MRI segmentation performance has been obtained before and
7

after the harmonization. As the segmentation networks are fixed, the
segmentation results’ improvement indicates the impact of the harmo-
nization. Segmentation results obtained with the images harmonized by
different methods are reported in Table 2.

Comparison to harmonization methods. Before looking at the segmen-
tation results, we would like to highlight that most existing methods
rely on assumptions that could limit their scalability and practicality
in real-life scenarios. First, some methods must access at least one
mage of the source domain during the adaptation, thereby not be-
ng completely source-free ( ). Also, most harmonization techniques
eed to access the target domains during training, while ideally, the
otential target domains should remain unknown, which we refer to as
nknown-domains ( ). We relax all these assumptions by proposing a
ethod that is source-free, task-agnostic, and unaware of potential target
omains during training. First, from Table 2, we can observe that the
roposed approach improves the segmentation results by more than

45% in terms of DSC over the baseline, i.e., without harmonization. Fur-
thermore, it consistently outperforms other harmonization approaches
y a significant margin, in terms of both segmentation metrics. To

statistically validate the performance of our method, we conducted
a paired t-test between our method and each of the comparing har-

onization methods. The test was performed using the results from
ifferent source datasets as the data samples for each comparison.
cross all comparisons, the maximum 𝑝-value observed wasp = 0.012,
hich is below the commonly accepted significance threshold of 0.05,

ndicating that the observed improvements are consistently statistically
ignificant. Particularly, the average gained improvement compared
o CycleGAN, the next best-performing method, is larger than 8% in
erms of DSC, and 2.4 mm smaller in terms of HD95. Considering that
ycleGAN requires the source domain, as well as all the target domains
o adapt, the differences in performance are even more important. Fur-
hermore, if we compare it to approaches that offer the same benefits,
.e., (  ), ( ) and ( ), such as Hist matching, and BlindHarmony
hese differences increase up to 20%.

Comparison to test-time domain adaptation and generalization approaches.
To better evaluate the method, we have compared it against common
strategies to tackle distributional shift, including: domain generaliza-
tion (Zhang et al., 2020), Test time Augmentation (Wang et al., 2019),
nd Test time adaptation (Wang et al., 2021a; Niu et al., 2023). This

comparison highlights the importance of image harmonization and
examines whether harmonization can be replaced by any of these
strategies. These results, which are depicted at the bottom of Table 2,
demonstrate that the proposed harmonization method also outperforms
well-known test-time domain adaptation and generalization strategies
in the task of cross-site brain segmentation. Furthermore, individual
cross-site brain MRI segmentation results are depicted in Fig. 2, for
a better interpretability of the per-site results. In every matrix, the
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Fig. 2. Cross-site brain MRI segmentation matrix across the compared methods. Each cell indicates the segmentation result (DSC %) when the source dataset (in the rows) is used
to harmonize each target dataset (in columns).
Table 3
Performance overview on the cross-site neonatal MRI segmentation task. Segmentation performance, in terms of DSC and HD95
metrics, across different harmonization approaches. To facilitate the strengths and weaknesses of different methods, we also
indicate whether they are source-free (  ), task-agnostic ( ), and can handle unknown-domains ( ), as well as the different
strategy they fall in. The best results are highlighted in bold.

Method       T1-w T2-w

DSC (%) HD95 (mm) DSC (%) HD95 (mm)

