The Journal of Systems and Software 226 (2025) 112408

Contents lists available at ScienceDirect

SOFTWARE

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

IoT systems testing: Taxonomy, empirical findings, and recommendations™

Jean Baptiste Minani 22>, Yahia El Fellah ", Fatima Sabir “‘“, Naouel Moha ",
Yann-Gaél Guéhéneuc *?, Martin Kuradusenge ‘®, Tomoaki Masuda °

2 Concordia University, Montréal, QC, Canada

b Ecole de Technologie Supérieure, Montréal, QC, Canada
¢ University of the Punjab, Lahore, Punjab, Pakistan

d University of Rwanda (UR), Kigali City, Kigali, Rwanda
¢ NTT Communications, Tokyo, Japan

ARTICLE INFO ABSTRACT

Keywords:

IoT testing taxonomy

IoT systems testing taxonomy
Software engineering taxonomy
Quality assurance taxonomy
Testing approaches

Testing techniques

Application testing

System testing

The Internet of Things (IoT) is reshaping our lives, increasing the need for thorough pre-deployment testing.
However, traditional software testing may not address the testing requirements of IoT systems, leading to
quality challenges. A specific testing taxonomy is crucial, yet no widely recognized taxonomy exists for IoT
system testing. We introduced an IoT-specific testing taxonomy that categorizes aspects of IoT systems testing
into seven distinct categories. We mined testing aspects from 83 primary studies in IoT systems testing and
built an initial taxonomy. This taxonomy was refined and validated through two rounds of surveys involving 16
and then 204 IoT industry practitioners. We assessed its effectiveness by conducting an empirical evaluation on
two separate IoT systems, each involving 12 testers. Our findings categorize seven testing aspects: (1) testing
objectives, (2) testing tools and artifacts, (3) testers, (4) testing stage, (5) testing environment, (6) Object
Under Test (OUT) and metrics, and (7) testing approaches. The evaluation showed that testers equipped with
the taxonomy could more effectively identify diverse test cases and scenarios. Additionally, we recommend
new research opportunities to enhance the testing of IoT systems.

1. Introduction IoT system architecture, as it varies based on business needs. Neverthe-
less, many IoT systems have four layers (Burhan et al., 2018; Abdullah
et al., 2020; Rao and Hag, 2018; Tougqeer et al., 2021): device, network,
cloud, and application layer. Unlike traditional software, IoT systems
require testing at all layers (White et al., 2017).

Jean Baptiste et al. (2024c, 2023b) identified the lack of a test-

ing guide as one of the testing challenges for IoT systems testing

Leotta et al. (2017) describe the Internet of Things (IoT) refers to
network systems of physical devices that are connected and exchange
data through the Internet. Cisco! predicted that IoT systems will in-
clude 500 billion devices by 2030, making computing power ubiquitous
across IoT systems. Ahmed et al. (2019) highlighted that ensuring the
proper functioning of IoT systems is crucial due to their direct impact
on personal lives and public safety. Without proper testing, IoT systems
may risk loss of life and financial resources, especially in safety-critical

among many other challenges that affect the quality of these systems.
Mubarakah et al. (2020), Villalén et al. (2015a) mentioned that to

domains. Pontes et al. (2018) and Jean Baptiste et al. (2023b, 2024c)
reported that proper testing in IoT systems is still challenging. This
is due to their distributed nature, dynamism, and heterogeneity, as
well as the multiple layers. Cisco, IBM, and Intel proposed a reference
model with seven layers has been proposed (Inc. Cisco Systems, 2014).
However, AltexSoft (2020) claims that there is no universally accepted

* Editor: Antonia Bertolino.
* Corresponding author.

improve testers’ understanding of different testing aspects of IoT sys-
tems, a taxonomy can be a valuable guide. Taxonomy helps IoT testers
understand and apply various testing aspects systematically, ensuring
they do not overlook any aspect. By providing structured guidance, a
taxonomy guides the testers to better understand different aspects of
IoT systems testing. To the best of our knowledge, no taxonomy exists

E-mail addresses: jeanbaptiste.minani@concordia.ca (J.B. Minani), yahia.el-fellah.1@ens.etsmtl.ca (Y.E. Fellah), fatima.sabir@pucit.edu.pk (F. Sabir),
naouel.moha@etsmtl.ca (N. Moha), yann-gael.gueheneuc@concordia.ca (Y.-G. Guéhéneuc), kuradusenge@yahoo.com (M. Kuradusenge),

tomoaki.masuda@sloan.mit.edu (T. Masuda).

1 https://www.globenewswire.com/news-release/2014/10/14/1271271/0/en/The-Internet-of-Things- World- Forum- Unites- Industry-Leaders-in-Chicago-to-

Accelerate-the- Adoption-of-IoT-Business-Models. H-TML

https://doi.org/10.1016/j.jss.2025.112408

Received 19 August 2024; Received in revised form 2 January 2025; Accepted 24 February 2025

Available online 8 March 2025

0164-1212/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0002-9164-6645
https://orcid.org/0009-0003-2873-2393
https://orcid.org/0000-0001-8707-6603
https://orcid.org/0000-0002-4361-2563
https://orcid.org/0000-0001-7741-8905
mailto:jeanbaptiste.minani@concordia.ca
mailto:yahia.el-fellah.1@ens.etsmtl.ca
mailto:fatima.sabir@pucit.edu.pk
mailto:naouel.moha@etsmtl.ca
mailto:yann-gael.gueheneuc@concordia.ca
mailto:kuradusenge@yahoo.com
mailto:tomoaki.masuda@sloan.mit.edu
https://www.globenewswire.com/news-release/2014/10/14/1271271/0/en/The-Internet-of-Things-World-Forum-Unites-Industry-Leaders-in-Chicago-to-Accelerate-the-Adoption-of-IoT-Business-Models.HTML
https://www.globenewswire.com/news-release/2014/10/14/1271271/0/en/The-Internet-of-Things-World-Forum-Unites-Industry-Leaders-in-Chicago-to-Accelerate-the-Adoption-of-IoT-Business-Models.HTML
https://doi.org/10.1016/j.jss.2025.112408
https://doi.org/10.1016/j.jss.2025.112408
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

J.B. Minani et al.

for testing IoT systems. We want to propose an IoT-specific testing
taxonomy that categorizes different aspects of IoT systems testing to
guide IoT systems testers.

To achieve our objective, we reviewed 83 IoT testing-related pri-
mary studies (PSs) selected from 8 digital libraries. We followed exist-
ing guidelines for developing taxonomies by Kundisch et al. (2021),
Ralph (2018), Usman et al. (2017). We improved the taxonomy by
conducting surveys with IoT practitioners. We assessed its effectiveness
by conducting an empirical evaluation using two systems as a case
study with 12 testers each. We defined the following research questions
(RQs):

+ RQ1: What Are Testing Objectives?

* RQ2: What Are Testing Tools and Artefacts?

» RQ3: Who Is Responsible for Testing?

* RQ4: What Are Testing Stages?

» RQ5: What Are Testing Environments?

* RQ6: What Are Testing Approaches?

* RQ7: What Are Objects Under Test and Metrics?
* RQ8: How Does The Taxonomy Improve Testing?

The purpose of this taxonomy is twofold: 1. To provide a structured
framework for organizing and understanding key dimensions of IoT
systems testing to guide the practitioners. 2. To serve as a reference to
relevant testing concepts for the IoT systems testers, helping the testing
teams to work more efficiently and effectively.

This testing taxonomy categorizes and organizes testing aspects for
improved clarity, benefiting researchers, practitioners, and future de-
velopments. This article extends our earlier workshop paper, which was
accepted for publication in the proceedings of SERP410T°24 (Jean Bap-
tiste et al., 2024b, 2023a). The abstract of this paper is also available
as a preprint (Jean Baptiste et al., 2024d). [R3C3] The improvements
to the previous work include a revised taxonomy that incorporates
feedback from a second-round survey with 204 practitioners, detailed
navigation guidelines, validation through experiments with testers,
additional recommendations, and an expanded discussion. Building
upon the contributions of our previous work, this paper provides the
following new contributions: [R2C1]

We validated and refined the taxonomy from our previous study
(Jean Baptiste et al., 2024b) through collaboration with industry
practitioners, incorporating valuable feedback from practitioners in-
volved in IoT systems testing. Thus, the taxonomy aligns with real-
world testing practices and effectively captures the nuances of testing
IoT systems according to the 6Ws and 1H framework.

We conducted an empirical evaluation with two case studies and 12
practitioners to assess the effectiveness of the developed taxonomy.
This study aimed to evaluate the taxonomy’s practical impact on test-
ing IoT systems by gathering insights from testers directly involved
in the process, validating its relevance and applicability in real-world
scenarios.

We provided recommendations on prioritized testing types tailored
to each layer of IoT Systems, informed by the insights of industry
practitioners.

We set up two public access points for professionals to continuously
access and stay updated with our IoT systems testing taxonomy. The
first is hosted on the Ptidej website,” while the second is available in
a GitHub repository,® ensuring that the latest version, incorporating
newly identified aspects, is always accessible.

The rest of this article is organized as follows: Section 2 provides
the motivational background and related work. Section 3 describes
the research methodology. Section 4 presents practitioners’ feedback.
Section 5 discusses the taxonomy and answers our RQs, while Sec-
tion 6 outlines the findings of the empirical evaluation. Section 7

2 https://www.ptidej.net/Members/minanijb/Taxonomy/
3 https://baptiste2k8.github.io/taxonomy4IoTTesting/

The Journal of Systems & Software 226 (2025) 112408

loT System

[Embedded System

Cloud Application

Devices

Gateway

Fig. 1. IoT system key components.

Application Layer

Cloud Layer

Cloud
Data Store

ateway Layer

(e J (e] [a] 6,

AMQP 4

Device|Layer|

VL%E L\ Wi D) Vg Zigbee v
) -

Dy

Fig. 2. Example of IoT system architecture.

summarizes the recommendations. Section 8 provides the discussion.
Section 9 highlights potential threats to the validity of our study.
Finally, Section 10 concludes the article and outlines future work.

2. Motivational background and related work
2.1. Motivational background

This section provides background on IoT system testing. First, we
introduce the concept of IoT systems and their complexity. Then,
we discuss how testing these systems necessitates a dedicated taxon-
omy that extends beyond existing taxonomies for testing traditional
software.

2.1.1. Key concepts

IoT Systems. IoT systems are composed of several core components
that contribute to their functionality and complexity. These compo-
nents include a multitude of devices, gateways, cloud services, and
applications. Fig. 1 shows the key components of the [oT system.

Each component plays a role in the system’s overall operation.
The diversity of devices involved, ranging from simple sensors to
complex processors, and the variety of protocols they use, adds layers
of complexity to the system architecture. Many papers refer to an IoT
system as a network of devices, often emphasizing the devices and
network layers while overlooking other components. To avoid potential
confusion, in this paper, the term IoT system specifically refers to what
is commonly understood as an IoT application. We define an IoT
application as a software system designed to manage, process, and use
data collected from various IoT devices as shown in Fig. 2.

Embedded Systems. Embedded systems are designed to perform
specific, standalone tasks within hardware devices, typically without
native internet connectivity. An example of this is a microwave oven’s
control system, which operates independently to manage cooking times

https://www.ptidej.net/Members/minanijb/Taxonomy/
https://baptiste2k8.github.io/taxonomy4IoTTesting/

J.B. Minani et al.

and power levels based on user input. In the context of IoT systems,
all IoT devices run on embedded systems. By adding a communication
layer, which enables an IoT device to interact with other devices, a
cloud layer for storage, and an application layer, we transition from an
isolated embedded system to an IoT system. The application layer in
an IoT system can take the form of a web application, mobile applica-
tion, or desktop application, providing a user interface to manage and
interact with the IoT devices.

Traditional Software Systems. Traditional software systems are
characterized by a centralized architecture in which client
applications—ranging from desktop software to mobile and web-based
applications—interact with central servers responsible for processing
requests, managing data storage, and executing critical operations.

Unlike traditional systems, where communication primarily occurs
between client applications and central servers, [oT systems can inter-
connect multiple devices over the Internet. This connectivity enables
them to collect, process, and transfer data amongst themselves or to
cloud storage or backend servers as part of a distributed system. While
not all embedded systems are part of [oT, those that are connected and
networked can be considered a subset of IoT systems.

In this study, the term “System Under Test (SUT)” refers to the
entire IoT system, including application layer, device layer, commu-
nication layer, and cloud layer. “Object Under Test (OUT)” denotes
a specific component of the IoT system being tested such as device
layer, application layer, cloud layer, or communication layer. In the
next section, we discuss related work, primarily focusing on testing
traditional systems or addressing limited aspects of IoT systems.

2.2. Related work

Table 1 summarizes the related work and compares them with our
study based on the testing aspects covered. [R2C7] We specifically
considered studies that explicitly mention taxonomies or classify as-
pects of IoT system testing, such as testing types, approaches, tools,
or other dimensions closely aligned with the scope of our study, while
excluding general studies on IoT system testing. In this paper, we use
testing aspects to refer to any concept that can be considered when
testing a given system. It encompasses the rationale behind testing, the
environments for conducting tests, approaches used, appropriate timing
for testing, the individuals responsible, tools and metrics used, and the
artifacts generated.

Several studies proposed taxonomies for software testing to guide
the testing teams. Villalon et al. (2015a) discussed a taxonomy fea-
turing 9 overarching categories and 27 subcategories tailored for tra-
ditional software. This taxonomy underwent validation via a com-
prehensive survey involving IT managers and industry professionals,
cementing its relevance and utility within the field. However, this
taxonomy does not cover any aspect related to IoT systems testing.
Vegas et al. (2009) presented a taxonomy for unit testing of conven-
tional software systems. It provides 13 testing techniques, including
methodologies such as random testing, boundary value analysis, state-
ment testing, branch testing, path testing, thread testing, and mutation
testing. This taxonomy may not suffice for testing IoT systems since it
discusses only testing techniques and does not cover other aspects such
as testing environment, testing tools, and items to be tested. Unterkalm-
steiner et al. (2014) introduced taxonomy for requirements engineering
and software testing (REST). It focuses on aligning software require-
ments and resultant software. The taxonomy was validated through an
industry survey. This validation highlighted its potential to enhance
both requirement engineering and software testing processes. However,
its focus is limited to a few aspects of IoT systems and may not fully
serve the needs of testing IoT systems. A distinct perspective emerged
in the work of Cheverda et al. (2022), where the authors proposed a
taxonomy to evaluate software quality, focusing on metrics. This tax-
onomy effectively addressed eight attributes (compatibility, portability,

The Journal of Systems & Software 226 (2025) 112408

functional sustainability, security, usability, performance, maintain-
ability, and reliability) fundamental to traditional software systems.
However, Khezemi et al. (2024) proposed different quality attributes
for IoT systems. Nevertheless, this taxonomy is missing many aspects
of IoT systems such as guiding practitioners to know what to test, how
to test, where to conduct the test, and when to test. Mubarakah et al.
(2020) introduced a taxonomy based on SWEBOK analysis, empha-
sizing ten knowledge areas. Although the study emphasized software
testing, it lacked details on test levels and techniques. Makhshari and
Mesbah (2021b) focused on taxonomy for categorizing IoT bugs but
did not address actual IoT system testing. Yet Raibulet (2018) focused
on taxonomy for software evaluation. This study attempted to address
“How” and “What” aspects of software testing and did not consider
other aspects such as stage of testing, environment for testing, and objective
of testing.

Ladisa et al. (2023) provided a taxonomy for evaluating open-
source software. However, this study did not address any aspect of
IoT systems testing. Zander and Schieferdecker (2011), Felderer et al.
(2016) focused on taxonomy for model-based testing. These studies
concentrated on traditional software and did not consider the unique
characteristics of IoT systems. Costa et al. (2020), Roggio et al. (2014),
Kiran Bhagnani (2014) presented taxonomies related to performance
testing tools, testing terminologies, and testing techniques. While these
taxonomies can be crucial in testing IoT systems, their coverage is
limited to a few aspects of software projects in general, without consid-
ering the specific needs of testing IoT systems such as testing devices
and connectivity. Coppola and Alégroth (2022) discussed the taxonomy
of software metrics, while Mubarakah et al. (2020) provided the tax-
onomy for software engineering tools and methods. However, none of
these taxonomies can address fully the need for testing IoT systems.
The ISO-29119 (ISO Standards, 2021) provides techniques for testing
traditional software systems. However, testing IoT systems demands
a broader approach that accounts for their distinctive attributes. It is
essential to adapt and expand these standards to address the testing
needs specific to IoT systems. Firesmith (2015) explored the taxon-
omy of testing types for a software project. While this taxonomy is
detailed, it falls short in addressing [oT system aspects. Despite this
limitation, our study draws inspiration from Firesmith (2015) for its
comprehensive coverage, even though it does not explicitly consider
the testing needs of IoT systems. We draw inspiration from this previous
work and explain in the following section why a taxonomy dedicated to
testing IoT systems is necessary. [R3C7] Yaqoob et al. (2017) provided
a comprehensive taxonomy of IoT architectures and devices, which
complements our focus on testing by offering insights into the structural
aspects of IoT systems.

[R3C8]Finally, Usman et al. (2017) proposed various approaches to
develop and validate the taxonomy, but did not propose any taxonomy.
Table 2 presents a comparison of our study with related works that
proposed and validated taxonomies.

In addition to validation approaches, related studies have also in-
troduced various validation metrics. Table 3 highlights the metrics we
used in our validation and compares them with those used in other
studies. We notice that many studies used perception-based metrics,
such as usefulness, completeness, understandability, and clarity, to
assess the quality of taxonomies (Villalon et al., 2015b).

2.3. Definition of validation metrics

[R2C2][R3C2] To validate this taxonomy, we used several metrics,
as presented in Table 3. This section provides definitions for these
metrics.

» Completeness: The degree to which a taxonomy covers all relevant
concepts and subtopics.

+ Coverage: The extent to which a taxonomy addresses the breadth of
topics and subtopics within its scope

J.B. Minani et al.

