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Featured Application: The results offer the possibility to better understand the main
factors for the prediction of the site effect for the seismic analysis and design of in-
frastructures. They could also help enhance the codes’ provisions in this regard. The
methodology offers an insight into further possibilities for the integration of artificial
intelligence within the domain of structural and geotechnical engineering.

Abstract: The identification of the most pertinent site parameters to classify soils in terms
of their amplification of seismic ground motions is still of prime interest to earthquake
engineering and codes. This study investigates many options for improving soil clas-
sifications in order to reduce the deviation between “exact” predictions using wave
propagation and the method used in seismic codes based on amplification (site) factors.
To this end, an exhaustive parametric study is carried out to obtain nonlinear responses
of sets of 324 clay and sand columns and to constitute the database for neuronal network
methods used to predict the regression equations of the amplification factors in terms
of seismic and site parameters. A wide variety of parameters and their combinations
are considered in the study, namely, soil depth, shear wave velocity, the stiffness of the
underlaying bedrock, and the intensity and frequency content of the seismic excitation.
A database of AFs for 324 nonlinear soil profiles of sand and clay under multiple records
with different intensities and frequency contents is obtained by wave propagation, where
soil nonlinearity is accounted for through the equivalent linear model and an iterative
procedure. Then, a Generalized Regression Neural Network (GRNN) is used on the
obtained database to determine the most significant parameters affecting the AFs. A
second neural network, the Radial Basis Function (RBF) network, is used to develop
simple and practical prediction equations. Both the whole period range and specific
short-, mid-, and long-period ranges associated with the AFs, F,, Fy, and Fj, respectively,
are considered. The results indicate that the amplification factor of an arbitrary soil
profile can be satisfactorily approximated with a limited number of sites and the seismic
record parameters (two to six). The best parameter pair is (PGA; resonance frequency,
fo), which leads to a standard deviation reduction of at least 65%. For improved perfor-
mance, we propose the practical triplet (PGA; V30; fo) with V30 being the average shear
wave velocity within the upper 30 m of soil below the foundation. Most other relevant
results include the fact that the AFs for long periods (F;) can be significantly higher than
those for short or mid periods for soft soils. Finally, it is recommended to further refine
this study by including additional soil parameters such as spatial configuration and by
adopting more refined soil models.
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1. Introduction

Local site conditions play a crucial role in determining the level of damage experienced
during earthquakes, as demonstrated from past experiences in the Mexico City (1985), Loma
Prieta (1989), Northridge (1994), Kobe (1995), and, more recently, Turkey (2023) earthquakes.
In many cases, the geological and geotechnical characteristics of an area can amplify seismic
waves, leading to greater ground shaking and structural damage. Soil type, liquefaction
conditions, site topography, building design, and historical context are some of the key
factors affecting the severity of shaking and damage [1-9]. Addressing these factors through
better engineering practices and building codes can mitigate damage in future events. To
this end, for many decades, using local elastic response spectra based on soil categorization
and seismic hazard has been the common way to evaluate seismic input for the design
and evaluation of structures. Soil categorization and characterization are also crucial when
applying Ground Motion Prediction Equations (GMPEs) for accurate predictions of local
ground motion and/or for developing site-specific spectra while taking into account local
site conditions.

Numerous researchers have put forward different site parameters to classify and char-
acterize soils. Borcherdt (1994) was among the first to recommend using the average shear
wave velocity over the upper 30 m (Vs39) as a fundamental criterion for soil characteriza-
tion [10]. This parameter has since gained widespread acceptance in seismic assessments.
However, there are concerns about V3)’s effectiveness in adequately representing site
effects on its own [11-20]. More recent GMPEs that utilize various databases continue to
rely on Vi3 to characterize site conditions [21-24]. However, V39 is frequently comple-
mented or replaced by other site parameters, including the fundamental frequency, fy, the
average shear wave velocity at different depths within the soil profile, or the depth to hard
bedrock [19,22,25-29]. Recent and current regulatory codes use peak ground acceleration
(PGA) or spectral values for reference soil, along with V39, to modify the design spectra’s
characteristics—specifically the plateau bandwidth, level, and long-period decay—to suit
local site conditions. These regulations focus on the free surface response to ascending
waves, which governs how seismic waves interact with structures. This methodology is
fundamental to major international building codes, including the 1997 NEHRP Provisions,
the 1997 Uniform Building Code, Eurocode 8 (ENV 1998), the International Building Code
(IBC 2012), and the National Building Code of Canada (NBC) (2015a, b, 2020) [29-34].
Recent studies have incorporated multiple soil parameters using Generalized Regression
Neural Network models. These models are founded on the wave propagation theory ap-
plied to linear viscoelastic soil profiles sourced from the Japanese Kiban Kyoshin Network
(KiK-net) and the US Geological Survey (USGS) [7,35].

Site amplification is usually captured by relying on only few straightforward site
proxies’ values (like V39 and contrast velocity). However, this simplification can lead
to various challenges, including V3¢’s inability to reflect the shear wave velocity profile
across the entire soil depth, which can result in a skewed seismic response for short, mid,
and/or long periods. Given the complex nature of the problem, the selected limited set of
site proxies used to predict site amplification may not necessarily be the best combination,
especially because the literature lacks a systematic evaluation of the performance of a
limited number of different site proxy combinations.

On the other hand, artificial neural networks (ANNSs) are particularly effective for
prediction tasks due to their capacity to model complex nonlinear relationships within
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high-dimensional datasets. They perform well across various applications, such as time
series forecasting and image recognition. Additionally, techniques like regularization and
optimization enhance their performance, improving accuracy and reducing the risk of
overfitting. Overall, neural networks are powerful tools for generating reliable predictions
in many fields [36-43]. Consequently, the use of ANNSs to identify the most prominent
selections of site proxies and how they correlate to site amplification factors offers a recent
perspective that can help fill the existing gap.

This study aims to identify the most effective site parameters for predicting the site
amplification of the seismic response at the free surface of a soil deposit. More specifically,
it focuses on establishing relationships between the amplification factor of the spectral
response and a limited set of site proxies that describe the characteristics of soil profiles
based on predictions of selected ANN methods.

To achieve this goal, this study examines the 1D nonlinear responses of monolayer
soil profiles with varying thicknesses and shear wave velocities, situated above a semi-
infinite bedrock layer, subject to different seismic records, with varying intensities and
frequency contents. More specifically, a total of 324 soil profiles of sand and clay are
analyzed, each represented by a single layer with depths varying from 5 to 200 m and
a shear wave velocity ranging from 100 to 600 m /s, underlain by a bedrock layer with
a shear wave velocity varying between 750 and 1500 m/s. The nonlinear site responses
of these profiles to the vertical propagation of shear (S) waves are calculated, including
responses at free surfaces, which are used to determine site amplification factors. Fourteen
(14) input waveforms are selected based on the recent studies by Boudghene Stambouli et al.
(2017) and Dif and Boudghene Stambouli (2023) [8,35]. Each of the considered profiles is
subjected to these fourteen input motions, normalized to eleven different PGA levels: 0.01,
0.05,0.1,0.2,0.3,0.4,0.5, 0.6, 0.75, 0.9, and 1.05 g. This approach allows for the calculation
of the mean amplification for each PGA value, covering all relevant seismic frequency
ranges. In total, 3564 geometric average amplification factors for each soil type are derived
(324 soil profiles x 11 PGAs).

