
Academic Editors: Yongpeng

Wu and Peihong Yuan

Received: 11 February 2025

Revised: 10 March 2025

Accepted: 11 March 2025

Published: 14 March 2025

Citation: Pillet, C.; Sagitov, I.;

Balatsoukas-Stimming, A.; Giard, P.

Restart Mechanisms for the

Successive-Cancellation List-Flip

Decoding of Polar Codes. Entropy

2025, 27, 309. https://doi.org/

10.3390/e27030309

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Restart Mechanisms for the Successive-Cancellation List-Flip
Decoding of Polar Codes
Charles Pillet 1,*,† , Ilshat Sagitov 1,† , Alexios Balatsoukas-Stimming 2 and Pascal Giard 1,*

1 LaCIME, Department of Electrical Engineering, École de technologie supérieure (ÉTS),
1100 Notre-Dame St. West, Montréal, QC H3C 1K3, Canada; ilshat.sagitov.1@ens.etsmtl.ca

2 Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19,
5600 MB Eindhoven, The Netherlands; a.k.balatsoukas.stimming@tue.nl

* Correspondence: charles.pillet.1@ens.etsmtl.ca (C.P.); pascal.giard@etsmtl.ca (P.G.)
† These authors contributed equally to this work.

Abstract: Polar codes concatenated with a cyclic redundancy check (CRC) code have
been selected in the 5G standard with the successive-cancellation list (SCL) of list size
L = 8 as the baseline algorithm. Despite providing great error-correction performance, a
large list size increases the hardware complexity of the SCL decoder. Alternatively, flip
decoding algorithms were proposed to improve the error-correction performance with a
low-complexity hardware implementation. The combination of list and flip algorithms, the
successive-cancellation list flip (SCLF) and dynamic SCLF (DSCLF) algorithms, provides
error-correction performance close to SCL-32 with a list size L = 2 and Tmax = 300 maximum
additional trials. However, these decoders have a variable execution time, a characteristic
that poses a challenge to some practical applications. In this work, we propose a restart
mechanism for list–flip algorithms that allows us to skip parts of the decoding computations
without affecting the error-correction performance. We show that the restart location cannot
realistically be allowed to occur at any location in a codeword as it would lead to an
unreasonable memory overhead under DSCLF. Hence, we propose a mechanism where
the possible restart locations are limited to a set and propose various construction methods
for that set. The construction methods are compared, and the tradeoffs are discussed. For a
polar code of length N = 1024 and rate 1/4, under DSCLF decoding with a list size L = 2 and
a maximum number of trials Tmax = 300, our proposed approach is shown to reduce the
average execution time by 41.7% with four restart locations at the cost of approximately
1.5% in memory overhead.

Keywords: polar codes; decoding; execution time; complexity; energy efficiency

1. Introduction
Polar codes [1] are a class of linear block codes that were shown to asymptotically

achieve the channel capacity under low-complexity successive-cancellation (SC) decoding
as the code length tends to infinity [1]. However, the SC decoding algorithm does not
provide sufficient error-correction performance at short-to-moderate code lengths. The
concatenation of a cyclic redundancy check (CRC) code to the polar code results in the
CRC-aided (CA)–polar code scheme; this scheme was selected to protect the control channel
of the enhanced mobile broadband (eMBB) service in 5G [2]. SC does not take advantage of
the CRC code.

Successive-cancellation list (SCL) decoding [3] was proposed to improve the error-
correction performance of SC decoding. SCL decoding retains L decoding paths, providing

Entropy 2025, 27, 309 https://doi.org/10.3390/e27030309

https://doi.org/10.3390/e27030309
https://doi.org/10.3390/e27030309
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5066-4302
https://orcid.org/0009-0008-3292-1820
https://orcid.org/0000-0002-6721-4666
https://orcid.org/0000-0001-9105-321X
https://doi.org/10.3390/e27030309
https://www.mdpi.com/article/10.3390/e27030309?type=check_update&version=4

Entropy 2025, 27, 309 2 of 22

L different candidates of a codeword. To achieve this, the number of paths is doubled,
and when it reaches 2L, the best L paths according to path metrics (PMs) are selected to
continue the decoding. The true potential of the SCL decoding algorithm is highlighted
with the CA–polar code scheme. The candidate with the smallest PM that verifies the CRC
code is elected as the codeword estimate.

Another decoding algorithm for the CA–polar codes is the flip algorithm [4,5]. Unlike
SCL decoding, successive-cancellation flip (SCF) and dynamic SCF (DSCF) sequentially
attempt the decoding with a single SC instance, providing up to Tmax candidates of a code-
word. At each additional trial, one of the decision bits, based on a metric, is flipped during
the course of SC decoding before normal decoding is resumed. DSCF better approximates
the reliability of a decision, providing a more accurate list of bit-flipping candidates and
improving the error-correction performance. Moreover, DSCF may also handle multiple bit
flips per decoding trial. The latter requires a list of candidates that is dynamically updated
along the decoding trials.

Successive-cancellation list flip (SCLF) decoding [6] combines the list and flip algo-
rithms. Additional trials of SCLF correspond to the SCL algorithm having a reverse path
selection on the path-flipping locations [7]. These locations are based on a flip metric
computed during the initial SCL trial [8]. In [9], dynamic SCLF (DSCLF) decoding is
proposed, which adapts the DSCF methodology to SCLF. That is, the metric that selects
path-flipping locations is further improved, and the multi-path-flipping methodology of
DSCF is adapted.

Since it combines list and flip algorithms, the algorithm is computationally complex
and works according to the methodology outlined by [10–15], who investigated ways
to reduce the complexity of the list–flip algorithm. In [10,11], a simplified metric and
an adaptive list size L are proposed, allowing us to reduce the complexity of L ̸= 2. A
low-complexity flip metric allowing fast decoding of some special nodes is proposed in [12].
The fast implementation of the SCLF decoder is provided in [13], reducing up to 73.4%
of the average decoding latency for N = 512 and K = 256 codes. In [14], the number of
additional trials is restricted to one, but this specific case can be improved with a more
accurate method for locating the first error position. In [15], the authors created a scheme
with early termination, average execution time reduction, and enhanced performance by
protecting the codeword with multiple CRC codes. However, the total number of CRC bits
is high and specific patterns are required.

Previously, we proposed restart mechanisms for SCF-based decoders [16,17]. The
simplified restart mechanism (SRM) conditionally restarts SC decoding from the second
half of the codeword if that is where the current bit-flipping candidate is located. The gener-
alized restart mechanism (GRM) restarts SC decoding from any location of the bit-flipping
candidate, which is achieved by storing the decoded codeword in its memory at the end
of the initial unsuccessful decoding trial. It was shown that GRM is applicable to various
types of SCF-based decoders. This work represents the continuation of [16,17] but for the
list–flip algorithm. The restart mechanism for the list–flip decoder shown in this paper
reduces the complexity less in comparison to the GRM, and we will show that embedding
the GRM is impracticable for this decoder. Nevertheless, the complexity reduction is better
with respect to the SRM, and the error-correction performance is not reduced.

Contributions
This work proposes the limited-locations restart mechanism (LLRM) for SCLF-based

decoders for polar codes with the central idea to partially skip decoding computations
that are identical between the initial trial and any additional trial. For any additional
trial, the decoding restart is performed from one of the restart locations that is the closest
to the path-flipping location from its right-hand side (RHS) in a codeword. The restart

Entropy 2025, 27, 309 3 of 22

locations are determined offline, i.e., by conducting simulations at the target frame-error
rate (FER). An LLRM does not alter the error-correction performance of the original decoder.
During a restart, the decoding tree is calculated from its root and partial-sum (PS) bits are
recalculated. Relevant path information required to retrieve the decoding tree is stored
to memory. When applying the LLRM with four restart locations to the DSCLF decoder
that can flip up to three paths per decoding trial, the average flip time reduction is 51% for
N = 512 and K = 128 while requiring approximately 1.7% of additional memory compared
to the standard DSCLF decoder.

Outline
The remainder of this paper is organized as follows: Section 2 begins by introducing

polar codes with SC decoding. Then, SCL, SCF, and SCLF decoders are described. Section 4
begins with a simulation-based statistical analysis that provides bit-flip location distribu-
tions. In Section 5, simulation results for SCLF and DSCLF decoders with LLRM, and
previously proposed GRMs, for the standard scheme are provided. Comparisons are made
in terms of error-correction performance, memory estimates, and average execution time.

