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Abstract
Accurate and efficient prediction of wind pressure distributions on high-rise
building façades is crucial for mitigating structural risks in urban environ-
ments. Conventional approaches rely on extensive sensor networks, often
hindered by cost, accessibility, and architectural limitations. This study proposes
a novel hybrid machine learning (ML) framework that reconstructs high-fidelity
wind pressure (HFWP) coefficient fields from a limited number of sensors
by leveraging dynamic spatiotemporal feature extraction and mapping. The
methodology consists of four key stages: (1) low-fidelity pressure field recon-
struction from limited sensor data using constrained QR decomposition, (2)
dimensionality reduction of both low-fidelity wind pressure and HFWP recon-
structions to extract dominant spatiotemporal features, (3) dynamic mapping
of the reduced-order representations using a long short-term memory network,
and (4) prediction of the high-fidelity pressure field reconstruction over time.
The proposed approach, which predicts the time history of high-fidelity pres-
sure coefficients for various wind directions, is validated using wind tunnel data,
with case studies on multiple façades—including the windward, right-side, and
leeward surfaces—under various constrained sensor placement scenarios. The
proposed methodology is also evaluated against alternative ML models, demon-
strating superior accuracy in reconstructing the full pressure field. The results
highlight the robustness and generalization capability of the model across differ-
ent wind directions and sensor configurations, making it a practical solution for
real-time wind pressure estimation in structural health monitoring and digital
twin applications.

1 INTRODUCTION

High-rise buildings, with their distinctive geometric forms
and exposure to turbulent wind flows, are particularly sus-
ceptible to wind-induced effects (Hou & Jafari, 2020). The
stochastic nature of wind flow, coupled with the complex
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interplay between the structure’s form and the surround-
ing urban environment (Pezeshki et al., 2024), results in
intricate pressure distributions across the building enve-
lope (Avini et al., 2019; Han et al., 2022). Various solutions,
such as vibration control strategies, have been developed,
aiming to design resilient and robust structures (Kim &
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Adeli, 2005; Pezeshki et al., 2023; Wang & Adeli, 2015). To
achieve this, accurately predicting wind pressure distribu-
tions is essential, as it helps optimize façade performance
(Luo & Kareem, 2021; McGuill & Keenahan, 2020), mit-
igate risks of structural damage (Montazeri & Blocken,
2013), and ensure the serviceability of buildings (Avini
et al., 2019). Four primary approaches have been developed
to predict wind-induced pressures on building façades,
each offering unique strengths and limitations: compu-
tational fluid dynamics (CFD), wind tunnel testing, field
measurements, and data-driven techniques.
CFD has become a valuable tool for simulating wind

pressures on high-rise buildings (Aboshosha et al., 2015;
Bre & Gimenez, 2022; Dogan & Kastner, 2021; Meng et al.,
2018;Montazeri &Blocken, 2013). By solving the governing
equations of fluid flow using models such as Reynolds-
averaged Navier–Stokes or large eddy simulations, CFD
enables detailed exploration of wind flow around struc-
tures with complex geometries (Arbelo Romero et al.,
2024). This approach provides valuable insights into the
spatial and temporal variations of wind pressures, facilitat-
ing parametric studies (McGuill & Keenahan, 2020) and
aiding in the design of aerodynamic structures (Kociecki
& Adeli, 2014; Sharma et al., 2018). Despite these advan-
tages, CFD remains computationally expensive, requir-
ing significant computational resources and expertise in
model setup, mesh generation, and turbulence modeling
(Ahmadi et al., 2022; Amini & Memari, 2021; Tominaga
et al., 2023). Furthermore, the accuracy of CFD simula-
tions is highly sensitive to the chosen turbulence model,
the quality of the computational mesh, and the appropri-
ate representation of boundary conditions, particularly in
complex urban environments (Tominaga et al., 2023).
Wind tunnel testing, a well-established experimental

technique in wind engineering, complements CFD by
offering reliable physical data (Al Sayegh et al., 2025; Zhao
et al., 2024). Scaled models of high-rise buildings sub-
jected to controlledwind conditions in specialized facilities
allow researchers to directly measure aerodynamic forces
and pressures (Liang et al., 2020). Wind tunnel tests are
pivotal for studying phenomena such as vortex shedding,
buffeting, and flow separation, and they serve as bench-
marks for validating numerical simulations. However, the
labor-intensive and resource-demanding nature of wind
tunnel tests, coupled with scaling challenges, limits their
applicability for iterative design processes or large-scale
investigations (Han et al., 2022; Whiteman et al., 2022).
Fieldmeasurements bridge the gap between experimen-