Several methods exist to calculate ground response with nonlinear behaviour. Nonlin-
ear time history analyses are the common method for investigating the dynamic nonlinear
behaviour of structures but are less widely used for soils. They are typically conducted
using models discretizing the space domain, such as finite element models. While these
methods generally yield accurate results and can model complex problems, they can be
time-consuming due to their step-by-step integration procedure in the time domain com-
bined with the iterative process for achieving a direct representation of the nonlinear soil
response [44]. Instead, engineers often resort to a viscoelastic equivalent linear model com-
bined with an iterative process, called equivalent linear analysis, to obtain the nonlinear
solution for soils. This method, which is typically more computationally efficient, yields
satisfactory results for engineering applications, especially within the relevant frequency
range and for simple and smooth nonlinear behaviour [44—49]. Johari and Momeni (2015)
have shown that nonlinear calculations of soil responses provided only slight performance
improvements over equivalent linear methods while demanding considerably more time
and complexity [47]. Consequently, given the large number of analyses to carry out (about
100,000), the equivalent linear approach is adopted in this study for efficiency.

Furthermore, numerical methods, based on the finite element method, can solve
one-, two-, and three-dimensional nonlinear soil problems, where amplifications can differ
significantly from 1D scenarios, especially in the presence of valleys or rugged topography.
The effects of such geometric and topographic parameters had been considered in previous
studies, such as those of Paolucci and Morstabilini (2006) and Boudghene Stambouli et al.
(2018) [50,51]. However, such specific site effects are beyond the scope of this study,
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and they are not included in basic code specifications. Consequently, for the sake of
efficiency, simplification, and direct comparison with codes and the main body of literature,
1D modelling of soil and wave propagation is considered in this study. Furthermore,
this avenue offers the possibility of obtaining a simple analytical solution to the wave
propagation problem.

Soil nonlinearity is incorporated using shear modulus degradation curves that show
the variations in shear modulus (G) with respect to shear strain (y) levels and loading
history (cycling), as detailed hereafter. Shear modulus degradation under cyclic loading
has been studied by several researchers using resonant column or enhanced triaxial tests.
Seed and Idriss (1970) were pioneers in developing and widely applying shear modulus
reduction and damping curves specifically for sand [52]. In 1991, Vucetic and Dobry intro-
duced the plasticity index (IP) to define shear modulus degradation curves for clay [53,54].
In 1993, Ishibashi and Zhang added another parameter, the effective confining pressure,
used alongside the IP to better capture the behaviour of soils with low plasticity indices [55].
That same year, the Electric Power Research Institute (EPRI) created its own soil degra-
dation curves by combining shear modulus reduction and damping curves, allowing for
broader applicability across cohesionless soils, from gravelly sands to low plasticity silts
and sandy clays [56]. More recently, Darendeli (2001) proposed a new set of degradation
curves, indicating that the degree of linearity increases with the plasticity index (IP), mean
effective stress, and overconsolidation ratio (OCR) [57]. Such a model, while considered
more appropriate for representing soil nonlinearity, requires a set of additional soil pa-
rameters to those used in our study which will extend the number of required nonlinear
analyses. In order to streamline our analysis, limit the number of analyses, and focus
on identifying effective proxies for soil profiles, we selected simpler degradation models
proposed by Sun et al. (1988) [58] for clay and by Seed and Idriss (1970) [52] for sand. These
models require minimal soil properties while still representing the nonlinear behaviour
of soils under cyclic loading accurately enough [52,58]. Additionally, we incorporate the
damping curves from the study by Idriss (1990), which provide insights into how damping
ratios vary with strain levels [59]. This combination allows us to simplify our approach
while retaining the critical features for predicting the seismic response of clay and sand,
which ultimately should facilitate the identification of the most suitable proxies for soil
characterization in seismic assessments.

To explore the correlation between the average amplification factor and various sets
of soil characteristics, we use an artificial neural network (ANN) approach. This method
effectively captures complex relationships and nonlinear interactions among input variables.
To enhance our analysis, a sensitivity analysis is conducted using the neural network
model. This analysis aims to identify which soil characteristics serve as the best site proxies
for predicting the amplification factor. By examining how changes in these variables
(proxies) impact the output, we can pinpoint the most influential parameters, thereby
improving our understanding of soil behaviour in seismic contexts and facilitating better
site characterization in future studies.

2. Derivation of Amplification Factors (AFs)
2.1. Introduction

For a given signal, the amplification factor at given period (T), in terms of spectral
acceleration, can be expressed as the ratio of the response spectrum at the surface to the
response spectrum at the outcropping reference rock as follows:

Sa(T)
Sa(T)

7]

AF(T) = (1)

o
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where Sa(T), and Sa(T),, are the 5% response acceleration spectra at the free surface and at
the reference rock (bedrock), respectively, while T is the period of the structure.

Because the response of soils under strong excitations is nonlinear by nature, and in
order to apply the theory of wave propagation in an elastic medium, the problem needs to
be linearized. The equivalent linear method, first introduced by Jacobson (1930) [60] and
extended by Hudson (1965) [61] and Seed and Idriss (1970), is largely used in nonlinear
problems of soils and structures [49,52]. This method replaces the nonlinear behaviour with
an equivalent linear spring in parallel with a viscoelastic damper to include the stiffness
and damping associated with the hysteresis of the soil or structure. However, given the
nonlinear nature of the problem, the stiffness and damping vary with the displacement or
deformation level, which is unknown. Consequently, this linearization method adopts an
iterative scheme in order to converge at the target displacement, typically the maximum
or design displacement. For a wave propagation problem, therefore, the shear modulus
(G) and the damping ratio (£), which are functions of the deformation level in the middle
of each layer, are adjusted at each iteration in order to capture the hysteresis of the soil
at the target deformation level. A wave equation can be used to solve the shear wave
propagation in soils [62-66]. Schnabel et al. (1972) proposed an algorithm based on the
continuous solution of the wave equation, the main steps of which are summarized in the
Supplementary File, section (a) [67,68].

2.2. Input Waveforms Sa(T),

This section discusses and describes the selected input accelerograms, b(t), used in the
above algorithm for the calculation of the amplification factors in this study.