Table 1

[R2C7] Related works focusing on taxonomy in software engineering.

The Journal of Systems & Software 226 (2025) 112408

Study Aim of the Study Year Aspects of the Study

What How When Where Which Who Why IoT
Ladisa et al. (2023) Taxonomy of attacks 2023 - + - - - - - No
Lonetti et al. (2023) MB Security Testing 2023 - + - - - - - Yes
Fadhil and Sarhan (2022) IoT Testing Survey 2022 - t - - - - - Yes
Coppola and Alégroth (2022) Testing metrics 2022 1 - - - - - No
Cheverda et al. (2022) Taxonomy for quality assessment review 2022 - - - - - - No
Makhshari and Mesbah (2021b) Taxonomy of bugs 2021 - - - - - - - Yes
Costa et al. (2020) Performance Testing Tools 2020 - t - - 1 - - No
Mubarakah et al. (2020) Taxonomy reviews 2020 - t - - T - - No
Raibulet (2018) Taxonomy of software evaluation approaches 2018 - T - - - - - No
Garousi et al. (2018) Testing taxonomy for embedded systems 2015 t t - - t - - No
Firesmith (2015) Testing Types 2015 + + t + + v v No
Villal6n et al. (2015a) Software testing 2015 1 1 - - 1 - - No
Engstrom and Petersen (2015) Testing interventions and practical challenges in SE 2015 - - - - - - - No
Felderer et al. (2016) Classification of Model-Based Security Testing 2015 t - - - 1 - - No
Roggio et al. (2014) Software testing Terminologies 2014 1 - - - - - No
Kiran Bhagnani (2014) Taxonomy for testing techniques 2014 - 1 - - - - - No
Unterkalmsteiner et al. (2014) Taxonomy for RE and software testing 2014 - - - - - - - No
Utting et al. (2012) Taxonomy for MBT approaches and tools 2012 - T - - 1 - - No
Zander and Schieferdecker (2011) MBT for embedded systems 2011 - - - - 1 - - No
Zander et al. (2011) Test generation, execution, and evaluation 2011 t t - - - - - No
Vegas et al. (2009) Testing Techniques 2009 - 1 - - - - - No
This Testing IoT systems 2024 v v v v v v v Yes

*-:Not Covered[0%]; :Limited Coverage[25%]; t: Partially Covered[50%];4%:Mostly Covered[75%];v/:Comprehensively Covered.

* What - Item Under Test and Metrics; How - How to Test; When - When to Test; Where - Testing Environment; Which - Which Tools

- Objective of Testing.

and Artefacts; Who

- Who Does Test; Why

Table 2
Taxonomy validation approach.
Validation Approach Studies
This Mountrouidou et al. (2019) Coppola and Alégroth (2022) Costa et al. (2020) Felderer et al. (2016) Villalén et al. (2015b)
Comparision (Benchmarking) -- ++ -- - - .- .
Expert Opinion (Survey) ++ - - - - - - -- +4
Case Study ++ - - - - .- .- .-
Experiment ++ ++ - - -- - - .-
Classifying Existing Literature ++ - - ++ ++ ++ ++

% ++: Validation Mentioned. —: Not Mentioned.

Table 3
Taxonomy validation metrics.

Validation Metrics Studies
This Mountrouidou et al. (2019) Coppola and Alégroth (2022) Costa et al. (2020) Felderer et al. (2016) Villal6n et al. (2015b)

Completeness ++ ++ - - - - ++
Coverage ++ - - - - - - .-
Effectiveness ++ - - - - .- .-
Expectation-Matching ++ - - - - - - -
Helpfulness ++ - - - - - - .
Importance ++ - - - - - - - -
Level of Details ++ - - -- .- .
Understandability ++ - - - - - - 4
Usefulness ++ - - - - .- .
Precision - - ++ - - - - - -
Timelessness - - ++ - - - - .-
Cohesion - - - - - - .- .-
Clarity - - - - - - .- S+

% ++: The metric was used. —: Metric was not used.

« Effectiveness: The degree to which a taxonomy helps users achieve + Importance: The perceived significance and relevance of a taxonomy

their goals or complete tasks efficiently.
« Expectation-Matching: The extent to which a taxonomy meets users

to users’ needs and goals.
+ Level of Details: The perceived granularity and specificity of informa-

’

preconceived notions and expectations about its structure and con- tion provided by a taxonomy.

tent. + Understandability: The ease with which users can comprehend and

* Helpfulness: The degree to which a taxonomy provides useful guid- interpret the concepts, relationships, and terminology presented in a

ance, clarification, or insights to users. taxonomy.

J.B. Minani et al.

The Journal of Systems & Software 226 (2025) 112408

o3 & O O ’
c °E’ Mined and Organized Testing Invited 16 Industry Experts to
-3 o Aspects from 83 PSs Provide Feedback
g %4 [.
s¢ v
X o
wQa
| Literature Review > Industry Experts
. Feedback
” E ..'. Feedback Taxonomy
B | ©
o £ T
T % Invited 204 Professionals to = Conducted Experiments on Two @ ®
§ 2 “ “‘ Validate the Taxonomy Systems (WIMP, SMART-CYPS)
Professionals O O Experiments

Fig. 3. Research methodology.

« Usefulness: The degree to which a taxonomy is perceived by users as
being practical, applicable, and beneficial for their specific needs and
tasks.

2.4. Need for IoT system testing taxonomy

Testing IoT systems presents unique challenges not encountered
in traditional software testing. Due to the heterogeneous nature of
the devices and protocols, testing must go beyond application to also
include the devices themselves, data processing and storage, their
connectivity, interoperability, and dealing with different communica-
tion protocols. Furthermore, the dynamic nature of IoT environments,
where devices frequently connect and disconnect and systems scale
dynamically, complicates the testing process even further.

The complexity of interactions across different layers and compo-
nents demonstrates that traditional software testing taxonomies may
not be sufficient. Traditional methods do not fully address the specific
needs of IoT systems, such as device connectivity, diverse commu-
nication protocols, and dynamic conditions. Therefore, we need a
customized IoT testing taxonomy that comprehensively covers these
areas. The taxonomy proposed by Firesmith (2015) addresses the needs
of traditional systems while the testing techniques proposed in ISO-
29119 (ISO Standards, 2021) can only address “WHAT” aspect of
testing traditional systems without addressing the specific needs of IoT
systems. Although the taxonomy in Firesmith (2015) and the testing
techniques in ISO-29119 (ISO Standards, 2021) provide useful infor-
mation for testing in general, they do not address the specific needs
of IoT systems. Therefore, to the best of our knowledge, none of the
previous studies provided a comprehensive taxonomy for end-to-end
IoT systems testing. In our study, we analyzed IoT testing literature and
developed an IoT system testing taxonomy. We improved it with inputs
from 16 industry practitioners, and 204 IoT professionals to ensure its
alignment with industry needs and bridge the gap in IoT system testing.
We assessed its effectiveness with empirical evaluation on two systems
involving 12 testers each.

3. Research method
The method used in this study comprises three phases, as shown

in Fig. 3: taxonomy development, feedback collection, and empirical
evaluation.

3.1. Taxonomy development

In this section, we explain the steps to construct the taxonomy and
answer RQ1-RQ7.

3.1.1. Step 1 - Identification of relevant literature

We followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses statement (PRISMA) by Page et al. (2021) and
retrieved relevant scientific articles published from January 2012 until
December 2022. In this section, we have reused some data from our
recent study on a systematic literature review (SLR) for IoT system
testing, specifically for the identification and selection of primary stud-
ies (PSs) (Jean Baptiste et al., 2024c). Specifically, we extracted data
pertinent exclusively to the development of our taxonomy. We present
only the key steps here to focus on the essential aspects of our method-
ology. Fig. 4 summarizes the PRISMA process we used for the literature
review. We started by defining the search strategy to be executed in
different digital libraries.

We defined the following search strategy by applying the Popula-
tion, Intervention, Comparison, and Outcome process (PICO) proposed
by Cooke et al. (2012).

£ |

[IoT OR internet of thing OR IoT system OR internet of thing
system OR IoT platform OR internet of thing platform OR IoT
application OR internet of thing application OR IoT software
OR internet of thing software] AND (test OR bug OR defect OR
failure OR anomal* OR quality OR verification OR validation)
AND (method OR technique OR approach OR process OR type
OR level OR practice OR tool OR framework OR layer OR
component OR constituent OR attribute OR metric OR objective
OR stage OR phase OR environment OR target OR artifact OR
artefact)

€ g

We selected 8 online digital libraries: ACM Digital Library, Compen-
dex, IEEE Xplore, ScienceDirect, SpringerLink, Scopus, Web of Science,
and Wiley. Those digital libraries are the most commonly used for
literature reviews in software engineering (Dyba et al., 2007). We
executed the search strategy and retrieved 8,294 articles from these 8
digital libraries. We removed 985 duplications and we obtained 7,305
articles. We screened these using the following inclusion and exclusion
criteria.

J.B. Minani et al.

ACM Digital Library|

The Journal of Systems & Software 226 (2025) 112408

Compendex
IEEE Xplore
ScienceDirect
Scopus

SpringerLink
Web of Science O
Wiley

(n=8,290) Ol (n=7,305)

~
>[Identification . Screening . Eligibility . Included . Snowballing

Q)| (n=154) Q

(n=54) Q

(n=83)

fowe e

Digital Databases Selected Studies Identified
Through Database

Searching

Studies After
Duplicates Removal

Included
Studies After
Full-Text Read

Filtering based on
number of pages,
titles and abstracts

29 Studies Added Through
2 Rounds of Snowballing
(Backward and Forward)

83
Selected

Studies

—
[

Initial Taxonomy

Develop Taxonomye—Categorize Terms}-[Analyze TermsH Extract Terms

Fig. 4. Initial taxonomy construction process.

18 L
16
14 -
2 = N
-4
8 1
6 -
Y ; 10 I
2 1] 2 |
[
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Publications Years

Journal mConference = Workshop m Book Chapter

Fig. 5. Distribution of PSs by Year.

Inclusion Criteria. We considered the following inclusion criteria for
article selection:

The article is written in English

The article is published between 2012 and 2022

The article is published in a journal, conference, or workshop

The article explicitly discusses at least one aspect of IoT systems
testing

The article has at least 4 pages

Exclusion Criteria. We considered the following exclusion criteria:

The article has less than 4 pages

The article is not a primary article

[R3C7] The article is not related to security testing
The article has not been peer-reviewed

The article is a graduate thesis or project report

The article does not have its full text available online

[R3C7] We chose to exclude PSs about IoT security testing despite
the importance of this topic for two reasons. First, this topic deserves
its own study and has already been the subject of recent surveys,
e.g., Nawir et al. (2016). Second, security testing for IoT systems is
a vast and complex topic, which would have overshadowed other
objectives and increased the complexity and length of this article. We
applied these criteria, and we obtained 54 articles.

We performed two rounds of backward and forward snowballing
and identified an additional 29 studies, bringing the total to 83 studies.

Fig. 5 shows the publication trends of reviewed articles.

3.1.2. Step 2 — Data extraction and analysis

Two authors of this paper manually analyzed the selected studies
and mined different testing aspects to develop the initial taxonomy,
resolving any disagreement on extracted aspects through discussion
sessions to reach a consensus. Table 4 shows the form used for data
extraction.

Table 4
Data extraction form.
Field Description
Study The title of the study (paper)
Focus The main focus of the study (paper)
Aspect Any testing aspect from testing objectives/reasons,

testing approaches, testing environment, testing tools,
testing metrics, testing artifacts, testing stage, testing
responsibility

The studies analyzed and the data extraction form we used can be
found online on ptidej website.* and Zenodo®

3.1.3. Step 3 — develop the initial taxonomy

To develop the initial taxonomy, we followed the method proposed
by Usman et al. (2017). This method consists of 13 activities grouped
into 4 phases, as shown in Table 5.

(1) Planning. This step consists of defining the initial aspects of
the taxonomy to be developed, such as the objective of the
taxonomy, the software engineering knowledge area associated
with this taxonomy (i.e., the object to be classified), the data
collection method, the classification structure type (e.g., tree or
facet-based), and the classification procedure type (i.e., qualita-
tive or quantitative). In this phase, we conducted six activities
(B1 to B6). The knowledge area associated with the designed
taxonomy is testing (the outcome of B1). The main objective of
the taxonomy is to identify and classify the testing aspects reported
in the existing literature (the outcome of B2). The subject matter
of the taxonomy is IoT system testing (the outcome of B3). We
chose hierarchy as the classification structure (the outcome of
B4) to relate categories and sub-categories in a parent—child
relationship as proposed by Kwasnik (1999). We selected a
qualitative procedure to classify testing terms (the outcome of
B5) according to Wheaton (1968). We used a systematic literature
review to identify testing aspects (the outcome of B6).

(2) Identification and Extraction. We carried out 2 activities (B7
and B8). We extracted all testing terms from the 83 PSs (the
outcome of B7). To extract the testing terms from 83 PSs, we
followed the steps in Section 3.1.1 and Section 3.1.2. Activity
B8 enabled us to control the consistency of extracted terms.
We performed the following actions to categorize the extracted
terms: (1) We removed duplicates, (2) whenever we identified
a testing term possibly represented by another term in different

4 https://www.ptidej.net/downloads/replications/jss24a/
5 https://zenodo.org/records/14515044

https://www.ptidej.net/downloads/replications/jss24a/
https://zenodo.org/records/14515044

J.B. Minani et al. The Journal of Systems & Software 226 (2025) 112408

Table 5
Taxonomy design method [Adapted from Usman et al. (2017)’s study].
Phase D Activity
B1 Define SE knowledge area of the study
B2 Describe the objectives of the taxonomy
. B3 Select and describe the subject matter to be classified
Planning e
B4 Select classification structure type
B5 Select classification procedure type
B6 Identify the sources of information
e . B7 Extract all the terms
Identification and Extraction X
B8 Perform terminology control
B9 Identify and describe the taxonomy dimensions
Design and Construction B10 Identify and describe the categories of each dimension
& B11 Identify and describe the relationships
B12 Define guidelines for using and updating the taxonomy

Validation B13 Validate the taxonomy

% SE: Software Engineering.

Goal-Based
(14 PSs)
Objectives of Testing (Why) Why

Phase-Based
(31PSs) -
Stage of Testing (When)
e i Reason-Based
Continuous-Based (28 PSs)
1P

Object Under Test (OUT)
What 9Pss) OUT & Metrics (What)
Metrics
(3 PSs)
Artifacts
Which (7559 Artifacts & Testing Tools
(Which)
Testing Tools
(39 PSs)

I

1 1
! | Testing Levels
(6PSs)

S:ysten:ﬁ
Urer Tt

(SUT) ,
j @ Testing Approaches (How) (28 PSs) How
|

Automation Level
(2 PSs)
Scripting Level
(2PSs)
Testing Environment (Where) Who Does Testing (Who)
(18 PSs) (1PS)

Fig. 6. Testing aspects from primary studies.

studies with the same meaning, we performed terminology uni- 1. Identify the Participants. Due to limited information on the ver-
fication. We used a Delphi-inspired process (Niederberger and sion of the taxonomy we had, we chose not to share it publicly

@3

(4

)

—

Spranger, 2020), where two authors of this paper independently
define the category of the extracted terms, resolving any conflict
through discussions until a consensus was reached. As a result,
we identified testing aspects shown in Fig. 6.

Design and Construction. In this phase, we described the cat-
egories of testing aspects. We identified any relevant subcat-
egories for each testing aspect. We used extracted terms and
controlled through B7 and B8 to identify and describe taxonomy
dimensions and categories. We selected one dimension, named
IoT system testing (the outcome of B9 at the very top, making
it the parent of the entire taxonomy. We identified 7 aspects
(objectives, targets, approaches, timing, environment, role, and tools
and metrics, each representing a distinct category within the
taxonomy, as shown in Fig. 6 (the outcome of B10). We used
hierarchical classification relationships to relate categories and
subcategories (the outcome of B11). We provided a guideline
through the usage scenario in Section 3.5, and we will review the
taxonomy every two years to determine if updates are necessary.
(the outcome of B12).

Validation. [R3C8] Usman et al. (2017) proposed various ap-
proaches for validating taxonomies, including expert opinion,
case studies, experiments, and benchmarking. In this study, we
validated this taxonomy with two rounds of surveys (i.e., ex-
pert opinion), as explained in Sections 3.2 and 3.3. We also
conducted an empirical study with testers (i.e., case study and
experiment), as presented in Section 6.

for feedback. Instead, we identified professionals with experi-
ence in IoT systems through their LinkedIn profiles. We invited
them to participate in our study and provide their feedback on
the version of the taxonomy that we constructed based on a liter-
ature review. We did not specify a target number of profession-
als; however, we sent requests via LinkedIn private messages to
79 professionals. Ultimately, 16 practitioners voluntarily agreed
to participate.

. Design the Feedback Collection Form. We created a feedback

collection form consisting of 20 questions grouped into three
sections: demographic information, IoT testing experience, and
comprehension of the taxonomy. The form can be accessed
online.®

. Send out the Initial Taxonomy and Feedback Form. We used prac-

titioners’ email addresses to share the taxonomy and the link to
access the feedback form.

. Collect and Analyze the Feedback. We analyzed the feedback from

experts to extract their recommendations.

. Update the Taxonomy. We updated the taxonomy by adding more

terms or by removing redundancies.

3.3. Survey — Round 2

We surveyed 204 practitioners to evaluate various aspects of the
developed taxonomy and provide their feedback. We used the feedback

3.2. Survey — Round 1
provided to improve and finalize the taxonomy. We conducted three

We surveyed 16 industry practitioners to collect feedback on the
initial taxonomy. We used the collected feedback to improve the tax-

onomy. Fig. 7 summarizes the steps we used to conduct the survey. 6 https://tinyurl.com/surveyform2024

https://tinyurl.com/surveyform2024

J.B. Minani et al.

