
Academic Editor: Hiroshi Ikegaya

Received: 30 December 2024

Revised: 28 January 2025

Accepted: 4 February 2025

Published: 13 February 2025

Citation: Andleeb, I.; Hussain, B.Z.;

Joncas, J.; Barchi, S.; Roy-Beaudry, M.;

Parent, S.; Grimard, G.; Labelle, H.;

Duong, L. Automatic Evaluation of

Bone Age Using Hand Radiographs

and Pancorporal Radiographs in

Adolescent Idiopathic Scoliosis.

Diagnostics 2025, 15, 452. https://

doi.org/10.3390/diagnostics

15040452

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Automatic Evaluation of Bone Age Using Hand Radiographs and
Pancorporal Radiographs in Adolescent Idiopathic Scoliosis
Ifrah Andleeb 1 , Bilal Zahid Hussain 2 , Julie Joncas 3, Soraya Barchi 3, Marjolaine Roy-Beaudry 3 ,
Stefan Parent 3,4 , Guy Grimard 3,4 , Hubert Labelle 3,4 and Luc Duong 1,*

1 Department of Software and IT Engineering, École de Technologie Supérieure,
Montréal, QC H3C 1K3, Canada; ifrahzhcet@gmail.com

2 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77840, USA;
zahidhussain909@tamu.edu

3 Department of Orthopedics, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada;
julie.joncas.hsj@ssss.gouv.qc.ca (J.J.); soraya.barchi@umontreal.ca (S.B.);
marjolaine.roy-beaudry.hsj@ssss.gouv.qc.ca (M.R.-B.); stefan.parent@umontreal.ca (S.P.);
guy.grimard.hsj@ssss.gouv.qc.ca (G.G.); hubert.labelle@umontreal.ca (H.L.)

4 Department of Surgery, Université de Montréal, Montréal, QC H3T 1J4, Canada
* Correspondence: luc.duong@etsmtl.ca; Tel.: +1-514-396-8827

Abstract: Background/Objectives: Adolescent idiopathic scoliosis (AIS) is a complex, three-
dimensional spinal deformity that requires monitoring of skeletal maturity for effective
management. Accurate bone age assessment is important for evaluating developmental
progress in AIS. Traditional methods rely on ossification center observations, but recent
advances in deep learning (DL) might pave the way for automatic grading of bone age.
Methods: The goal of this research is to propose a new deep neural network (DNN) and
evaluate class activation maps for bone age assessment in AIS using hand radiographs. We
developed a custom neural network based on DenseNet201 and trained it on the RSNA
Bone Age dataset. Results: The model achieves an average mean absolute error (MAE) of
4.87 months on more than 250 clinical testing AIS patient dataset. To enhance transparency
and trust, we introduced Score-CAM, an explainability tool that reveals the regions of
interest contributing to accurate bone age predictions. We compared our model with
the BoneXpert system, demonstrating similar performance, which signifies the potential
of our approach to reduce inter-rater variability and expedite clinical decision-making.
Conclusions: This study outlines the role of deep learning in improving the precision and
efficiency of bone age assessment, particularly for AIS patients. Future work involves the
detection of other regions of interest and the integration of other ossification centers.

Keywords: radiographs; adolescent idiopathic scoliosis; activation maps; transfer learning;
DenseNet; MAE; boneage; RSNA

1. Introduction
Adolescent idiopathic scoliosis (AIS) is a characterized by a deformation of the spine

in 3-D [1]. In AIS, observations of the illiac crests, namely, the Risser grade, are routinely
used to assess the skeletal maturity [2]. This information is highly relevant to assess the
peak growth rate velocity, the growth rate and the final adult height [3]. This information
is crucial for the management of AIS and guiding treatment [4].

Two common methods for assessing bone age are the Greulich-Pyle (GP) [5] and
Tanner-Whitehouse (TW) [6] methods. In the GP method, doctors compare X-rays of the
hand and wrist with a reference book of images to estimate bone age. The TW method is
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more detailed, in which clinicians score each bone in the hand and wrist, adding up the
scores to determine bone age. For AIS patients, the Sanders classification is often used.
This method is simpler than the TW method and was designed to be quick, reliable, and
helpful for tracking the type and severity of the spinal curve [7]. Some examples of wrist
radiographs of AIS patients are shown in Figure 1.