From the RESORCE database [69], sets of 14 input waveforms (S1 to S14), recorded
on outcropping rock, are selected for this study, and their characteristics are listed in
the Supplementary File, section (b). The selected accelerograms are drawn from real
earthquakes and satisfy certain conditions to ensure a representative average amplification
factor that is not biassed by a spectral content that is too rich in either short, medium, or long
frequency [35]. The main characteristics of the 14 reference acceleration time histories are
summarized in the Supplementary File. Figure 1 presents the spectra of the selected signals
normalized to a PGA of 1 g. Each normalized seismic signal is scaled by the appropriate
factor to achieve the chosen eleven PGA values (0.01 g, 0.05 g, 0.1 g, to 0.9 g, with a step of
0.1 g and 1.05 g). We then compute 49 896 time-history seismic responses (14 records x 11
PGA levels x 324 soil profiles) using the shear modulus degradation curve of the clay, and
the same process and number of seismic responses are also carried out for sand.

2.3. Site Model, Wave Propagation Solution, and Transfer Function T(f)

In this study, the soil is idealized by one horizontally layered soil deposit resting on a
bedrock substratum (see Figure 2).

The layer is fully defined by its shear modulus, G, or shear wave velocity, V; thickness,
h; damping ratio {; and mass density p. The underlying half-space has shear wave velocity
Viedrock- The vertical z-axis is oriented downwards. The response of the soil column to har-
monic, vertically incident plane shear waves is governed by differential Equation (2) [68]:

azui+ ) 83uz- - ‘azui
o022 Moot~ o

G (2)

where u; is the horizontal displacement in the ith layer (in this study, i = 1 for the monolayer
soil deposit).
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with:

i = 2G;iGi/w 3)

where w is the angular frequency of the exciting harmonic, and (; is the damping ratio.
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Normalized Spectral Acceleration
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(4]

-
[4)]

%. 1 1 10 100
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Figure 1. Normalized (to PGA =1 g) acceleration spectra of signals used.

200y Free surface
Deposit layer i
G, &1, p1, Vi i —
z,=Depth \E/
SSSSSSSSS S

Bedrock stratum

Ghedrock, ébedrock, Pbedrock, Vbedrock
Figure 2. A schematic representation of the 1D site response.

The general solution of governing differential Equation (2) is a summation of up-going
and down-going plane waves with unknown amplitudes, A; and B;, for each layer, given in
Equation (4).

ui(zi/f) _ Aie(iZHft)e(ikfzi) + Bie(iZHft)e(fikfz[) (4)

The transfer function is a complex function defined as the ratio of the layer surface
amplitude to the layer bottom amplitude, and the procedure to drive such a function can
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be found in the classical literature [68,70,71]. For a single layer of soil, it can be written,
using Euler’s Law, as follows:

1
T(f) = 5
(f) cos Kih +iajsin Kih ®)
where K is a complex wave number, defined as
2 f
K = ————~ 6
ol +iG) ©
and «} is the complex impedance ratio, defined as
o — p1 Vi(1+iG) @)

: Pbedrock Vbedrock(l + Z.Cbedrack)

where Cpegrock is the damping ratio in the bedrock, which generally has a negligible effect
on the results, and is taken as null in this study.

For a particular soil profile, AF(T) is computed once the transfer function T(f) is known
using the equivalent linear model procedure extensively described in the geotechnical
earthquake engineering literature [35,67,68].

As mentioned earlier, we used the simple shear modulus degradation model proposed
by Sun et al. (1988) [58] for clay and the model proposed by Seed and Idriss (1970) [52] for
sand (G/Gmax is a function of the shear strain). For damping variation with shear strain,
the curves of Idriss (1990) are used for both clay and sand [59]. These selected models are
illustrated in Figure 3, and their key parameter values are presented in Supplementary File,
section (c).

0.8

0.6

GIG, .,

0.4

02r

(a) (b)
T T T 30 T T
——Modulus for clay Sun et al 1988 ——Damping for clay Idriss 1990 ‘
~——Modulus for sand Seed and Idrriss 1970 ——Damping for sand Idriss 1990

N
a

n
=3
T

Damping ratio (%)

0
0.0001

. . . 0 I L L L
0.01 0.1 1 10 0.0001 0.001 0.01 0.1 1 10
Shear Strain (%) Shear Strain (%)

Figure 3. Degradation curves for clay and sand. (a) Shear modules. (b) Damping ratios. Refs. [52,58,59].

Based on these models, the equivalent shear modulus and damping ratio are obtained
by an iterative process to ensure that the values used are consistent with the strain level
obtained according to the procedure described above. At the interface of adjacent layers,
the stress and displacement continuity equations are solved, and the relationships between
these amplitudes for two adjacent layers are established. Afterward, the waves are propa-
gated from the bottom (unit up-going amplitude) to the top layer using the free surface
condition (shear stress = 0). The wave amplitudes and the transfer function can be derived
with respect to the motion at the outcropping bedrock.
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2.4. Database
2.4.1. Descriptions of Soil Profiles Studied

In this study, a monolayer soil profile is characterized by one of six different shear
wave velocity values, 100, 150, 200, 300, 400, and 600 m/s, which overcomes a semi-infinite
bedrock. The latter, for its part, is characterized by a shear wave velocity equal to 750, 800,
900, 1000, 1200, or 1500 m/s. The depth of the soil layer varies from 5 to 10, 20, 30, 50, 75,
100, 150, and 200 m. In total, three hundred twenty-four (324) soil profiles are generated
and considered for this study. Furthermore, all 324 soil profiles are considered in two sets of
profiles for a total of 648 different soil conditions: 1—clay/cohesive soil; 2—sand/granular
soil. Although certain rare exceptions may exist, the considered variants of simplistic soil
profiles thus generated by the aforementioned combinations cover virtually all practical
cases encountered in nature and in engineering practice.

2.4.2. Selection of Site Parameters Studied

Each soil profile can be partially described by a few site parameters. In this paper, we
investigate seven of them. Extensive studies of seismic site response have been performed
in recent decades. In 1994, Borcherdt developed intensity-dependent, short- and long-
period amplification factors based on the average shear wave velocity measured over the
upper 30 m of a site [10]. Seed et al. (1988) developed a geotechnical site classification
system based on the shear wave velocity, the depth to bedrock, and general geotechnical
descriptions of soil deposits [72]. Seed et al. (1991) [73] then developed intensity-dependent
site amplification factors that modify the baseline “rock” peak ground acceleration (PGA)
to account for site effects. With such a site, PGA value, and site-dependent normalized
acceleration response spectra, Martin and Dobry (1994) derived site-dependent design
spectra (primarily based on the site classification system and amplification factors) [11],
which were incorporated in the 1997 Uniform Building Code (UBC) [30]. The National
Building Code of Canada (NBC) (2005, 2015a, b) and a later version (2020) adopt the same
philosophy as the UBC, where the soil classification as well as site design spectra are based
on the shear wave velocity in the upper 30 m supporting the foundations [32-34]. However,
two important limitations are associated with such an approach.