2. Background
2.1. Construction of Polar Codes

An (N, K) polar code [1] is a linear block code of length N = 2n and code dimension K,
defining the code rate Rcode = K/N. Polar codes encode an input vector u = [u0, . . . , uN−1]

to the codeword x = [x0, . . . , xN−1] as x = uT⊗n
2 where T⊗n

2 denotes the Kronecker power
of the binary kernel T2 =

[
1 0
1 1

]
. The matrix TN = T⊗n

2 induces channel polarization [1],
i.e., each of the N bits u has its own bit channel defined by its own reliability. Classifying
the N bit channels according to their reliabilities is not an easy task; several methods exist
to achieve this in this paper, which can also be found in [18]. The polar code construction
consists of splitting the N positions in u into two sets, A and Ac (with |A| = K), being
the information set and the frozen set. The information set corresponds to the indices
of the K most reliable positions, while the remaining (N − K) bits, called frozen bits, are
set to predefined values that are known by the decoder, which are typically zeros. The
vector u contains the message m of K bits in the positions stated in A, i.e., ûA = m and
contains N − K frozen bits, i.e., ûAc = 0. In this work, the binary phase-shift keying (BPSK)
modulation over an additive white Gaussian noise (AWGN) channel is used, as well as the
polar code construction of [18].

CA–polar codes include the concatenation of a CRC code during the polar encoding.
The r CRC bits are generated on the basis of the message m and are placed in the set
of information bits A, increasing the number of information bits to Ktot = K + r. Next,
information-bit indices of CA–polar codes are noted a1 < · · · < aK+r. The (N, K + r)
notation is used throughout this work to indicate the code parameters of CA–polar codes.

2.2. SC Decoding

Polar codes have been proposed with the low-complexity SC algorithm in [1] to retrieve
an estimate û of the input vector u. The description of SC decoding as a binary tree traversal
was proposed in [19], where the tree is traversed depth-first, starting with the left branch. The
decoding tree of an (8, 4) polar code is shown in Figure 1, where the stages are s ∈ {n, . . . , 0}
with the root node at s = n. The received vector of channel log-likelihood ratios (LLRs),
denoted by αch = [αch(0), . . . , αch(N − 1)], is at the tree root. For any node, denoted by
v and located at stage s, the input LLR vector is αv = [αv(0), . . . , αv(2s − 1)] from the
parent node, and the two input partial-sum (PS) vectors are βl =

[
βl(0), . . . , βl(2s−1 − 1

)]
and βr =

[
βr(0), . . . , βr(2s−1 − 1

)]
, from its left and right child nodes, respectively. The

left and right child nodes of the node v have the vectors αl
v =

[
αl

v(0), . . . , αl
v
(
2s−1 − 1

)]

Entropy 2025, 27, 309 4 of 22

and αr
v =

[
αr

v(0), . . . , αr
v
(
2s−1 − 1

)]
, respectively, where each LLR element is calculated

as follows:
αl

v(j) = f
(

αv(j), αv

(
j + 2s−1

))
, (1)

αr
v(j) = g

(
αv(j), αv

(
j + 2s−1

)
, βl(j)

)
, (2)

where j ∈ {0, . . . , 2s−1 − 1}. Going left, the f function is calculated as [20]

f (α1, α2) = sgn(α1)sgn(α2)min(|α1|, |α2|). (3)

Going right, the g function is calculated as

g(α1, α2, β1) = (1− 2β1)α1 + α2. (4)

Bit estimates, û = [û0, . . . , ûN−1], are obtained either by taking a hard decision on the
decision LLRs, αdec = [αdec(0), . . . , αdec(N − 1)], that reach the leaf nodes or using the
frozen bit values. Namely, we have

ûi =

HD(αdec(i)), if i ∈ A
0, if i ∈ Ac.

(5)

where HD(·) represents the hard decision function. In Figure 1, the nodes represented in
black and white correspond to information and frozen bits. The partial-sum vector, denoted
by β, is calculated from the bit estimates and is propagated up from children to parent
nodes. At any node v, each bit of β is calculated as follows:

βv(j) =

βl(j)⊕ βr(j), if j < 2s−1,

βr(j), otherwise,
(6)

where j ∈ {0, . . . , 2s − 1} and ⊕ is a bitwise XOR.

û0 û1 û2 û3 û4 û5 û6 û7

v

s
3

2

1

0

αv

αl
v

αr
vβl

βr

αch

Figure 1. SC decoding tree of an (8, 4) polar code.

2.3. SCL Decoding

SCL decoding was proposed in [3] and uses L parallel instances of the SC decoder,
where L is a power of 2. During the decoding, the L best decoding paths are kept through
the computation of PMs. At the end of the decoding, a set of L bit-estimate candidates,
denoted as ÛN−1 = {û(1), . . . , û(L)}, is provided. Next, the SCL decoding is described in
more detail.

First, for all paths, the bit-estimate vectors are initialized to 0, i.e., ∀l ∈ [1, L], û(l) = 0,
with l denoting the path index. Moreover, all PMs are also initialized to 0, i.e.,
∀l ∈ [1, L], PM(l) = 0. The decoding starts with a single path, and intermediate LLRs are
computed according to the SC schedule and the update rules (1) and (2). When the decoder

Entropy 2025, 27, 309 5 of 22

reaches the first information bit a1, the single path is duplicated, i.e., all intermediate partial
sums and all intermediate LLRs including the decision LLR αdec(a1) are duplicated to an-
other path structure. Contrary to SC decoding where the bit-estimate ûa1 is taken according
to the hard decision HD(αdec(a1)) (5), the path duplication in SCL decoding allows us to
consider both options {0, 1} regardless of the sign of the LLR αdec(a1). However, the PMs
are updated based on the chosen bit decision and the sign of the decision LLR αdec on their
path. Namely, the PM is penalized if the bit decision does not follow the sign of the decision
LLR, i.e., for the l-th path, the path metric PM(l) is updated as [21]

PM(l) =

PM(l) + |αdec(l, a)|, if HD(αdec(l, a)) ̸= ûa(l)

PM(l), otherwise,
(7)

where αdec(l, a) is the decision LLR for the l-th path at index a ∈ A, while ûa(l) is the
bit decision.

For the first information indices Adup ≜ {a1, . . . , alog2(L)}, the duplication of the paths
does not result in more than L paths; hence, no sorting and selection of the best L paths
are required. However, for all information bits a ∈ Asort ≜ {alog2(L)+1, . . . , aK+r}, 2L
paths are obtained after duplication. Hence, a selection of the best L paths is required
and is performed through the sorting operation of the 2L PMs. The L paths having the
smallest PM remain.

After duplication, the set of 2L PMs is noted PMdupa
= {PM(1), . . . , PM(2L)} with

a ∈ Asort, ∀PM(l) ∈ PMdupa
, and PM(l) is updated as (7). For ∀ a ∈ Asort, the set

Ûdupa
= {ûa

0(1), . . . , ûa
0(2L)} gathers the 2L partial candidates after duplication at index a.

After the sorting of PMdupa
, the following notations are used: PMsorta = {PMa, PMworsta}

and Û sorta = {Û a, Ûworsta}. Each subset contains the information of L paths. The
SCL decoding continues with the best L paths composed of the partial bit estimates
Û a = {ûa

0(1), . . . , ûa
0(L)} and the corresponding L PMs PMa = {PM(1), . . . , PM(L)}. For

i ∈ Ac, the L paths takes the frozen decision (5) and the update of the L PMs is performed
according to (7).

SCL decoding shows its true potential for CA–polar codes. At the end of the decoding,
a CRC check is performed on the L candidates stored in ÛN−1. The final decoded codeword
is the candidate that satisfies the CRC while minimizing the path metric. If none of the bit
estimates satisfy the CRC, a decoding failure is declared.

2.4. SCF Decoding

The SCF algorithm was proposed in [4] for CA–polar codes. This algorithm reuses a
single SC instance to perform the decoding. If the CRC check fails at the end of the initial
SC decoding trial, up to Tmax additional trials are performed, each of them involving a bit
flip in the bit-estimate û. The decoding stops when one additional trial returns a candidate
û checking the CRC code or after Tmax additional trials resulting in a CRC check failure.
The DSCF decoding was proposed to enhance the performance of SCF [5]; DSCF is defined
by the decoding order ω, stating the maximum number of bit flips that can be performed
in the additional trial. If ω = 1, the list of bit-flip candidates is known at the end of the
initial trial; if ω = {2, 3}, the list of bit-flip candidates is adjusted in all additional trials, i.e.,
the list is dynamic. A greater decoding order ω results in greater error-correction gain but
also requires more Tmax trials as well as more memory because of the storage of the flip
metrics and of the bit-flip locations. For the t-th additional trial, 1 ≤ t ≤ Tmax, the set εt

stores the bit-flip locations with |εt| ≤ ω. The list of all bit-flipping candidates is denoted
as Bflip = {ε1, . . . , εt, . . . εTmax}.