Baseline – – – 34.7 ±6.5 38.4 ±15.8 44.2 ±17.1 30.8 ±17.0
Hist matching (Nyúl et al., 2000) ✓ ✓ ✓ 42.9 ±8.0 32.9 ±17.6 84.3 ±4.1 4.7 ±2.3
Combat (Pomponio et al., 2020) ✗ ✓ ✗ 83.0 ±4.5 2.7 ±1.4 88.0 ±1.5 2.0 ±1.1
Cycle-GAN (Modanwal et al., 2020) ✗ ✓ ✗ 77.2 ±6.5 4.8 ±3.1 88.3 ±1.5 1.8 ±0.9
Style-transfer (Liu et al., 2021) ✗ ✓ ✗ 56.7 ±9.0 19.8 ±9.9 88.6 ±1.4 1.5 ±0.2
SSIMH MLMI’22 (Guan et al., 2022) ✗ ✓ ✓ 38.7 ±9.7 30.2 ±13.3 61.9 ±8.5 17.9 ±6.6
ImunityMedIA’23 (Cackowski et al., 2023) ✗ ✓ ✓ 41.8 ±7.9 23.8 ±9.5 87.1 ±3.0 2.4 ±1.8
BlindHarmony ICCV’23 (Jeong et al., 2023) ✓ ✓ ✓ 56.1 ±9.2 28.4 ±12.6 88.0 ±1.8 2.9 ±1.6
AUE (Wang et al., 2019) ✓ ✗ ✓ 38.0 ±6.1 25.5 ±7.0 68.7 ±5.2 15.5 ±1.9
BigAug TMI’20 (Zhang et al., 2020) ✓ ✗ ✓ 84.1 ±3.8 2.2 ±53.9 90.0 ±1.3 1.4 ±0.3
TENT ICLR’21 (Wang et al., 2021a) ✓ ✗ ✓ 76.3 ±3.8 4.7 ±2.2 88.1 ±1.6 2.4 ±1.6
SAR ICLR’23 (Niu et al., 2023) ✓ ✗ ✓ 72.3 ±5.1 5.1 ±2.2 88.9 ±1.7 1.7 ±0.6

Harmonizing flows ✓ ✓ ✓ 84.4 ±2.5 2.1 ±1.0 89.6 ±1.4 1.4 ±0.4
diagonal elements represent the segmentation of intra-site brain MRI
and establish the upper bound of segmentation results when test images
originate from the source domain. Then, the elements outside the diag-
onal indicate the segmentation result when a given dataset (indicated
in the rows) is used to harmonize the target datasets (in columns). As
the non-diagonal elements approach the diagonal, it can be interpreted
as an enhanced capacity of the method to handle distributional shifts.
Based on these results, we can state that our approach proved the
most effective in this aspect, and consistently across all source-domain
datasets.

Validation on a different population and image modality
To investigate the scalability of our harmonization method, we eval-

uate it using different population demographics and image modalities.
Particularly, we resort to the neonatal brain MRI segmentation task,
which differs from the more traditional adult brain MRI segmentation.
Furthermore, this evaluation has been repeated for both T1-weighted
and T2-weighted MRIs to explore whether the proposed approach can
8

yield satisfactory performance for both modalities. According to the
results from this experiment, which are reported in Table 3, our method
demonstrates comparable performance for both modalities in neonatal
brain MRI segmentation. More concretely, the proposed harmonization
strategy obtains the best results in T1-weighted, whereas it ranks first
among compared harmonization methods and second by a small margin
among all compared methods for both metrics in T2-weighted images.
These values underscore the effectiveness of our proposed approach
across diverse populations and modalities.

Ablation studies
I-Impact of normalizing flows. This section assesses the impact of
each component of the proposed method, which is achieved by com-
paring the cross-site brain MRI segmentation results obtained: (i) when
images are not harmonized, (ii) when harmonized just with the pro-
posed pre-trained harmonizer network 𝜃𝑖𝑛𝑖𝑡, or (iii) harmonized with
the proposed method. The results of this ablation study, which are de-
picted in Fig. 3, empirically support that the proposed NF-based models
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Fig. 3. Effect of each component of the harmonizing flow. Particularly, we depict the
improvement gained using the proposed pre-trained harmonizer network (∼44 DSC%),
and the adaptation using normalizing flows (∼2.0 DSC%).

Fig. 4. The effect of different stopping criteria to stop the harmonizer network
adaptation. Oracle represents selecting the best iteration based on the performance of
the target task (i.e., segmentation in this example), which serves as the upper bound.
Both criteria, source BPD and minimum entropy, provide good stopping points, with a
slight advantage of the minimum entropy criterion.

can serve as an effective mechanism to adapt the harmonizer network.
First, the proposed approach to pre-train the harmonizer network yields
significant enhancements compared to non-harmonized images (nearly
44% of DSC on average) while, despite its simplicity, there is no need
to know the target domain in advance. Furthermore, adapting the
harmonizer network using the proposed NF model further improves
the cross-site MRI segmentation results, with nearly 2.0% of DSC on
average, illustrating the effectiveness of the proposed harmonization
strategy.