First, it requires a relatively extensive field investigation, and second, it overlooks the
potential importance of other site parameters, such as the fundamental frequency or depth
to bedrock, among others, which have been identified by many researchers as pertinent for
site classification [26-28,35,74].

To overcome the above limitation, our study considers the following parameters in
addition to the Vs3p: the depth of deposit to bedrock (depth); the average shear velocity
(Vsm) over that depth; the velocity contrast, that is, the ratio between the shear wave velocity
in the bedrock and at the surface (Cv); the second velocity contrast, that is, the ratio between
the shear wave velocity in the bedrock and the average shear wave velocity over the upper
30 m (Cv2); the soil profile’s fundamental frequency (fy); and the PGA in the bedrock. The
inclusion of the PGA as a parameter of the study is justified by the well-established fact
that site amplification for nonlinear soil is fundamentally dependent on the intensity of the
input wave. The site proxies considered are calculated using Relations (8) to (13) as follows:

Depth = h; 8)

which is the thickness of the first layer (deposit layer), hq, with the bedrock being considered
as a half-infinite space (see Figure 2).

Vem = W1 )
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where V] is the shear wave velocity in the first (deposit) layer:
Viao = ﬁ hi Vi (10)
s30 — = 30
where I3 is the number of distinct layers found in the top 30 m:
VBedrock
Cv=—7— 11
v = a1
Cv2 = VBedrock (12)
Vs30

The fundamental soil frequency f is determined by using the simplified Rayleigh
procedure, described by Dobry et al. (1976) [75], based on Equations (13) and (14):

. Z, 2 n
\/(4< i1 % hi) /( imp (Xi+ Xi+1)2hi)>

fo= o (13)

Zit1+Zi

where =#5—" is the depth of the midpoint of layer (i), and the X; values correspond to the
estimated deformations due to the fundamental mode shape at the top of each layer (i),
derived according to Dobry et al. (1976) as follows [75]:

Zi+2ziq
7 hi

Xn=0X;_1= X;+ (14)

i

To better illustrate the domain of validity of this study, the covered site parameters
domain is summarized in Table 1 through 10%, 50%, and 90% fractiles for all site parameters.

Table 1. The 10%, 50%, and 90% fractiles of the studied parameters.

10% Fractile 50% Fractile 90% Fractile

Depth (m) 5 50 200
Vem (m/'s) Vesm (m/s) 100 250 600
Vszo (m/s) 100 300 642
Cv 1.66 4 10
Cv2 1.33 3 8
fo (Hz) 0.31 1.64 12.73

2.4.3. Correlation Between Site Parameters

All the parameters considered are not fully independent, as shown by the coefficient
of determination (R?) presented in Table 2, calculated for each pair of parameters for all soil
profiles considered. There exist strong correlations between the pairs (Cv, Cv2), (Vg Cv),
(Vsm, Vsa0), (Vszo, Cv), and (Vs39, Cv2), as indicated by the coefficients of determination
(R?) generally exceeding 0.62. However, very weak correlations, notably for the pairs
(Cv, Depth) and (Vs, Depth), and weak correlations for the pairs (Cv, fy), (fo, Vsm), and
(Depth, Vs39), with the R? value ranging between 0.25 and 0.37, are observed. Finally,
a mitigated correlation, with R? = 0.51, is observed for the couple (fy, Depth). These
correlation indicators are useful for selecting independent site parameters for the models
relating site amplification to site characteristics.
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Table 2. Correlations (R?) between various site parameters.
Depth fo Cv Cv2 Vism Vs30
Depth 0.5119 0.0001 0.2584 0.0001 0.3311

fo 0.2926 0.4445 03744 |NOZE960N

Cv
Cv2

Vsm
Vs30

3. Computed Amplification Factors: Main Statistical Characteristics
3.1. Validation of Adopted Methodology for Computation of AFs

Earlier studies confirmed that the equivalent linear method combined with the wave
propagation solution in the frequency domain, as adopted in this study, instead of the non-
linear time history analysis demanding much more computational effort, typically yields
satisfactory results for engineering applications [47]. Many examples of the validation of
this approach are documented in DEEPSOIL [70]. Furthermore, using the DEEPSOIL 7.0
software, we carry out a nonlinear time history analysis on a specific site among the soil
profiles used in this study (a deposit of 5 m in depth with a shear wave velocity of 300
m/s on a bedrock with a shear velocity of 800/s), submitted to the Kobe (1995) record
(PGA =0.82 g). The results are compared to those obtained using DEEPSOIL with the
equivalent linear model, and practically identical free surface response time histories and
free surface response acceleration spectra are obtained. A difference of 0.005, less than 0.2%,
is observed in the amplification factor.

For more flexibility, ease of automation, and to efficiently carry out the parametric
study, the above procedure is implemented in Matlab R2023a© and used to compute the
ground time-history responses. To validate the developed code, the results are carefully
and successfully checked for many validation examples against those provided by other
codes, namely, DEEPSOIL [70] and EERA [71]. A relative difference of less than 0.3% is
obtained in terms of the maximum acceleration at the free surface.

3.2. General Background of Computed AFs

This section presents on overview of the computed sets of frequency-dependent
AFs and their short- to mid- and long-period average values. These data are essential
and constitute the learning set needed to identify the key parameters controlling the site
response characteristics.

In total, 99,792 AF(T) curves are computed using (Equation (1)) for the 324 soil profiles
under the 14 seismic excitations normalized by 11 PGA levels for the two types of soils (clay
and sand). The AF curves for clay are shown in Figure 4, and those for sand are shown in
Figure 5. They may be written in the general form of AF(P,6,S;, T;, PGA(lo)), where

e P, k=1,...npisintroduced to identify the soil profile, np = 324;

e 0 = 0 for clay (using the shear modulus degradation curve of clay) and 6 = 1 for sand
(using the shear modulus degradation curve of sand);

e 55, 1 =1, 14is the lth excitation, where the geometrical average of the 14 amplification
factors has been computed for each site and for each PGA for the results of Figures 4
and 5;

e T, (i=1,.100) is the ith structural period, and AF values are systematically computed
for 100 values, equally spaced between 0.01 and 10 s on a logarithmic period axis;

e PGA(lo), for the identification of the PGA level, and lo, vary from 1 (for PGA = 0.01 g)
to 11 (for PGA =1.05 g).
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Figure 4. Average amplification factors for 324 sets of clay soil profiles at 0.1 g and 0.75 g PGA levels.
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Figure 5. Average amplification factors for 324 sets of sand soil profiles at 0.1 g and 0.75 g PGA levels.

For instance, AF(Py,0, Sg, T5p, 0.1 g) stands for the AF obtained at the soil profile Py

Log~!