Entropy 2025, 27, 309 6 of 22

For ω ≥ 2, the latency of DSCF is its main drawback due to the sequential trials
and the greater Tmax to approach the full potential of the decoding algorithm. Options
exist to improve the decoding latency of DSCF. The baseline algorithm can be the fast-
SSC algorithm [22], having special nodes in order to not traverse the full decoding tree.
However, for ω ≥ 2, the special nodes need to be adapted and reduced in size, leading to
a more complex implementation [23] with respect to ω = 1. Another option is the restart
mechanism [16,17].

An optimal restart mechanism for flip decoders: the generalized restart mechanism (GRM):
Authors in [17] proposed the GRM to restart the decoding elsewhere other than the

first leaf for the additional trials. At additional trial 1 ≤ t ≤ Tmax, the restart location ψt

depends on the information set A and the first bit-flip location min(εt). This mechanism
requires only the storage of û, leading to a small memory overhead that allows the retrieval
of the intermediate partial sum βint. A module to perform the correct f and g sequence is
required to retrieve the intermediate LLRs αint. This sequence is retrieved with the binary
representation of ψt [17]. Figure 2 depicts the additional trial for a flip decoder embedding
the GRM. The first bit-flip location is min(εt) = 9, leading to the restart location ψt = 11.
The skipped nodes are shown in blue, while the restart path is depicted in red. The GRM
can be embedded into any baseline algorithm, i.e., standard SC [1] or the fast-SSC [22]
decoding algorithm. The average reduction brought by the GRM depends on the code rate
and the baseline algorithm. For N = 1024 and code rate Rcode = 1/8, the reduction is up to
56.9% with SC as the baseline algorithm and 20.9% with fast-SSC as the baseline algorithm.

û0 û1 û2 û3 û4 û5 û6 û7 û8 û9 û10 û11 û12 û13 û14 û15

4

3

2

1

0

s(ς)
restart path

α3

α2

α1

α0

αch
skipped nodes

β3

β1

Figure 2. Additional trial for flip decoders embedding the GRM; the first bit flip is min(εt) = 9 and
the restart location is ψt = 11.

2.5. SCLF Decoding

SCLF decoding is a combination of list decoding [3] and flip decoding [4,5]. It was first
proposed in [6], but the baseline algorithm described in [8] is used in this paper. The least
reliable bit positions, called path-flipping locations, are identified thanks to the flip metrics
computed during the initial SCL trial and are stored in Bflip. For a ∈ Asort, the flip metric
FMa in [8] is computed using the 2L PMs after the sorting operation PMsorta as

FMa = ln

 ∑L−1
l=0 exp(−PM(l))(

∑L−1
ł=0 exp(−PM(l + L))

)p

, (8)

Entropy 2025, 27, 309 7 of 22

where ln(·) indicates the natural logarithm. The constant value p ≈ 1.0 is found via
simulations. A simplified metric of (8) has been proposed in [12] and is computed
as follows:

FMa = −PM(1) + p · PM(L + 1), (9)

where PM(1) represents the best metric while PM(L + 1) is the best metric among the paths
that will be discarded at index a ∈ Asort. The use of (9), which has also been applied to
partitioned SCLF (PSCLF) decoding [15], leads to a negligible error-correction performance
degradation. Thus, the metric (9) is used in this work for SCLF decoding. During the initial
trial, |Asort| flip metrics were computed. The metrics are sorted when computed while
keeping track of the corresponding index a ∈ Asort. The Tmax smallest flip metrics are
stored in the set Mflip. The Tmax corresponding indices are stored in Bflip = {ε1, . . . , εTmax}
where εt corresponds to the path-flipping location in the t-th additional trial of SCLF.

In SCLF, |εt| = 1, i.e., the path-flipping only occurs once per additional trial. During
the additional trial t, the standard SCL trial is performed until the path-flipping location εt

is reached. At this position, the L worst paths are selected instead of the L best ones, i.e.,
path flipping is performed [7]. Following the path flipping, the standard SCL decoding is
resumed for the remaining part of the codeword.

2.6. Dynamic SCLF Decoding

In [9], the DSCF decoding strategy is adapted to SCLF decoding, and DSCLF-ω decod-
ing is proposed where several path-flipping locations potentially occur in an additional
trial. The metric computations of the DSCLF and DSCF decoders are very similar. Bflip is
dynamically updated for each unsuccessful additional trial and is then composed of a set
of path-flipping candidates. For the t-th additional trial, the path-flipping candidate εt then
becomes a set with |εt| ≤ ω. During the t-th additional trial, if |εt| < ω, for all information
indices a > max(εt), a flip metric is computed for the extended set εt ∪ a and the metric is
calculated as follows [9]:

FMεt∪a = ∑
ϵ∈εt∪a

FMϵ + ∑
j≤a
j∈A

J
(
FMj

)
, (10)

where FMj corresponds to the simplified metric (9) and J (x) is calculated as follows [5,9]:

J (x) =
1
z

ln(1 + exp(−z · x)), (11)

where z is a constant value, at 0.0 < z ≤ 1.0, and is found via simulations. In [10], the
piece-wise linear approximation function of (10) is proposed. In [5], a step-approximation
function of (10) is derived for the DSCF decoder, and it is calculated as follows:

Jstep(x) =

1.5 , if 0 ≤ x ≤ 5.0,

0 , otherwise.
(12)

For DSCLF-ω, ω ≥ 2, during an additional trial, several flip metrics (10) are potentially
computed; as soon as one flip metric is computed, sorting is performed to update Bflip and
Mflip of size Tmax. If the metric FMεt∪a exceeds the largest metric in Mflip, no sorting is
required, and the set εt ∪ a is discarded. If not, the set εt ∪ a is inserted to Bflip and FMεt∪a

is inserted in Mflip while maintaining the ascending order.
To the best of our knowledge, the use of (9) in the dynamic metric of DSCLF (10) using

the approximation (12) has never been investigated in previous works. This combination
makes a low complexity flip metric for the DSCLF decoding algorithm. However, the main

Entropy 2025, 27, 309 8 of 22

focus of this paper is on a restart mechanism to reduce the average execution time; hence,
no more comments on this reduced complexity flip metric will be made later on.

3. Restart Mechanism for the List-Flip Decoder
In [17], the GRM showed great potential in reducing the complexity and the average

execution time of flip-based decoders, i.e., SCF and DSCF-ω, regardless of the baseline
algorithm (with or without fast decoding of special nodes). The GRM only requires the
storage of the candidate û of the initial SC trial to enable the restart of an additional trial in
any location a ∈ A. Next, the feasibility of embedding the GRM to the SCLF algorithm is
discussed based on the memory overhead required. Then, a restart mechanism tailored for
the list–flip algorithm is proposed and described.

3.1. Memory Requirements of List-Flip Algorithm

First, the memory requirements of SCLF are studied. The SCL decoder uses a structure
of N bits to store A. The SCLF (DSCLF-ω) decoder corresponds to an SCL decoder, used up
to Tmax times, an additional module to compute the flip metric (9) and (10), and a module
to construct Bflip. The SCL decoder is considered to be parallel and is viewed as L SC
instances in terms of memory. The memory requirements, expressed in bits, for the LLRs
and the partial sums of an SC instance is described in [17] and is

ΛSC = Qch · N︸ ︷︷ ︸
αch

+ Qint · (N − 1)︸ ︷︷ ︸
αint

+ 2N − 1︸ ︷︷ ︸
û+βint

, (13)

where Qch and Qint represent the quantization in bits for the channel LLRs αch and the
intermediate LLRs αint. N bits are used to store the current candidate û and N − 1 bits are
needed for the intermediate partial sums βint. The SCL algorithm requires the storage of
the structure PMdup, i.e.,

ΛSCL = L ·ΛSC + N︸︷︷︸
A

+ 2L ·QPM︸ ︷︷ ︸
PMdup

, (14)

where QPM is the quantization in bits used for the PMs.
Regarding the flip algorithm, DSCLF-ω requires the storage of Bflip and Mflip leading

to

Λflip = Tmax ·Qflip︸ ︷︷ ︸
Mflip

+ω · Tmax︸ ︷︷ ︸
Bflip

, (15)

where Qflip is the quantization in bits used for the flip metric in (9) and (10). In bits, the
memory of the list–flip decoder is

Λlist-flip = ΛSCL + Λflip. (16)

3.2. Generalized Restart Mechanism

The GRM is a restart mechanism that reduces the complexity of flip-based decoders
while not affecting the error-correction performance [17]. The small memory overhead
used to embed the GRM is one of the main advantages of this mechanism, allowing a
reduction of 56.9% for the average execution time at the cost of 3.4% memory overhead
for DSCF−3 decoding of a (1024, 128 + 11) polar code. Another key advantage is that the
restart location for an additional trial is always optimal, as the set of restart locations in

Entropy 2025, 27, 309 9 of 22

the GRM is defined as RGRM = Asort. Next, the estimation of the memory overhead is
performed to embed the GRM to SCLF.