tal and real-world conditions by capturing wind-induced
pressures directly from actual structures (Hochschild &
Gorlé, 2024a, 2024b). Pressure sensors installed on build-
ing façades and roofs provide dynamic, site-specific data,
accounting for local topography, urban roughness, and

other environmental factors (Gao et al., 2023; Luo et al.,
2023). These measurements are crucial for validating
numerical models, refining building codes, and improv-
ing the predictive capabilities of wind tunnel and CFD
studies (Inoba et al., 2022). However, deploying extensive
sensor networks is costly, and physical constraints such
as accessibility and aesthetic considerations often result
in suboptimal sensor configurations (Luo et al., 2023).
Furthermore, the spatial and temporal resolution of field
measurements may be insufficient to capture the full spec-
trum of wind-induced pressure fluctuations (Han et al.,
2022).
Data-driven machine learning (ML) techniques have

gained significant traction in wind engineering, offering
promising alternatives to conventional methods (Lam-
berti & Gorlé, 2021; Wu & Snaiki, 2022). A wide range
of applications has been explored, including those related
to wind and aerodynamic phenomena (e.g., Cid Montoya
et al., 2024; Clemente et al., 2024; Entezami & Sarmadi,
2024; Gu et al., 2025; Li et al., 2021a; Nav & Snaiki, 2025;
Oh et al., 2019) and others addressing structural perfor-
mance and control (Azimi & Yang, 2024; Inoue et al.,
2023; Li et al., 2021b; Yao et al., 2024). By training ML
algorithms on large datasets generated from CFD simu-
lations, wind tunnel tests, and field measurements, it is
possible to develop predictive models that can rapidly and
accurately estimate wind pressures on building façades
(Fernández-Cabán et al., 2018; Huang et al., 2022; Li et al.,
2022). VariousMLmodels, including clustering algorithms
(Kim et al., 2021), gradient boosting decision trees (Hu
& Kwok, 2020; Weng & Paal, 2022), and artificial neural
networks (ANNs; Bre et al., 2018), have been employed
to estimate wind pressures on buildings. More advanced
models, such as generative adversarial networks (Hu et al.,
2019), extreme gradient boosting, and deep neural net-
work models (Huang et al., 2022; Meddage et al., 2024,
2025), leverage high-density experimental or simulated
data for improved accuracy. These models can potentially
capture complex non-linear relationships between wind
characteristics, building geometry, and pressure distribu-
tions that may be difficult to represent using conventional
analytical or numerical methods. However, the success
of data-driven approaches hinges on the availability of
high-quality, diverse datasets, the appropriate selection
and training of ML algorithms, and the ability to gen-
eralize the learned models to new and unseen scenarios
(Gao et al., 2023; Snaiki & Mirfakhar, 2024). Many cur-
rent techniques rely on dense sensor networks and focus
on mean or peak pressure predictions, often neglecting
transient aerodynamic effects (Meddage et al., 2024; Wei
et al., 2025). Furthermore, reconstructions based on a
single wind direction may not generalize to other wind
conditions (Snaiki & Mirfakhar, 2024).
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Central to many of the discussed approaches, partic-
ularly field measurements, wind tunnel tests, and data-
driven techniques, is the effective utilization of sensor data
(Gao et al., 2024;Hochschild&Gorlé, 2024a). Accurate and
reliable measurements of wind pressures on building sur-
faces are crucial for validating numerical simulations, cal-
ibrating empirical models, and providing valuable insights
into real-world wind-building interactions (Huang et al.,
2022; Li et al., 2024). However, deploying and maintain-
ing extensive sensor networks on high-rise buildings can
be challenging due to logistical constraints, environmental
interference, and high implementation costs (Amezquita-
Sanchez et al., 2018; Luo et al., 2023). Practical constraints
such as limited accessibility, aesthetic considerations, and
the cost of installation and maintenance often necessi-
tate using parse sensor arrays (Gao et al., 2024; Inoba
et al., 2022). This raises critical questions regarding the
optimal placement of sensors to maximize information
capture while minimizing the number of sensors required
(Karnik et al., 2024). Effective sensor placement strategies
are crucial for ensuring that the collected data accurately
represents the spatial and temporal variations ofwindpres-
sures across the building envelope, enabling robust model
development and reliable predictions (Erichson et al.,
2020; Gutierrez Soto & Adeli, 2013; Wang et al., 2025).
This study introduces a novel hybrid ML framework