Figure 1. (a) EOS imaging system Pancorporal, (b) Radiograph of AIS patients, (c) Matching
hand/wrist images [4].

Lee et al. [8] evaluated 3000 hand images annotated with key feature points, enabling
the precise selection of relevant regions for age estimation. Distinct regions of interest (ROIs)
were defined, including small areas of carpal and metacarpal bones and larger sections
encompassing phalanges. Histogram equalization was applied to minimize irrelevant
intensity variations in cropped images. Addressing gender-based growth rate differences,
separate models were developed. Notably, the research embraced all age ranges, including
scarce data from infancy and early childhood, often overlooked due to morphological
differences. By training various deep learning architectures with different ROI definitions,
the study achieved a minimum mean absolute difference error of 8.890 months on a test
set of 400 images. This preliminary investigation paves the way for future research into
unexplored alternative approaches.

Kaddioui et al. [9], retrospectively collected and manually graded 1830 posteroanterior
radiographs of adolescent patients with AIS using the United States Risser staging system.
The radiographs underwent preprocessing and were cropped to focus on the pelvic re-
gion. A convolutional neural network (CNN) was trained to automate Risser classification,
achieving accuracy comparable to human graders. The network’s performance was vali-
dated against interobserver variability using the Fleiss measure. Due to limited radiograph
availability, transfer learning was employed with the VGG16 network. The agreement
among six observers was moderate, with a coefficient of 0.65 and 74.5% concordance. The
automated method achieved substantial agreement (=0.72) and an overall accuracy of 78.0%
compared to ground truth. This research demonstrates the potential of deep learning in
automating AIS grading, even with a limited dataset, and establishes a promising founda-
tion for improving scoliosis assessment in clinical practice. Magnide et al. [10] have used a
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pre-trained ResNet101 model, with a SVM classifier to classify different region of interests
on pancorporeal radiographs of AIS patients (pelvis, humeral heads, femoral heads) at
5 different visits. Visualisation of class activation maps (CAM) using gradient-weighted
class activation maps (Grad-CAM) was used to outline the different ossification centers and
validation for follow up. Unfortunately, the posture of AIS patient does not allow a good
visualisation of the hand and a second radiograph of the hand/wrist was often required to
assess precisely the bone age. Recently, we have introduced a new posture in pancorporeal
radiographs, to include the wrist and hand.

Pan et al. [11] proposed a comprehensive evaluation of bone age assessment methods
using deep learning models and expert radiologists. The study focuses on a Convolutional
Neural Network (CNN) named TDL-BAAM, trained on 15,129 pediatric trauma hand ra-
diographs from Children’s Hospital of New York. CNN’s predictive ability was compared
against a GP-based deep learning model (GPDL-BAAM) and two pediatric radiologists
using the GP method. An independent test set of 214 trauma hand radiographs from
Hasbro Children’s Hospital was used for validation. The TDL-BAAM achieved a mean
absolute error (MAE) of 11.1 months, outperforming GPDL-BAAM (12.9 months) and the
radiologists (14.6 and 16.0 months). TDL-BAAM’s predictions were within 24 months
of chronological age for 95.3% of cases, compared to 91.6% for GPDL- BAAM and lower
percentages for radiologists. High concordance (Intraclass Correlation Correlation Coef-
ficient ICC: 0.93) existed between all methods and chronological age. The deep learning
models showed a systematic bias, leaning towards overestimating age for younger children,
unlike radiologists who exhibited consistent biases. This study underscores the potential of
deep learning for accurate bone age assessment, with TDL-BAAM demonstrating notable
performance improvements over traditional methods and human experts.

In recent years, the recent advances in artificial intelligence, particularly deep learning,
have found to be promising for medical image analysis [12,13]. Convolutional neural
networks (CNNs) might contribute to reducing the reading time compared to methods. De-
spite this progress, the transition from research to clinical application necessitates rigorous
validation and adaptation to real-world scenarios. The application of deep learning models
in medical contexts demands external validation studies employing diverse datasets to
ensure generalizability and robustness.