II-Adaptation stopping criterion. Now we explore the crucial issue of
determining the appropriate iteration to stop the adaptation, specially
as updating the harmonizer network is conducted in an unsupervised
manner. Three different criteria to stop adapting the harmonizer net-
work are explored. The first criterion is to stop in an iteration where
the Shannon entropy of the target task predictions (segmentation in this
case) reaches its minimum. According to Wang et al. (2021a), the Shan-
non entropy of the predictions of the target task is highly correlated
with its performance. As it does not require any labeled data, it provides
an a priori reliable stopping criterion for fine-tuning the harmonizer
network. As a second alternative, we stopped the harmonizer network
adaptation when the target BPD reaches the observed BPD on the source
9

Fig. 5. Which is the best metric as stopping criteria? This plot depicts different metrics
during the adaptation of the harmonizer network (from HBNSI to NYU). Step zero
corresponds to using the initial harmonizer network without adaptation. The vertical
lines show the stopping time-points based on two proposed stopping criteria: minimum
entropy of the predictions (red) and reaching source BPD (purple).

domain (which can be computed during training time using a validation
set). As opposed to the first criterion, this criterion is task-agnostic
and well-suited for unsupervised tasks or scenarios where entropy
calculations are not applicable (i.e., regression problems). Finally, we
directly used the target task (segmentation) performance and stopped
the adaptation once it achieved the highest DSC score which we refer
to as the Oracle. Please bear in mind that this criterion is impractical
in real-world scenarios, as one may not have access to segmentation
labels,3 and it only intends to serve as an upper bound to show how
much we can gain using a well-defined stopping criterion. As shown
in Fig. 4, despite minimum entropy being a slightly better criterion
compared to source BPD, both yield similar performances, with the
source BPD providing a more general strategy, as it is not tailored to
a task that requires probabilistic outputs. In summary, both stopping
criteria prove to be viable options, as their outcomes closely resemble
those of the Oracle.

Furthermore, in Fig. 5 we show, for a given scenario – harmo-
nizing HBNSI dataset to NYU – the strong correlation between the
segmentation metrics with both the segmentation prediction entropy
and proximity to the source BPD. In particular, the evolution of the
segmentation metrics is depicted in green (HD95) and blue (DSC)
curves, with the values of the entropy of the segmentation predictions
in red, and the target BPD in purple. We can observe that the point for
which these metrics are optimal (i.e., minimum entropy and target BPD
matching source BPD), is actually close. Nevertheless, we advocate that,
for more general use, looking at the source BPD should be a preferred
option, as it does not depend on the target task.

III-Ablation studies on components and hyper-parameters. This
section aims to empirically support the choices made in the proposed
harmonization strategy.

III.a-Flow Depth:. We explored the effect of the number of coupling
layers in the normalizing flow network in learning the distribution of
the source domain. Particularly, we investigated using 6, 12, and 18
coupling layers in the normalizing flow network and its effect on the
distribution learning capacity of the model and harmonization process.
As can be seen in Fig. 6(a), 12 coupling layers were the optimal choice
and resulted in better harmonization. We believe that using 6 coupling
layers does not fully capture the source domain distribution. On the
other hand, using 18 coupling layers makes the training process harder,

3 Please note that using segmentation, or other kind of labels, for the
stopping criteria would make the model task-dependent.
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Fig. 6. Ablation study on architecture components and hyper-parameters of the harmonizing flow. The best performance is obtained when the number of coupling layers in the
normalizing flow is set to 12, the guiding term is used and the guiding margin 𝑐 to 1.2, the augmentation threshold is 100, and a simple UNet is chosen as the harmonizer
network.
Fig. 7. This figure showcases examples of harmonized images generated by the proposed method. The first column presents the sample images from various target domains.
The subsequent columns display the images harmonized to specific source domains, as indicated at the top of each column. Therefore, each row maintains consistent anatomical
structures, while each column shares the same visual characteristics.
and it probably needs more data to be fully trained.

III.b-Margin 𝐜 : In this section, we investigate the influence of the
margin c on the guidance of the normalizing flow process. Our initial
choice of 1.2 for c at the first level stemmed from observing an average
source BPD of approximately 0.8 when the normalizing flow was
trained without guidance. Consequently, we opted for a value of 1.2.
To further investigate the effect of this value, we conducted additional
experiments with margin values c set to 0.8 and 1.6. As illustrated in
Fig. 6(b), the initial choice yielded better performance in comparison
to 0.8 and 1.6.