designed to accurately and efficiently reconstruct wind
pressure distributions on high-rise building façades using
data from constrained and sparse sensor networks. The
methodology is structured into four main stages: (1) low-
fidelity pressure field reconstruction from limited sensor
data using a constrained QR decomposition with a pivot-
ing technique (where “low-fidelity” refers to the pressure
field reconstructed from sparse sensor measurements), (2)
dimensionality reduction of both low-fidelity wind pres-
sure (LFWP) and high-fidelity wind pressure (HFWP)
reconstructions using proper orthogonal decomposition
(POD) to extract dominant spatiotemporal features (where
“high-fidelity” represents the complete pressure field), (3)
surrogate model training using long short-term memory
(LSTM) networks to establish a dynamicmapping between
the reduced-order representations, and (4) prediction of
the high-fidelity pressure field reconstruction over time
from the LSTMoutput. The performance of the framework
will be comprehensively evaluated using wind tunnel data
from Tokyo Polytechnic University (TPU) across multiple
façades of a high-rise building under various challenging
constrained sensor placement scenarios, including prede-
fined sensor locations, restricted sensor placement regions,
and configurations with a limited number of sensors. Fur-
thermore, the framework’s performance will be compared
against alternative ML models.

2 METHODOLOGY

This study presents a novel framework for the accurate
and efficient reconstruction of dynamic wind pressure
distributions on building façades, specifically address-
ing the challenge of using data from extremely limited
and constrained sensor networks. While prior methods,
such as that by Snaiki and Mirfakhar (2024), demon-
strate effective pressure field reconstruction, they typically
require a substantial number of sensors. Attempting to
apply such methods with the sparse sensor counts con-
sidered in this study (e.g., five sensors) would yield
significantly degraded, low-fidelity pressure field recon-
structions. The core innovation of this work lies in a
dynamic mapping process designed to effectively enhance
these inherently poor, low-fidelity reconstructed inputs
derived from severely constrained sensor arrangements.
Furthermore, unlike the work by Snaiki and Mirfakhar
(2024), which primarily focused on a single wind direction,
the proposed methodology is designed to handle multi-
ple wind directions, significantly enhancing its practical
applicability.
The proposed methodology consists of four main stages

(visualized in Figure 1): (1) reconstructing a low-fidelity
representation of the full pressure field from the sparse
sensor data using constrained sensor placement tech-
niques, (2) extracting dominant spatiotemporal dynamic
features from both this low-fidelity pressure reconstruc-
tion and corresponding high-fidelity pressure reconstruc-
tion using POD (Conti et al., 2024), (3) training an LSTM
network to establish a dynamic mapping between the
reduced-order representations (Conti et al., 2024), and (4)
reconstructing the predicted high-fidelity pressure field
time history from the LSTM output. Here, high-fidelity
refers to the entire pressure field reconstruction (e.g., from
dense sensors or simulation), while low-fidelity refers to
the initial, potentially degraded, reconstruction of the pres-
sure field from the sparse sensors. This dynamic mapping
allows the model to significantly improve the low-fidelity
reconstruction and predict the time history of the high-
fidelity pressure field. The subsequent sections detail the
specific methodologies employed for each stage.

2.1 Sensor placement for pressure field
reconstruction

Accurately reconstructing the complete wind pressure
field from limited sensor data is an essential initial step.
This process aims to generate a low-fidelity reconstruction
of the pressure distribution based on the limited mea-
surements available (Step 1 of Figure 1). Strategic sensor
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F IGURE 1 Schematic representation of the proposed framework.

placement plays a crucial role in effectively capturing the
dominant dynamics of the wind pressure field.
In this study, QR decomposition with pivoting (QRDP),

a well-established technique, is employed to identify opti-
mal sensor locations. QRDP prioritizes locations based on
the linear independence of their associated data, maximiz-
ing the information captured. The methodology proceeds
as follows. Wind pressure data are obtained from exper-
imental wind tunnel tests on a high-rise building. The
collected data are organized into a snapshot matrix 𝑿 ∈