The Journal of Systems & Software 226 (2025) 112408

Initial e--» Participants Identification - Survey Design &--» Survey Distribution ¢- Feedback Analysis -> Update
Taxonomy i Taxonomy
Fig. 7. Steps used to conduct survey.
main activities: designing the survey, distributing the survey and tax- Navigating the Taxonomy
onomy, and analyzing the survey results. We followed the same steps
as presented in Fig. 7. o Define Testing Objectives

* Design the Survey. We used Google Forms to create our survey. We
asked participants questions on completeness, understandability,
helpfulness, meeting user expectations, effectiveness, overall im-
pact for practitioners and stakeholders, and participants’ opinions
on the categories and subcategories. The link to the survey is
online.”

Distribute the survey. We obtained an “Ethics Certificate” for re-
search involving human subjects. At this stage, our taxonomy
was more developed, and we were receptive to public feedback.
We aimed to gather feedback from at least 100 professionals
specializing in IoT systems. We distributed the Survey, along with
a copy of the taxonomy, via various social media channels, mainly
LinkedIn and Facebook IoT groups. We also contacted alumni
associations from VIT,* CMU,’ UR-ACEIoT.!* We did not provide
any monetary incentives for the participants and requested those
willing to participate to read the taxonomy and ask questions, if
any, before taking the survey. The survey was conducted over
a period of 45 days, during which 204 practitioners agreed to
review the taxonomy and provide their feedback.

Analyze the Survey Results. We analyzed the survey data to finalize
the taxonomy.

The materials we used can be accessed from ptidej website.!! The
complete taxonomy can be accessed online.'?

3.4. Taxonomy validation

We used two approaches to validate the taxonomy: survey-based
validation and empirical study.

3.4.1. Survey-based validation

We validated the taxonomy by surveying 16 and 204 practitioners
as described in 3.2 and 3.3 respectively. In addition to the feedback
they provided to enhance the taxonomy, we asked the practitioners to
assess the taxonomy for its completeness, understandability, level of
detail, etc. We analyzed the assessment data provided by practitioners
to improve the initial taxonomy.

3.4.2. Case study

We conducted a case study on two separate systems to evaluate how
the taxonomy can improve testers’ understanding (RQ8). We recruited
software engineering students from the IoT lab at Concordia University
for the WIMP project, and IoT students from the Center of IoT at
the University of Rwanda for the SMART-CYPS project. We asked
them to complete a questionnaire providing basic information such
as their experience with software projects, their understanding of IoT
systems (ranging from basic to advanced), and their educational level
(minimum requirement: bachelor’s degree). Subsequently, we hired 12
students for each system as part of our case study. [R2C3] We chose
these students for both systems because (1) they had some experience

~

https://tinyurl.com/TaxonomyFeedback204
https://vit.ac.in/

https://www.cmu.edu/

https://aceiot.ur.ac.rw/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/Members/minanijb/Taxonomy/

© ®

10
11
12

Identify the testing objectives from
identified objectives. This will guide
testing process.

Identify Object Under 2
Test And Metrics

!

Determine the object under test (e.g.,
entire system or specific layer) and
identify the relevant metrics to measure
its performance.

3 Choose Testing
Approaches

|

Select the testing approaches that align
with the testing objectives and object
under test.

Set Up Testing
Environment

l

Prepare the testing environment,
including any necessary hardware,
software, or network configurations.

5 Determine Testing Stages

Determine the stage of testing such as
unit testing, integration testing, system
testing, or acceptance testing or
continuous-based testing for Agile.

Select Testing Tools And 6
Artifacts

l

Choose the testing tools and artifacts
that will be used to support the testing
process, such as test cases, test scripts,

or test data.

7 —— Assign Testers

Identify the testers who will perform the
tests and ensure they have the necessary
skills and expertise

Fig. 8. Steps to guide the practitioners.

in developing or testing software solutions, and (2) they had direct
access to the respective systems. For each system, we used two groups,
each consisting of 6 participants. We asked each group to develop
test cases and scenarios for the given IoT systems. One group had
access to the taxonomy, while the other did not. Before the experiment,
we explained the systems to both groups and provided the necessary
system documentation along with a system demonstration. The task
lasted for 2 h. We compared the number of test cases (TCs), scenarios,
and aspects identified by each group.

3.5. Practitioners guidance

Although the taxonomy offers options for each aspect, testers are
not required to consider all of them. However, for each category, testers
must make decisions based on what to test, the objectives, etc. Fig. 8
illustrates how testers can navigate the taxonomy.

Fig. 9 shows a (simplified) example for practitioners to navigate
the taxonomy. Although we do not depict all the potential options
outlined in the taxonomy, it shows that practitioners can select one of
the four identified options for the testing environment to execute their
tests. Regarding the testing approach, the scripting level is optional
and requires the use of automation tools. It cannot enumerate all

https://tinyurl.com/TaxonomyFeedback204
https://vit.ac.in/
https://www.cmu.edu/
https://aceiot.ur.ac.rw/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/Members/minanijb/Taxonomy/

J.B. Minani et al.

The Journal of Systems & Software 226 (2025) 112408

o Dofocts Verification & User
Improvement Detection Valigation satisfaction

Fig. 9. Simplified example for practitioners to navigate the taxonomy.

conceivable metrics or test automation tools, but guides practitioners
in making a choice based on their applicability to their SUT.

3.6. Usage scenario: Developing a test strategy for a smart home IoT system

We further illustrate the use of the taxonomy with the following
scenario. A tester is given a task to ensure the quality and reliability of
a smart home system. This system includes interconnected devices, such
as thermostats, security cameras, and lighting controls, all managed
through a central hub. The tester can use the taxonomy to answer the
following questions:

1. Test Objective — “Why”. The primary objective is to ensure the
seamless functionality, security, and interoperability of the smart
home system.

2. What to Test — “What”. The tester focuses on IoT devices, net-
works, and applications and some characteristics: (a) Function-
ality: Test the core functionalities of each IoT device, commu-
nication layer, and automation testing of the application. (b)
Security: Assess the system security measures, including data
encryption, user authentication, and protection against cyber
threats. (c) Interoperability: Verify interoperability between dif-
ferent devices and protocols to ensure smooth communication
and compatibility.

3. How to Test — “How”. The tester can choose among different

options:
(a) Manual Testing: Perform manual tests to validate user inter-
faces and user experience with the application, and interoper-
ability between devices. (b) Automated Testing: Implement auto-
mated tests for repetitive tasks, e.g., unit tests, for all devices and
the application. (c) Penetration Testing: Conduct penetration
tests to identify vulnerabilities and weaknesses in the security.

4. Who Does Test — “Who”. The tester can enlist the help of:

(a) QA Team: Testers responsible for executing test cases, docu-
menting defects, and ensuring overall test coverage. (b) Devel-
opment Team: Developers responsible for implementing require-
ments, unit tests, and bug fixing. (c) Security Experts: Colleagues
who could conduct in-depth security assessments and identify
potential vulnerabilities.

5. Where to Conduct the Test — “Where”. The tester can choose

between:
(a) Testing Environment: Set up a dedicated test environment
mirroring the production environment to simulate real-world
scenarios. (b) Production Environment: Perform on-site testing
in real homes to assess device functionality and user experience
using the production servers.

6. When to Test —“When”. The tester can use and combine:

(a) Iterative Testing: Conduct testing throughout the develop-
ment lifecycle, including early-stage testing, integration testing,
and regression testing. (b) Patch (or Pre-release) Testing: In-
tensify testing efforts before major releases to identify and rec-
tify critical issues. (c) Maintenance (or Post-deployment) Test-
ing: Continue testing post-deployment to monitor system perfor-
mance, address user feedback, and release updates.

25%, 4

13%, 2

38%, 6

<1Year Between 1 and 3 Years

Between 3 and 5 Years = Between 5 and 10 Years

Fig. 10. Participants’ experience in IoT.

7. Which Tools and Artifacts — “Which”. The tester can choose:
(a) Automation Tools: Appium and Selenium for automated test-
ing of web interfaces and mobile apps, respectively. (b) Artifacts:
Bug reports or TCs.

The testers are not expected to check all the boxes within each
category. However, depending upon the nature of the project or its
priorities, testers may select applicable elements from each category,
guided by the defined objectives of the testing endeavour.

4. Practitioners’ review

We conducted two rounds of surveys with industry practitioners to
collect their reviews on this taxonomy, and we used their feedback to
improve it.

4.1. Round 1

We surveyed 16 industry practitioners (12 males and 4 females)
from 7 countries (UAE, USA, Canada, Japan, Pakistan, India, and
Rwanda), to collect feedback on our initial taxonomy. 25% of partic-
ipants have 5 to 10 years of experience in IoT, while 12.5% have 3
to 5 years of experience. The majority, 62.5%, have 1 to 3 years of
experience in IoT. Fig. 10 shows the details of the participants.

We used the feedback provided by 16 experts to improve the
initial taxonomy. The participants evaluated the taxonomy, and we
summarized their evaluation results in Fig. 11. To ensure participant
anonymity, we assigned unique identifiers (P1 to P16) to represent
each of the 16 participants in this paper. We consolidated “strongly
agree” and “agree” into “agree”, then aggregated their corresponding
values. For instance, combining 43.75% strongly agreeing with 12.50%
agreeing results in a total of 56.25% agreement.

4.1.1. Completeness, helpfulness, understandability, and usefulness

We asked the practitioners to assess the completeness, understand-
ability, usefulness, helpfulness, expectation matching, importance, and
effectiveness of the taxonomy on a scale of 1 (strongly disagree) to 5
(strongly agree) as shown in Fig. 11.

J.B. Minani et al.

I Strongly Agree Agree

Neither Agree nor Disagree

The Journal of Systems & Software 226 (2025) 112408

Disagree Il Strongly Disagree

Completeness

Coverage

50.00%

Effectiveness
31.25%
50.00%

tation-Matching
Helpfulness
Importance
Level of Details
derstandability

Usefulness

Fig. 11. Evaluation results - Round 1.

Completeness. 56.25% of the participants agreed that our taxonomy
is complete. The comment received from the participants was to include
“security” on testing types, and “business scenario (E2E)” as the goal
of testing.

The proposed taxonomy covers most of the angles that should be
taken into consideration for IoT tests. (P6)

Understandability. 68.75% of the participants agreed that the taxon-
omy is understandable while providing some suggestions.

The proposed taxonomy is understandable when I read it, especially
in its graphical visualization. However, the only thing you should
mention is how the testers can read it with brief descriptions of
different terms used. (P13)

Usefulness. All participants agree that the taxonomy is useful. No
participants disagreed on the usefulness of the taxonomy.

This taxonomy is useful since it provides the common terminology
and taxonomy for people to create and review IoT test plans.
Given the common terminology and taxonomy as a framework, the
supplier companies, subcontractor companies, and user companies
can productively align on the test strategy compared to building it
from scratch. (P9)

Helpfulness. 81.25% of the participants agreed that the taxonomy is
helpful. However, the participants suggested adding a granular guide
for the testers.

This taxonomy can help testers develop a comprehensive test plan
that covers all the different components and elements of an IoT
system, including devices, connectivity, data management, analyt-
ics, applications, security, and cloud computing. It can also help
them design test cases that take into account the various challenges
associated with testing IoT systems, such as data volume, device
diversity, and complex interactions between components. (P7)

4.1.2. Importance and expectation

We asked the practitioners to assess the importance and the degree
to which the taxonomy matched the practitioners’ expectations using a
scale from 1 (strongly disagree) to 5 (strongly agree).

Importance. 75.0% of the participants agreed on the importance of
the taxonomy, while 25.0% of the participants did not agree or disagree
that the taxonomy is important to the practitioners.

Any practitioner will be able to understand different types of testing,
which are important in the preparation of a test strategy. (P1)

Expectation of Practitioners. 56.25% of the participants agreed that
the taxonomy matches their expectations as testers, while 43.75%
did not agree or disagree that this taxonomy matches their level of
expectation.

I've been doing a literature review for the last couple of months, and
this taxonomy is one of the best ones I've come across. It is detailed,
explained well, and direct. (P8)

10

4.1.3. Effectiveness for test strategy

We asked the practitioners to assess the effectiveness of the taxon-
omy for testers when creating the test strategy and test cases (TCs).
93.75% of the practitioners agreed that the taxonomy can effectively
support the testing of IoT systems, while 6.25% neither agreed nor
disagreed.

The proposed taxonomy provides an opportunity to have third-party
perspective to validate test strategies. (P11)

Some Contributions from Participants. In the testing ap-
proach, practitioners suggested incorporating specific security
tests such as API security testing, penetration testing, and vul-
nerability testing. Additionally, they recommended including
data privacy testing, user experience testing, patch testing, and
model-based testing (MBT). Regarding the objective of testing,
they suggested incorporating other factors such as continuous
improvement and defect detection.

4.2. Round 2

We used the feedback collected in Round 1 and improved the
taxonomy. Further, we invited 204 practitioners to evaluate the revised
version of the taxonomy. We used a 1 (strongly disagree) to 5 (strongly
agree) scale. Fig. 13(a) shows the evaluation results. We ensured par-
ticipant anonymity by assigning unique identifiers (P1 to P204) to
represent each of the 204 participants. Fig. 12 shows the details of the
participants.

Completeness. 95.1% agreed on its completeness. 4.9% did not agree
or disagree.

The proposed taxonomy for an IoT system appears well-organized,
covering key aspects such as devices, connectivity, data processing,
security, applications, and management. This structure enables a
comprehensive understanding of the components and considera-
tions within the IoT ecosystem. (P26)

Coverage. 99.5% of practitioners agreed on the coverage of this
taxonomy in terms of testing dimension and level of detail. 0.5% did
not agree or disagree.

This taxonomy is well-designed and tackles all aspects of IoT sys-
tems. Any practitioner must check this taxonomy before deploying
the IoT system. (P176)

Effectiveness. 98.5% of practitioners strongly agreed on how the
taxonomy can help the testers to be more effective, while 1.5% did not
agree or disagree.

Expectation. 98.0% of practitioners believed that the taxonomy
could meet the expectations of the testers, while 2.0% did not agree
or disagree.

J.B. Minani et al.

4.4%; 9

= 1to 3 Years = 3 to5 Years = 5 to 10 Years More than 10 Years

(a) Participants’Experience in IoT

Project Managers
Team Leaders

30% Business Analysts

(b) Participants’ Professions

Fig. 12. Participants’ details for survey — Round 2.

When it comes to testing an IoT system, the proposed taxonomy can
meet my expectations. It can provide a structured framework for
understanding and exploring different aspects of testing specific to
IoT systems. This can include areas like connectivity testing, inter-
operability testing, security testing, and more. So, the taxonomy can
be a valuable tool for testers to ensure that all necessary dimensions
of testing are covered when it comes to IoT systems. (P60)

Understandability. 98.0% of the practitioners believed that the tax-
onomy is understandable, while 2.0% neither agreed nor disagreed.

The structure and design of the taxonomy demonstrate a commend-
able effort to provide a comprehensive framework for testing IoT
systems. (P31)

Usefulness. 98.6% of the practitioners agreed that the taxonomy is
useful, while 1.4% of the participants did not agree or disagree.

This taxonomy is very useful, and complete, and will help the testers
to understand all dimensions of testing. (P45)

We further asked the practitioners to evaluate the completeness of
each dimension. We used “Yes” or “No” for each dimension. In the case
of “No”, we asked the practitioners to mention what they believed is
missing. We used their feedback to improve the taxonomy. Fig. 13(b)
shows the evaluation results. At least more than 96% (196) of the
practitioners believed that each of the categories in the taxonomy is
complete.

11

The Journal of Systems & Software 226 (2025) 112408

~ al

Some Contributions from Participants. On the objective of
testing, practitioners suggested adding patch testing, Go-Live
testing, backup, and recovery testing to reason-based testing.
They also suggested adding cross-functional teams to those
responsible for testing (testers). Cloud was suggested by prac-
titioners for the test environment, while the acceptance phase,
Go-Live phase, and maintenance phase are suggested for the
stage of testing.

€ g

We used feedback provided by those who did not strongly agree or
were neutral to improve the taxonomy.

5. The taxonomy: TaxIoTe

In this section, we present the description of the taxonomy for
IoT system testing, referred to as TaxIoTe. We describe each aspect in
TaxIoTe by answering some of our research questions (RQs).

5.1. What are testing objectives (RQ1)?

We compiled and classified the objectives for testing, as depicted in
Fig. 14.

We organized the objective of testing based on the reason and goal
for testing. [R1C3] On reason-based, we identified six reasons: conduct-
ing initial testing, retesting, regression testing, patch testing, backup
and recovery testing, and Go-Live testing. On goal-based, we identified
continuous improvement, customer satisfaction, verification and vali-
dation, quality assurance, defects detection, battery drainage checking,
sensor calibration checking, network coverage and range checking, and
geolocation capability checking. It can also focus on end-to-end (E2E)
business scenarios. E2E testing can be functional or non-functional
requirements-based as shown in Fig. 14. Due to space constraints,
we are unable to provide detailed descriptions for each item in the
taxonomy here, but we will provide a comprehensive description of
each item on our GitHub repository and ptidej website. We suggest the
following explanations for certain objectives. Continuous improvement in
IoT system testing aims to regularly enhance both functionality and the
quality of IoT systems. User satisfaction in IoT systems testing ensures
that the system meets or exceeds user expectations. [R1C2] Verification
and Validation are separate processes that both use testing as one of
their principal practices. Verification is the process of evaluating the
product or system to ensure that it meets the specified requirements
(i.e., building the product right) (ISO, 2022). Validation is the process of
evaluating the product or system to ensure that it meets the user’s needs
and expectations (i.e., building the right product). Quality Assurance is
the process that ensures products or services meet quality standards
and expectations (ISO, 2022). Defects Detection focuses on identifying
errors, bugs, faults, and failures in IoT systems. [R1C3] Battery drainage
checking ensures that an IoT device’s battery life meets expectations and
that power consumption is optimized. This involves measuring battery
drain under various usage scenarios. Sensor calibration checking verifies
that an IoT device’s sensors are accurately calibrated to provide reliable
and precise data, such as temperature, humidity, or pressure readings.
Network coverage and range checking ensures that an IoT device can
maintain a stable and reliable connection to the network within a
specified range and coverage area. Geolocation capacity checking verifies
that an IoT device can accurately determine its location and provide
location-based services, such as GPS tracking or location-based alerts.
For functional requirements (FR), we defined the following objectives:

* Requirement Testing. The objective is to verify and validate specific
requirements and specifications of an IoT system. Test cases (TCs) and
test scenarios are designed and executed based on the requirements
of the IoT system.