III.c-Augmentation threshold: Defining how much augmentation is
enough for an augmented image to be considered as out of distribution
to train the normalizing flow is an important step. This threshold,
which is defined in terms of mean squared distance with original im-
ages, was first selected as 100, by visual inspection of the images. After
the initial choice, we explored how adjusting this hyper-parameter
affects the constraint on the normalizing flow network and the har-
monization process. We conducted experiments using augmentation
10
thresholds of 50 and 150, whose results (Fig. 6(c)) demonstrate 100
to be an optimal choice for this hyperparameter.

III.d-Harmonizer Network: We investigated two U-shaped architec-
tures for the harmonizer network. First, a conventional UNet architec-
ture was employed. Subsequently, like the conference version of this
paper (Beizaee et al., 2023), we utilized a modified UNet to extract
two separate sets of values. The final layer of the network (𝛽) serves
as a bias value, matching the input image’s dimensions. Additionally, a
scalar value 𝛼, derived from the network’s middle layer, acts as a scale
parameter. In this way, the harmonizer’s output can be expressed as
ℎ𝜃(𝐱) = 𝛼 ∗ 𝐱 + 𝛽. As depicted in Fig. 6(d), both options are effective,
with a slight superiority of the simple UNet. We believe that this
marginal superiority is due to the greater degrees of freedom in simple
UNet, which might be better for transferring complex distributions.

III.e-Guiding Term: In this section, we examine the impact of the
guiding term by analyzing the effects of its removal from the training
objective of the NF model (Eq. (6)). As illustrated in Fig. 6(e), incorpo-
rating the guiding term significantly enhances the results, underscoring
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Fig. 8. Visual examples of neonatal MRI brain images harmonized using the proposed
method. The left section displays the coronal and axial planes for both modalities of a
sample image from the DHCP dataset (target) alongside their harmonized counterparts
to the V2LP dataset (source). The right section shows the reverse, with V2LP images
harmonized to the DHCP dataset.

its critical role in enabling the NF model to capture domain-specific
characteristics of the source dataset. Conversely, omitting the guiding
term often leads to suboptimal performance, adversely affecting the
harmonization process. In many cases, the NF model trained with-
out the guiding term produces results that are inferior even to those
obtained with the initial harmonizer alone.

Qualitative results.
Fig. 7 showcases the instances of harmonized images using the

proposed method across different source and target sites, for the adult
brain MRIs. In particular, we randomly picked a sample from each site
and then mapped it to different target sites. As can be seen, the har-
monized samples in each column share the same visual characteristics,
while on each row, the details of the harmonized images are preserved.
These qualitative results illustrate that, regardless of the source or the
target domains, the proposed method consistently produces reliable
harmonized images, which is supported quantitatively by the compre-
hensive empirical validation conducted. Furthermore, visual examples
depicted in Fig. 8 (neonatal brains) demonstrate the effectiveness of our
approach in harmonizing inter-site images, regardless of the modality
and plane used.

In Fig. 10, we have visualized a harmonized sample from the
target domain (CALTECH here) to the source domain (KKI here) using
different harmonization methods. The harmonized image using our
proposed method appears to have the closest visual characteristics
with the source domain compared to other harmonization methods.
Combat Pomponio et al. (2020) is excluded from this figure as it
attempts to remove variations between domains and cannot transform
the target domain to match the source domain.

4.2.2. Performance on neonatal brain age estimation
In the previous section, we demonstrated the generalization ca-

pabilities of the proposed approach, by showing its superiority when
evaluating the harmonized images in adults and neonatal brain MRI
segmentation, and across multiple modalities. In this section, we will
take one step further and evaluate the quality of the harmonization
based on a different task, i.e., neonatal brain age estimation, which
11
Fig. 9. Histograms of the harmonized MRIs from multiple target datasets compared to
the histogram of the source MRIs (KKI dataset, in purple) for all harmonization methods.

necessitates regression neural networks and the utilization of different
2D slices (specifically the axial view). As depicted in Table 4, our
method also outperforms all compared methods for both metrics and
both modalities, highlighting its effectiveness for various tasks and
applications, as well as on different 2D planes. Thus, based on the
results of the segmentation and regression tasks, we can state that the
proposed harmonization strategy leads to a significantly more flexible
solution with substantial improvement gains.