ℝ𝑚×𝑛, where 𝑚 denotes the number of spatial locations
and 𝑛 the number of time instances. POD is then applied to
extract the dominantmodes of variability in the wind pres-
sure field. This is achieved by performing singular value
decomposition (SVD) on the snapshot matrix. The first
𝑟 dominant spatial modes, corresponding to the largest
singular values, are retained, capturing the majority of
the energy in the dataset. These modes denoted as 𝚽 =

[𝒖1, 𝒖2, … , 𝒖𝒓], represent the critical regions of variability
in the wind pressure field.
To identify the optimal sensor locations, QR decomposi-

tion with column pivoting is performed on the transposed
matrix of the retained modes, 𝚽T. The decomposition is
expressed as

𝚽T𝑷 = 𝑸𝑹 (1)

where 𝑷 is the permutation matrix that reorders the
columns of 𝚽𝐓; 𝑸 is the orthogonal matrix; and 𝑹 is the
upper triangular matrix. The pivot matrix 𝑷 provides the
indices of the most informative locations for sensor place-
ment by prioritizing the columns of 𝚽𝐓 that exhibit the
highest linear independence. The number of sensors is
determined based on a predefined energy threshold, such
as capturing a specific percentage of the total variance in
the wind pressure field. The corresponding sensor loca-
tions are then selected based on the dominant pivot indices
obtained from𝑷. Finally, the sensor placement is validated
by reconstructing the wind pressure field using data from
the selected sensor locations and comparing it with the
original dataset. This methodology ensures that the cho-

sen sensor configuration provides maximum information
with minimal redundancy, enabling accurate and efficient
monitoring of wind pressure on the building’s surface.
While QRDP provides an ordered ranking, practical

considerations such as cost, accessibility, and spatial con-
straints often necessitate selecting a subset of the top-
ranked locations. To address these constraints, constrained
optimization techniques can be integrated with QRDP,
refining sensor placement while ensuring practical feasi-
bility and maintaining the efficacy of subsequent dimen-
sionality reduction. Several optimization frameworks have
been developed in the literature (e.g., Karnik et al., 2024;
Snaiki & Mirfakhar, 2024) to adapt QR decomposition
techniques for constrained sensor placement. Specifically,
when sensor locations are subject to constraints, the QR
decomposition algorithm can be modified to ensure that
the selected sensor locations satisfy the specified limita-
tions while simultaneously optimizing data acquisition.
This adaptation typically involves modifying the pivot
selection strategy within the QR decomposition process
(Karnik et al., 2024). Instead of solely prioritizing columns
with the largest two norms, the modified algorithm prior-
itizes permissible indices that comply with the constraints
while maintaining a high degree of linear independence
among the selected columns. By restricting the pivot
selection process during the final 𝑟 − 𝑠 steps of the QR
decomposition, where 𝑠 denotes the number of sensors
allowed in the constrained region or the total number of
predetermined sensors, the method effectively preserves
the most significant contributors to the objective function
(Karnik et al., 2024; Snaiki&Mirfakhar, 2024). The integra-
tion of constraints within theQR pivoting procedure varies
depending on the specific constraint type. Fundamentally,
the algorithm prioritizes maximizing the leading diagonal
entries of the upper triangular matrix 𝑹 during the initial
iterations, establishing strong diagonal dominance essen-
tial for numerical stability and convergence. Subsequently,
domain-specific constraints are enforced in the later stages
(final 𝑟 − 𝑠 steps) to optimize the trailing sub-diagonal
entries (𝑅𝑖𝑖). By confining the pivot selection to permissible
locations that satisfy the constraints, this approach ensures
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adherence to domain limitations while minimizing the
impact on the previously established diagonal dominance
(Karnik et al., 2024; Snaiki & Mirfakhar, 2024).
This study investigates three constrained scenarios for

sensor placement: (1) the predefined sensor locations, (2)
the restricted sensor placement regions, and (3) the limited
number of sensors. For the first two sensors, an identical
number of sensors (25 in this case) is employed. In the
third scenario, only five sensors are selected, correspond-
ing to the first five dominant modes identified through
the QR decomposition technique. It is important to note
that sensor placement optimization was performed dif-
ferently for different building façades. For the windward
façade, sensor placement optimization is performed for
a wind direction perpendicular to the building façade
(0◦). For the right-side and leeward façades, the sensor
placement optimization is performed for a wind direc-
tion of 50◦. The optimal sensor locations determined for
these specific wind directions are subsequently applied
to all other wind directions for the corresponding façade.
While this approach may not guarantee optimal results
for all wind directions, it will be demonstrated that the
proposed algorithm effectively addresses all constrained
scenarios based on the approximated sensor locations. It
is important to emphasize that the pressure coefficients
obtained through this process represent a low-fidelity
reconstruction of the actual pressure field. The subsequent
methodology aims to enhance this low-fidelity representa-
tion to achieve a high-fidelity reconstruction of the wind
pressure distribution.