At the additional trial 1 ≤ t ≤ Tmax, the GRM embedded into the flip decoder allows
us to restart the decoding at the restart location ψt ∈ Asort, which is the next information-bit
location after min(εt) ∈ Asort. The restart path retrieves the intermediate partial sum βint

based on the û of the initial SC trial. The intermediate LLRs, αint, are retrieved with the
channel LLRs, αch, and the intermediate partial sum βint. The sequence of f and g functions
to perform during the restart path depends on the binary representation of ψt as described
in [17]. Hence, the restart path allows us to restore the status of the tree at position ψt

without performing the usual SC schedule. Next, we describe why the SCL cannot be
restarted with only the storage of the final candidate ÛN−1.

At a path-flipping location, the L worst paths instead of the L best continue the
decoding. The L worst path information, i.e., the sets PMworsta and Ûworsta , changes at each
information bit a ∈ Asort and becomes overwritten during the initial SCL trial. At a certain
position, if the best L paths out of the 2L are generated through less than L parents, the
information carried of some discarded paths is lost and cannot be retrieved with ÛN−1.

As an example, SCLF with L = 2 decoding an (8, 3 + 1) code with A = {3, 5, 6, 7}
(Asort = {5, 6, 7}) is shown. In this example, only the bit values at position A are shown.
At position 3, SCL considers L = 2 paths, i.e., Û 3 = {[0], [1]}. After duplication at position
5, we have Ûdup5

= {[0, 0], [0, 1], [1, 0], [1, 1]}, which, after sorting, will be divided as
Û 5 = {[0, 0], [0, 1]} and

Ûworst5 = {[1, 0], [1, 1]}. (17)

If we forward to the end with Û 7 = {[0, 0, 1, 0], [0, 0, 0, 1]}, this is not able to pass the
CRC. Only storing Û 7 will not be enough to retrieve the worst paths at position 5 for
example. Indeed, from Û 7, we can state that {[0, 0]} ⊂ Û 5, meaning that Ûworst5 ⊂
{[0, 1], [1, 0], [1, 1]}, without knowing Ûworst5 (17), which is not enough information to
perform the path flipping through the GRM.

Hence, in order to resume the decoding in any path-flipping location min(εt), the L
worst path information, i.e., Ûworsta and PMworsta , need to be stored for all a ∈ Asort. In
order to store the path metric information, L×QPM × |Asort| additional bits are required.
In order to save memory for the storage of the L worst partial candidate Ûworsta , only the
message bits can be stored, i.e., for ai ∈ Asort, L · i bits are stored instead of L · ai. Hence,
the total memory requirement ΛGRM for embedding the GRM to the list–flip algorithms is

ΛGRM =
K+r

∑
i=log2(L)+1

(|PMworst|+ L · i), (18)

ΛGRM = L×

QPM · |Asort|+
K+r

∑
i=log2(L)+1

i

. (19)

The memory requirement (19) grows with the code rate since |Asort| = K + r− log 2(L)
will grow as well. Moreover, the memory will grow if the list size grows (19). Figure 3
depicts the memory sketch of the DSCLF-ω algorithm embedding the GRM.

The storage of the L worst partial candidates leads to impractically large memory
requirements. As an example, for the list–flip decoder of the (1024, 512 + 16) polar code
with L = 2, ω = 2, and Tmax = 50 and the quantization scheme Qch = 6, Qint = 7,

Entropy 2025, 27, 309 10 of 22

QPM = 8, and Qflip = 9, derived from [16,23], the memory requirement of the decoder
Λlist-flip and embedding the GRM ΛGRM are estimated to be

Λlist-flip = 31760 bits, (20)

ΛGRM = 287758 bits. (21)

Hence, the GRM induces a memory overhead of ∆GRM
mem = 906%, while it was 6.1% for

DSCF-2 with the same Tmax [17].

αch β

αint û

PM A

Mflip

Bflip

PMworst

Ûworsta

L

L L

L

|A
so

rt
|

|A
so

rt
|

Qch

N
N
−

1

Qint

1
N
−

1

1

N

Qpm

2L

1

N
Qflip

T m
ax

ω× n

T m
ax

Qpm

L

≤ K + r

L

SCL
SCLF (DSCLF−ω)
SCLF (DSCLF−ω) with GRM

Figure 3. Memory sketch of SCLF with GRM.

The memory requirements to embed the GRM to list–flip algorithms, i.e., having
RGRM = Asort, has been estimated with the conclusion that the GRM is unfeasible for the
list–flip decoder. Next, the LLRM is proposed to tackle this issue.

3.3. Limited Location Restart Mechanism

The LLRM is derived from the GRM and proposed as a way to skip part of the tree
traversal of the SCL decoding. However, the set of restart locations R is predefined and its
size |R| is very limited compared to |RGRM|. The effectiveness of the proposed approach
is discussed in Section 5. First, the proposed LLRM is defined.

For an additional trial t, the list–flip decoder embedding the proposed LLRM skips
non-negligible parts of the decoding tree by recovering the path information at the lo-
cation ψt ∈R, where R = {R(1), . . . ,R(R)} ⊂ Asort represents the set of restart
locations and R = |R| is the number of restart locations. It should be noted that
alog2(L)+1 ∈ Asort will always be included in R. A notation variant of R is the sub-
set RA = {RA(1), . . . ,RA(R)} ⊂ [log2(L) + 1, K + r], storing the index of each restart

location in the information set A, i.e., R =
{

aRA(1), . . . , aRA(R)

}
.

By embedding the proposed LLRM, the SCL additional trial is modified by not restart-
ing at position 0. The corresponding modified SCL trial is denoted by SCL(ψt, εt), indicating
the restart location ψt ∈ R and the bit-flipping set εt. The savings in terms of computations
and decoding time come at the cost of storing all path information in the positions stated in
R during the initial SCL trial. As described next, restart mechanisms exist [16,24] for SCF
(DSCF-ω) but on positions permitting an easy restart procedure.

Entropy 2025, 27, 309 11 of 22

In [16], the simplified restart mechanism (SRM) was proposed and can be seen as an
instance of LLRM with one of the most simple sets of restart locations R. In the SRM,
R = 2 restart locations are possible and include RSRM =

{
0, N

2

}
which allows a very

simple restart path, where the restart always begins from the upper stage involving the
channel LLRs αch. Only N

2 bits are required to apply this mechanism. However, the restart
location RSRM(1) = 0 does not allow a reduction in the complexity. Hence, only the restart
location RSRM(2) = N

2 reduces the decoding complexity. The authors in [24] derive the SRM

to propose the set of restart locations RFRM =
{

0, N
2 , 3N

4 , . . . , (N−1)N
N = N − 1

}
. Despite

being a more advanced set of restart locations, it comes at the cost of storing LLRs. As
for the SRM, the restart locations are only on the right-hand side of the tree, limiting the
application of the mechanism as discussed in [16].

The optimal restart mechanism is the GRM [17] as it combines the ability of restarting
at any location in A, i.e., RGRM = A, while not having to store the intermediate LLRs.
This is possible thanks to the generalized restart path, which describes the algorithm that
restores all intermediate LLRs and all partial sums on the basis of the binary representation
of the restart location ψt ∈ A and on the SC candidate û of the initial trial.

By reusing the generalized restart path, the restart locations in the proposed LLRM
will not be selected according to the ease of performing the restart path as in [16,24] but on
picking the restart locations to improve, as much as possible, the average execution time
reduction. The first consequence is that the first restart location for the proposed LLRM is
not 0 but will be R(1) = alog2(L)+1 ∈ Asort (RA(1) = log2(L) + 1), representing the first
information-bit location involving duplication in SCL. This will allow the avoidance of
computations on the left-hand side of the decoding tree mostly composed of frozen bits.
However, before finding the other restart locations, the proposed LLRM is described in
more detail.

The memory overhead of the LLRM is first discussed. It is decomposed into
two sets: the set P = {P(1), . . . ,P(R)} that will store the relevant PMs and the set
M̂ = {M̂(1), . . . ,M̂(R)} that will store the relevant messages. During the initial SCL
trial, when the decoding reaches the first restart location R(1) ∈ R, the 2L-sorted PMs
are stored in P(1), while the partial message candidates are stored in M̂(1). For the
other restart locations, path information is also stored in the corresponding index of P and
M̂. At the end of the initial SCL trial, the R elements of P and M̂ gather the full path
information at the restart locations stored in the R of the L best and L worst paths.