4.2.3. A closer look at the harmonization performance
In previous sections, we assessed the quality of the harmonization

based on the performance of different target tasks, i.e., adult and
neonatal brain segmentation and neonatal brain age estimation. A
natural question that arises is whether the harmonization performance
can be quantitatively evaluated without requiring further labeled target
tasks or traveling subjects. Indeed, recent literature (Parida et al., 2024)
in evaluating harmonization techniques has proposed the use of the
Wasserstein distance, to measure the similarity between harmonized
and source image intensity histograms. The reasoning behind using this
kind of divergence is two-fold. First, standard harmonization metrics,
such as mean absolute error, mean squared error, or peak signal-to-
noise ratio, can provide high-quality measurements, but at the price
of requiring paired harmonized data, i.e., traveling subjects. Second,
while other metrics, such as structural similarity (SSIM), can help mit-
igate the need for paired data, they primarily compare structures at a
higher level, potentially overlooking smaller artifacts or hallucinations
introduced by generative models. In this section, we follow up on
the recent work in Parida et al. (2024), and assess the harmonization
performance of different strategies based on the Wasserstein distance
between intensity histograms.

To this end, we first depict in Fig. 9 the histogram distributions of
the harmonized MRIs from multiple target domains compared to the
MRIs from the source site (the KKI dataset in this example), across all
harmonization methods. Looking at these plots, we can observe that
Histogram Matching, as well as our approach, yields to the closest
intensity histogram distributions to the source domain (in purple), after
harmonization. Furthermore, this behavior is consistent for all the
target sites for both Histogram Matching and the proposed approach.
Thus, from a pure harmonization standpoint, these plots tell us that
Histogram Matching and our harmonization strategy are capable of
mapping images from a target to a source site such that the harmonized
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Table 4
Performance overview on the cross-site neonatal age estimation task. Brain age estimation performance, in
terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE) metrics, across different harmonization
approaches and modalities. To facilitate the strengths and weaknesses of different methods, we also indicate
whether they are source-free (  ), task-agnostic ( ), and can handle unknown-domains ( ), as well as
the different strategy they fall in. The best results are highlighted in bold.

Method       T1-w T2-w

MAE MSE MAE MSE

Baseline – – – 1.15 ±0.91 2.23 1.67 ±1.15 4.67
Hist. matching (Nyúl et al., 2000) ✓ ✓ ✓ 1.04 ±0.78 1.77 1.09 ±0.84 2.05
Combat (Pomponio et al., 2020) ✗ ✓ ✗ 1.33 ±0.84 2.49 1.28 ±0.82 2.33
Cycle-GAN (Modanwal et al., 2020) ✗ ✓ ✗ 1.05 ±0.71 1.62 0.89 ±0.63 1.24
Style-transfer (Liu et al., 2021) ✗ ✓ ✗ 1.75 ±1.17 5.15 0.96 ±0.67 1.41
SSIMH (Guan et al., 2022) ✗ ✓ ✓ 1.18 ±0.96 2.33 1.41 ±0.85 2.35
Imunity (Cackowski et al., 2023) ✗ ✓ ✓ 1.10 ±0.81 1.89 1.55 ±1.00 3.82
BlindHarmony (Jeong et al., 2023) ✓ ✓ ✓ 1.19 ±0.98 2.45 1.29 ±0.90 2.62
AUE (Wang et al., 2019) ✓ ✗ ✓ 1.32 ±1.01 2.91 1.4 ±1.01 3.51
BigAug (Zhang et al., 2020) ✓ ✗ ✓ 1.05 ±0.62 1.55 1.09 ±0.80 1.88

Harmonizing flows ✓ ✓ ✓ 1.01 ±0.69 1.51 0.82 ±0.68 1.21
Fig. 10. Example of harmonized images using different methods. The first image is the source domain sample (KKI here), the second one shows a sample from the target domain
(CALTECH here), and the rest, shows the harmonized target sample using different methods.
Fig. 11. Segmentation (DSC%) and Age estimation (MAE) results vs. WD of intensity histograms for compared Harmonization methods.
intensity histograms almost match perfectly those of the source domain.
Nevertheless, perfect alignment between intensity histograms is not

the ultimate goal. It should be noted that different individuals’ brain
structures (for example between a child and an old person) necessitate
different intensity histograms. Therefore, aligning intensity histograms
is not an ideal solution. Also, we believe that the ability to enhance the
performance of subsequent tasks, such as segmentation, classification,
or brain age estimation in our context, which relies on harmonized
images when dealing with multi-centric data, serve as a better indicator
of the harmonization potential. However, if we analyze the perfor-
mance on target tasks when employing harmonized data, we can easily
observe that histogram matching indeed generates harmonized images
that lead to poor performance on multiple target tasks. For example,
in adult brain segmentation, resorting to histogram matching as a
harmonization method results in an average DSC of 63.6, substantially
lower than other methods which, a priori, had the highest misalignment
between intensity histograms of the harmonized images with the source
one in terms of WD (e.g., SSIMH or Imunity).