The goal of this study is to present a new bone age classification approach based
on deep neural networks and on class activation maps for wrist radiographs from EOS
radiographs. We evaluated our results on the Radiological Society of North America
(RSNA) Bone Age dataset and on clinical EOS radiograph AIS patients.

2. Methodology
2.1. Dataset

Our model was trained on the RSNA Bone Age dataset. The RSNA Bone Age
dataset [14] is a freely accessible set of data created to support the development and testing
of automated skeletal age estimation techniques. It comprises 12,000 hand radiographs at
different ages, from infants to late teens as depicted in Table 1. Both male and female partic-
ipants are represented in the dataset. The radiographs were acquired from several hospitals
and imaging facilities. Some sample images from the dataset are shown in Figure 2.

The proposed model was evaluated on a cohort of 257 clinical AIS patients. First,
the region of interest of the hand and wrist was manually extracted from full-standing
EOS radiographs using GNU image processing software (GIMP) which is free and open-
source. Then, the bone age of AIS patient was evaluated by using BoneXpert (Visiana ApS,
Hørsholm, DEN) [15]. BoneXpert, employs advanced active appearance models (AAMs)
and machine learning techniques to automate bone age estimation [16], with a reported
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accuracy of 95%. By reconstructing bone borders, computing intrinsic bone ages based on
shape, intensity, and texture scores, and subsequently transforming them into GP or TW
bone ages.

Figure 2. Sample hand and wrist radiograph from the RSNA Bone Age dataset.

Table 1. Patient Demographics from RSNA Bone Age Dataset.

Metric Value

Total Patients 12,611
Male Patients 6833
Female Patients 5778
Mean Age 10.61
0–5 801
6–10 3487
11–15 7224
16–20 1099

The skeletal age of the patient was obtained by a corresponding skeletal age label that
is present with every hand radiograph in the dataset. The maturation of certain bones is
evaluated, and their comparison to accepted reference atlases yields the bone age. The
dataset includes information about the patient’s age, gender, and hand side (left or right),
in addition to the hand radiographs and bone age labels. The bone age distribution of
various patients are shown in Figure 3.

Figure 3. Distribution of bone age of the children in months.
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In terms of dataset utilization for model training and testing, a split ratio of 80:20
is employed. This allocation ensures that 80% of the data is used for training the model,
allowing it to learn and adapt to various patterns and nuances present in the radiographs.
The remaining 20% of the data is reserved for testing, providing a robust means to evaluate
the model’s effectiveness and accuracy in bone age estimation.

2.2. Initial Experiments

The initial exploration in bone age estimation involved conducting experiments with
three transfer learning models: Visual Geometry Group (VGG16 and VGG19) (University
of Oxford, Department of Engineering Science, Oxford, UK) and Inception (Google AI,
Google LLC., Mountain View, CA, USA). The relatively high MAE values for each model
underscored their limitations. The experiments with VGG16, VGG19, and Inception models
were conducted under uniform hyperparameters: a batch size of 32, the Rectified Linear
Unit (ReLU) activation function, and the Adam optimizer. VGG16 consists of 16 layers,
VGG19 has 19 layers, and Inception involves a more intricate architecture with multiple
convolution layers. Despite this, their performance was suboptimal, as indicated by high
MAE values. This could be attributed to their architectures being less suited for the specific
nuances of bone age imaging, possibly lacking in capturing fine-grained details critical for
accurate age estimation. These preliminary trials were essential in guiding the direction of
our research.

2.3. Experimental Design

The bone age estimation model uses X-ray images of wrists as input to the proposed
deep learning (DL) model. The model employs a fine-tuned transfer learning approach
with DenseNet201 (Linux Foundation, San Francisco, CA, USA) for maximum accuracy
and minimal MAE and leverages DenseNet201’s pre-trained features for efficient feature
extraction. DenseNet201 is fine-tuned by taking it as a base layer and then integrating our
own uniquely designed CNN layers. This approach significantly reduces the computa-
tional cost and training time required while still delivering good accuracy. The proposed
experimental bone age estimation neural network architecture is shown in Figure 4.