0.295 s), and normalized to a PGA level of 0.1 g

subjected to the eighth seismic excitation, Sg, for the 50th period (T

of clay type,

2+ (50 — 1) x (Log 10 — Log (0.01)) =

(

= 3).

(lo

and for 14 seismic excitations, the

4

k

average site amplification factor AF,; is computed for the soil profile so that

After the AF is calculated for a particular profile,
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7
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(
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[

Z Log
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Then, the average amplification factor for each profile, for all intensity levels, is

obtained by the following;:

(16)
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1
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Np
Pk

1
n

Log(AFo(6,T;)) =
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Consequently, 3564 geometric mean values of the amplification factor are calculated,
and stand for each soil profile and type.

Simultaneously, for each profile Py, the AF variability derived from the 11 different
average amplification factors is quantified using the corresponding standard deviation:

E llog(AF (P, 6,,T;, PGA(l0))) — log(AFu (P, 6, T;))]?

lo=
oar(P, 6,T;) = \| 2= 11 (17)

The o 4r values are displayed in Table 3 for all soil profiles. They exhibit a significant
period dependence. The maximum variability is observed at around 0.1 s. It hardly
decreases at shorter periods as short as ~0.03 s, but it decreases significantly at intermediate
and long periods. These values are greater, especially at short to intermediate periods with
a lower degree. It would thus be meaningless to aim to obtain extremely precise models
with residuals between observations and predictions much below these values.

Table 3. Initial variability values for clay and sand.

Total Initial Variability Total Initial Variability

(Soil Type: Clay) 02631 (Soil Type: Sand) 03241
Maximum initial variability omax 0.3905 Maximum initial variability omax 0.4696
c(@=0,T=0.01s) 0.3061 c(@=1,T=0.015s) 0.3794
0c(@=0,T=0.025) 0.3045 0(=1,T=0.025) 0.3766
0(=0,T=0.045) 0.3236 0(=1,T=0.045) 0.3954
0c(=0,T=0.07s) 0.3649 0c(=1,T=0.07s) 0.4384
0(0=0,T=0.15s) 0.3828 0(0=1,T=0.15s) 0.4577
0(=0,T=025s) 0.3555 0(0=1,T=025s) 0.4369
0(=0,T=045) 0.273 0(0=1,T=045) 0.3509
c(0=0,T=075) 0.2071 c(0=1,T=075) 0.2783
0(@=0,T=1.0s) 0.1768 0(0=1,T=1.05) 0.2385
0(@=0,T=20s) 0.1106 0(0=1,T=205s) 0.1387
0(=1,T=4.05) 0.0961 0(@=1,T=4.05s) 0.0998
0(=1,T=705s) 0.0804 0(0=1,T=705) 0.081
0c(@=0,T=10.0s) 0.0652 0(=1,T=10.0s) 0.067

Note that a few additional parameters are introduced to measure the variability of the
results, as summarized in Table 3.

The average AF for all profiles, noted AFy(0,T;), and defined as the geometrical
average of the 1, average AF (AF(P, 0, T;)), is noted for simplicity as AF:

Log(AFo (0, T;)) = nlka[Longm(Pk, 6,T:))] (18)
=1

The initial variability, defined as the initial standard deviation of the site average
amplification factor over all profiles, is

np*11
(0, T;) = $ wn, k; [log(AF, (P, 0, T;, PGA(lo))) — log(AFy(6, TZ-))]2 (19)
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The maximum initial variability, defined as the peak value of the initial variability, oy,
over the whole period range, is

00max (0) = Maxt,[00(6, T;)] (20)

The overall initial variability, defined as the average of the initial variability over the
whole period range, is

Gom(0) = niTZ 00(0,T) (21)
i=1

where nt is the number of structural periods used, i.e., 100.

3.3. Means and Variability of AFs

e  For each profile set, we compute the np x 14 x 11 AF : AF(P,0,S;,T), the np
average amplification factors (AF,,), to constitute, for each soil type, a database of
3564 AF (P, 0, T, PGA(lo)) values and their associated variability o4r (P, 6, T1), the
mean amplification factor AFy(6, T1), and the associated initial variability oy (6, T;).
The results are displayed in Figure 6a,b for the clay and sand sets, respectively. The
following main observations are derived:

(a) Soil type: clay (b) Soil type: sand

Amplification factor

Amplification factor

Period (s) Period (s)

Figure 6. Average amplification factors as functions of real period for each set of soil profiles, namely
(a) clay soil profiles and (b) sand soil profiles. Thin blue lines correspond to every site profile
(3564 results), thick red line is geometrical average over whole profile sets, and thick light blue lines
are averages + one standard deviation.

e  The peak period, i.e., the period with the peak amplification factor, covers a very broad
range from 0.08 s to about 67 s for clay and sand soil profiles, which explains the
richness of the database.

e Asshown in Figures 4 and 5, the corresponding peak amplification ranges from less
than 1.0 to 4.0 and up to 5.0 for low levels of PGA (0.01 g to 0.05 g). However, increasing
the PGA level results in a decrease in the peak amplification factors to values of around
2.0 to 2.5 for a PGA ranging from 0.75 g to 1.05 g. The average amplification factors for
clay are generally higher than those for sand at the mean (2 Hz < f <5 Hz) and high
(f > 5 Hz) frequency ranges.

e  Some amplification factors exhibit a short period of de-amplification. A careful look at
the corresponding soil profiles indicates that they correspond to deep soft soils, with
low velocity, which act as seismic isolators.

e The overall average amplification factor (Figure 6a,b) is higher than unity for peri-
ods greater than 0.5 s for clay soil profiles, but it is greater than 0.9 s for sand soil
profiles. The lowest overall average amplification factor is observed in the 0.05 to



Appl. Sci. 2025, 15, 3618

14 of 27

0.15 s period range for clay and sand soil profiles. In this period range, the overall
average amplification factor is less than 0.7 and 0.6 for clay and sand, respectively. The
overall average amplification factors are significantly smaller than the peak values for
individual profiles, which highlights the need to identify relevant site parameters that
may explain this site-to-site variability.

e  The “initial variability” o (6, T1) associated with the average AFs (Table 3) has a maxi-
mum value at low to intermediate periods (0.01 to 0.4 s), reaching up to 0.39 for clay
and 0.47 for sand soil. It then gradually vanishes with the period’s increase, reaching
a value of around 0.065 at T =10 s.

3.4. The Division of the Period Range: Short, Intermediate, and Long Periods

The UBC and the National Building Codes are based mainly on research works dating
back to the 1990s [10,76]. These earlier studies recognized the dependency of the AF with
the period and defined three representative amplification factors for three distinct zones:
1- F, for the short period range (acceleration plateau); 2- Fy for the intermediate to long
period range (velocity zone); and 3- Fj for the long period range. In this study, we adopt
the same methodology and classification, and in the absence of any consensus regarding
the limits of these zones, we use the following ranges: F, is obtained by the mean AF value
for periods in the [0.1 s, 0.2 s] range; F, for periods in the [0.75 s, 1.5 s] range; and Fy, for
periods in the [2.82 s, 5.65 s] range.