To better understand whether a correlation between the intensity
histogram distance and the target task performance exists, we plot
task-performance vs. intensity-histogram-distance (WD) in Fig. 11. Indeed,
we can observe from this figure that, in most cases, a closer intensity
histogram (i.e., lower WD) corresponds to better performance in the
target task (i.e., higher DSC in segmentation and lower MAE in brain
age estimation). A method warranting further discussion is histogram
matching, which shows a weak correlation, if any, between intensity
histogram distance in terms of WD and target task performance. Its
12
good performance in the WD metric is somehow expected, as it di-
rectly optimizes the histogram of intensities for MRI harmonization.
Nevertheless, we believe that solely forcing the histograms to be close is
not necessarily a good condition to yield usable harmonized images, as
the spatial variation across intensities is not considered when matching
distributions. Harmonized images depicted in Fig. 10 could further
illustrate this point visually. The remaining harmonization strategies,
however, seem to be generally correlated, with approaches obtaining
lower WD values also achieving better performances on the respective
target tasks. In particular, our proposed approach always ranks among
the top-three approaches in terms of WD, yielding the best performance
in segmentation and age estimation tasks among compared harmoniza-
tion methods. These findings are based on the metrics proposed in the
recent work (Parida et al., 2024), and may not hold for a more in-
depth list of harmonization metrics. Ideally, while some other metrics
could have been explored to evaluate the harmonization performance,
some of the metrics used depend on traveling-subjects, which limits their
applicability to many scenarios. We also stress that having an in-depth
evaluation of the harmonization performance and assessing the best
harmonization metric, is not within the scope of this work. In contrast,
we believe that based on the results reported in this work, solely relying
on the closeness of intensity histograms may not be sufficient, and
evaluating the quality of the harmonization on target task indicators
(e.g., DSC in segmentation or MAE in regression tasks) could serve as
a more general manner to assess the harmonization quality.
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Fig. 12. Visualization of harmonization applied to a sample of neonatal injured
(atrophy and large ventricles) brain MRI from the V2LP dataset, harmonized to the
DHCP dataset. The results demonstrate that the model preserves the structural integrity
of the input while performing harmonization, even in the presence of injury-related
anomalies.

4.2.4. Structural integrity
One of the main concerns regarding learning-based MRI harmoniza-

tion methods is anatomy hallucination (Cohen et al., 2018). Specifi-
cally, one issue that arises is whether training the normalizing flow
model on a population different from the target domain with distinct
anatomical variations could result in unintended changes to anatomical
structures. As such, it is essential to implement strategies that ensure
that structural integrity is preserved throughout the harmonization
process. We have employed several techniques to mitigate this risk
effectively.

First, to ensure robustness to structural variations, we applied a
range of geometric augmentations while training the normalizing flow
and harmonization model. These augmentations included resizing, scal-
ing along the X, Y, and Z axes, shearing, perspective transformations,
and deformations like piece-wise affine. These augmentations help the
model focus on domain-characteristic features, such as brightness and
contrast, while reducing sensitivity to structural differences. Second,
during the pre-training of the harmonization network, we used the
Structural Similarity Index (SSIM) loss, which, combined with geo-
metric augmentation could help promote structural consistency and
alignment between the input and output images. Finally, To further
validate structural consistency, we specifically selected a segmentation
task, which contains detailed regional contours, as a downstream eval-
uation. despite differences in age ranges between adult datasets, our
method demonstrated superior performance compared to other har-
monization techniques, providing empirical evidence of its structural
fidelity.