J.B. Minani et al.

== strongly Agree

Agree Neither Agree nor Disagree Disagree mmm Strongly Disagree

Completeness
Coverage
Effectiveness
tation-Matching
derstandability

Usefulness

(a) Overall Taxonomy Evaluation

The Journal of Systems & Software 226 (2025) 112408

== Complete

= Not Complete

ifacts and Tools
Who Does Test

ng Environment
Stage of Testing
sting Approach

What To Test

Test Objectives

(b) Completeness of each Aspect

Fig. 13. Evaluation results - Round 2.

/
Objectives <’
(Why)

| Reason

Fig. 14. [R1C3] Testing objectives.

 Acceptance Testing. Acceptance testing is owned by the customer
to verify that the system works in accordance with the customer’s
expectations (Rogers, 2004).

* User Need Testing. User-need testing verifies if the [oT system meets
stakeholders’ needs.

* Design. Design-driven testing verifies if the IoT system conforms to
the provided designs.

For non-functional requirements (NFR), we identified the following
goals:

* Performance Testing. Performance testing is conducted to evaluate the
degree to which a test item accomplishes its designated functions
within given constraints of time and other resources.

Security Testing. Security testing is conducted to evaluate the degree
to which the SUT, and associated data and information, are protected
so that unauthorized persons or systems cannot use, read, or modify
them, and authorized persons or systems are not denied access to
them (Alaqail and Ahmed, 2018).

Interoperability Testing. It refers to the degree to which the system
operates (that is, interfaces and collaborates) effectively with spec-
ified external systems (Firesmith, 2014). It helps to test that various
devices from different vendors can communicate and understand each
other.

12

Compliance Testing. Compliance testing ensures that the SUT complies
with laws, standards, or regulations.

Integration Testing. It focuses on checking the interface between dif-
ferent components of the SUT (Alaqail and Ahmed, 2018).
Compatibility Testing. Compatibility testing measures the degree of
satisfaction to which a SUT can function satisfactorily alongside other
products (Alaqail and Ahmed, 2018).

Usability Testing. Usability testing checks the user behavior in using
the system. Testing the UI and its navigation helps elucidate if a better
design can make navigation simple and desirable, as well as prevent
users from doing something they should not need to do (Hagar, 2022).
Reliability Testing Reliability testing evaluates the ability of a SUT
to perform its required functions, including evaluating the frequency
with which failures occur (Alagail and Ahmed, 2018).
Maintainability Testing. Maintainability testing is conducted to eval-
uate the effectiveness and efficiency with which a SUT may be
modified (Alagail and Ahmed, 2018).

Portability Testing. Portability testing assesses how easily a SUT can
transition from one environment to another and the extent of modi-
fications required to make it functional in diverse environments.
Connectivity Driven Testing. Connectivity testing is conducted to check
how IoT device connects to other devices, and endpoints such as
gateways (Taivalsaari and Mikkonen, 2018).

Device Life Expectancy (DLE) Testing. DLE testing is conducted to
evaluate the time interval from when a device is sold to when it is
discarded (Lee et al., 2023).

Distributivity Testing. Distributivity testing is conducted to check how
components of SUT can be spread across various devices in the
network (Tanenbaum and Steen, 2015).

Dynamicity Testing. Dynamicity testing checks how components and
connectors can be created, connected, or removed during system
execution (Cavalcante et al., 2015).

Resilience. The ability of an IoT system to recover quickly from
failures, errors, or disruptions, and to continue operating effectively.
User Attitude. Testing to ensure that an IoT system is user-friendly, in-
tuitive, and meets user expectations, including usability, accessibility,
and overall user experience.

Robustness. The ability of an IoT system to withstand and resist
failures, errors, or disruptions, and to continue operating effectively
in adverse conditions.

Safety. Testing to ensure that an IoT system does not pose any risks
or hazards to users, and that it operates in a safe and secure manner.
Scalability. The ability of an IoT system to handle increased load,
traffic, data, or added devices without compromising performance.
Flexibility. The ability of an IoT system to adapt to changing require-
ments, protocols, or technologies, and to integrate with other systems
or devices.

Configuration. Testing to ensure that an IoT system can be prop-
erly configured, customized, and updated and that its settings and
parameters can be easily managed.

Sensor Accuracy and Reliability. This involves verifying that sensors in
the IoT devices accurately and consistently measure and report data.
For example, temperature sensors should report correct temperature
readings under various conditions.

J.B. Minani et al.

Power Consumption and Battery Life. Ensuring that the IoT devices
have efficient power consumption and that the battery life meets the
expected requirements.

Firmware Updates and Rollbacks. Verifying that firmware updates can
be applied successfully over-the-air (OTA) and that devices can revert
to a previous version if an update fails.

Environmental Factors Checking. Testing the device’s performance un-
der various environmental conditions, such as extreme temperatures,
humidity, and other factors that the device might encounter in real-
world use.

Device Provisioning and Configuration. Ensuring that new devices can
be correctly set up and configured to join the network. This includes
testing the process of adding a device, configuring it, and ensuring it
starts functioning as expected.

Communication Protocols. Testing the implementation and perfor-
mance of communication protocols specific to IoT, ensuring that
protocols like MQTT, CoAP, and others are correctly implemented,
efficient, and secure.

Geolocation Accuracy. Verifying the accuracy and reliability of
location-based services provided by the device. This includes testing
GPS and other location technologies to ensure they report correct
locations.

Event Handling and Logging. Ensuring that the device correctly handles
events (e.g., sensor triggers, and network changes) and logs relevant
information.

Data Synchronization. Verifying that data collected by the device is
correctly synchronized with the cloud or other central systems. This
includes ensuring data integrity and consistency across all platforms.

NEFR focuses on the quality attributes of IoT systems. Our listing is
not exhaustive; therefore, any other quality attributes not mentioned
here could be added.

We identified various reasons for testing. Initial testing verifies the
basic functionality and quality aspects of the IoT system before deploy-
ment. Retesting is conducted to verify that defects identified during
initial testing have been fixed successfully. Regression testing ensures
that changes or updates to the IoT system do not adversely affect
existing functionalities. Patch testing validates the effectiveness and
stability of applied patches or updates to the IoT system, ensuring that
they do not introduce new issues or disrupt existing functionalities.
Backup and recovery testing ensures the reliability and effectiveness of
data backup and recovery processes in the event of system failures. Go-
Live testing verifies the readiness of the IoT system for deployment in a
live environment.

Takeaway: Although the objectives for testing IoT systems are
adaptable to specific contexts, they provide comprehensive cov-
erage across various layers from devices and networks to data
processing and applications. Moreover, these objectives can
also be applied to testing web, desktop, mobile, and embedded
systems.

5.2. What are testing tools and artifacts (RQ2)?

We organized testing tools and artifacts for testing IoT systems, as
shown in Fig. 15.

The identified artifacts include TCs, test data, test scenarios, test
scripts, defects reports, test plans, test strategies, and traceability ma-
trix. We define those artifacts based on ISO (ISO, 2022).

+ Test Scenario. A test scenario is defined as any functionality that can
be tested (e.g., check the login functionality). One test scenario can
have multiple TCs.

+ TCs. A test case is any single atomic test consisting of test precondi-
tions, test inputs, expected test output, and expected test postcondi-
tions (Firesmith, 2014).

13

The Journal of Systems & Software 226 (2025) 112408

Apache JMeter

Stryker Mutator

PatrloT
Node-RED

Eclipse 0T Testware

Héctor
Robot Framework
Selenium
VectorCAST

Test Automation Tools WebdrivelO

IUnit Framework

Cucumber

IJTAG Dongle

ThingBoard

Tools SmartThings

ThingSpeak

LoadRunner

LLMs Tools

Real Tools Testbeds

Emulators
Environment Tools Virtual Tools

- 8
Hybrid

Artifacts & Tools
(Which)

Test Cases

Test Data
Test Scenario

Test Script

Defects Report

Artifacts Test Plan

Traceability Matrix

Test Strategy

Test Oracle

Summary Report

Fig. 15. [R2C4] Which tools to use and artifacts produced.

Test Data. Test data are data used to satisfy the input requirements
for executing one or more TCs.

Test Script. A test script is a procedure specification document speci-
fying one or more test procedures.

Defect Report. A defect report is a report indicating whether a specific
test case has passed or failed.

Test Plan. The test plan consists of a detailed description of test
objectives to be achieved and the means and schedule for achieving
them, organized to coordinate testing activities for some test item or
set of test items.

Test Strategy. Test strategy is a document that outlines how testing
will be conducted.

Test Log. A record of the testing activities that have been performed on
a software system, including the test cases that were run, the results
of those tests, and any defects or issues that were identified.
Summary Report. It summarizes the test execution, including the
number of test cases executed and key metrics such as test coverage,
pass/fail rates, and defect trends.

Traceability Matrix. A tool to trace the requirements of a system to
the corresponding test cases that have been created to validate those
requirements (IEEE, 2017).

Test Oracles. A source for determining expected results for test cases
and comparing them to the actual results of the SUT.

[R2C4] Testing tools are software applications or frameworks designed
to support and automate various aspects of the testing process, in-
cluding test case creation, execution, defect tracking, performance
monitoring, and result analysis (Firesmith, 2014). These tools are cate-
gorized into two groups: one for running tests (e.g., Selenium, Appium,
and many LLM-based testing tools, such as ChatGPT, CodeX, CodeT5,
GPT-4, and GPT-3 (Wang et al., 2024a)), and the other for managing
test environments (testbeds or simulators/emulators (Dias et al., 2018;
Fortino et al., 2020)). We identified 23 tools in this taxonomy namely

J.B. Minani et al.

Developer

QA Engineer (Tester)
Infrastructure Engineer
Security Engineer
Role-Based
System Administrator

End User

Maintenance Engineer

Tester
(Who)

Cross-Functional Teams

Development Organization

Client Organization

Organization-Based

Contractor

Operator

Fig. 16. Who test.

Apache JMeter, Stryker Mutator, Tsung, PatrloT, Node-RED, Eclipse
IoT Testware, ICAT, Héctor, Robot Framework, Selenium, VectorCAST,
WebdrivelO, JUnit Framework, Jest, Mocha, Cucumber, JTAG Don-
gle, ThingBoard, SmartThings, ThingSpeak, LoadRunner, Appium, and
LLMs Tools.

Testbeds. Testbeds that consist of hardware and software components
where IoT systems can be tested.

Virtual Tools Virtual tools consist of real software on virtualized
infrastructure (Becker et al., 2022).

Emulators. Emulators are software tools that mimic the hardware and
software of a real device (Firesmith, 2014).

Simulators Simulators are software tools that mimic the software
and environment where IoT devices operate, often for testing and
development purposes (Firesmith, 2014).

Hybrid Environments. Hybrid Environments comprise a mix of physical
hardware and virtualized components.

Test automation tools are excluded from the taxonomy due to
their dynamic nature; the roster of known tools is subject to rapid
changes. Additionally, numerous other artifacts may exist and could
be considered. This taxonomy includes only those artifacts identified
in existing literature or reported by practitioners.

Takeaway: The taxonomy excludes test automation tools due
to their dynamic and rapidly evolving nature, focusing instead
on artifacts common to all software systems. It is also important
to recognize that many practitioners are not yet fully aware
of LLM-based testing tools, such as ChatGPT, CodeX, CodeT5,
GPT-4, and GPT-3(Wang et al., 2024a), which are gaining
relevance in the field.

5.3. Who is responsible for testing (RQ3)?

We summarized the roles of individuals or organizations responsible
for testing, as shown in Fig. 16.

We categorized the testers into 2 main groups: organization-based
and role-based. Within the organization-based category, testing can be
the responsibility of the following:

Developing Organization. The organization responsible for develop-
ment also conducts the testing.

Client Organization. The client is responsible for testing.

Contractor. Testing is outsourced to a third party.

Operator. The operator may conduct some tests such as security and
performance assessments.

The role-based classification includes:

Developer. The developer of the system can also write and execute
TCs, especially for unit tests.

QA Engineer. QA engineers ensure the quality of the system through
testing and process enhancement.

14

The Journal of Systems & Software 226 (2025) 112408

Analysis Phase
Design Phase
Coding Phase

Testing Phase
Phase-Based

Acceptance Phase

Installation Phase

Go-Live Phase

Stage
(When)

Maintenance Phase

. Agile-Based
Continuous-Based

DevOps-Based

Fig. 17. Stages of testing.

Infrastructure Engineer. Infrastructure engineers evaluate various as-
pects of the infrastructure, including performance, security, relia-
bility, maintainability, and distributivity, to ensure that the system
meets quality requirements.

Security Engineer. Security engineers are responsible for testing the
system’s security and addressing vulnerabilities.

System Administrator. System administrators can conduct various tests
and take care of resource usage, backup, and recovery.

End User. End users can conduct their tests to determine whether the
system aligns with their needs and requirements and whether it is
acceptable for use.

Maintenance Engineer. Maintenance engineers may test system up-
dates, patches, and bug fixes for stability, compatibility, and func-
tionality.

Takeaway: Testers are categorized according to their organiza-
tion or job role, which allows specialists such as developers, QA
teams, clients, and maintenance engineers to conduct targeted
tests at various stages of the system’s lifecycle. The formation
of a cross-functional team, composed of individuals from di-
verse roles, may facilitate a unified understanding of testing
outcomes among all stakeholders.

5.4. What are testing stages (RQ4)?

We summarized the stages of testing for the phase-based develop-
ment approach, as shown in Fig. 17.

In phased development, testing occurs at various phases such as
analysis, design, and coding. In many cases, testing is done in the
testing phase. In continuous development, testing is conducted based
on Agile or DevOps methodologies.

« Agile Testing. In agile-based testing, features are tested as they are
developed.

* DevOps Testing. In DevOps, the new build is run through a series
of tests that will thoroughly check if the new build is ready for
production.

Takeaway: In phased development, testing aligns with stages
like analysis and coding, while Agile and DevOps in continuous
development, test features as they emerge. For the dynamic
nature of IoT systems, Agile or DevOps methodologies are
preferable for their ability to handle rapid changes and complex
integrations.

J.B. Minani et al.

Local

Development
Environment

Virtual

Hybrid

Physical

Testing

Environment Virtual

Hybrid

Environment
(Where)

Physical

Staging

Environment Virtual

Hybrid

Physical

Production
Environment

Virtual

Hybrid

Physical

Fig. 18. Testing environments.

5.5. What are testing environments (RQ5)?

We categorized the options for the testing environment, as shown
in Fig. 18.

We identified four environments: development, testing, staging, and
production environment.

Development Environment (DE). DE is the environment where the
system is developed.

Testing Environment (TE). TE is the environment where the testers
ensure the quality of the system, open bugs, and review bug fixes.
Staging Environment (SE). SE is a closely replicated version of a pro-
duction environment designed for system testing purposes. It serves
as a platform to evaluate source code, builds, and updates to ensure
their quality and functionality under conditions closely resembling
those of the production environment.

Production Environment (PE). PE is the environment where the latest
versions of a system or updates are pushed live to the intended users.

Takeaway: Four key test environments (i.e., development,
testing, staging, and production) serve distinct purposes from
system development to live deployment. For IoT systems, the
staging environment is preferred as it mirrors the production
environment, allowing for thorough testing under real-world
conditions before deployment.

5.6. What are testing approaches (RQ6)?

We identified testing levels, testing types, testing techniques, au-
tomation, and scripting levels, as shown in Fig. 19. We explain each
category in this section based on ISO-29119 standards (ISO Standards,
2021).

« Testing Levels. There are six testing levels: unit, integration, system,
acceptance, regression, and patch testing (Tan and Cheng, 2018).
Unit testing checks individual IoT system components separately.
Integration testing gradually tests larger subsystems as they integrate
into the whole system (Firesmith, 2014). System testing examines
the entire system, not just individual components. Acceptance testing
(see Section 5.1). Regression testing verifies code changes have not
introduced new defects (Firesmith, 2014).

Testing Types. We identified several types of testing named after their
test objectives. The definitions for these testing types are provided in
Section 5.1.

15

The Journal of Systems & Software 226 (2025) 112408

« Testing Techniques. Technique-based testing focuses on techniques used
to assess the system functionality and quality to determine if it meets
the specified requirements.

— Black-Box Testing. Any testing with no knowledge of the internal
structure or code of the component or system (Firesmith, 2014).
This testing is restricted to the externally visible behavior and char-
acteristics of the item being tested. Combinatorial testing is a testing
method that uses multiple combinations of input parameters to
perform testing (ISO, 2022). Decision-table testing is a specification-
based test design technique based on exercising decision rules in
a decision table (ISO, 2022). Scenario testing is a testing technique
that uses scenarios, i.e. speculative stories, to help the tester assess
a test system. User interface (UI) navigation testing is a testing
technique that focuses on verifying the navigation flow and UI
elements of a SUT. State-based testing evaluates the behavior of the
system based on different states. Boundary-value testing is a testing
technique in which TCs are selected just inside, on, and just outside
each boundary of an equivalence class of potential TCs (Firesmith,
2014). Equivalence class testing divides the set of test inputs into
different equivalence data classes.

— White-Box Testing. White-box testing is based on an analysis of the
internal structure and the code of a component or system under
test (Firesmith, 2014). Control flow testing such as branch coverage,
path coverage, condition coverage, loop coverage, and modified con-
dition/decision coverage (MC/DC), focuses on the execution order
of statements to develop the TCs. Branch coverage ensures that
each branch is executed, thus ensuring that all reachable code is
executed. Path coverage ensures that all possible paths are tested.
Condition coverage focuses on the execution of different conditions
independently of each other. Loop coverage focuses on the validity
of the loop constructs. MC/DC ensures that each condition inde-
pendently affects the decision outcome (i.e., ensuring that every
condition within a decision determines all possible outcomes of that
decision). Data flow testing focuses on variables and their values
across the different components of a system.