The LLRM is activated whenever an additional trial is performed, i.e., if the CRC check
fails for all L candidates in ÛN−1. For 1 ≤ t ≤ Tmax, the t-th additional trial is defined
by the path-flipping locations stored in Bflip(t) = εt. The first path-flipping location is
defined by min(εt). The restart location ψt ∈R for the t-th additional trial corresponds to
the closest element in R, verifying that

ψt ≤ min(εt). (22)

The additional SCL trial restarting at ψt and flipping at locations stored in εt is noted for
SCL(ψt, εt). Next, ρ denotes the index in R, defining ψt, i.e., ψt = R(ρ).

If ψt = min(εt), the restart location is also a path-flipping location; hence, the worst
L paths are chosen to continue the decoding. Thus, the path metric structure PMψt of
SCL(ψt, εt) is restored with the L worst PMs stored in P(ρ). Similarly, the partial candidate
Ûψt is restored on the basis of the L worst partial candidates stored in P(ρ). If min(εt) > ψt,
the restart location precedes the path-flipping location; hence, the best L paths are chosen
to continue the decoding. Thus, the path metric structure PMψt of SCL(ψt, εt) is restored

Entropy 2025, 27, 309 12 of 22

with the best path metric stored in P(ρ). Similarly, the partial candidate Ûψt is restored on
the basis of the L best partial candidates stored in P(ρ).

Once the structures PMψt and Ûψt are correctly restored, for all L paths, the intermedi-
ate values in the decoding tree, i.e., the restart path, are used to attain the next leaf in the
decoding trees of the L paths, i.e., ψt + 1, as shown in Figure 2. The binary representation
of ψt + 1 describes the series of functions to be performed in the restart path. If g-functions
are required, the partial sum βint is restored through the L-independent restart paths. These
functions allow us to accurately retrieve the intermediate LLRs αint for all L paths. When
the L restart paths attain the leaf, if ψt + 1 ∈ Ac, for all L paths, ûψt+1 = 0 and the L path
metrics are updated using (7). If ψt + 1 ∈ A, 2L paths are generated, as well as 2L path
metrics, and the decision on the 2L paths are taken based on the path metrics and the nature
of position ψt + 1.

3.4. Example of the LLRM

The modified SCL trial in SCLF embedding the LLRM, SCL(ψt, εt), is explained
with an example for the (16, 10 + 1) code defined by A = {2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15}
with Tmax = 1 and L = 2. The set of restart locations is set prior to decoding to
R = {3, 6, 9}. This example is shown in Figure 4. The initial trial starts with P = {∅, ∅, ∅}
and M̂ = {∅, ∅, ∅}. When reaching the first information bit a1 = 2, the decoding
considers both ûa1 = {0, 1}, leading to the structure Û a1 = {[0, 0, 0], [0, 0, 1]}. The
SCL does not need sorting since L = 2. The path metric structure is also updated as
PMa1 = {PM(1), PM(2)}. The next bit a2 = 3 ∈ A is alsoR(1). As explained in Section 3.3,
M̂(1) will store the 2L partial candidates, i.e., M̂(1) = {[0, 0], [0, 1], [1, 0], [1, 1]}, before the
selection. Similarly, the 2L PMs in PMsorta1 are stored in P(1). The same storage process
happens when the decoding reachesR(2) = 6 andR(3) = 9.

û0 û1 û2 û3 û4 û5 û6 û7 û8 û9 û10 û11 û12 û13 û14 û15

SCL(9, 11)

4

3

2

1

0

s
restart pathskipped nodes

R(1) R(2) R(3)

Figure 4. The modified trial SCL (9, 11) with R = {3, 6, 9}.

After the failure of the initial trial, the path-flipping location is considered to be
ε1 = {11} in this example. The restart location ψ1 is selected from R as being the closest to
ε1, verifying ψ1 ≤ ε1. Hence, the restart location is ψ1 = R(3) = 9. The SCL(ψ1, ε1) begins
by restoring Û 9 and PM9 with the L best partial candidates in M̂(3) and the L best PMs
in P(3) since ψ1 ̸= ε1. For all L paths, the restart path connecting the root of the tree at
stage s = n = 4 with the leaf û10 at stage s = 0 is traversed, which allows us to retrieve the
intermediate partial sum βint and the intermediate LLR αint. After traversing the restart
path, all intermediate information is retrieved, allowing us to resume the standard course
of SCL; since 10 ∈ Ac, only the L path metrics are updated based on the decision LLR

Entropy 2025, 27, 309 13 of 22

computed at the end of the restart path for the L paths. When ε1 = 11 is reached, path
flipping is performed, i.e., the L worst paths are picked. When the last index is reached, the
CRC is verified on all decoding paths. It either returns a decoding candidate verifying the
CRC or returns a decoding failure since the decoding has reached its maximum number of
additional trials Tmax = 1.

3.5. Memory Model

In order to resume the decoding in one of the R restart locations, the LLRM requires
the storage of

1. the set of restart locations R;
2. the 2L path metric information P on each restart locationR(ρ) ∈R;
3. the 2L partial message candidate M̂ on each restart locationR(ρ) ∈R.

As a consequence, the memory overhead depends on R but also on the positions
of the restart locations, since the partial message is stored. For the ρ-th restart location,
2× L×RA(ρ) bits are required to store the partial messages. Moreover, the information
on the 2L path is stored, as discussed in Section 3.3. The total memory overhead of the
LLRM is denoted as ΛLLRM and is

ΛLLRM = n · R︸︷︷︸
R

+ R · 2L ·QPM︸ ︷︷ ︸
P

+
R

∑
ρ=1

2LRA(ρ)︸ ︷︷ ︸
M̂

. (23)

The memory sketch of the SCLF decoder with the LLRM is provided in Figure 5. The green
blocks correspond to the memory overhead (23) when embedding the proposed LLRM.

SCL flip

R

P

M̂
R

R
ΛSCL (14) Λflip (15)

n

R

QPM

2L

RA(ρ)

2L
SCL
SCLF (DSCLF−ω)
SCLF (DSCLF−ω) with LLRM

Figure 5. Memory sketch of SCLF with the LLRM.

4. Obtaining the Restart Locations
In this section, three designs for the set of restart locations are proposed. The choice of

restart locations aims at improving the execution time reduction provided by the LLRM.
Two are based on the structure of the polar code, while one is proposed based on offline
simulations. For the latter, similarly to [17], offline simulations are used to retrieve the
probability-mass function (PMF) of the first path-flipping candidate min(εt) for list–flip
decoders. These statistics are then used to design the set R.

4.1. Structural Design

Before describing the simulation-based design, two simple sets of restart locations are
described. Both sets use the structure of the polar code. The first design of restart locations,
noted as RdivN, equally divides the codeword into R segments. Since the codeword is
of length N, each segment is of size N

R . This particular design does not take into account

Entropy 2025, 27, 309 14 of 22

the information set and is constructed as RdivN =
{

0, N/R, . . . , N(R−1)
R

}
. For R = 2,

the restart locations RdivN =
{

0, N
2

}
correspond to the restart locations of the SRM [16].

Restarting at 0 does not allow us to save any computations, which limits the effect of this
mechanism for high-rate codes, as discussed in [16].

The second design, generating RdivK, defines the restart locations on the ba-
sis of the information set A. With the exception of the first restart location, any
two successive restart locations are separated by

⌈
K+r

R

⌉
information bits. The first

restart location is RdivK(1) = Alog2(L)+1, since no restart is possible if a /∈ Asort.

All restart locations correspond to RdivK =

{
alog2(L)+1, a⌈(K+r)/R⌉, . . . , a⌈ (K+r)(R−1)

R

⌉} or

RA =
{

log2(L) + 1,
⌈

K+r
R

⌉
, . . . ,

⌈
(K+r)(R−1)

R

⌉}
. For any additional trials, part of the com-

putations will be avoided since RdivK(1) ̸= 0. This design pushes the restart locations
towards the end of the codeword, allowing us to avoid many computations. However,
these restart locations may not often used since min(εt) is expected to be close to the first
information-bit indices.

4.2. Design Based on the First Path-Flipping Location

In the following, the value of the first path-flipping location is denoted as i1 = min(εt).
The simulation-based design requires us to know the probability that i1 is the first path-
flipping location. Next, the probability that a ∈ Asort is the first path-flipping location
occurring during an additional trial of list–flip decoders is denoted by P(i1 = a). The
algorithm to obtain the PMF by simulation is described in Algorithm 1. A design signal-to-
noise ratio (SNR) is chosen to match a desired FER. Moreover, the list size L and the number
of additional trials Tmax are chosen to define the list–flip decoder. If the decoder performs
an additional trial, the value of i1 = min(εt) ∈ Asort is stored in a structure denoted as
Occ. After transmitting C codewords, with C being large enough, a reliable probability
distribution describing P(i1 = a) for all a ∈ Asort calculations is returned. This distribution
is then used to choose the restart location R.