It is important to note that evaluating the performance of harmo-
nization in the presence of brain injuries, where the target domain
contains injured brains and the source domain consists of normal brain
MRIs, is not straightforward in our setting. Downstream tasks such
as segmentation and age estimation, which are trained on normal
brains, cannot be applied to abnormal brains, as these models are
likely to fail. To demonstrate the structural integrity of the proposed
harmonization method in the presence of brain injuries, we visually
examined a neonatal brain MRI with atrophy and large ventricles from
the V2LP domain before and after harmonization to the DHCP dataset.
The results, depicted in Fig. 12 for both T1 and T2 modalities, reveal
that the structures of the injured areas are preserved, highlighting the
structural integrity of the proposed harmonization approach.

4.2.5. Friedman ranking
To fairly compare the performance of the different harmonization

methods across various metrics and tasks, we resort to the Friedman
Rank (Friedman, 1937, 1940), which has been employed for this pur-
pose in the literature (Wang et al., 2022; Murugesan et al., 2024). The
Friedman Rank is defined as:
13
Fig. 13. Friedman Rank for the compared harmonization methods: (a) Harmonizing
Flows (Ours), (b) BlindHarmony, (c) Imunity, (d) SSIMH, (e) Style-transfer, (f) Cycle-
GAN, (g) Combat, (h) Hist-matching.

rank = 1
𝑆𝑚

∑

rank𝑖

where 𝑆𝑚 is the number of evaluation settings and rank𝑖 is the rank
of a method in the 𝑖th setting. Thus, the lower the rank obtained by
an approach, the better the method is. In our scenario, we have 13
different settings: DSC and HD95 in 3 segmentation tasks, MAE and
MSE in 2 regression problems, and 3 WD values in harmonization
(one for adults and two for neonatal brains). The results from the
Friedman Ranking across all analyzed methods are depicted in Fig. 13.
As it can clearly observed, our proposed method (last column) achieves
the best Friedman rank among all compared harmonization methods,
demonstrating their overall superiority across different scenarios.

5. Conclusion

In this work, we proposed a novel harmonization method that
leverages Normalizing Flows to guide the adaptation of a harmonizer
network. Our approach is source-free, task-agnostic, and works with
unseen domains. These characteristics make our model applicable in
real-life problems where the source domain is not accessible during
adaptation, target domains are unknown at training time and harmo-
nization is task-independent. Furthermore, another advantage of our
method over the existing approaches is that it only requires images
from one source domain, and one modality, at the training time.

Through extensive comparisons with other harmonization methods,
as well as test-time domain adaptation and generalization approaches,
our method consistently proved its superiority in multiple medical
image problems, yet relaxing the strong assumptions made by existing
harmonization strategies. Furthermore, we validated the scalability
of our proposed method by evaluating it on a different population
(neonates), different modalities (T1-weighted and T2-weighted MRIs),
and different tasks (neonatal brain age estimation and segmentation).
The results demonstrated comparable performance across diverse pop-
ulations and modalities, highlighting the robustness and versatility of
our approach. It is worth noting that while this paper applies harmo-
nization to 2D brain MRI slices, the method can be readily extended
to 3D by replacing 2D convolutional layers with 3D ones. However,
this extension would require a larger dataset and more computational
resources due to the increased number of parameters. Additionally,
although no visible inconsistencies between harmonized slices were
observed in our experiments, averaging harmonization results across
all 2D planes (i.e., axial, coronal, and sagittal) could further mit-
igate potential inconsistencies. Qualitative results further supported
the reliability and effectiveness of our method, illustrating consistent
and reliable image-to-image mappings across different target domains.
Last, even compared to recent test-time adaptation strategies, empirical
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results suggest that the proposed method is a powerful alternative to
eal with the presence of domain drifts, more particularly for MRI

multi-site harmonization.
In conclusion, our proposed harmonization method offers a promis-

ing solution for addressing distributional shifts in medical image anal-
sis, paving the way for improved performance and generalizability
cross diverse datasets, and enabling the use of large-scale multi-centric
tudies.

Limitations: Although the proposed harmonization method demon-
strates promising potential, there are a few considerations. First of all,
it requires additional inference time for test-time adaptation, which
may impact efficiency in certain time-sensitive applications. Moreover,
while efforts have been made to prevent the normalizing flow model
from capturing biases or anatomical structures in the source domain,
it may still inadvertently learn some biases, such as image quality
ariations. Furthermore, our approach assumes that the source and
arget domains have close resolutions, which may limit its flexibility
hen applied to datasets with varying resolutions.
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