— Patterns-based Testing. Testing patterns are recurring, proven ap-
proaches or strategies used to design and execute effective TCs.
Those patterns include periodic readings testing that evaluates sys-
tem behavior during regular intervals. Triggered Readings Testing fo-
cuses on system behavior triggered by specific events. Alerts testing
that verifies the generation and handling of system alerts. Actions
testing that tests the actions or responses initiated by the system.
Actuators testing that ensures proper functioning of actuators.

— Experience-based Testing. Experience-based testing is a testing tech-
nique solely based on the experience of the tester. Those include
bug hunt testing, a structured search for defects in the absence of
formal TCs. Error guessing testing, using testers’ experience to guess
the potential error-prone areas of the system. Exploratory testing,
experience-based testing in which the testers simultaneously design
and execute tests based on the tester’s existing relevant knowledge,
prior exploration of the test item (ISO, 2022).

- Random Testing. Testing techniques that are based on generating
random inputs and TCs. Those include fuzz testing and monkey
testing. Fuzz testing is an approach in which random inputs, called
fuzz, are used to cause the system to fail (ISO, 2022; Firesmith,
2014). Monkey testing is a method that applies random inputs to a
system, aiming to crash it, without predefined TCs.

- [R1C2] Verification and Validation (V&V). Verification is the process
of evaluating the product or system to ensure that it meets the
specified requirements (i.e., building the product right) (Firesmith,
2014). Verification can be performed in many ways (e.g., demon-
stration, inspection, review, and testing). Validation is the process of
evaluating the product or system to ensure that it meets the user’s
needs and expectations (i.e., building the right product) (Fire-
smith, 2014). Validation can be performed using many techniques
(e.g., review and workshop). Static testing is the evaluation of a

J.B. Minani et al.

c Testing

Co-Existence Testing }J Unit Testing

Testing Levels
performance Testng | (Accepance Testing

Regression Testing

Patch Testing

Volume Testing

Endurance Testing
Spike Testing

Disaster Recovery Testing

The Journal of Systems & Software 226 (2025) 112408

Black Box Testing

Control Flow Testing

%
Reusability Testing Testing White Box Testing
Analysabily Testng Testing Approach
(HOW) Data Flow Testing

Installability Testing

Replaceability Testing H

Portability Testing

Reliability Testing

Security Testing

Testing Types

Testing Techniques

Periodic Readings Testing
Triggered Readings Testing
Alerts Testing

Patterns-Based Testing

Actions Testing

. . Bug Hunt Testing
Experience-Based Testing
Error Guessing Testing

Exploratory Testing

Fuzz Testing

Random Testing

Data Privacy Testing
‘Accessibility Testing

Error ion Testing
Learnability Testing
UX Testing

[Sca\abi\ity Testing

Usability Testing

[Connecmthy Testing

(pistributivity Testing

(peployabilty Testing

[Inleroperabimy Testing

(Energy Efficiency Testing

(sensor Accuracy Testing

[Power Consumption Testing

(Firmware Update Testing

(Event Handling Testing

[Evem Logging Testing

Manual Testing R
(Somvtomates 1| rormeton

[Devwcs Provisioning Testing

Scripted Testing Scripting

(eolocation Accuracy Testing

[Dala Synchronization Testing

[Communication Protocol Testing

Unsoripted Testing |

(o7A Update Testing

(pevice Provisioning and Onboarding Testing

[Mob\li(y Testing

(APi Testing

(Resilience Testing

e Y

[User Attitude Testing

L Monkey Testing

Static Testing

Static Analysis
Model Verification

Prototyping

Dynamic Testing
Verification and Validation

Demonstration

V &V Analysis

Model-Based Testing

Back-to-Back Testing

Keyword-Driven Testing
A/B Testing

Field Testing
LLM-Based Approach
NLP-Based Approach

Fig. 19. [R2C4] Testing approaches.

test item where no execution of the code takes place. Static testing
can be performed by manual examination of documents or code
(e.g., review, by automated code analysis tools (e.g., static analysis),
and by verification of system models or specifications (e.g., model
verification). Dynamic testing involves executing code and running
TCs. Demonstration methods focus on showcasing system function-
alities. It includes prototyping (i.e., building a simplified version of
the system), mock-up (i.e., a non-functional representation of the
user interface), and user trials (i.e., involving end-users in testing).
V&V Analysis is an analysis technique for formal verification of
the system models (i.e., model checking) or creating simulations to
assess the system behavior (i.e., simulation).

— Model Based Testing (MBT). MBT uses models to generate TCs
systematically and automatically (ISO, 2022).

— Back-to-Back (B2B) Testing. In B2B testing, an alternate system
version is used to produce expected results for comparison with the
same test inputs (ISO, 2022).

16

— Keyword-driven Testing. TCs are written using keywords to represent

test actions and data.

— A/B Testing. A/B testing is a statistical method to compare two

systems and find which performs better.

— LLM-Based Techniques. Large Language Models (LLMs) represent

a subset of machine learning models that utilize deep learning
techniques and substantial datasets to generate human-like text.
These models excel in various tasks, including text generation,
question answering, and adapting to diverse scenarios. Recent re-
search highlights an increasing trend in the integration of LLMs into
the testing of various systems, demonstrating their versatility and
effectiveness in automating and enhancing testing processes (Wang
et al., 2024a).

— NLP-Based Techniques. Natural Language Processing (NLP) is a do-
main within artificial intelligence that focuses on analyzing and
interpreting human language. It uses its own rules and statisti-
cal methods for structured tasks such as information extraction

J.B. Minani et al.

and translation. By leveraging explicit linguistic rules and knowl-
edge, NLP systems are designed to parse and understand grammar,
syntax, and semantics. These systems utilize predefined rules to
analyze sentence structure, identify key terms, and interpret the
finer details of language. This enables NLP to discern the meaning
and intent behind words expressed by humans. The application of
NLP techniques in automating testing processes is notable, espe-
cially in converting requirements specified in natural language into
executable tests (Wang et al., 2020; Fischbach et al., 2023).

— Functionality Testing. Any testing intended to verify functionality by
causing the implementation of a system function to fail to identify
defects (Firesmith, 2014).

Automation Levels. TCs can either be run manually by a human

(i.e., manual testing), or they can be executed by a test automation

tool (i.e., automated testing). Semi-automated testing mixes automated

testing and manual testing (ISO, 2022).

Scripting Levels. Scripted testing follows a documented test script (ISO,

2022), adhering to pre-defined TCs and steps. In contrast, unscripted

testing involves no formal preparation, documentation, or test scripts.

Mobility Testing. Evaluate device performance and connectivity while

in motion, simulating real-world use cases where devices are mobile

(e.g., in vehicles, on drones).

Field Testing. Deploy devices in actual use-case scenarios outside the

lab to gather performance data in real-world conditions, assessing

connectivity, power consumption, and sensor accuracy.

Over-the-Air (OTA) Update Testing. This type of testing focuses on

evaluating the process of remotely updating the device firmware,

ensuring successful updates, and handling failures.

Real-world Environment Simulation. This is a strategy used to create

test environments that mimic real-world conditions to evaluate how

IoT devices perform under various environmental factors.

The taxonomy lacks some details, especially for dynamic testing
and model-based testing. Although some details could be provided in
other published materials such as ISTQB (Stapp et al., 2024) or in
ISO 29119 standards (ISO Standards, 2021), we included only aspects
that we identified from SLR or that were suggested by practitioners.
Practitioners may consult those materials for more details if required.

F \

Takeaway: This taxonomy covers a wide range of testing ap-
proaches suitable for many types of systems, including specific
approaches unique to IoT systems. For IoT systems, lever-
aging emerging approaches like LLMs could enhance testing
efficiency and effectiveness by automating tasks.

5.7. What are OUT and metrics (RQ7)?

We identified the target item (specific IoT system layer or end-to-
end) and the metrics, as shown in Fig. 20.

Items under test include end-to-end (E2E) scenarios or specific
layers. E2E testing focuses on testing the entire system with all com-
ponents integrated. E2E testing can be performed on the real system.
Testers can also use models to represent the desired behavior of a
system under test (SUT). Items under test can be specific layers such as
device, network, cloud, or application layer. Metrics fall into two cate-
gories: domain-specific and general metrics, with the latter categorized
into three groups: code-level, functional-based, and non-functional-
based metrics as indicated in Fig. 20. For functionally-based metrics,
we classify them into two primary categories: Defect/Bug-based and
Specification-based metrics. Under Defect/Bug-based metrics, we iden-
tified three metrics: the number of bugs or defects detected, the number
of failures or crashes, and the number of code smells. [R2C4] For
Specification-based metrics, we identified the following metrics known
from traditional software systems: the number of requirements covered,
the number of features covered, and the number of test cases that

The Journal of Systems & Software 226 (2025) 112408

Target i Device
|

Code-Level

Defects/ Bugs Detected

Bug/ Defect Failures/ Crashes

Code smells
OUT & Metrics
(What) \

Functional-Level

Response Time
Throughput

onnected Devices

\ Metrics

Device Power
Consumption

MTBF, MTTR

Domain
\ Specific

Fig. 20. [R2C4] What to test.

passed or failed. However we have added IoT specific metrics such
as: action/operation/command coverage, connection coverage, device
coverage, interaction coverage, protocol coverage, and path coverage.

An action or operation or command refers to a specific task or
function that the system performs. Action coverage is the degree to
which tests exercise the actions or behaviors triggered by commands.
Connection in IoT refers to the methods and technologies used to
establish communication between IoT devices and networks, allow-
ing data exchange between devices, gateways, and cloud platforms.
Connection coverage refers to the degree to which communication
paths between different components in an IoT system are covered by
tests.

IoT devices are physical objects embedded with sensors, software,
and other technologies that enable them to connect and exchange
data over the Internet. Device coverage refers to the extent to which
distinct devices within IoT system are covered by tests.

Interaction refers to the bidirectional or unidirectional exchange of
data, commands, or signals between devices, application layers, or
other system components. Interaction coverage is the degree to which
the data exchange and communication flows between interconnected
IoT components (devices, cloud services, mobile apps, robots, etc.)
are covered by tests.

A path is a specific sequence of actions to achieve a particular goal or
objective within a use case. Path coverage measures how well tests
cover distinct execution paths, including all possible combinations of
decisions and conditions, even if those paths are not explicitly defined
in the use case specification.

A protocol in IoT systems is a set of rules that governs how devices
and components communicate and exchange data. Examples include
MQTT for lightweight communication, HTTP for web-based inter-
actions, WebSocket for real-time communication, and Bluetooth for
short-range connectivity. Protocol Coverage in IoT systems refers to
the extent to which all communication protocols used within the IoT

J.B. Minani et al.

system (such as WebSocket, HTTP, COAP, MQTT, etc.) have been
included in tests.

Takeaway: The taxonomy highlights end-to-end (E2E) scenar-
ios for testing the integrated functionality of entire systems,
which may be beneficial for IoT systems due to their inter-
actions across multiple layers, such as device, network, cloud,
and application. Metrics are grouped into domain-specific and
general categories, the latter including code-level, functional,
and non-functional metrics. Functional-level metrics could be
particularly relevant in the context of IoT systems.

6. Empirical evaluation

We conducted the experiments to assess how does taxonomy improve
testing (RQ8). We used two systems as our case studies: “Where Is
My Professor” (WIMP) and “Smart Crop Yield Prediction System”
(SMART-CYPS).

6.1. Selection of participants

[R2C3] The participants involved in the empirical evaluation were
not part of the previous surveys conducted. For each system, 12 mas-
ter’s and Ph.D. students were selected as participants. These students
were carefully chosen based on their affiliation with two specific labs
that had access to the IoT systems used in the evaluation. The first
group of students was from the Ptidej Lab at Concordia University,
Canada, where the WIMP system is developed and maintained. This
affiliation made them ideal candidates for the experiment. While the lab
includes many students, only those with prior experience in developing
or testing IoT systems were selected. Their experience was verified
through an analysis of their LinkedIn profiles. The second group of
students was from the University of Rwanda’s Center of Excellence
for IoT, where one of the authors had access to another IoT system,
SMART-CYPS. Admission to this program requires students to have at
least two years of experience in IoT systems. In summary, these students
were chosen because (1) they had relevant experience in developing or
testing IoT systems, and (2) they had direct access to the respective
systems. The primary focus of the study was to evaluate the breadth
of test coverage in terms of the number of tests created with and
without the taxonomy, rather than the quality of individual tests. The
tests created by the students were not executable. The decision not to
execute these tests on the systems was due to the need to convert them
into executable scripts, which was beyond the scope of the current
study. Our evaluation is solely based on the number of tests and
scenarios covered by each participant.

6.2. Experimentation with WIMP

WIMP Description. WIMP, '3 or “Where Is My Professor” is an IoT-
based system that enables students to track the availability of their
professors in real-time. The main objective of this system is to collect
data from various IoT devices, such as sensors, cameras, and beacons,
to provide an automated response on the professor’s availability by
analyzing the collected data. This system has smart sensors, such as the
WEMO smart plug,'* as well as devices like the Fitbit Watch,'® which
serve the purpose of location tracking and play a pivotal role in the
decision-making process. The core modules of WIMP are the following:

13 https://ptidejteam.github.io/wimp-wiki
14 https://www.belkin.com/products/wemo-smart-home/
15 https://www.fitbit.com/global/en-ca/home

18

The Journal of Systems & Software 226 (2025) 112408

Table 6
Example of test created by participant.

Operation Target Inputs Expectations
1 ReadData Fitbit heart_rate: 95 bpm
2 SendData Fitbit heart_rate: 95 bpm OK
3 ReceiveData cloudApp heart _rate: 95 bpm DATA_RECEIVED
4 AnalyzeData cloudApp heart_rate: 95 bpm
5 sendCommand cloudApp action: move; distance: 0.2; speed: 0.3 OK
6 ReceiveCommand Robot action: move; distance: 0.2; speed: 0.3 DATA_RECEIVED
7 ExecuteMove Robot distance: 0.2; speed: 0.3 MOVE_COMPLETED
8 SendFeedback Robot status:MOVE_COMPLETED OK
9 ReceiveFeedback cloudApp MOVE_COMPLETED

1. Internal user management module that includes user accounts, pro-
files, permissions, etc.

2. Data collection module for real-time tracking of professor’s avail-
ability and location by continuously collecting data from various IoT
devices.

3. Availability module to provide an automated response about profes-
sor’s availability based on analysis of the data collected from various
IoT devices.

Fig. 21(a) shows the high-level architecture of WIMP. More details
about WIMP can be found online'®

Participants. We conducted an empirical study with 12 participants,
randomly dividing them into two groups: Group 1 (G1) and Group
2 (G2). G2 received a copy of the taxonomy, while G1 did not. We
collected the details of participants as recommended in Dutta et al.
(2023). G1 comprises three male and three female participants, all
holding at least a bachelor’s degree and possessing a minimum of
three years of experience in software engineering. Additionally, two
participants in G1 have prior working experience in IoT systems. G2
comprises two female and four male participants, all holding at least
a bachelor’s degree and having more than three years of working
experience in software engineering. None of the participants in G2 have
prior working experience in IoT systems. We asked each participant to
study and prepare test scenarios (TSs) and Test Cases (TCs) for the three
modules mentioned above, with each participant given 2 h maximum.
Results. Table 7 shows the number of TSs and TCs identified by each
participant. We observed that the group that used the taxonomy identi-
fied more TSs and TCs compared to the group that did not. G1 primarily
focused on functional aspects, while G2 identified more non-functional
aspects such as connectivity, security, performance, and compatibility
on top of functional aspects. [R2C4] Table 6 shows an example of a
test created by one participant for functional testing based on modified
template provided by Wang et al. (2020)

[R2C3] Our empirical results show that the taxonomy can guide
testers with no prior experience in testing IoT systems by helping
them understand the various dimensions of testing in IoT systems, thus
creating more tests than the testers without taxonomy.

6.3. Experimentation with SMART-CYPS

SMART-CYPS Description. SMART-CYPS is an intelligent system
powered by the Internet of Things and Machine Learning, specifically
designed for crop yield prediction to enhance food security. The pri-
mary objective of SMART-CYPS is to tackle the challenges arising from
climate change in agriculture and food security through the integration
of IoT and machine learning technologies. This system collects real-
time weather and soil humidity data from farms, using an architecture
that includes IoT devices, a backend layer, and data processing for
prediction and weather forecasting. A central component of SMART-
CYPS is its dashboard, which dynamically visualizes critical agricultural
parameters. An embedded machine learning model within the system

16 https://ptidejteam.github.io/wimp-wiki/docs/architecture

https://ptidejteam.github.io/wimp-wiki
https://www.belkin.com/products/wemo-smart-home/
https://www.fitbit.com/global/en-ca/home
https://ptidejteam.github.io/wimp-wiki/docs/architecture

J.B. Minani et al.

WIMP
9
ot API REST Express APl RES
- v o j)g)ress S’ cksta ﬂﬂd(’
~ Teachers’ interface Students’ interface
e
Buddy
~ Frontend
Raspberry Pi

Communication Protocol

User Data

HTTP

Backend
Raspberry Pi

(a) WIMP- High-Level Architecture

The Journal of Systems & Software 226 (2025) 112408

g e Express API REST
8 _sprin REST API|| gy g
2 &2 vy]
-g g Admin’ interface Farmers’ interface
N
i S8y
- 9 g)
a& W\
u gE MysaLt L Frontend R —
- (=]
= Database Management
DHT22
Server 2

Communication Protocol
HTTP

|

|
loT Devices
FST100-2007 pata User Data

- |
Backend

Ms02 Server 1

DHT22: Temperature and Humidity Sensor

Trained Model Using Historical Data
Prediction Using Real-Time Data

RS485: Rain and Snow Sensor

MS02: Soil Moisture Sensor

(b) SMART-CYPS High-Level Architecture

Fig. 21. IoT systems used in the case study.