4. Description and Implementation of Neural Network Method

The principal objective of an artificial neural method is to predict or establish relation-
ships between input and output parameters. It is particularly useful for developing simpler
forms of relations between input and output parameters for cases where the interrelations
between these parameters are complex and no obvious function exists to describe them.
This method is essentially based on a training phase with a database, composed of input
and output parameters, with the database being randomly selected. After the training
phase is completed, the neuron network can basically be used to predict new input and
associated output values for the parameters. In the field of seismology, this method has
been used by many researchers to derive new GMPEs [35-39,77]. Two types of ANNs are
used in this study: the Generalized Regression Neural Network (GRNN) and the Radial
Basis Function (RBF), which are of the same family but with slightly different architecture.
Both ANNSs have three layers: an input layer, a hidden layer, and an output layer.

In this study, we used a GRNN for the identification of site proxies (input pa-
rameters) for both soil types, sand and clay. To this end, we used the 324 soil pro-
files (soil parameters) of each type for which 11 average amplification factors (i.e.,
AF (P, 0, T;, PGA(lo)) (P, 0, T;, PGA(lo)) were computed from the different seismic sig-
nal databases with different PGA values ranging from 0.01 g to 1.05 g. That is, there was a
database of 3564 (324 x 11) cases for each soil type. The output consisted of the calculated
AF values for the selected 100 periods of the structure and the amplification factors at
short, intermediate, and long periods, named F,, Fy, and F, respectively). Half of the
database was used for training, and the second half for testing. Elements of these two
subgroups of the database were selected and swapped randomly from one to the other
until the network parameter, which is the Gaussian width for the GRNN, was determined.
The main advantage of this method is the rapidity of the training phase. Note that many
possible combinations of input site parameters were considered. The performance of the
GRNN model was measured with various non-independent indicators, namely, the stan-
dard deviation of residuals, the reduction in variance with respect to the initial variability,
the coefficient of correlation, and the physical tendency. Based on the results obtained
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with the GRNN, the combination of input site parameters giving the best performance
while being handy for engineering practice were selected. For the selected combination
of parameters, the RBF neural network was used to obtain a simple prediction equation.
However, the training phase needs many adjustments, such as the number and the choice
of key neurons in the hidden layer, and it is time-consuming. In the training phase of the
RBE, the number and the choice of key neurons can either be set randomly from the training
data, or they are iteratively trained or derived using techniques such as K-means, Max-Min
algorithms, or Kohonen self-organizing maps [78-93]. After this unsupervised training was
carried out and the number and key neurons in the hidden layer were chosen, the weights
between this layer and the output layer neurons were determined by multiple regressions
in a supervised manner. We used cross-validation, with 50% of the data used for training
and the remaining 50% for testing, with each half of the database randomly being swapped
from one to other until the RBF network parameters were obtained. More details about
the used neural networks and their implementation are given in the Supplementary File,
section (d).

5. Results

This section summarizes the main findings and results from the above process, com-
bining a GRNN and RBE.

5.1. Determination of Site Proxies Using GRNN

A total of 200 GRNN models using different combinations of input parameters were
derived, and their results were analyzed and compared in terms of the standard deviation
of residuals (predicted—actual values) to the initial standard deviation values for each
period, i.e., oy(68, T;), and the overall variability 0y, (6) defined earlier.

Equations (22) and (23) are used to compute the error between predicted and
actual values, which in turn are compared with the initial variabilities found using
Equations (18)—(21).

The standard deviation of residuals for each period and each neural network model,
for comparison with the initial variability term oy (6, T;), is given by the following:

11 np
LY Y [log(AFann(Pe 6, T, PGA(10))) — log(AFu(Py, 6, T, PGA(10)))]? 22)

snp o= =

where the ANN is GRNN or RBE.
The maximum standard deviation over all periods is defined as

EANN,max (0) = Maxt, [eann (6, T;)] (23)
The overall error is defined as the average over all periods of the error term, that is,

1 T
EANN,m(0) = EZ eann(8, Ty) (24)
i-1

To obtain a statistically meaningful insight into the relative performances of each site
proxy considered in controlling the amplification factor, the standard deviation for each
soil type and period error term egrnn (6, T7) is plotted, together with the initial variability,
o (0, T;), in Figure 7a,b for clay and sand soil profiles, respectively.
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Figure 7. Variations in root mean square error and standard deviation of residuals egrnn (6, T;) for

various GRNN models with various sets of input site parameters compared to initial variability
0o (0, T;) (a) for clay soil profiles and (b) for sand soil profiles. Data are displayed as function of

real period.
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In order to better identify the importance of the site proxy, the reduction in the overall
standard deviation of residuals is defined by:

0
RS (6) = 1 SAN(®) (25)
OANN,m (6)
Table 4 presents the overall standard deviation of residuals as well as the reduction
in the standard deviation of residuals for different GRNN models using different input
parameter combinations.

Table 4. Standard deviations of model residuals and reduction in standard deviation for various
GRNN models involving initial actual frequency amplification factors (clay and sand soil profiles) for
various site parameter combinations.

Reduction in Reduction in

Combination of .Stfmdard Standard .St.andard Standard

Parameters Deviation for Clay Deviation Deviation for Sand Deviation

£GRNN,m (0=0) RS (6=0) £GRNN,m (6=1) RS (6=1)
PGA + Vo + fo + Cv 0.0695 0.73 0.0772 0.76
PGA + V30 + depth + Cv 0.0919 0.65 0.1047 0.68
PGA + V30 + fo + CV2 0.0774 0.70 0.0859 0.73
PGA + V30 + depth + Cv2 0.0987 0.62 0.1129 0.65
PGA + V30 + fo 0.0882 0.66 0.0998 0.69
PGA + Vs + fo 0.0877 0.67 0.0997 0.69
PGA + Cv + £y 0.0767 0.71 0.0881 0.73
PGA+Cv2+fy 0.0842 0.68 0.0964 0.70
PGA + V39 + Cv 0.2013 0.23 0.2313 0.29
PGA + Vg3 + Cv2 0.1927 0.27 0.2197 0.32
PGA + Cv2+Cv 0.1867 0.29 0.2097 0.35
PGA + V39 + depth 0.1086 0.59 0.1265 0.61
PGA + Cv + depth 0.1197 0.54 0.1414 0.56
PGA + Cv2 + depth 0.1255 0.52 0.1482 0.54
PGA + Vg3 0.2112 0.20 0.2470 0.24
PGA + Vg, 0.2204 0.16 0.2554 0.21
PGA +fo 0.0939 0.64 0.1140 0.65
PGA + Cv 0.2242 0.15 0.2609 0.19
PGA + Cv2 0.1921 0.27 0.2173 0.33
PGA + depth 0.1770 0.33 0.2192 0.32

Overall Initial variability term o () 0.2631 0.3241

Figure 7a,b exhibit several noticeable features:

1. The PGA is common to all input parameter combinations. The model did not converge
when not considering the PGA nor when considering only a single parameter. This
means that the PGA is a predominant input parameter, and at the very least, a couple
of PGAs with another parameter are needed to achieve convergence.