2.2 Dimensionality reduction

Dimensionality reduction is a critical pre-processing step
in this methodology. Directly training a surrogate model
on high-dimensional, time-dependent data (e.g., wind
pressure) can be computationally prohibitive, prone to
overfitting, and may hinder the model’s ability to gen-
eralize. POD is employed in this study to address these
challenges. POD is a powerful technique for extracting
dominant spatiotemporal features from high-dimensional
data. It identifies the most energetic modes of variability,
effectively transforming the data into a reduced-order sub-
space. While other dimensionality reduction techniques
exist, such as autoencoders (e.g., Naeini & Snaiki, 2024)
and dynamic mode decomposition (DMD), POD was cho-
sen due to its optimality in capturing energy content and
its computational efficiency (Conti et al., 2024).
This section outlines the process for extracting the dom-

inant spatiotemporal features from both low-fidelity and
high-fidelity pressure field reconstructions using POD.
Although both datasets are derived from the same wind

tunnel experiments, a key distinction is made based on
the sensor coverage employed in the reconstruction pro-
cess. High-fidelity reconstructions of the pressure field are
obtained using a nearly complete sensor network, yielding
a detailed and accurate spatial representation of the wind
pressure distribution. In contrast, low-fidelity reconstruc-
tions based on a limited subset of sensors produce a less
detailed and lower-resolution representation of the pres-
sure field. This difference in fidelity does not arise from the
inherent accuracy of the sensor measurements but rather
from the density of sensor coverage employed during the
reconstruction process.
The LFWP reconstruction, denoted as 𝑋𝐿𝐹𝑊𝑃 ∈ ℝ𝑚×𝑛,

where m represents the number of spatial points across
the building façade and n denotes the number of time
instants, is constructed from the sparse sensor network
derived using the constrained sensor placement strategy
described in Section 2.1 (Step 1 in Figure 1). This recon-
struction, based on a limited number of sensors, yields an
approximate and degraded representation of the full pres-
sure field. In contrast, the HFWP reconstruction, denoted
as 𝑋𝐻𝐹𝑊𝑃 ∈ ℝ𝑚×𝑛, is obtained directly from the com-
plete set of pressure sensors available in the wind tunnel
tests, providing a detailed and accurate pressure distribu-
tion. Both 𝑋𝐿𝐹𝑊𝑃 and 𝑋𝐻𝐹𝑊𝑃 are arranged into snapshot
matrices, forming a rectangular structure in which each
row corresponds to a measurement location on the build-
ing façade, and each column represents a discrete time
instant. To extract the dominant spatiotemporal features,
SVD is applied to each snapshot matrix as follows (Step 2
in Figure 1):

𝑋𝐿𝐹𝑊𝑃 = 𝑈𝐿𝐹𝑊𝑃 𝑆𝐿𝐹𝑊𝑃𝑉
𝑇
𝐿𝐹𝑊𝑃

(2)

𝑋𝐻𝐹𝑊𝑃 = 𝑈𝐻𝐹𝑊𝑃 𝑆𝐻𝐹𝑊𝑃𝑉
𝑇
𝐻𝐹𝑊𝑃

(3)

where 𝑈𝐿𝐹𝑊𝑃, 𝑈𝐻𝐹𝑊𝑃 are the orthogonal matrices of
left singular vectors (POD modes) for LFWP and HFWP,
respectively; 𝑆𝐿𝐹𝑊𝑃, 𝑆𝐻𝐹𝑊𝑃 are the diagonal matrices con-
taining singular values (representing the energy content
of each mode) for LFWP and HFWP, respectively; and
𝑉𝐿𝐹𝑊𝑃, 𝑉𝐻𝐹𝑊𝑃 are the orthogonal matrices of right sin-
gular vectors for LFWP and HFWP, respectively. To reduce
the spatial dimensionality of the pressure field, only the 𝑘
most significant singular values and their corresponding
left singular vectors are retained. The number of retained
modes, 𝑘, is determined by capturing a desired percentage
(𝜀) of the total variance in the data, typically expressed as