Table 7 Table 8

Empirical evaluation results for WIMP. Empirical evaluation results for SMART-CYPS.
G1 G2 G1 G2
Tester TSs TCs AC Tester TSs TCs AC Tester TSs TCs AC Tester TSs TCs AC
T1 6 33 3 T7 18 48 9 T1 16 28 2 T7 28 43 13
T2 5 10 2 T8 11 32 8 T2 18 42 6 T8 22 68 20
T3 8 34 1 T9 19 61 10 T3 4 15 2 T9 19 47 11
T4 6 11 1 T10 22 40 8 T4 8 11 2 T10 22 51 12
TS5 7 14 4 T11 10 41 4 TS5 10 48 9 T11 25 53 9
T6 9 34 1 T12 11 43 7 T6 13 36 4 T12 29 48 14
Sum 41 136 12 Sum 91 265 46 Sum 69 180 25 Sum 145 310 79
IoTS - 10 1 IoTS - 43 4 IoTS - 6 3 IoTS - 18 5
Mean 7 23 2 Mean 15 44 8 Mean 12 30 4 Mean 24 52 13
STD 1.34 11.07 1.15 STD 4.67 8.90 1.89 STD 4.75 13.50 2.61 STD 3.53 7.95 3.44

% TS: Test Scenarios; TCs: Test Cases; AC: Aspects Covered; STD: Standard
Deviation; IoTS: IoT Specificity.

provides harvest predictions based on current sensor data. Fig. 21(b)
shows the high-level architecture of SMART-CYPS.

Participants. We invited 12 participants and tasked them to exper-
iment on SMART-CYPS. 8 (66.7%) were master students in the IoT
program, and 4 (33.3%) were final-year students majoring in software
engineering with a focus on IoT. 7 (58.3%) were female, while 5
(41.7%) were male. 6 (50%) had between 3 and 5 years of experience
in SE. 2 (16.7%) had more than 5 years of experience in SE, while
4 (33.3%) had less than 3 years of experience in SE. 8 (66.7%) had
between 1 and 3 years of experience in IoT-related projects. 3 (25%)
had less than a year, while 1 (8.3%) had between 3 and 5 years of
experience in IoT projects. We divided 12 participants randomly into 2
groups of 6 participants each. One group with taxonomy, and the other
without. The group with taxonomy was given 30 min to consult the
taxonomy before the experiment. We asked each member of each group
to conduct the experiment within a maximum of 2 h. Each participant
documented test cases and test scenarios in an Excel file, which was
submitted after 2 h.

Results. We analyzed the results as shown in Table 8. G1 indicates
the group without taxonomy, while G2 represents the group with
taxonomy. The participants with taxonomy created more test cases and
scenarios than the participants with no taxonomy. They also identified
more aspects compared to the group that did not have the taxonomy.

Takeaway: The findings from case studies show that testers
knowledgeable about the taxonomy tend to develop a wider
variety of test cases and scenarios, covering more aspects of
the system, compared to those unaware of the taxonomy.

19

% TS: Test Scenarios; TCs: Test Cases; AC: Aspects Covered; STD: Standard
Deviation; IoTS: IoT Specificity.

7. Recommendations

In this section, we provided key recommendations aimed at enhanc-
ing test generation and overall testing processes for IoT systems. Future
research should explore and validate these recommendations to solidify
their effectiveness and adaptability.

1t [R2C6]Comprehensive Test Planning Frameworks for IoT Sys-
tems. From our experiment, we observed that many testers primarily
focus on functionality testing, often overlooking other critical as-
pects. We strongly recommend the development and adoption of a
structured test planning framework to address this limitation. Such
a framework should explicitly prioritize and integrate diverse testing
aspects beyond functionality, including scalability, interoperability,
energy efficiency, protocol coverage, and real-time performance. By
doing so, testers can ensure a more comprehensive evaluation of IoT
systems.

Develop Execution-Target-Aware Test Automation Tools. Testers
often focused on defining test steps, inputs, and expected outputs but
were unable to create executable tests due to the varying execution
targets (i.e., test runners), which use different technologies, pro-
gramming languages, and operating systems (OSs). We recommend
developing automation tools that map high-level test steps to execu-
tion scripts tailored to the target’s OS and programming language.
These tools would enable the execution of generated tests across
diverse IoT environments without requiring testers to have detailed
knowledge of the technologies used in the execution target.
Leveraging LLMs and Al for Test Automation. [R3C5] From both
the surveys conducted and the reviewed papers, we observed that
LLMs and AI are often overlooked in the context of IoT systems
compared to traditional systems. We recommend the use of Large
Language Models (LLMs) to automate essential testing tasks such

—+

—+

J.B. Minani et al.

as generating test inputs, test oracles, constraints, test cases, and
test scripts. These models have been effective in traditional soft-
ware systems (Wang et al., 2024a) and could be similarly beneficial
for IoT systems, which often rely on requirements-based test case
derivation. LLMs can reduce manual effort significantly by using
extensive datasets to produce context-aware testing components. Fu-
ture research should focus on tailoring LLMs to address the unique
complexities of IoT systems, assessing their accuracy and efficiency
in real-world scenarios.

1t Applying NLP-Based Techniques for Use Case-Driven Test Case
Generation. [R3C5] Based on the papers reviewed and feedback from
the surveys, the adoption of NLP techniques in testing [oT systems
is very low. Given the limited accessibility of source code in IoT
systems, we recommend using NLP techniques to derive test cases
directly from use case specifications. This approach has been applied
to embedded systems (Fischbach et al.,, 2023; Wang et al., 2020)
and could similarly be considered for IoT systems, where access to
the source code may not be available for black-box testing. Future
research should focus on refining these NLP techniques to improve
their ability to accurately convert structured use case narratives into
executable test scripts for complex systems like IoT systems.

1t End-to-End (E2E) Testing. [R3C5] E2E testing is critical for ensuring
the seamless functionality of IoT systems, encompassing all compo-
nents from sensors to applications. By evaluating interactions and
data flows across the entire system, E2E testing helps to uncover
issues that might not be apparent in isolated testing. Future research
should focus on developing or enhancing existing approaches for vari-
ous aspects of E2E testing in a real environment, enhancing the ability
to identify and resolve issues across the IoT system. This recommen-
dation is based on insights gathered during our study, particularly
on testing objectives. Many participants emphasized the importance
of focusing on E2E scenario testing, for both functional and non-
functional related aspects. Functional requirement-based E2E testing
includes commonly known approaches like acceptance testing, allow-
ing users to verify that the developed system meets their needs and
expectations, ensuring readiness for deployment. E2E testing is also
applicable to non-functional aspects such as performance, security,
usability, and scalability. Testing individual layers alone may not
require a new approach or tool. From our findings, we identified
some tools and approaches for embedded systems. These can be
used for testing various devices at the device layer. Likewise, we
identified approaches and tools for testing web-based, mobile, or
desktop applications, and these can be used for testing the appli-
cation layer. We observed limited approaches and tools for testing
the entire system, referred to as E2E. Existing E2E approaches focus
on specific aspects, and they are limited in scope. Bosmans et al.
(2019) proposed a hybrid simulation-based testing approach focusing
on interactions of IoT system entities. However, testing in a real
environment is desirable because IoT systems may misbehave in a
real environment while behaving well in a simulated one. Clerissi
et al. (2018) proposed an approach based on the behavior of the
SUT, such as a state machine diagram. However, for complex IoT
systems, producing such a behavioral model may not be feasible or
detailed enough for automation of IoT system testing. Kim et al.
(2018) proposed an IoT testing framework focusing on conformance
and interoperability. However, there are several other aspects that
are not yet explored from an E2E perspective. While emphasizing that
E2E testing is crucial for ensuring the comprehensive functionality of
IoT systems, it is equally important not to overlook testing individual
layers or the interactions between layers. For practitioners aiming to
implement E2E testing effectively, we propose a three-step approach,
as illustrated in Fig. 22.

Step 1: Testing Each Layer Separately. This step focuses on evalu-
ating each IoT system layer individually. Testing recommendations
include both functional and non-functional tests, tailored to the
specific layer:

20

The Journal of Systems & Software 226 (2025) 112408

*

Device Layer: Functional testing verifies device functions such
as sensing, processing, and actuating (e.g., sensor accuracy, ac-
tuator response, and communication protocols). Non-functional
testing checks performance, security, reliability, and battery life.
Gateway Layer: Functional testing focuses on data processing
tasks like filtering, aggregation, and transmission. Non-functional
testing addresses reliability, scalability, and network perfor-
mance.

Cloud Layer: Functional testing includes data processing and
storage validation, while non-functional testing assesses aspects
like availability, failover, scalability, and security.

Application Layer: Functional testing ensures user interfaces and
functionalities meet requirements, while non-functional testing
targets user experience (UX), security, and performance.

*

*

*

Step 2: Testing Interfaces Between Layers. This step ensures
seamless integration between IoT layers:
x Device-Gateway Interface: Tests reliability of data transmission
between IoT devices and gateways.
x Gateway-Cloud Interface: Validates data aggregation, filtering,
and transmission from the gateway to the cloud.
x Cloud-Application Interface: Verifies the functionality of APIs for
retrieving IoT data and sending commands.
Step 3: Testing the Entire System. The final step involves system

integration testing, ensuring the end-to-end flow of the entire IoT
system. This is analogous to user acceptance testing in traditional
software, evaluating whether the system meets user specifications.
For example, in a smart home scenario, pressing a button on the
mobile app should trigger a seamless actuation process, such as
unlocking a door via a connected actuator.

t Generalizing IoT Testing Taxonomy for other Systems. [R3C5]
Using the taxonomy, the participants created numerous tests that
are also applicable to traditional systems. This IoT system testing
taxonomy can be adapted to other systems, such as web applica-
tions, desktop applications, mobile applications, embedded systems,
and more, by omitting IoT-specific components, providing a flexible
framework for diverse systems.

8. Discussions

In this section, we discuss some observations and practical implica-
tions of this taxonomy for both practitioners and researchers.

8.1. Alignment of testing objectives and testing types

[R1C3] The link between testing objectives and testing types is
a critical aspect of understanding their alignment. Fig. 14 defines
the goals that testing seeks to achieve, while testing types, shown in
Fig. 19, represent the diverse methods used to accomplish these goals.
The overlap between these elements is both expected and intentional.
Fig. 14 highlights the most commonly reported objectives identified
through literature and surveys. Similarly, the testing types encompass
a broader range, including not only tests explicitly targeting these
objectives but also other forms of testing reported in the literature
and surveys, regardless of whether they directly align with specific
objectives.

8.2. Practitioners feedback

We created an initial taxonomy based on PSs and refined it through
collaboration with industry experts to address the practical needs of
IoT systems testing. This collaborative effort ensures that the taxon-
omy not only encompasses theoretical concepts from academia but
also incorporates real-world insights and challenges faced by industry
practitioners.

J.B. Minani et al.

The Journal of Systems & Software 226 (2025) 112408

Outputs

Devices Layer B: Gateway Layer Cloud Layer

D

Application Layer e Integration Testing 9 System Testing

Functional Testing
API Testing

Functional Testing Functional Testing

Devices and Gateway Layers
Gateway and Cloud Layers
Cloud and Application Layers

End-to-End Flow Testing
User Acceptance Testing
System Integration Testing

Functional Testing
API Testing
User Interface Testing

Security Testing
Performance Testing
Interoperability Testing
Battery Life Testing
Connectivity Testing
Reliability Testing

Data Privacy Testing
Data Accuracy Testing

Resilience Testing
Scalability Testing
Reliability Testing
Security Testing
Performance Testing
Compatibility Testing
Compliance Testing
Connectivity Testing

ility Testing

Availability Testing
Backup and Restore Testing
Data Integrity Testing
Recovery Testing
Failover Testing
Reliability Testing
Security Testing
Performance Testing

ility Testing

NFT

Security Testing
Performance Testing
User Experience Testing

Fig. 22. An Approach for end-to-end testing.

8.3. Experimental insights

[R2C6] The experiment provided valuable insights into testing IoT
systems on two different platforms. Testers predominantly focused
on functionality, device connectivity, and data transmission, possibly
because they undervalued other aspects or were accustomed to pri-
oritizing functionality, device connectivity, and data transmission in
their testing practices. Additionally, testers struggled to create exe-
cutable tests due to varying execution targets that required knowledge
of different technologies and programming languages. Instead, they
concentrated on defining test steps, specifying inputs, expected outputs,
and execution targets. This approach is reasonable given their limited
knowledge of execution targets (i.e., test runners). Interestingly, some
testers without access to the taxonomy performed well, likely due to
their prior experience and the time dedicated to the experiment. How-
ever, the taxonomy proved particularly beneficial for testers with no
prior experience, offering them a structured framework and a broader
range of testing options. This suggests that using the taxonomy can
significantly enhance testing outcomes, especially for novice testers.

8.4. Navigating the taxonomy for effective testing

[R3C1] The proposed taxonomy provides a structured, seven-step
navigation map (Fig. 8) to guide testers in planning and executing com-
prehensive testing. The process begins with defining testing objectives
(reason for testing) and identifying the object under test, which may
range from individual layers (e.g., devices, networks) to end-to-end
system evaluations. Testers then select appropriate testing approaches,
including types (e.g., security, performance), levels (e.g., unit, integra-
tion), or techniques (e.g., random, model-based, black-box/white-box).
Subsequent steps involve setting up the testing environment, defining
testing stages (e.g., phase-based testing or continuous testing), spec-
ifying testing artifacts (e.g., bug reports, test reports), and choosing
tools for test instrumentation. The final step assigns testers with the
necessary expertise to ensure success. Fig. 9 exemplifies how testers
can tailor their testing plan, highlighting mandatory aspects such as
objectives, artifacts, testers, stages, approaches, objects under test, and
environments. Optional considerations like scripting levels, automa-
tion, and tools depend on the testing automation-level. For example, if
testing is to be done manually, these may be unnecessary. We believe
that this taxonomy can serve as a valuable resource for creating a
complete IoT and traditional systems testing framework. To ensure
accessibility, we will make this guide publicly available, helping prac-
titioners not only understand the taxonomy but also effectively apply
it.

21

8.5. Continuous relevance and adaptability

[R2C8] To ensure the taxonomy remains comprehensive and up-
to-date, we began with a systematic review of studies published up
to 2022, complemented by insights gathered through industry collab-
oration via surveys to validate and enrich the taxonomy. Recognizing
the importance of incorporating the latest advancements, we extended
our review at the time of submission by conducting an updated search
for studies published between 2022 and November 2024, applying the
same inclusion and exclusion criteria. This process identified a few
new studies (i.e., Tewari et al. (2024), Pietrantuono et al. (2023),
Jean Baptiste et al. (2024a)) not included in our initial review, from
which additional testing aspects such as user attitude testing or re-
silience testing were extracted to refine the taxonomy where necessary.
Furthermore, we will continue to review the literature and gather
feedback from industry practitioners to regularly update the taxonomy
and incorporate emerging aspects of [oT testing.

8.6. Fragmented IoT system testing aspects

Existing studies, including Tan and Cheng (2018), Medhat et al.
(2019) and Kiran Bhagnani (2014), Firesmith (2015), provided a tax-
onomy focusing solely on testing types. Notably, study (Makhshari and
Mesbah, 2021a) focused on bug taxonomy within IoT systems. [R1C4]
To the best of our knowledge, no IoT system testing taxonomy existed
before our work. Our proposed taxonomy is the first of its kind and
is also adaptable for traditional software testing. This contribution not
only fills a significant gap in the literature but also lays a foundation
for future research in IoT system testing. Furthermore, our taxonomy’s
adaptability for traditional software testing extends its utility beyond
the IoT domain, making it a valuable resource for researchers and
practitioners across different domains of software engineering.

8.7. Implication for practitioners

We provided the guide for testing IoT systems and methodology for
End-to-End testing to practitioners.

8.7.1. Guidance for testing IoT systems

We observed that many studies often use some terms interchange-
ably to denote distinct concepts, potentially leading to confusion among
testers. We proposed some definitions to clarify those concepts for
better understanding. Yet, the taxonomy may not be exhaustive enough
to guide the testers; it offers valuable guidance for novice practition-
ers embarking on their IoT system testing endeavors. By providing
clear definitions and categorizations, this taxonomy serves as a foun-
dational tool for establishing a common language within the testing
community, fostering clearer communication and reducing ambigu-
ity in IoT testing practices. Additionally, it lays the groundwork for

J.B. Minani et al.

Constraints Generation
Test Inputs Data Generation

Test Scenarios Generation

Tasks Test Oracle Generation
Test Case Generation
Test Script Generation
GPT-35-Turbo
ChatGPT
Codex
Testing Model: CodeT5
. lodels
with LLM - ode
Gemini Ultra
LlaMA 31
Mistral
Zero-Shot Learning
Prompts
Engineering Few-short Learning
LM —

Chain-of-Thought
Source Code
User Story

Inputs Use Case Specification

Requirements

Documentation

Fig. 23. Test automation tasks with LLMs.
Source: Adapted from Wang et al. (2024b).

further research and refinement, enabling ongoing improvements in
testing methodologies and techniques tailored to the unique challenges
of IoT environments. We made this taxonomy available online!” for
practitioners and researchers who may want to refer to it.

8.7.2. Revolutionizing testing with LLM

Recent advancements in large language models (LLMs) have opened
new avenues for automating various tasks in testing traditional systems.
While it is unclear whether any studies have specifically focused on
automating testing aspects within IoT systems, we believe that IoT
system practitioners can equally benefit from using LLMs to automate
many testing tasks. Fig. 23 summarizes some testing artifacts that
can be automated using LLMs, as adopted from Wang et al. (2024b),
Boukhlif et al. (2024), Yu et al. (2023), Hassan et al. (2024), Schifer
et al. (2024), Wang et al. (2024a), where LLMs have been studied for
their potential to enhance test automation.

8.8. Implication for researchers

A promising avenue for future research involves investigating the
integration of large language models (LLMs) and artificial intelligence
(AI) to enhance the automation of testing processes within IoT systems,
potentially advancing IoT system test automation to the next level.