Figure 4. Deep Learning Model Architecture for BoneAge Prediction.

2.4. Network Architecture

Each image from the RSNA bone age dataset undergoes preprocessing, including
resizing to 299 × 299, to conserve computational resources. This resizing step was crucial
for speeding up the processing and minimizing memory consumption. The first layer of our
architecture consists of “Densenet201” as a functional transfer learning layer that takes the
input image and performs convolutional operations to extract features. The architecture of
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DenseNet201 consists of multiple densely connected blocks, each containing several layers.
Unlike traditional CNNs, DenseNet201 employs skip connections, or shortcuts, that connect
every layer to every other layer within the same block. This dense connectivity pattern not
only facilitates feature reuse but also addresses the vanishing gradient problem commonly
encountered in deep networks. The Densenet201 instantiation notably omits the fully
connected layer and integrates pre-trained weights from the ImageNet (Stanford Vision
Lab, Stanford University, Stanford, CA, USA) database, a standard practice in transfer
learning to leverage pre-learned feature mappings. The “Densenet201” layer gives an
output shape of (None, 9, 9, 1920), indicating that the input image is transformed into a
feature map with a size of 9 × 9 and 1920 channels.

Once the DenseNet201 architecture has processed the input, its output serves as the
input for our custom-designed CNN layers. Our CNN architecture is designed to better
recognize and understand the detailed patterns in the X-ray images. Figure 5 shows the
detailed description of the DL model used for bone age prediction.

Figure 5. DenseNet201 Model Architecture for BoneAge Prediction.

Subsequent to the integration of DenseNet201, the proposed custom CNN employs a
GlobalMaxPooling2D layer. This layer effectively reduces the dimensions of the input and
concentrates on the important features required for bone age estimation. This reduction
is followed by a Flatten layer, which transforms the condensed feature maps into a linear
array. The model further consists of a sequence of three dense layers. The first and second
of these layers comprise 64 and 32 neurons, respectively, and employ the ‘relu’ activation
function. This function is instrumental in introducing non-linear characteristics to the
model, enabling it to decipher more intricate patterns in the data. The final layer in this
sequence is a single neuron dense layer utilizing a ‘linear’ activation function, implying
that the model’s output is a singular continuous variable such as the bone age.

Regarding optimization techniques, multiple optimizers are defined: stochastic Gra-
dient descent (SGD), nesterov-accelerated adaptive moment estimation (Nadam), and
Adamax. However, the compilation of the proposed custom CNN is exclusively with the
Adamax optimizer. This optimizer is configured with a learning rate of 0.001, and the
model employs a mean squared error (MSE) loss function, which aligns with regression-
based objectives. The primary metric for evaluating model performance is articulated
as ‘mae_in_months’, representing mean absolute error in months, a metric particularly
pertinent in applications of precise continuous bone age value predictions. In terms of the
number of parameters, the model has 18,447,041 parameters with a total batch size of 32.
Among them, 18,217,985 parameters are trainable, meaning they are updated during the
training process to optimize the model’s performance. The remaining 229,056 parameters
are non-trainable, representing fixed weights that are not updated.

2.5. Model Explainability: Score-CAM

CAMs also called heatmaps, are a way to understand how CNNs make their pre-
dictions. In this study, we used a method called score-weighted class activation maps
(Score-CAM), which measures the importance of different parts of an image by looking at
how input features affect the output. Unlike traditional methods that rely on gradients (a
kind of sensitivity measurement), Score-CAM takes a broader view of the input’s impact.
It [17] is also useful for identifying issues in the model, such as why it might make an
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incorrect prediction or if there are biases in the dataset. This makes it a powerful tool for
improving and understanding deep learning models.

The reason for choosing Score-CAM [18] lies in the fact that it typically outperforms
other methods across a wide range of metrics, with the exception of complexity. Further-
more, in [18], it’s worth mentioning that Score-CAM shows strong performance with VGG
and ResNet architectures. Conversely, Grad-CAM [19] scores the highest in the ADCC
score with ResNeXt models.