𝑘 = min

⎧
⎪⎨⎪⎩
𝑘 ∶

∑𝑘

𝑖=1
𝜎2
𝑖∑𝑁

𝑖=1
𝜎2
𝑖

≥ 𝜀

⎫
⎪⎬⎪⎭

(4)
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where 𝜎𝑖 is the 𝑖th singular value; 𝑁 is the total number
of singular values; and 𝜀 is the desired variance capture
percentage (e.g., 0.90 for 90% variance capture). This crite-
rion ensures that the retained modes (𝑈𝐿𝐹𝑊𝑃,𝑘, 𝑈𝐻𝐹𝑊𝑃,𝑘)
represent the dominant energy content of the flow field.
After identifying the 𝑘 dominant POD modes for both

datasets, the original data matrices 𝑋𝐿𝐹𝑊𝑃 and 𝑋𝐻𝐹𝑊𝑃

are projected onto the subspace spanned by these modes,
yielding the corresponding POD coefficients 𝑐𝐿𝐹𝑊𝑃 and
𝑐𝐻𝐹𝑊𝑃:

𝑐𝐿𝐹𝑊𝑃 = 𝑈𝑇
𝐿𝐹𝑊𝑃,𝑘

𝑋𝐿𝐹𝑊𝑃 (5)

𝑐𝐻𝐹𝑊𝑃 = 𝑈𝑇
𝐻𝐹𝑊𝑃,𝑘

𝑋𝐻𝐹𝑊𝑃 (6)

These coefficients capture the evolution of the dom-
inant modes over time and serve as the input features
for the surrogate model training in the subsequent sec-
tion. By transforming the data into a reduced-order space
that captures the dominant dynamics, POD enables the
LSTM-based model to establish a robust and physically
meaningful mapping from low-fidelity to high-fidelity
pressure representations.

2.3 Dynamic mapping with LSTM

Following the dimensionality reduction process, the time-
dependent POD coefficients, 𝑐𝐿𝐹𝑊𝑃 and 𝑐𝐻𝐹𝑊𝑃, which
represent the dominant dynamics of the low- and high-
fidelity reconstructions, respectively, are used to train a
surrogate model. This approach leverages the reduced-
order representation of the data, achieved through POD,
to establish a mapping between the low-fidelity and high-
fidelity representations. By working in this reduced-order
space, the surrogate model can learn the complex dynamic
relationships between the low-fidelity and high-fidelity
representations more effectively, mitigating the compu-
tational burden associated with direct mapping in the
original high-dimensional space.
In this study, an LSTM network is employed as the

surrogate model to approximate the mapping function,
𝑓, following Conti et al. (2024). LSTM networks are a
type of recurrent neural network particularly well-suited
for capturing temporal dependencies in sequential data.
Their ability to model the evolution of POD coefficients
makes them ideal for this application. The LSTM net-
work is trained to approximate the following functional
relationship:

𝑓 (𝑐𝐿𝐹𝑊𝑃, 𝑡, 𝛼) = 𝑐𝐻𝐹𝑊𝑃 (7)

where 𝛼 is the mean wind incidence angle, measured rel-
ative to the building façade’s normal (hereafter referred

to as wind direction); and 𝑡 is time. The LSTM network
is designed to learn dynamic mapping. It takes, as input,
sequences of both wind direction and low-fidelity POD
coefficients. Over time steps (τ = 1, 2, . . . , t), the LSTM
processes these input sequences and learns to predict the
corresponding sequence of high-fidelity POD coefficients
(Step 3 in Figure 1). An LSTM layer consists of multiple
memory cells, which serve as the fundamental units for
processing sequential data. Each memory cell features a
sophisticated gating mechanism to regulate information
flow, comprising four key components: an internal cell
state and three gates—input, forget, and output. These
gates, along with the cell state, are parameterized by learn-
able weights and biases. Through this mechanism, the
LSTM selectively updates, retains, and outputs informa-
tion from the cell state, enabling it to learn and exploit
long-range dependencies in sequential data.