Algorithm 1 Obtaining the distribution of the first path-flipping candidates occurring in SCLF
by simulation

1: procedure DISTR_BIT_FLIP_SCLF(C, A, Tmax, L, SNR)
2: for j = log2(L) + 1 : |A| do
3: P

(
i1 = aj

)
← 0 ▷ Initialize P, ∀a ∈ Asort

4: Occ(j)← 0 ▷ Initialize counter ∀a ∈ Asort

5: end for
6: Tsim ← 0 ▷ Total number of additional trials performed
7: for c = 0 : C− 1 do
8: x← POLAR_ENCODING(u)
9: αch ← AWGN(SNR, x) ▷ Channel LLRs for the decoding

10:
(
Bflip, t

)
← SCLF(αch,A, Tmax) ▷ Bflip: Set of flipping locations in SCLF, t: Number of additional

trials performed
11: if t > 0 then ▷ Initial trial has failed
12: Tsim ← Tsim + t ▷ Update the total number of additional trials
13: for τ = 1 : t do
14: ετ ← Bflip(τ)
15: ak ← min(ετ) ▷ Extract first bit-flipping ak ∈ Asort

16: Occ(k)← Occ(k) + 1 ▷ Increase by 1 the occurence i1 = ak
17: end for
18: end if
19: end for
20: for j = log2(L) + 1 : |A| do
21: P

(
i1 = aj

)
← Occ(j)/Tsim ▷ Estimate the probability-mass function P(i1 = aj)

22: end for
23: return the distribution P(i1 = a), ∀a ∈ Asort

24: end procedure

Entropy 2025, 27, 309 15 of 22

Ultimately, the design consists of choosing the restart locations by equally dividing the
distribution in segments sharing the same probability of having min(εt). The algorithm to
obtain the set of restart locations Rprob according to the PMF is described in Algorithm 2.
The number of restart locations R = |R| is selected in advance. The restart locationR(ρ),
1 ≤ ρ ≤ R, is the first location verifying P(i1 = R(ρ)) > (ρ−1)

R . We note thatR(1) is set to
the smallest a ∈ Asort, verifying P(i1 = a) > 0, and it is usually alog2(L)+1.

Algorithm 2 Design of R with the distribution of the first path-flipping location

1: procedure DESIGN_RESTART_WITH_PMF(P, R, A)
2: sumP← 0
3: ρ← 1
4: for j = log2(L) + 1 : K + r do

5: sumP← sumP+ P
(

i1 = aj

)
6: if sumP >

ρ−1
R then ▷ Divide equally with resp. to P

7: R(ρ)← aj

8: ρ← ρ + 1 ▷ Next restart location
9: end if

10: if ρ > R then
11: return R ▷ Already R restart locations in R
12: end if
13: end for
14: end procedure

4.3. Simulation Setup and Results

For this analysis, a polar code of length N = 1024 with rate 1/2 and a CRC of r = 16 bits
is simulated over the AWGN channel with the BPSK modulation. Simulations are for a
minimum of C = 105 codewords and are run until at least 103 errors are observed. The
target FER is 10−2 as in [17], which is obtained at Eb/N0 = 1.625 dB. The DSCLF-ω decoder
with ω = 3 and Tmax = 300 is simulated. The list size is set to L = 2. The value of Tmax was
selected to achieve the optimal error-correction performance at the target FER.

The PMF is depicted in Figure 6. In the considered example, the set of restart locations
is R = 4. Locations found by Algorithm 2 are denoted by Rprob and equally divide the
distributions according to their probabilities. For this example, the restart locations are
Rprob = {191, 248, 370, 451}. Regarding the structural designs, the restart locations are
RdivN = {0, 256, 512, 756} and RdivK = {191, 499, 741, 890}.

0 128 256 384 512 640 768 896
0

0.011

0.021

0.032

0.0428

Codeword index, j

P (
i 1
=

j) P(i1 = j)
Rprob

RdivN

RdivK

Figure 6. Distribution describing P(i1 = j) under DSCLF-3 decoding for (1024, 512 + 16) code.
Vertical lines indicate restart locations R.

Entropy 2025, 27, 309 16 of 22

5. Simulation Results
Next, simulation results are provided. This section comprises error-correction perfor-

mance, memory estimations, and average execution time reductions for list–flip decoders.
The polar codes are constructed with a design SNR Eb/N0 = {1.5, 2.0, 3.4}dB for rates
Rcode = {1/4, 1/2, 3/4}, respectively. For all simulations, the number of restart locations
is set to R = 4. The list size is selected as L = 2 to maintain a low-complexity list de-
coder. The maximum number of trials is selected as Tmax = {30, 50, 300} for SCLF and
DSCLF-ω decoders with ω = {2, 3}, respectively. The BPSK modulation is used over an
AWGN channel.

5.1. Error-Correction Performance

The FER for SCLF and DSCLF-ω with various ω are shown in Figure 7 for polar codes
of N = 1024 with rate Rcode = 1/2 and in Figure 8 for polar codes with rate Rcode = 1/4.
For reference, standard SCL decoders with L = 8 and L = 32 are provided. The LLRM is
derived from the GRM, a mechanism that does not affect error-correction performance [17].
Both figures show that the proposed LLRM does not affect the error-correction performance
of the original SCLF and DSCLF decoders either. Moreover, higher order DSCLF decoders
greatly increase the error-correction performance compared to SCLF. The performance of
DSCLF-3 with Tmax = 300 is close to the performance of the SCL decoder with L = 32 for
both rates and even matches for Rcode = 1/4 and FER = 10−3.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

10−3

10−2

10−1

100

Eb/N0, dB

Fr
am

e-
er

ro
r

ra
te

SCLF w. LLRM
DSCLF-2 w. LLRM
DSCLF-3 w. LLRM

SCL L = 8 SCL L = 32

Figure 7. Error-correction performance of SCLF and DSCLF decoders with L = 2 for R = 1/2 codes
and N = 1024.

0.5 0.75 1 1.25 1.5 1.75 2

10−3

10−2

10−1

100

Eb/N0, dB

Fr
am

e-
er

ro
r

ra
te

SCLF w. LLRM
DSCLF-2 w. LLRM
DSCLF-3 w. LLRM

SCL L = 8 SCL L = 32

Figure 8. Error-correction performance of SCLF and DSCLF decoders with L = 2 for R = 1/4 codes
and N = 1024.

5.2. Memory Estimations

Memory requirements are estimated with (14), (15), (19), and (23), where the same
quantization scheme as that of [16,23] is used. Hence, the blocks based on LLR values are

Entropy 2025, 27, 309 17 of 22

quantized by Qch = 6, Qint = 7, Qflip = 7 bits, and Qpm = 8 bits, respectively. The sizes of
these blocks also depend on the values of N, L, and Tmax. The number of restart locations
R = 4 is selected for all estimations, which was similarly carried out in the example
in Section 4. All sets of restart locations are considered. Table 1 provides the memory
overhead, expressed in percent, induced by embedding the restart mechanism to the polar
code decoder for code lengths N = {512, 1024, 2048} and rates Rcode = {1/4, 1/2, 3/4}. For
N = 1024, the memory overhead is given for SCLF, DSCLF-2, and DSCLF-3, while for
N = {512, 2048}, the memory overhead for DSCLF-3 is provided. By analyzing Table 1,
the memory overhead to embed the LLRM depends on the set of restart locations R, since
the location affects the size of M̂ in (23). Moreover, for RdivK, the increase in the code
rate increases the memory overhead since the size of M̂ becomes larger. For a code rate
of Rcode = 1/4, the memory overhead is around 1.5% for Rprob while it is 5% for RdivK.
Meanwhile, for the GRM with RGRM = Asort (|Asort| = K + r − log2(L)), the memory
overhead depends on the code rate and the code length but not the decoder. By doubling
the code length N, the overhead approximately doubles as well. For N = 512 and rate
Rcode = 3/4, the overhead is 623.8% and 3204.5% for N = 2048. Hence, Table 1 shows that
the overhead induced by the GRM makes it unfeasible. However, the overhead induced by
the LLRM remains feasible for an implementation.

Table 1. Memory estimates and overhead for SCLF-based decoders with GRMs, LLRMs, and the
original decoders.