2.6. Evaluation Metrics

Mean absolute error (mae_in_months): MAE [20], generally expressed in months
for bone age, is a measurement of the average size of errors in a set of predictions. It
is used to evaluate the efficacy of a regression model and is quantified as the average
absolute difference between the predicted values and the actual values. The MAE loss
function formula:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (1)

where:
n is the number of observations in the dataset,
yi is the true value,
ŷi is the predicted value
“MAE months” calculates MAE in months, thereby quantifying the discrepancy be-

tween anticipated bone ages and factual bone ages. This metric has significant medical
relevance, facilitating an intelligible measure of the model’s precision in bone age esti-
mation. This function, characterized by two inputs, normalized predicted bone ages and
normalized actual bone ages transforms these values back to their original scale using
calculated mean and standard deviation from the training dataset. This transformation
yields an MAE in months, a temporal dimension of considerable clinical significance. A
decreased MAE signifies better alignment between projections and factual bone ages.

3. Results
The proposed neural network, trained for 35 epochs, proposes a solution of automating

bone age assessment using machine learning. Furthermore, we explored the benefits of
using an automated boneage prediction method using DL, which leads to improved MAE,
accuracy, efficiency, and decision making for support in managing scoliosis patients.

To assess the effectiveness of various models in bone age estimation, initially several
experiments with VGG16, VGG19, and Inception, were done while ensuring consistency
in hyperparameters across all trials. A detailed evaluation of the performance of each
model was done, where VGG16 showed a MAE of 11.35 months, VGG19 had an MAE of
14.34 months, and Inception yielded an MAE of 32.5 months. Figure 6 presents a detailed
graphical comparison of the performance metrics in these different models.

In a scatter plot as shown in Figure 6, the model’s accuracy is inferred by how closely
the data points cluster around the line representing the actual age. The VGG16 model on the
top left plots a noticeable improvement in prediction accuracy. The points are more tightly
clustered around the line, especially in the mid-range of ages. However, some discrepancies
remain for younger and older ages. Moving to the top right VGG19 plot, it depicts a model
with significant variance, as the data points are quite spread out from the actual age line.
This model tends to underpredict ages for younger subjects and overpredict for older ones,
which is suggested by the curvature of the data points away from the actual age line. The
bottom left Inception plot displays the weakest predictive performance among the four.
The data points show a considerable spread, indicating high MAE, and there is a consistent
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trend where the model underpredicts the actual age across the full age range. In contrast,
the bottom right proposed model plot showcases the most accurate model. The predictions
are closely aligned with the actual ages, with data points densely packed around the line,
showing low MAE values and minimal bias. Overall, the proposed model is the most
precise, while the Inception model significantly underperforms. The resulting MAE of
4.87 months and an R2 value of 0.975 achieved by our custom network demonstrates the
effectiveness of the applied approach and justifies the decision to invest in the development
of a specialized model.

Figure 6. Graphical Comparison of VGG16, VGG19, Inception and Proposed Model trained on the
same dataset.

The predicted bone age values generated by our custom neural network were com-
pared with the actual bone age labels for the hand radiographs in Figure 7. It indicates that
the proposed model generally predicts with a high degree of accuracy, as evident by the
close proximity of the predicted and actual ages in several instances, such as a predicted
age of 7.1 years being near an actual age of 7.2 years. However, there are some instances
where the proposed model’s predictions deviate from the actual predictions, as seen in an
outlier where the model predicted 13.0 years compared to the actual age of 11.4 years, this
can be attributed to various factors related to the inconsistencies in image quality such as
contrast, brightness, and noise levels. Furthermore, the model might struggle with atypical
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bone structures or rare pathologies that are underrepresented in the training set, leading to
inaccurate predictions for such cases.

Figure 7. Actual Age versus Predicted Age results.

The results show a similarity between the predicted and actual bone ages. The small
difference between the predicted and actual values further validates the effectiveness of
our approach in accurately assessing bone age in hand radiographs. Figure 8 illustrates
the model’s loss graph, depicting its training progress and validation process, and also
displays the MAE Month graph, measuring the training and validation mae_in_months
values. Using automation and advanced algorithms, our approach enhances the diagnostic
process and facilitates personalized treatment planning, ultimately resulting in better
patient outcomes. Table 2 presents a comparison of the performance of the proposed bone
age CNN model with different models from the literature.