2. The PGA and f( constitute the best couple for the prediction of the amplification
factor, producing 64% to 65% reductions in the standard deviation for clay and sand
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RBF Outputs (Soil type:clay)

soil profiles, respectively. The PGA performs well for all periods and soil types. In
comparison, all other couples of parameters offer a lower reduction in variability,
capped at 33%.

The triplet (PGA, Cv, fy) is the most pertinent triplet for predicting the AF, with a
standard deviation reduction of more than 71% for clay and 73% for sand profiles.
The other triplets (PGA, Cv2, f¢), (PGA, Vs, fo), and (PGA, V30, fo), which present in-
teresting but slightly lower performances, are also worthy of consideration. However,
because parameters such as Cv and Cv2 are difficult to measure in practice and have
less physical meaning, the triplet (PGA, V30, fo) is the triplet retained for predicting
the AF. Considering more than three parameters will lead to better predictions, but
for practical reasons, we decided not to go further.

The largest root mean square errors are systematically found in short to intermediate
period ranges (see Figure 7).

5.2. Variation in Amplification Factors for Specific Period Ranges Using RBF

Design codes take into account site effects via multiplying the design spectra by
amplification factors (i.e., F(T) in the CNBC). These amplification factors vary with the
period of the structure and soil properties. For the sake of simplicity and with respect to
earlier versions of codes (i.e., CNB2005), we consider averaged site factors for three specific
ranges: F, for short periods; F, for intermediate periods; and F, for long periods.

In this section, we compute these amplification factors, F,, Fy, and Fj, from the RBF
model based on the triplet (PGA, f,,, Vs3p), which proved to be efficient and accurate.
Figures 8-11 display the dependence of these three factors, PGA, fy, and Vg39. The [0.15,
40 Hz] interval is considered for f in all cases, covering the full range of the database. In
Figure 8, the results are computed for a Vs3g value varying within the frequency range
studied, while in the other figures, typical low (150 m/s), mid (270 m/s), high (450 m/s),
and very high (640 m/s) values of Vg3 are considered. The intensity of the seismic excitation
is displayed for three (03) discrete levels: PGA = 0.05 g, 0.25 g, and 0.75 g.

(b)

RBF Outputs (Soil type:sand)
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Figure 8. Variations in the short period amplification factors, F,, with fy for different PGA values:
0.05 g, 0.25 g, and 0.75 g. (a) Clay soil profiles; (b) sand soil profiles.
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and 640 m/s) (a) for clay soil profiles and (b) for sand soil profiles.

, 270, 450,

(150

Table 5 presents a summary of the statistical parameters obtained by the RBF triplet

predictions. As shown, the initial standard deviation of the residuals is greatly reduced by a

factor ranging roughly from 3 to 30. Excellent coefficients of determination, R?, are obtained

and are greater than 0.91, ranging from 0.96 to 0.99 for F, and F, for both soil types.
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Figure 11. Variation in amplification factor at long period F; with fy and PGA for four values of V39
(150, 270, 450, and 640 m/s) and PGA (a) for clay soil profiles and (b) for sand soil profiles.

Table 5. Standard deviation of model residuals, coefficient of determination R2, and numbers of key
neurons in hidden layer determined after training phase for various RBF models at short, mid, and
long periods (F,, Fy, and F) for clay and sand soil profiles for combination of three soil parameters
(PGA, fo, and Vs3p).

Statistical Summary for Amplification at

Specific Period Ranges Fa E Fi
Overall standard deviation ergrm (Clay, 0 = 0) 0.0441 0.0436 0.0363
Initial standard deviation (6 = 0) 0.3759 0.1632 0.0917
R? (all database) (6 = 0) 0.9931 0.9637 0.9184
Number of key neurons 16 10 10
f;:ia(redjelv)i‘(ti)oif‘tfyo}fe‘?liﬁsbase5 0.0504 0.0437 0.0341
Initial standard deviation (6 = 1) 0.4551 0.2228 0.0967
R? (all database) (6 = 1) 0.9939 0.9805 0.9358
Number of key neurons (6 = 1) 12 10 9

The values of F, Fy, and F; may be predicted as a function of fy, V39, and PGA using
the following explicit equation based on RBF models:

log(Fa) = LWTal + b2 (26)
where al is a vector of t lines output by the hidden layer, with t being the number of key
neurons in the hidden layer, determined from the training phase. It is estimated from their
Euclidian distance (see Section 3 of Supplementary File) using the following equation:

2
al =exp| — lbl\/[(wel)z + (we2)* + (we3)2} ] (27)
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where wel, we2, and we3 can be expressed by

wel = (log(PGA) - log(IWtrl)) (28)

we2 = (log(fo) ~ log(IW ) ) (29)

we3 = (log(ng,O) — log(IWtr3)) (30)

wel, we2, and we3 are vectors of t lines, while b1 and b2 are the biases determined after

the training phase.

To investigate the performance of the RBF model, we consider only 50% of the data
for training and the other for testing. The main results obtained are summarized in Table 6
in terms of the standard deviation egpp(6) and coefficient of determination (R?). They
demonstrate the good performance of the model.

Table 6. Performance of RBF model on interpolation, results on terms. Standard deviation of model
residuals and coefficient of determination R? for database test at F,, Fy. and F; for clay and sand.

Main Result for Amplification at Specific Period

(Test Database) Fa F Fi
Standard deviation for database
(50% test database) 0.0479 0.004 0.0369
erBEm (0 = 0) (soil type: clay)
R?(50% test database) (6 = 0) 0.9914 0.9667 0.9142
Standard deviation for database
(50% test database) 0.0514 0.0436 0.0365
€RBEm (0 = 1) (soil type: sand)
R?(50% test database) (8 = 1) 0.9933 0.9794 0.9227

The following regression equation between V39 and fy is derived from the obtained
predictions of the RBF model:

(Log(Vea)) = (237 4 0.385 Log(f,,)) +0.18 (31)

From the results of Figures 8-11 (and similar results for F, and F;), we note the
following findings:

e  Generally, the amplification factors F,, F,, and Fj, are higher for clay-type soil than for
sand-type soil. This is particularly true for the range of low frequencies f up to 1 Hz.
However, for fy values higher than 3 Hz and for relatively stiff soils, with a V3¢ value
exceeding 350 m/s, F, and F, values are slightly higher for sand than for clay.

e  The amplification factors are higher for low PGA values. This holds true for the factor
F; and soft soils with low Vi3 values.