N ω Tmax Λlist-flip Rcode
∆LLRM

mem
∆GRM

memRprob RdivK RdivN

bits % % % %

1024 1 30 32,270

1/4 1.8 5.5 2.1 235.0
1/2 7.7 10.3 6.1 875.1
3/4 4.6 15.0 12.0 1921.5

1024 2 50 33,110

1/4 2.2 5.5 2.1 229.0
1/2 2.2 10.0 6.0 853.0
3/4 2.7 14.7 11.7 1872.7

1024 3 300 42,860

1/4 1.5 4.2 1.6 176.9
1/2 1.4 7.7 4.6 658.9
3/4 1.8 11.3 11.7 1446.7

512 3 300 21,682

1/4 1.7 3.9 1.7 83.1
1/2 2.4 6.8 4.2 290.7
3/4 1.8 9.8 7.6 623.8

2048 3 300 75,504

1/4 1.5 4.4 1.6 374.0
1/2 1.6 8.5 4.9 1442.1
3/4 1.1 12.5 13.0 3204.5

5.3. Average Execution Time Reduction Induced by the LLRM

Next, with respect to the standard list–flip decoder (), the reduction brought by
the LLRM is estimated for various code lengths, code rates, and various restart locations
designed according to simulations Rprob () or designed according to code properties
such as RdivN () and RdivK (). In order to compute it, the chosen architectural
execution-time model is from [17]. Moreover, the number of processing elements, having
an impact on the average execution time of decoders, is P = 64 as in [23,25]. Moreover,

Entropy 2025, 27, 309 18 of 22

the latency of SCL is estimated as in [15], i.e., one clock cycle is added whenever the SCL
encounters an information bit.

Two types of reduction will be discussed next, the average execution time reduction
(∆GRM and ∆LLRM) and the average flip time reduction (∆flip

GRM and ∆flip
LLRM). The first

consists of the reduction over all the simulated frames. The second consists of the reduction
over the time spent during the flip part of the list–flip algorithm; since the flipping part
is not required in all frames, this reduction is expected to be greater, i.e., ∆flip

LLRM > ∆LLRM

(∆flip
GRM > ∆GRM). The reduction brought by the unfeasible GRM serves as a bound, i.e.,

∆GRM > ∆LLRM and ∆flip
GRM > ∆flip

LLRM, and the GRM reduction is shown in the figures
as ().

Figures 9 and 10 depict the average execution time over all frames (a) and over the
flipping part (b) for the DSCLF-2 and DSCLF-3 decoders for the (1024, 256 + 16) polar
code. For both decoders, the reduction is clearly visible for all sets of restart locations.
However, the set of restart locations Rprob allows for a greater reduction and is closer
to the optimal reduction retrieved with the GRM. The reduction over all frames reduces
with the FER since the flipping part is required less often, and the mechanism permits a
reduction only on the flipping part. In Figure 10a, the reduction with Rprob at FER = 0.1 is
∆LLRM = 41.8% while the reduction is ∆LLRM = 4.7% at FER = 10−4. If the focus is made
on the flipping part solely, the reduction in the average flip time increases when the FER
diminishes. In Figure 10b, the reduction with Rprob at FER = 0.1 is ∆flip

LLRM = 43.0%, while

the reduction is ∆flip
LLRM = 52.9% at FER = 10−4.

10−410−310−210−1

104

105

LSCL = 3371

Frame-error rate

A
vg

.E
xe

c.
Ti

m
e

DSCLF-2 GRM
Rprob RdivN
RdivK

(a)

10−410−310−210−1

104

105

LSCL = 3371

Frame-error rate

A
vg

.E
xe

c.
Ti

m
e

DSCLF-2 GRM
Rprob RdivN
RdivK

(b)

Figure 9. Execution time (a) and execution flip time (b) of DSCLF-2 decoder of polar codes with rate
1/4 and N = 1024.

Entropy 2025, 27, 309 19 of 22

10−410−310−210−1

104

105

LSCL = 3371

Frame-error rate

A
vg

.E
xe

c.
Ti

m
e

DSCLF-3 GRM
Rprob RdivN
RdivK

(a)

10−410−310−210−1

104

105

106

LSCL = 3371

Frame-error rate

A
vg

.E
xe

c.
Ti

m
e

DSCLF-3 GRM
Rprob RdivN
RdivK

(b)

Figure 10. Execution time (a) and execution flip time (b) of DSCLF-3 decoders of polar codes with
rate 1/4 and N = 1024.

Table 2 recapitulates all aforementioned reductions with respect to the standard de-
coding for N = {512, 1024, 2048} and code rates K/N = {1/4, 1/2, 3/4}. For N = 1024,
the execution time reduction by embedding one of the restart mechanisms on SCLF and
DSCLF-2 is also given. The reduction is computed at FER = 10−2 as in [17]. Regardless
of the decoders, code lengths, or code rates, the proposed design Rprob provides the best
reduction. The reduction induced by the LLRM with Rprob is highlighted in boldface.
As the code rate increases, the reduction reduces since the restart locations tend towards
the beginning of the decoding tree, as explained in [16,17]. A reduction of 51.7% with
respect to the DSCLF-2 algorithm is estimated for the code rate 1/4 and N = 1024. For
these parameters, the other designs provide a reduction of 40.7 and 42.1%. The small-
est reduction observed is for DSCLF-2 with rate 3/4 and N = 1024. The reduction is
7.0%, while the optimal reduction is 9.8%. On average, 3 to 7% is lost with respect to the
reduction provided by the GRM.

Table 2. Execution time reduction by embedding the LLRM and the GRM to list–flip decoders of
various polar codes at the FER of 10−2.

N ω Tmax Rcode
Eb/N0 ∆GRM ∆LLRM (%) ∆

flip
GRM ∆

flip
LLRM (%)

dB (%) Rprob RdivN RdivK (%) Rprob RdivN RdivK

1024 1 30

1/4 1.34 18.5 16.9 12.3 14.3 51.9 47.4 34.6 40.1
1/2 1.87 12.8 9.9 7.9 8.1 35.8 27.7 22.1 22.7
3/4 3.03 10.4 7.8 7.1 5.9 28.3 21.0 19.1 16.1

Entropy 2025, 27, 309 20 of 22

Table 2. Cont.

N ω Tmax Rcode
Eb/N0 ∆GRM ∆LLRM (%) ∆

flip
GRM ∆

flip
LLRM (%)

dB (%) Rprob RdivN RdivK (%) Rprob RdivN RdivK

1024 2 50

1/4 1.21 25.4 23.1 18.2 18.9 56.7 51.7 40.7 42.1
1/2 1.78 19.1 14.8 12.5 12.2 36.0 27.9 23.5 22.9
3/4 3.00 9.8 7.0 5.8 5.1 23.1 16.5 13.7 12.0

1024 3 300

1/4 1.06 45.5 41.7 31.0 33.2 52.0 47.6 35.4 37.9
1/2 1.66 27.8 22.2 16.7 17.2 32.2 25.7 19.3 19.9
3/4 2.86 15.3 11.7 7.1 7.5 18.7 14.3 8.7 9.2

512 3 300

1/4 1.39 47.3 43.3 34.4 35.5 55.7 51.0 40.5 41.9
1/2 1.92 30.8 28.1 20.0 20.3 35.5 32.4 23.1 23.4
3/4 3.08 14.5 11.5 6.6 6.8 18.2 14.4 8.2 8.5

2048 3 300

1/4 0.84 44.1 38.0 31.8 26.7 55.2 47.6 39.8 33.4
1/2 1.49 27.8 21.8 17.2 17.7 33.7 26.5 20.8 21.5
3/4 2.73 12.5 8.9 4.7 4.8 15.5 11.0 5.8 6.0

6. Conclusions
In this paper, a restart mechanism is proposed for list–flip decoders of polar codes. We

first show that an optimal mechanism is unfeasible due to a large memory overhead, which
can increase up to 3755%. Thus, an limited-locations restart mechanism (LLRM) is proposed,
allowing us to restart in predefined locations of the tree if an additional trial is performed.
This mechanism requires the storage of path information at these locations. The choice
of the restart locations influences the effectiveness of the LLRM. Three designs of restart
locations are proposed and compared to each other. A thorough analysis is performed
for various list–flip decoders, as well as various code lengths and code rates. The design
requiring simulations achieves a reduction of 41.7% with respect to the DSCLF-3 decoding
of the (1024, 256 + 16) code at the cost of 1.5% memory overhead. This reduction is only 4%
smaller than the optimal mechanism which comes at the cost of 177% memory overhead.

Author Contributions: Conceptualization, C.P., I.S., A.B.-S., and P.G.; methodology, C.P. and I.S.;
software, C.P. and I.S; validation, C.P. and I.S.; writing—original draft preparation, C.P. and I.S.;
writing—review and editing, C.P., A.B.-S., and P.G.; visualization, C.P. and I.S.; supervision, A.B.-S.
and P.G.; project administration, P.G.; funding acquisition, P.G. All authors have read and agreed to
the published version of the manuscript.