9. Threats to validity

[R2C5] There are threats to the validity of this study, the taxonomy,
and its evaluation.

Construct Validity. The primary threat to construct validity lies in
the limited scope of systems used for evaluation. The systems were
relatively small, with few use cases, and testers not allowed to execute
their tests on real systems. Instead, they described tests by specifying
the action to be tested, the execution target (i.e., the node where
the test will be executed), the inputs, and the expected outputs. Ad-
ditionally, the focus of the evaluation was on the breadth of testing
aspects covered, not the quality of the generated tests. These constraints

17 https://www.ptidej.net/Members/minanijb/Taxonomy/index.html

22

The Journal of Systems & Software 226 (2025) 112408

were necessary due to the challenges of accessing large, real-world
IoT systems, but they may have influenced our findings. Additionally,
focusing on the breadth of testing, such as the number of aspects
covered or the total number of tests created, is acceptable since the
main purpose was to evaluate how the taxonomy helps discover more
tests rather than assessing their quality. Another potential threat is bias
in selecting survey participants, particularly their level of expertise and
willingness to participate. To mitigate this, we involved professionals
with experience in IoT system development or testing, verified through
LinkedIn profile analysis. Subjectivity in responses to our survey can
be another threat to the validity. Participants interpreted and assessed
criteria (e.g., completeness, coverage, and usefulness) based on their
understanding and experience in testing. Despite this concern, we
accepted this threat given the number of participants involved. Lastly,
we omitted security testing-related studies to manage the scope and
complexity of our initial taxonomy, as security is a vast and intricate
domain that would have significantly increased its length and complex-
ity. To address this limitation, we incorporated security aspects based
on survey feedback and referenced existing taxonomies on security
testing as complementary to our work.

Internal Validity. Several factors could affect the internal validity
of this study. Bias in the selection and grouping of testers is a po-
tential threat, as differences in commitment, prior experience, and
behavior could influence the results. Testers with more experience or
time might generate more comprehensive tests even without using the
taxonomy. However, our focus was on overall findings rather than
individual differences, reflecting the diversity of skills and experience
levels common in IoT system testing. Another potential threat is the
omission of relevant IoT-specific testing aspects from the latest studies.
To address this, we developed the taxonomy from a practitioner’s per-
spective through two surveys and incorporated new aspects identified
in recently published studies. The taxonomy remains a living artifact,
evolving as new IoT testing aspects, tools, and insights emerge. A fur-
ther threat is the use of small-scale systems in the evaluation, dictated
by the unavailability of large, open-source IoT systems. Additionally,
testers with varying levels of understanding and commitment may have
influenced the results. Despite these limitations, the overall evaluation
of our experiments showed that testers using the taxonomy identified
more diverse testing aspects than those without it. Future research
will address these limitations by evaluating larger and more complex
systems and involving a larger group of testers.

External Validity. The generalizability of the taxonomy is limited
by the size and nature of the systems evaluated, as the study did
not include large, complex real-world IoT systems due to accessibility
challenges. While the results demonstrate that the taxonomy can help
identify more testing aspects, further validation is needed to assess its
impact in larger-scale and more diverse contexts with additional testers.
Broader evaluations using industry-scale systems are recommended for
future research.

Conclusion Validity. This study focuses on the coverage of testing
aspects rather than the quality of the generated tests. A potential
limitation is the reliance on the number of tests created as a primary
metric. Despite these constraints, the findings provide valuable insights
into the role of the taxonomy in identifying diverse testing aspects.

10. Conclusion and future work

This study introduced a novel IoT-specific testing taxonomy, which
was developed from an analysis of 83 primary studies and refined
through feedback from 220 industry practitioners. Our taxonomy cat-
egorizes seven crucial aspects of [oT systems testing: objectives, tools,
testers, stages, environments, objects under test, and approaches. The
empirical evaluation of this taxonomy involved 24 testers across two
IoT systems (WIMP and SMART-CYPS) as a case study, demonstrating
that those equipped with the taxonomy could more effectively identify
diverse test cases and scenarios. To facilitate its practical application,

https://www.ptidej.net/Members/minanijb/Taxonomy/index.html

J.B. Minani et al.

we provided guidelines on how to use the taxonomy and made it
available online for unrestricted access. Future work will focus on
enhancing the taxonomy by incorporating new aspects and details as
identified. We also plan to translate the taxonomy into Japanese and
distribute it to Japanese professionals involved in testing IoT systems,
further broadening its applicability and impact.

11. Replication package and useful links

The replication packages, published taxonomy, and GitHub reposi-
tory of this taxonomy can be accessed online.

1. Ptidej Team website

+ On Ptidej website: https://www.ptidej.net/downloads/replication
s/jss24a/
+ On Zenodo website: https://zenodo.org/records/14515044

2. Published taxonomy

« Taxonomy on GitHub'®
» Taxonomy on Ptidej website: https://www.ptidej.net/Members/
minanijb/Taxonomy/index.html

CRediT authorship contribution statement

Jean Baptiste Minani: Writing — review & editing, Writing — orig-
inal draft, Visualization, Methodology, Investigation, Funding acqui-
sition, Data curation, Conceptualization. Yahia El Fellah: Writing —
original draft, Validation. Fatima Sabir: Writing — review & editing,
Data curation. Naouel Moha: Writing — review & editing, Supervi-
sion. Yann-Gaél Guéhéneuc: Writing — review & editing, Supervision.
Martin Kuradusenge: Writing — review & editing, Validation, Inves-
tigation. Tomoaki Masuda: Writing — original draft, Validation, Data
curation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

Thanks to all participating practitioners. This work was partially
funded by the Canada Research Chair program.

Data availability

The link is shared in the paper.

References

Abdullah, Amir, Kaur, Harleen, Biswas, Ranjeet, 2020. Layers of IoT architecture and
its security analysis. In: New Paradigm in Decision Science and Management:
Proceedings of ICDSM 2018. Springer, pp. 293-302.

Ahmed, Bestoun S., Bures, Miroslav, Frajtak, Karel, Cerny, Tomas, 2019. Aspects of
quality in Internet of Things (IoT) solutions: A systematic mapping study. IEEE
Access 7, 13758-13780.

Alaqail, Hesham, Ahmed, Shakeel, 2018. Overview of software testing standard
ISO/IEC/IEEE 29119. Int. J. Comput. Sci. Netw. Secur. (IJCSNS) 18 (2), 112-116.

AltexSoft, 2020. IoT architecture: Key layers and components. https://www.altexsoft.
com/blog/iot-architecture-layers-components/. (Accessed 1 December 2023).

Becker, Soeren, Pfandzelter, Tobias, Japke, Nils, Bermbach, David, Kao, Odej, 2022.
Network emulation in large-scale virtual edge testbeds: A note of caution and the
way forward. In: 2022 IEEE International Conference on Cloud Engineering (IC2E).
IEEE, pp. 1-7.

18 https://baptiste2k8.github.io/taxonomy4loTTesting/

23

The Journal of Systems & Software 226 (2025) 112408

Bosmans, Stig, Mercelis, Siegfried, Denil, Joachim, Hellinckx, Peter, 2019. Testing
IoT systems using a hybrid simulation based testing approach. Computing 101,
857-872.

Boukhlif, Mohamed, Kharmoum, Nassim, Hanine, Mohamed, 2024. LLMs for intelligent
software testing: A comparative study. In: Proceedings of the 7th International
Conference on Networking, Intelligent Systems and Security. pp. 1-8.

Burhan, Muhammad, Rehman, Rana Asif, Khan, Bilal, Kim, Byung-Seo, 2018. IoT
elements, layered architectures and security issues: A comprehensive survey.
Sensors (ISSN: 1424-8220) 18 (9), http://dx.doi.org/10.3390/518092796, URL
https://www.mdpi.com/1424-8220/18/9/2796.

Cavalcante, Everton, Batista, Thais, Oquendo, Flavio, 2015. Supporting dynamic soft-
ware architectures: From architectural description to implementation. In: 2015 12th
Working IEEE/IFIP Conference on Software Architecture. IEEE, pp. 31-40.

Cheverda, Arina, Jabborov, Ahror, Kruglov, Artem, Succi, Giancarlo, 2022. State-of-the-
art review of taxonomies for quality assessment of intelligent software systems. In:
2022 3rd International Informatics and Software Engineering Conference. IISEC,
pp. 1-6.

Clerissi, Diego, Leotta, Maurizio, Reggio, Gianna, Ricca, Filippo, 2018. Towards an
approach for developing and testing node-RED IoT systems. In: Proceedings
of the 1st ACM SIGSOFT International Workshop on Ensemble-Based Software
Engineering. pp. 1-8.

Cooke, Alison, Smith, Debbie, Booth, Andrew, 2012. Beyond PICO: the SPIDER tool for
qualitative evidence synthesis. Qual. Heal. Res. 22 (10), 1435-1443.

Coppola, Riccardo, Alégroth, Emil, 2022. A taxonomy of metrics for GUI-based testing
research: A systematic literature review. Inf. Softw. Technol. 107.

Costa, Victor, Girardon, Gustavo, Bernardino, Maicon, Machado, Rodrigo, Legra-
mante, Guilherme, Neto, Anibal, Basso, Fabio Paulo, de Macedo Rodrigues, Elder,
2020. Taxonomy of performance testing tools: A systematic literature review. In:
Proceedings of the 35th Annual ACM Symposium on Applied Computing. pp.
1997-2004.

Dias, Joao, Couto, Flavio, Paiva, Ana, Ferreira, Hugo, 2018. A brief overview of existing
tools for testing the Internet of Things. In: 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops. ICSTW, IEEE, pp.
104-109.

Dutta, Riya, Costa, Diego Elias, Shihab, Emad, Tajmel, Tanja, 2023. Diversity awareness
in software engineering participant research. arXiv preprint arXiv:2302.00042.
Dyba, Tore, Dingsoyr, Torgeir, Hanssen, Geir K., 2007. Applying systematic reviews to
diverse study types: An experience report. In: International Symposium on Empirical

Software Engineering and Measurement. ESEM 2007, IEEE, pp. 225-234.

Engstrom, Emelie, Petersen, Kai, 2015. Mapping software testing practice with software
testing research—SERP-test taxonomy. In: 2015 IEEE Eighth International Confer-
ence on Software Testing, Verification and Validation Workshops. ICSTW, IEEE, pp.
1-4.

Fadhil, Jawaher Abdulwahab, Sarhan, Qusay Idrees, 2022. A survey on Internet of
Things (IoT) testing. In: 2022 International Conference on Computer Science and
Software Engineering. CSASE, IEEE, pp. 77-83.

Felderer, Michael, Zech, Philipp, Breu, Ruth, Biichler, Matthias, Pretschner, Alexander,
2016. Model-based security testing: A taxonomy and systematic classification.
Softw. Test. Verif. Reliab. 26 (2), 119-148.

Firesmith, Donald G., 2014. Common System and Software Testing Pitfalls: How to
Prevent and Mitigate Them: Descriptions, Symptoms, Consequences, Causes, and
Recommendations. Addison-Wesley Professional.

Firesmith, Donald, 2015. A taxonomy of testing. https://insights.sei.cmu.edu/blog/a-
taxonomy-of-testing/. (Accessed 23 January 2024).

Fischbach, Jannik, Frattini, Julian, Vogelsang, Andreas, Mendez, Daniel, Unterkalm-
steiner, Michael, Wehrle, Andreas, Henao, Pablo Restrepo, Yousefi, Parisa,
Juricic, Tedi, Radduenz, Jeannette, et al., 2023. Automatic creation of acceptance
tests by extracting conditionals from requirements: NLP approach and case study.
J. Syst. Softw. 197, 111549.

Fortino, Giancarlo, Savaglio, Claudio, Spezzano, Giandomenico, Zhou, MengChu, 2020.
Internet of things as system of systems: A review of methodologies, frameworks,
platforms, and tools. IEEE Trans. Syst. Man, Cybernetics: Syst. 51 (1), 223-236.

Garousi, Vahid, Felderer, Michael, Karapicak, Cagr1 Murat, Yilmaz, Ugur, 2018. Testing
embedded software: A survey of the literature. Inf. Softw. Technol. 104, 14-45.

Hagar, Jon Duncan, 2022. IoT System Testing. Apress.

Hassan, Muhammad, Ahmadi-Pour, Sallar, Qayyum, Khushboo, Jha, Chandan Kumar,
Drechsler, Rolf, 2024. LLM-guided formal verification coupled with mutation
testing. In: 2024 Design, Automation and Test in Europe Conference and Exhibition.
DATE, pp. 1-2. http://dx.doi.org/10.23919/DATE58400.2024.10546729.

IEEE, 2017. ISO/IEC/IEEE International Standard - Systems and software engineering—
Vocabulary. http://dx.doi.org/10.1109/IEEESTD.2017.8016712, ISO/IEC/IEEE
24765: 2017(E).

Inc. Cisco Systems, 2014. IoT world forum 2014. https://www.globenewswire.com/
news-release/2014/10/14/1271271/0/en/The-Internet-of-Things-World- Forum-
Unites-Industry-Leaders-in-Chicago-to- Accelerate-the- Adoption-of-I0T-Business-
Models.HTML. (Accessed 9 December 2024).

ISO, 2022. ISO/IEC/IEEE International Standard - Software and systems engineering
—Software testing —Part 1:General concepts. pp. 1-60. http://dx.doi.org/10.1109/
IEEESTD.2022.9698145, ISO/IEC/IEEE 29119-1: 2022(E).

https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://www.ptidej.net/downloads/replications/jss24a/
https://zenodo.org/records/14515044
https://www.ptidej.net/Members/minanijb/Taxonomy/index.html
https://www.ptidej.net/Members/minanijb/Taxonomy/index.html
https://www.ptidej.net/Members/minanijb/Taxonomy/index.html
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb1
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb1
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb1
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb1
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb1
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb2
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb2
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb2
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb2
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb2
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb3
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb3
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb3
https://www.altexsoft.com/blog/iot-architecture-layers-components/
https://www.altexsoft.com/blog/iot-architecture-layers-components/
https://www.altexsoft.com/blog/iot-architecture-layers-components/
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb5
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb5
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb5
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb5
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb5
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb5
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb5
https://baptiste2k8.github.io/taxonomy4IoTTesting/
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb6
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb6
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb6
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb6
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb6
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb7
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb7
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb7
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb7
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb7
http://dx.doi.org/10.3390/s18092796
https://www.mdpi.com/1424-8220/18/9/2796
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb9
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb9
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb9
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb9
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb9
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb10
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb10
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb10
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb10
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb10
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb10
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb10
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb11
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb11
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb11
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb11
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb11
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb11
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb11
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb12
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb12
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb12
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb13
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb13
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb13
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb14
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb14
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb14
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb14
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb14
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb14
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb14
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb14
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb14
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb15
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb15
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb15
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb15
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb15
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb15
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb15
http://arxiv.org/abs/2302.00042
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb17
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb17
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb17
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb17
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb17
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb18
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb19
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb19
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb19
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb19
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb19
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb20
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb20
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb20
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb20
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb20
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb21
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb21
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb21
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb21
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb21
https://insights.sei.cmu.edu/blog/a-taxonomy-of-testing/
https://insights.sei.cmu.edu/blog/a-taxonomy-of-testing/
https://insights.sei.cmu.edu/blog/a-taxonomy-of-testing/
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb23
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb24
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb24
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb24
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb24
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb24
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb25
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb25
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb25
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb26
http://dx.doi.org/10.23919/DATE58400.2024.10546729
http://dx.doi.org/10.1109/IEEESTD.2017.8016712
https://www.globenewswire.com/news-release/2014/10/14/1271271/0/en/The-Internet-of-Things-World-Forum-Unites-Industry-Leaders-in-Chicago-to-Accelerate-the-Adoption-of-IoT-Business-Models.HTML
https://www.globenewswire.com/news-release/2014/10/14/1271271/0/en/The-Internet-of-Things-World-Forum-Unites-Industry-Leaders-in-Chicago-to-Accelerate-the-Adoption-of-IoT-Business-Models.HTML
https://www.globenewswire.com/news-release/2014/10/14/1271271/0/en/The-Internet-of-Things-World-Forum-Unites-Industry-Leaders-in-Chicago-to-Accelerate-the-Adoption-of-IoT-Business-Models.HTML
https://www.globenewswire.com/news-release/2014/10/14/1271271/0/en/The-Internet-of-Things-World-Forum-Unites-Industry-Leaders-in-Chicago-to-Accelerate-the-Adoption-of-IoT-Business-Models.HTML
https://www.globenewswire.com/news-release/2014/10/14/1271271/0/en/The-Internet-of-Things-World-Forum-Unites-Industry-Leaders-in-Chicago-to-Accelerate-the-Adoption-of-IoT-Business-Models.HTML
https://www.globenewswire.com/news-release/2014/10/14/1271271/0/en/The-Internet-of-Things-World-Forum-Unites-Industry-Leaders-in-Chicago-to-Accelerate-the-Adoption-of-IoT-Business-Models.HTML
https://www.globenewswire.com/news-release/2014/10/14/1271271/0/en/The-Internet-of-Things-World-Forum-Unites-Industry-Leaders-in-Chicago-to-Accelerate-the-Adoption-of-IoT-Business-Models.HTML
http://dx.doi.org/10.1109/IEEESTD.2022.9698145
http://dx.doi.org/10.1109/IEEESTD.2022.9698145
http://dx.doi.org/10.1109/IEEESTD.2022.9698145

J.B. Minani et al.

ISO Standards, 2021. IEEE/ISO/IEC International Standard - Software and systems
engineering-Software testing: Test techniques. pp. 1-148. http://dx.doi.org/10.
1109/1EEESTD.2021.9591574, ISO/IEC/IEEE 29119-4:2021(E).

Jean Baptiste, Minani, El Fellah, Yahia, Ahmed, Sanam, Sabir, Fatima, Moha, Naouel,
Guéhéneuc, Yann-Gaél, 2024a. An exploratory study on code quality, testing, data
accuracy, and practical use cases of IoT wearables. In: 7th Conference on Cloud
and Internet of Things. CloT, IEEE, pp. 1-5.