Furthermore, from the results of Figure 9, we can note that the correlations between
fo and Vi3 given by Equation (31) are not always respected as the frequency fy does not
increase systematically with the V3 value at the peak value of the amplification factors.
This is explained by the following two factors:

- Some combinations are not possible in real cases, such as having a soil profile with
a fundamental frequency f( greater than 10 Hz while its V39 value is lower than
500 m/s. In such situations, the predictions of Equation (26) are somehow extrapola-
tions that are very likely erroneous and meaningless.

- The predictions of Equation (26) shall be considered for explaining the global tendency
regarding the interactions between different parameters such as the change in the
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amplification factors with the PGA level, V30 (about 600 m/s). We can observe, for
instance, that stiff soils with high V39 values have higher Fa but lower Fl than soft
soils with low values of V39 (about 150 m/s). Similarly, the tendencies of F, and
F; with V39 and PGA can be deduced from the results shown in Figures 10 and 11,
respectively.

Based on the RBF neural network, we can compute the synaptic weight, which char-
acterizes the respective impacts of each of the three input parameters considered, namely,
PGA, Vs39, and f( (see Supplementary File, section (e)). The resulting synaptic weights
and the main results of these computed weights are reported in Table 7. We observe that
generally, the fundamental frequency fy has the highest synaptic weight, which is typically
more than 45% for clay soil profiles, and there are even higher values of the synaptic
weight for F, and Fy values of sand soil profiles. The PGA synaptic weight is generally of
secondary importance, except in the case of the amplification factor Fj in a sand soil profile,
where it is the highest.

Table 7. Participation of synaptic weights for different site parameters used in RBF model.

Participation of Synaptic Weights (%) PGA (%) fo (%) Vs3o
For F, (6 = 0) (soil type: clay) 30.51 46.82 22.67
For F, (0 = 0) (soil type: clay) 32.73 45.81 21.45
For F; (6 = 0) (soil type: clay) 33.44 45.26 21.30
ForF, (6 =1) (soil type: sand) 30.76 51.10 18.14
For F, (6 = 1) (soil type: sand) 31.75 47.11 21.14
For F; (6 = 1) (soil type: sand) 41.52 37.62 20.86

6. Conclusions

The main objective of this study was to identify the key soil parameters influencing 1D
site seismic response and amplification factors (AFs) at the free surface. To achieve this, we
computed the nonlinear site response using a linear equivalent approach under vertically
incident plane waves, utilizing a representative set of real input accelerograms that cover a
broad range of peak frequencies and intensities.

We focused on monolayer soil profiles with variable thicknesses and shear wave
velocities, situated above a semi-infinite bedrock with varying shear wave velocities. Soil
nonlinearity was modelled using degradation curves proposed by Sun et al. (1988) [58]
for clay and Seed and Idriss (1970) [52] for sand, which are simple and require minimal
soil parameters and are effective enough. In total, 324 soil profiles of sand and an equal
number of profiles of clay were analyzed under 14 records at 11 PGA levels each for a total
of 99,792 time-history analyses.

For each soil profile, we calculated geometric average amplification factors for short to
mid and long period ranges, denoted as F,, Fy, and F, for periods of [0.1 s, 0.2 5], [0.75 s,
1.5s], and [2.82 s, 5.65 s], respectively.

Two types of neural networks were utilized in our analysis: (1) the Generalized
Regression Neural Network (GRNN) was used to identify the most effective combination
of soil proxies in predicting AFs, and (2) the Radial Basis Function neural network (RBF) was
used to develop regression equations between these proxies and AFs. This combination of
methods facilitated a comprehensive investigation into the factors that govern site response.
The main findings can be summarized as follows:

o  The pair (PGA, fy) was identified as effective for predicting AFs, achieving reductions
in the standard deviation of 64% and 65% for clay and sand profiles, respectively.
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e  The triplet (PGA, Cv, f() proved to be particularly powerful in predicting actual AFs,
resulting in standard deviation reductions of over 71% for both clay and sand. Other
combinations, such as (PGA, Cv2, fo), (PGA, Vsm, fo), and (PGA, Vs3o, fo), also yielded
promising results and can be utilized.

e  Because parameters Cv and Cv2 are often difficult and costly to measure in engineering
practices, we recommend using the combination (PGA, Vi3, fo), which, while offering
slightly lower performance, still provides a significant reduction in the standard
deviation, making it a practical alternative for field applications.

Furthermore, the prediction equations derived from the GRNN were found to be quite
complex due to the high number of neurons in the hidden layer, making them challenging
to implement in practice. As a result, we opted for the RBF neural network, which offers
simpler prediction equations, albeit at the cost of a more intensive and prolonged training
phase. We focused on the most effective site proxies identified through the GRNN analysis:
PGA, fo, and V39. Using the RBE, we established correlation relationships between these
proxies and site-specific average AFs, considering the variability in initial AFs across the
3564 values for each soil type. Both the overall period range and specific short- and mid- to
long-period ranges associated with the amplification factors F,, F,, and F; were analyzed.

Using 50% of the database for training and the remaining 50% for testing, the RBF
results demonstrated a lower standard deviation of the error term (ergg) for F,, Fy, and F,
generally with a reduction in the standard deviation exceeding 61%, along with a strong
coefficient of determination exceeding 91%. These findings highlight the effectiveness of
the RBF neural network method in accurately predicting amplification factors.

The main findings of this study will aid in enhancing site classification by establishing a
physical relationship between the AF and site proxies. However, several recommendations
regarding regulatory codes can be made:

e  The Inclusion of the Fundamental Frequency: The fundamental frequency (f() should
be considered alongside the peak ground acceleration (PGA) and shear wave velocity
(Vs30) to improve predictions of amplification factors.

e  The Distinction of Period Ranges: It is crucial to differentiate between amplification
factors for short (F,), medium (Fy), and long (F;) period ranges. The long-period
amplification (F;) is particularly significant, often exceeding F, and F values for soil
profiles with low V39 values, which typically correspond to site classes C, D, and E in
Eurocode 8 (EC8) and site classes D and E in UBC/CNBC codes.

Finally, we propose new equations for predicting the amplification factor across
specific short-, mid-, and long-period ranges.

It is important to acknowledge the limitations of this study, primarily related to the use
of simplistic soil profiles (homogeneous, monolayer, and 1D) and basic degradation curves,
specifically those used by Sun et al. (1988) [58] for clay and Seed and Idriss (1970) [52]
for sand. Adopting more recent degradation curves and realistic soil profiles and site
geometry could yield more accurate and site-specific amplification factors. Nevertheless,
this study provides straightforward and effective prediction equations for amplification
factors, utilizing a limited number of parameters that could enhance current design codes.
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