Funding: We acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC), RGPIN-2018-04284.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AWGN additive white Gaussian noise
BPS binary phase-shift keying
CA CRC-aided
CRC cyclic redundancy check
DSCF dynamic successive-cancellation flip

Entropy 2025, 27, 309 21 of 22

DSCLF dynamic successive-cancellation list flip
eMBB enhanced mobile broadband
FER frame-error rate
GRM generalized restart mechanism
LLR log-likelihood ratio
LLRM limited location restart mechanism
PM path metric
PMF probability-mass function
PS partial sum
PSCLF successive-cancellation list flip
RHS right-hand side
SC successive cancellation
SCL successive-cancellation list
SCLF successive-cancellation list flip
SCF successive-cancellation flip
SCF simplified restart mechanism
SNR signal-to-noise ratio

References
1. Arıkan, E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless

Channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [CrossRef]
2. 3GPP. Multiplexing and Channel Coding; Technical Report TS 38.212; Release 16.5; 2018. Available online: https://www.etsi.org/

deliver/etsi_ts/138200_138299/138212/16.05.00_60/ts_138212v160500p.pdf (accessed on 9 March 2025).
3. Tal, I.; Vardy, A. List decoding of polar codes. IEEE Trans. Inf. Theory 2015, 61, 2213–2226. [CrossRef]
4. Afisiadis, O.; Balatsoukas-Stimming, A.; Burg, A. A low-complexity improved successive cancellation decoder for polar codes.

In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November
2014; pp. 2116–2120. [CrossRef]

5. Chandesris, L.; Savin, V.; Declercq, D. Dynamic-SCFlip Decoding of Polar Codes. IEEE Trans. Commun. 2018, 66, 2333–2345.
[CrossRef]

6. Yu, Y.; Pan, Z.; Liu, N.; You, X. Successive Cancellation List Bit-flip Decoder for Polar Codes. In Proceedings of the 2018 10th
International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018;
pp. 1–6. [CrossRef]

7. Cheng, F.; Liu, A.; Zhang, Y.; Ren, J. Bit-Flip Algorithm for Successive Cancellation List Decoder of Polar Codes. IEEE Access
2019, 7, 58346–58352. [CrossRef]

8. Pan, Y.H.; Wang, C.H.; Ueng, Y.L. Generalized SCL-Flip Decoding of Polar Codes. In Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM), Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [CrossRef]

9. Shen, Y.; Balatsoukas-Stimming, A.; You, X.; Zhang, C.; Burg, A.P. Dynamic SCL Decoder With Path-Flipping for 5G Polar Codes.
IEEE Wireless Commun. Lett. 2022, 11, 391–395. [CrossRef]

10. Lv, H.; Yin, H.; Yang, Z.; Wang, Y.; Dai, J. Adaptive List Flip Decoder for Polar Codes with High-Order Error Correction Capability
and a Simplified Flip Metric. Entropy 2022, 24, 1806. [CrossRef] [PubMed]

11. Li, J.; Zhou, L.; Li, Z.; Gao, W.; Ji, R.; Zhu, J.; Liu, Z. Deep Learning-Assisted Adaptive Dynamic-SCLF Decoding of Polar Codes.
IEEE Trans. Cogn. Commun. Netw. 2024, 10, 836–851. [CrossRef]

12. Ivanov, F.; Morishnik, V.; Krouk, E. Improved generalized successive cancellation list flip decoder of polar codes with fast
decoding of special nodes. J. Commun. Netw. 2021, 23, 417–432. [CrossRef]

13. Doan, N.; Hashemi, S.; Gross, W. Fast Successive-Cancellation List Flip Decoding of Polar Codes. IEEE Access 2022, 10, 5568–5584.
[CrossRef]

14. Wang, Y.; Qiu, S.; Chen, L.; Wang, Q.; Zhang, Y.; Liu, C.; Xing, Z. A Low-Latency Successive Cancellation Hybrid Decoder for
Convolutional Polar Codes. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 5105–5109. [CrossRef]

15. Pillet, C.; Sagitov, I.; Domer, G.; Giard, P. Partitioned Successive-Cancellation List Flip Decoding of Polar Codes. In Proceedings of
the 2024 IEEE Workshop on Signal Processing Systems (SiPS), Cambridge, MA, USA, 4–6 November 2024; pp. 19–24. [CrossRef]

16. Sagitov, I.; Pillet, C.; Balatsoukas-Stimming, A.; Giard, P. Successive-Cancellation Flip Decoding of Polar Code with a Simplified
Restart Mechanism. In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow,
Scotland, 26–29 March 2023; pp. 1–6. [CrossRef]

http://doi.org/10.1109/TIT.2009.2021379
https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/16.05.00_60/ts_138212v160500p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/16.05.00_60/ts_138212v160500p.pdf
http://dx.doi.org/10.1109/TIT.2015.2410251
http://dx.doi.org/10.1109/ACSSC.2014.7094848
http://dx.doi.org/10.1109/TCOMM.2018.2793887
http://dx.doi.org/10.1109/WCSP.2018.8555688
http://dx.doi.org/10.1109/ACCESS.2019.2914691
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9321982
http://dx.doi.org/10.1109/LWC.2021.3129470
http://dx.doi.org/10.3390/e24121806
http://www.ncbi.nlm.nih.gov/pubmed/36554211
http://dx.doi.org/10.1109/TCCN.2024.3349450
http://dx.doi.org/10.23919/JCN.2021.000038
http://dx.doi.org/10.1109/ACCESS.2021.3140151
http://dx.doi.org/10.1109/ICASSP40776.2020.9054155
http://dx.doi.org/10.1109/SiPS62058.2024.00012
http://dx.doi.org/10.1109/WCNC55385.2023.10119097

Entropy 2025, 27, 309 22 of 22

17. Sagitov, I.; Pillet, C.; Balatsoukas-Stimming, A.; Giard, P. Generalized Restart Mechanism for Successive-Cancellation Flip
Decoding of Polar Codes. J. Signal Process. Syst. 2025 . [CrossRef]

18. Tal, I.; Vardy, A. How to Construct Polar Codes. IEEE Trans. Inf. Theory 2013, 59, 6562–6582. [CrossRef]
19. Alamdar-Yazdi, A.; Kschischang, F.R. A Simplified Successive-Cancellation Decoder for Polar Codes. IEEE Commun. Lett. 2011,

15, 1378–1380. [CrossRef]
20. Leroux, C.; Tal, I.; Vardy, A.; Gross, W.J. Hardware architectures for successive cancellation decoding of polar codes.

In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague,
Czech Republic, 22–27 May 2011; pp. 1665–1668. [CrossRef]

21. Balatsoukas-Stimming, A.; Parizi, M.; Burg, A. LLR-Based Successive Cancellation List Decoding of Polar Codes. IEEE Trans.
Signal Process. 2015, 63, 5165–5179. [CrossRef]

22. Sarkis, G.; Giard, P.; Vardy, A.; Thibeault, C.; Gross, W.J. Fast Polar Decoders: Algorithm and Implementation. IEEE J. Sel. Areas
Commun. 2014, 32, 946–957. [CrossRef]

23. Ercan, F.; Tonnellier, T.; Doan, N.; Gross, W.J. Practical Dynamic SC-Flip Polar Decoders: Algorithm and Implementation. IEEE
Trans. Signal Process. 2020, 68, 5441–5456. [CrossRef]

24. Xiyue, X.; Meilin, H.; Rui, G. Flexible Restart Mechanism for Successive Cancellation Flip Decoding of Polar Codes. IEEE
Commun. Lett. 2024, 28, 2459–2463. [CrossRef]

25. Giard, P.; Balatsoukas-Stimming, A.; Müller, T.C.; Bonetti, A.; Thibeault, C.; Gross, W.J.; Flatresse, P.; Burg, A. POLARBEAR:
A 28-nm FD-SOI ASIC for Decoding of Polar Codes. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 616–629. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11265-025-01949-8
http://dx.doi.org/10.1109/TIT.2013.2272694
http://dx.doi.org/10.1109/LCOMM.2011.101811.111480
http://dx.doi.org/10.1109/ICASSP.2011.5946819
http://dx.doi.org/10.1109/TSP.2015.2439211
http://dx.doi.org/10.1109/JSAC.2014.140514
http://dx.doi.org/10.1109/TSP.2020.3023582
http://dx.doi.org/10.1109/LCOMM.2024.3465393
http://dx.doi.org/10.1109/JETCAS.2017.2745704

	Introduction
	Background
	Construction of Polar Codes
	SC Decoding
	SCL Decoding
	SCF Decoding
	SCLF Decoding
	Dynamic SCLF Decoding

	Restart Mechanism for the List-Flip Decoder
	Memory Requirements of List-Flip Algorithm
	Generalized Restart Mechanism
	Limited Location Restart Mechanism
	Example of the LLRM
	Memory Model

	Obtaining the Restart Locations
	Structural Design
	Design Based on the First Path-Flipping Location
	Simulation Setup and Results

	Simulation Results
	Error-Correction Performance
	Memory Estimations
	Average Execution Time Reduction Induced by the LLRM

	Conclusions
	References