Figure 8. Loss and MAE month curve plots for proposed model.

Table 2. Comparison of the performance of models.

Model Dataset MAE (Months)

Kim et al., 2023 [21] Private Data 10.5
Nam et al., 2023 [22] RSNA Bone Age 7.43
Toka et al., 2023 [23] RSNA Bone Age 6.32
Guo et al., 2022 [24] RSNA Bone Age 6.07

Moszczynska et al., 2020 [25] RSNA Bone Age 8.18
Mahayossanunt et al., 2019 [26] RSNA Bone Age 6.20

Proposed Model RSNA Bone Age 4.87
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In addition, we utilized the Score-CAM model as saliency maps of Score-CAM are
more focused than Grad-CAM [17]. Score-CAM was used to generate visual maps that
evaluate the performance of our proposed method, which visually represents the areas in
the wrist bone images that contribute most significantly to accurate bone age in months.
The results of the feature activation heat map analysis are depicted in Figure 9, illustrating
the effectiveness of our approach in identifying and highlighting the key bone regions.
These heat maps provide valuable insights into the regions that play a crucial role in deter-
mining bone age and aid in understanding the decision-making process of our deep neural
network. This process enhances the robustness of our method without requiring additional
segmentation steps, reducing computational complexity and improving efficiency. The
Score-CAM image provides a visual representation of how the neural network processes
data for bone age estimation in AIS patients. The areas where the network concentrates its
attention are distinctly marked in blue, indicating regions of high focus. In contrast, the
areas shown in red represent regions where the network’s focus is significantly lower.

Figure 9. Score-CAM Results of the proposed neural network, showing its attention which highlights
the important areas found in the images for determining boneage. In this color map, blue shows the
most significant areas, and red shows the least significant ones.

The mae_in_months was used as the evaluation metric, offering a quantitative measure
of the predictive models’ performance in estimating bone age accurately. The results of the
proposed method as compared to the performance of BoneXpert are shown in Figure 10.
The bar chart compares the predicted bone age from two different models: the proposed
model and BoneXpert, across various age groups. Both models yield similar results, with
slight variations in predictions. The similarity between the mae_in_months values of both
the BoneXpert system and the proposed research model underlines their comparable
performance in predicting bone age.

Figure 10. Comparison of the performance of the Proposed Model with BoneXpert.
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4. Discussion
The primary question this research aims to address is whether a custom CNN can

reliably and accurately assess bone age in AIS patients using hand radiographs. This
is particularly important for evaluating skeletal maturity, which is a critical factor in
managing AIS progression and treatment planning. The study also examines the potential
of explainability tools, such as Score-CAM, to improve the transparency of the model in
clinical settings. The proposed model demonstrates promising results in predicting bone
age, closely matching BoneXpert in several instances. For example, the proposed model’s
prediction is close to BoneXpert’s. Furthermore, when the proposed model predicts lower
than BoneXpert, like the 15.95 versus 14.62 years, it suggests the model could be more
sensitive in detecting earlier maturation stages, which can be crucial for early intervention
strategies. Even though this is a preliminary study, the results indicate a good correlation
with the BoneXpert model.

The paper’s methodology section outlines the development of a custom neural net-
work (NN) architecture based on DenseNet201, leveraging transfer learning to achieve low
MAE for AIS patients is novel. Unlike many general bone age assessment studies, this
work specifically addresses AIS, a niche yet clinically significant subgroup. This approach
not only reduces computational complexity but also yields a MAE of 4.87 months, surpass-
ing other pre-trained models like VGG16 and VGG19, demonstrating the effectiveness of
domain-specific model development. Furthermore, the paper introduces Score-CAM as
an explainability tool, shedding light on the regions of interest within hand radiographs
that contribute most significantly to accurate bone age estimation. This visual explanation
enhances the trust and transparency of the DNN model, making it more acceptable in clini-
cal practice. Introducing Score-CAM to visualize the regions of interest in the radiographs
highlights a unique aspect of this study, ensuring clinical relevance and interpretability.