Jean Baptiste, Minani, Sabir, Fatima, El Fellah, Yahia, Moha, Naouel, 2023a. Taxonomy
for IoT systems testing: Practical guidance for practitioners. Authorea Prepr.

Jean Baptiste, Minani, Sabir, Fatima, El Fellah, Yahia, Moha, Naouel, 2024b. Practical
guidance for IoT systems testing: A taxonomy. p. 57, SERP4IoT 2024.

Jean Baptiste, Minani, Sabir, Fatima, Moha, Naouel, Guéhéneuc, Yann-Gaél, 2023b. A
multi-method study of internet of things systems testing in industry. IEEE Internet
Things J. 1. http://dx.doi.org/10.1109/J10T.2023.3291233.

Jean Baptiste, Minani, Sabir, Fatima, Moha, Naouel, Guéhéneuc, Yann-Gaél, 2024c.
A systematic review of IoT systems testing: Objectives, approaches, tools, and
challenges. IEEE Trans. Softw. Eng. 1-29. http://dx.doi.org/10.1109/TSE.2024.
3363611.

Jean Baptiste, Minani, Sabir, Fatima, Moha, Naouel, Guéhéneuc, Yann-Gaél, Ku-
radusenge, Martin, Masuda, Tomoaki, et al., 2024d. TaxloTe: Taxonomy and
practical guide for testing of IoT systems. SSRN.

Khezemi, Nour, Minani, Jean Baptiste, Sabir, Fatima, Moha, Naouel, Guéhéneuc, Yann-
Gaél, El Boussaidi, Ghizlane, 2024. A systematic literature review of IoT system
architectural styles and their quality requirements. IEEE Internet Things J. 11 (23),
37599-37616.

Kim, Hiun, Ahmad, Abbas, Hwang, Jaeyoung, Baqa, Hamza, Le Gall, Franck, Or-
tega, Miguel Angel Reina, Song, JaeSeung, 2018. IoT-TaaS: Towards a prospective
IoT testing framework. IEEE Access 6, 15480-15493.

Kiran Bhagnani, Shubha Chaturvedi, 2014. Taxonomy of testing techniques. Int. J. Eng.
Comput. Sci. 3 (10).

Kundisch, Dennis, Muntermann, Jan, Oberldnder, Anna Maria, Rau, Daniel,
Roglinger, Maximilian, Schoormann, Thorsten, Szopinski, Daniel, 2021. An up-
date for taxonomy designers: methodological guidance from information systems
research. Bus. Inf. Syst. Eng. 1-19.

Kwasnik, Barbara H., 1999. The role of classification in knowledge representation and
discovery. Libr. Trends.

Ladisa, P., Plate, H., Martinez, M., Barais, O., 2023. Taxonomy of attacks on open-
source software supply chains. In: 2023 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, pp. 1509-1526.

Lee, Seungjin, Park, Jaeeun, Choi, Hyungwoo, Oh, Hyeontaek, 2023. Energy-efficient
AP selection using intelligent access point system to increase the lifespan of IoT
devices. Sensors (ISSN: 1424-8220) 23 (11), http://dx.doi.org/10.3390/523115197,
URL https://www.mdpi.com/1424-8220/23/11/5197.

Leotta, Maurizio, Ricca, Filippo, Clerissi, Diego, Ancona, Davide, Delzanno, Giorgio,
Ribaudo, Marina, Franceschini, Luca, 2017. Towards an acceptance testing ap-
proach for internet of things systems. In: ICWE Workshops. Springer International
Publishing, pp. 125-138.

Lonetti, Francesca, Bertolino, Antonia, Di Giandomenico, Felicita, 2023. Model-based
security testing in IoT systems: A rapid review. Inf. Softw. Technol. 107326.
Makhshari, Amir, Mesbah, Ali, 2021a. IoT bugs and development challenges. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering. ICSE, pp.

460-472. http://dx.doi.org/10.1109/ICSE43902.2021.00051.

Makhshari, Amir, Mesbah, Ali, 2021b. IoT bugs and development challenges. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering. ICSE, pp.
460-472. http://dx.doi.org/10.1109/1CSE43902.2021.00051.

Medhat, Noha, Moussa, Sherin, Badr, Nagwa, Tolba, Mohamed F., 2019. Testing
Techniques in IoT-based Systems. In: 2019 Ninth International Conference on
Intelligent Computing and Information Systems. pp. 394-401. http://dx.doi.org/
10.1109/ICICIS46948.2019.9014711.

Mountrouidou, Xenia, Billings, Blaine, Mejia-Ricart, Luis, 2019. Not just another
Internet of Things taxonomy: A method for validation of taxonomies. Internet
Things 6, 100049.

Mubarakah, Naemah, et al., 2020. Software engineering taxonomy reviews. In: 2020
4rd International Conference on Electrical, Telecommunication and Computer
Engineering. ELTICOM, IEEE, pp. 63-67.

Nawir, Mukrimah, Amir, Amiza, Yaakob, Naimah, Lynn, Ong Bi, 2016. Internet of
Things (IoT): Taxonomy of security attacks. In: 2016 3rd International Conference
on Electronic Design. ICED, IEEE, pp. 321-326.

Niederberger, Marlen, Spranger, Julia, 2020. Delphi technique in health sciences: a
map. Front. Public Heal. 8, 457.

Page, Matthew J., McKenzie, Joanne E., Bossuyt, Patrick M., Boutron, Isabelle, Hoff-
mann, Tammy C., Mulrow, Cynthia D., Shamseer, Larissa, Tetzlaff, Jennifer M.,
AKl, Elie A., Brennan, Sue E., et al., 2021. The PRISMA 2020 statement: An updated
guideline for reporting systematic reviews. Int. J. Surg. 88, 105906.

Pietrantuono, Roberto, Ficco, Massimo, Palmieri, Francesco, 2023. Testing the resilience
of MEC-based IoT applications against resource exhaustion attacks. IEEE Trans.
Dependable Secur. Comput. 21 (2), 804-818.

Pontes, Pedro Martins, Lima, Bruno, Faria, Jodo Pascoal, 2018. Izinto: A pattern-based
iot testing framework. In: Companion Proceedings for the ISSTA/ECOOP 2018
Workshops. pp. 125-131.

24

The Journal of Systems & Software 226 (2025) 112408

Raibulet, Claudia, 2018. Towards a Taxonomy for the Evaluation of Self-* Software. In:
2018 IEEE 3rd International Workshops on Foundations and Applications of Self*
Systems (FAS*W). pp. 22-23. http://dx.doi.org/10.1109/FAS-W.2018.00020.

Ralph, Paul, 2018. Toward methodological guidelines for process theories and
taxonomies in software engineering. IEEE Trans. Softw. Eng. 45 (7), 712-735.

Rao, Tariq Aziz, Haq, E.U., 2018. Security challenges facing IoT layers and its protective
measures. Int. J. Comput. Appl. 179 (27), 31-35.

Rogers, R. Owen, 2004. Acceptance testing vs. unit testing: A developer’s perspective.
In: Conference on Extreme Programming and Agile Methods. Springer, pp. 22-31.

Roggio, Robert, Gordon, Jamie, Comer, James, 2014. Taxonomy of common software
testing terminology: Framework for key software engineering testing concepts. J.
Inf. Syst. Appl. Res. 7 (2), 4.

Schifer, Max, Nadi, Sarah, Eghbali, Aryaz, Tip, Frank, 2024. An empirical evaluation
of using large language models for automated unit test generation. IEEE Trans.
Softw. Eng. 50 (1), 85-105.

Stapp, Lucjan, Roman, Adam, Pilaeten, Michael, 2024. ISTQB Certified Tester
Foundation Level: A Self-Study Guide Syllabus V4. 0. Springer.

Taivalsaari, Antero, Mikkonen, Tommi, 2018. On the development of IoT systems. In:
2018 Third International Conference on Fog and Mobile Edge Computing. FMEC,
pp. 13-19. http://dx.doi.org/10.1109/FMEC.2018.8364039.

Tan, Teik-Boon, Cheng, Wai-Khuen, 2018. Software testing levels in internet of things
(IoT) architecture. In: International Computer Symposium. Springer, pp. 385-390.

Tanenbaum, A., Steen, M.V., 2015. Introduction to distributed systems. In: Distributed
Systems: Principles and Paradigms. pp. 1-33, Prentice Hall, (Jan. 15, 2002).

Tewari, Ramanuj, Alsalami, Zaid, Alsailawi, H.A., Kirubanantham, P., Dha-
balia, Dharmesh, Saadoun, Osama Nazim, Abdulhussain, Zahraa N., Al-
wan, Ali Saad, 2024. Testing user Attitudes in IoT-load interface based healthcare
attention management system. In: 2024 4th International Conference on Ad-
vance Computing and Innovative Technologies in Engineering. ICACITE, IEEE, pp.
831-834.

Touqeer, Haseeb, Zaman, Shakir, Amin, Rashid, Hussain, Mudassar, Al-Turjman, Fadi,
Bilal, Muhammad, 2021. Smart home security: challenges, issues and solutions at
different IoT layers. J. Supercomput. 77 (12), 14053-14089.

Unterkalmsteiner, M., Feldt, R., Gorschek, T., 2014. A taxonomy for requirements
engineering and software test alignment. ACM Trans. Softw. Eng. Methodol. 23
(2), http://dx.doi.org/10.1145/2523088.

Usman, Muhammad, Britto, Ricardo, Borstler, Jiirgen, Mendes, Emilia, 2017. Tax-
onomies in software engineering: A systematic mapping study and a revised
taxonomy development method. Inf. Softw. Technol. (ISSN: 0950-5849) 85, 43-59.

Utting, Mark, Pretschner, Alexander, Legeard, Bruno, 2012. A taxonomy of model-based
testing approaches. Softw. Test. Verif. Reliab. 22 (5), 297-312.

Vegas, Sira, Juristo, Natalia, Basili, Victor R., 2009. Maturing software engineering
knowledge through classifications: A case study on unit testing techniques. IEEE
Trans. Softw. Eng. 35 (4), 551-565. http://dx.doi.org/10.1109/TSE.2009.13.

Villalén, Jose Calvo-Manzano, Agustin, Gonzalo Cuevas, Gilabert, Tomas San Feliu,
Puello, José de Jests Jiménez, 2015a. A Taxonomy for Software Testing Projects.
In: 2015 10th Iberian Conference on Information Systems and Technologies. CISTI,
IEEE, pp. 1-6.

Villalén, Jose Calvo-Manzano, Agustin, Gonzalo Cuevas, Gilabert, Tomés San Feliu,
Puello, José de Jestis Jiménez, 2015b. A taxonomy for software testing projects.
In: 2015 10th Iberian Conference on Information Systems and Technologies. CISTI,
IEEE, pp. 1-6.

Wang, Junjie, Huang, Yuchao, Chen, Chunyang, Liu, Zhe, Wang, Song, Wang, Qing,
2024a. Software testing with large language models: Survey, landscape, and vision.
IEEE Trans. Softw. Eng.

Wang, Junjie, Huang, Yuchao, Chen, Chunyang, Liu, Zhe, Wang, Song, Wang, Qing,
2024b. Software testing with large language models: Survey, landscape, and vision.
IEEE Trans. Softw. Eng.

Wang, Chunhui, Pastore, Fabrizio, Goknil, Arda, Briand, Lionel C, 2020. Automatic
generation of acceptance test cases from use case specifications: an NLP-based
approach. IEEE Trans. Softw. Eng. 48 (2), 585-616.

Wheaton, George R., 1968. Development of a taxonomy of human performance: A
review of classificatory systems relating to tasks and performance. Sage J.

White, Gary, Nallur, Vivek, Clarke, Siobhdn, 2017. Quality of service approaches in
ToT: A systematic mapping. J. Syst. Softw. 132, 186-203.

Yaqoob, Ibrar, Ahmed, Ejaz, Hashem, Ibrahim Abaker Targio, Ahmed, Abdelmuttlib
Ibrahim Abdalla, Gani, Abdullah, Imran, Muhammad, Guizani, Mohsen, 2017.
Internet of things architecture: Recent advances, taxonomy, requirements, and open
challenges. IEEE Wirel. Commun. 24 (3), 10-16.

Yu, Shengcheng, Fang, Chunrong, Ling, Yuchen, Wu, Chentian, Chen, Zhenyu, 2023.
LLM for test script generation and migration: Challenges, capabilities, and op-
portunities. In: 2023 IEEE 23rd International Conference on Software Quality,
Reliability, and Security. QRS, pp. 206-217. http://dx.doi.org/10.1109/QRS60937.
2023.00029.

Zander, Justyna, Schieferdecker, Ina, 2011. A taxonomy of model-based testing for
embedded systems from multiple industry domains. In: Model-Based Testing for
Embedded Systems.

Zander, Justyna, Schieferdecker, Ina, Mosterman, Pieter J., 2011. A taxonomy of
model-based testing for embedded systems from multiple industry domains.

http://dx.doi.org/10.1109/IEEESTD.2021.9591574
http://dx.doi.org/10.1109/IEEESTD.2021.9591574
http://dx.doi.org/10.1109/IEEESTD.2021.9591574
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb32
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb33
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb33
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb33
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb34
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb34
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb34
http://dx.doi.org/10.1109/JIOT.2023.3291233
http://dx.doi.org/10.1109/TSE.2024.3363611
http://dx.doi.org/10.1109/TSE.2024.3363611
http://dx.doi.org/10.1109/TSE.2024.3363611
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb37
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb37
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb37
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb37
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb37
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb38
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb38
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb38
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb38
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb38
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb38
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb38
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb39
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb39
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb39
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb39
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb39
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb40
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb40
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb40
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb41
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb41
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb41
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb41
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb41
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb41
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb41
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb42
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb42
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb42
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb43
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb43
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb43
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb43
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb43
http://dx.doi.org/10.3390/s23115197
https://www.mdpi.com/1424-8220/23/11/5197
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb45
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb45
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb45
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb45
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb45
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb45
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb45
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb46
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb46
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb46
http://dx.doi.org/10.1109/ICSE43902.2021.00051
http://dx.doi.org/10.1109/ICSE43902.2021.00051
http://dx.doi.org/10.1109/ICICIS46948.2019.9014711
http://dx.doi.org/10.1109/ICICIS46948.2019.9014711
http://dx.doi.org/10.1109/ICICIS46948.2019.9014711
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb50
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb50
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb50
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb50
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb50
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb51
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb51
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb51
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb51
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb51
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb52
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb52
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb52
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb52
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb52
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb53
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb53
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb53
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb54
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb54
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb54
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb54
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb54
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb54
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb54
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb55
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb55
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb55
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb55
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb55
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb56
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb56
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb56
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb56
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb56
http://dx.doi.org/10.1109/FAS-W.2018.00020
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb58
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb58
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb58
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb59
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb59
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb59
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb60
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb60
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb60
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb61
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb61
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb61
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb61
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb61
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb62
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb62
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb62
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb62
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb62
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb63
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb63
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb63
http://dx.doi.org/10.1109/FMEC.2018.8364039
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb65
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb65
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb65
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb66
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb66
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb66
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb67
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb67
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb67
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb67
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb67
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb67
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb67
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb67
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb67
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb67
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb67
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb68
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb68
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb68
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb68
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb68
http://dx.doi.org/10.1145/2523088
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb70
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb70
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb70
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb70
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb70
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb71
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb71
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb71
http://dx.doi.org/10.1109/TSE.2009.13
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb73
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb73
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb73
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb73
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb73
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb73
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb73
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb74
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb74
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb74
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb74
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb74
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb74
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb74
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb75
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb75
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb75
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb75
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb75
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb76
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb76
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb76
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb76
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb76
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb77
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb77
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb77
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb77
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb77
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb78
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb78
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb78
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb79
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb79
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb79
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb80
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb80
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb80
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb80
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb80
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb80
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb80
http://dx.doi.org/10.1109/QRS60937.2023.00029
http://dx.doi.org/10.1109/QRS60937.2023.00029
http://dx.doi.org/10.1109/QRS60937.2023.00029
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb82
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb82
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb82
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb82
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb82
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb83
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb83
http://refhub.elsevier.com/S0164-1212(25)00076-7/sb83

	IoT systems testing: Taxonomy, empirical findings, and recommendations
	Introduction
	Motivational Background and Related Work
	Motivational Background
	Key Concepts

	Related Work
	Definition of Validation Metrics
	Need for IoT System Testing Taxonomy

	Research Method
	Taxonomy Development
	Step 1 – Identification of Relevant Literature
	Step 2 – Data Extraction and Analysis
	Step 3 – Develop the Initial Taxonomy

	Survey – Round 1
	Survey – Round 2
	Taxonomy Validation
	Survey-based Validation
	Case Study

	Practitioners Guidance
	Usage Scenario: Developing a Test Strategy for a Smart Home IoT System

	Practitioners' Review
	Round 1
	Completeness, Helpfulness, Understandability, and Usefulness
	Importance and Expectation
	Effectiveness for Test Strategy

	Round 2

	The Taxonomy: TaxIoTe
	What Are Testing Objectives (RQ1)?
	What Are Testing Tools and Artifacts (RQ2)?
	Who Is Responsible For Testing (RQ3)?
	What Are Testing Stages (RQ4)?
	What Are Testing Environments (RQ5)?
	What Are Testing Approaches (RQ6)?
	What Are OUT And Metrics (RQ7)?

	Empirical Evaluation
	Selection of Participants
	Experimentation with WIMP
	Experimentation with SMART-CYPS

	Recommendations
	Discussions
	Alignment of Testing Objectives and Testing Types
	Practitioners Feedback
	Experimental Insights
	Navigating the Taxonomy for Effective Testing
	Continuous Relevance and Adaptability
	Fragmented IoT System Testing Aspects
	Implication for Practitioners
	Guidance for testing IoT systems
	Revolutionizing Testing with LLM

	Implication for Researchers

	Threats to validity
	Conclusion and Future Work
	Replication Package and Useful Links
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