The study compares the proposed DNN’s performance with the BoneXpert system,
a leading approach in the field. The use of automated techniques to evaluate the bone
age might be highly relevant in the study of spinal deformities. Our results reveal similar
MAE values, showcasing the potential of the proposed DNN to be a reliable and efficient
tool for bone age prediction. This convergence in performance signifies the progress in
automating bone age assessment, reducing inter-rater variability, and expediting clinical
decision-making. The ability of the proposed method to extract key areas of the bone in
an explainable way is a significant advantage. By gaining insight into which regions are
influential in the classification process, clinicians and radiologists can better understand
the algorithm’s decision and have greater confidence in its results. The explainability
aspect is particularly important in medical applications as it enables trust, transparency,
and acceptance of the automated system. This study addresses a critical gap in the field:
the need for automated and interpretable tools for bone age assessment in AIS patients.
Current approaches often rely on subjective manual assessments or black-box AI models
with limited clinical adoption due to a lack of transparency. By combining automation
with interpretability, the proposed approach aims to bridge the gap between technological
advances and clinical usability.

The proposed methodology also has some limitations which could be improved in
the future works. Our method requires to outline manually the region of interest of
the hand from the pancorporal radiograph. This step can be automated using a recent
object detection model such as Masked R-CNN, but it remains to be evaluated. The
proposed bone age estimation model may exhibit biases due to data imbalances and
lacks representation of diverse boneage demographics. Its accuracy heavily depends
on the input X-ray image quality and varies with equipment differences. Additionally,
the model’s reliability in rare conditions or anomalies affecting bone development, not
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well-represented in the training data, is uncertain. Furthermore, the use of DenseNet201,
known for its densely connected architecture, along with additional custom layers, could
lead to a computationally intensive model. This might require significant computational
resources for training and inference, potentially limiting its use in environments with
limited processing capabilities. Furthermore, researchers could explore the integration
of advanced object detection models, such as Masked R-CNN or YOLO, to automate the
extraction of the hand region from pancorporal radiographs. This will not only streamline
the workflow, but also reduce potential human error and improve reproducibility. Future
models should be trained with additional data that include rare anomalies that affect bone
development. Collaboration with specialized medical institutions could provide access to
such datasets, enhancing applicability of the model in less common clinical scenarios.

5. Conclusions
This study presents a deep neural network-based approach for pediatric bone age

assessment, demonstrating its potential for the field of pediatric radiology in general, but
also applied to AIS patients. The custom DNN architecture, combined with transfer learning
and Score-CAM for explainability, results in accurate and transparent bone age predictions.
To further enhance the model’s accuracy and robustness, collecting and annotating a
more extensive and diverse dataset of pediatric hand radiographs, encompassing various
age groups, ethnicities, and clinical conditions, would be beneficial. Data augmentation
techniques can also be employed to artificially increase the dataset size. At the moment,
the identification of the region of interest of the hand and wrist is manual, but future work
will involve the automatic identification of the region of interest and the evaluation of
BoneXpert on a larger amount of AIS patients. The adoption of deep neural networks
in bone age assessment holds promise for better monitoring of growth progression in
pediatric populations.
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TW Tanner-Whitehouse
RSNA Radiological Society of North America
MAE Mean Absolute Error
ROI Region of Interest
GPDL-BAAM Greulich-Pyle Deep Learning Bone Age Assessment Model
TDL-BAAM Tanner-Whitehouse Deep Learning Bone Age Assessment Model
ICC Intraclass Correlation Coefficient
VGG Visual Geometry Group
Inception Deep Learning Model Architecture (GoogleNet)
DenseNet201 Dense Convolutional Network with 201 Layers
ReLU Rectified Linear Unit
MSE Mean Squared Error
SVM Support Vector Machine
Score-CAM Score-Weighted Class Activation Map
Grad-CAM Gradient-Weighted Class Activation Map
EOS End of Scoliosis
AAM Active Appearance Model
BoneXpert Commercial Bone Age Grading Software
GIMP GNU Image Manipulation Program
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