2.4 High-fidelity pressure field
reconstruction

The final stage of the proposed framework involves recon-
structing the full high-fidelity pressure field time history
using the output from the trained LSTM network. Upon
successful training, the LSTM model can predict the
temporal evolution of the high-fidelity POD coefficients,
denoted as 𝑐𝑝𝑟𝑒𝑑

𝐻𝐹𝑊𝑃
, based on the input low-fidelity coeffi-

cients, 𝑐𝐿𝐹𝑊𝑃. These predicted coefficients are then used
to reconstruct the estimated high-fidelity pressure coeffi-
cient field, 𝑋𝑝𝑟𝑒𝑑

𝐻𝐹𝑊𝑃
, through the following reconstruction

formula:

𝑋
𝑝𝑟𝑒𝑑

𝐻𝐹𝑊𝑃
= 𝑈𝐻𝐹𝑊𝑃,𝑘 𝑐

𝑝𝑟𝑒𝑑

𝐻𝐹𝑊𝑃
(8)

This reconstruction process involves multiplying the
matrix of high-fidelity POD modes by the predicted high-
fidelity POD coefficients, 𝑐𝑝𝑟𝑒𝑑

𝐻𝐹𝑊𝑃
. This operation effectively

projects the predicted dynamics from the reduced-order
subspace back into the full spatial domain, thereby yield-
ing a prediction of the HFWP field (Step 4 of Figure 1).
A schematic representation of the proposed framework is
presented in Figure 1.

3 CASE STUDY

This section details the application of the proposed POD-
LSTM framework for dynamic wind pressure field recon-
struction on ahigh-rise building. To rigorously evaluate the
framework’s performance and practical applicability, sev-
eral case studies are examined. These case studies focus on
three constrained sensor placement scenarios, designed to
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NAV et al. 7

reflect real-world limitations in sensor deployment: (1) pre-
defined sensor locations, (2) restricted sensor placement
regions, and (3) a limited number of sensors. Furthermore,
the evaluation includes predictions for multiple building
façades (windward, right-side, and leeward) and a com-
parative analysis against alternative ML approaches. This
comprehensive analysis demonstrates the framework’s
ability to accurately predict time-dependent pressure dis-
tributions under various practical constraints and complex
flow conditions.

3.1 Wind tunnel dataset and sensor
configurations

The case study utilizes wind tunnel data from the TPU
aerodynamic database, which provides HFWP coefficients
for a high-rise building model subjected to various wind
directions. The experimental setup consists of a scaled
building model tested in a boundary-layer wind tunnel,
with pressure taps distributed across its façades to capture
wind-induced pressure fluctuations. The wind pressure
data were generated through controlled experiments con-
ducted in an open-circuit wind tunnel with a 1.2 by 1.0
m test section. A 1:400 scale model of the building was
subjected to simulated turbulent wind flow with a power-
law profile (exponent 1/4) and a peak wind speed of 11
m/s. Turbulence characteristics were calibrated to rep-
resent Category III (suburban terrain) conditions. The
building model was instrumented with 500 pressure taps
evenly distributed across the four façades, arranged in
a 5 by 25 grid on each façade. Pressure measurements
were recorded at a 1 kHz sampling rate. In this study,
two levels of data fidelity are defined based on sensor
coverage:

1. High-fidelity reconstruction ( 𝑋𝐻𝐹𝑊𝑃): Obtained
directly from the full set of pressure taps available in
the TPU database, representing a highly detailed and
accurate distribution of wind pressure coefficients.

2. Low-fidelity reconstruction (𝑋𝐿𝐹𝑊𝑃): Constructed
using a limited subset of sensors, selected based on the
constrained sensor placement strategies described in
Section 2.1. The pressure coefficient field reconstructed
from these sparse data serves as the low-fidelity input
for the dynamic mapping process.

It should be noted that the selection of an appro-
priate temporal window is essential for capturing key
aerodynamic phenomena such as vortex shedding and
flow separation. To ensure all dominant flow features are
recorded, the frequency content of the pressure signals is
analyzed and awindow spanningmultiple shedding cycles

is chosen. In this study, 8000 time steps at 0.001 s eachwere
selected, resulting in a total duration of 8 s of data.
The dataset comprises 11 wind directions (α) (Figure 2a),

ranging from 0◦ to 50◦ in 5◦ increments. Here, 0◦ indicates
wind that is perpendicular to the primary façade, while
positive angles indicate a clockwise rotation. Owing to the
building’s symmetric geometry, wind directions beyond
50◦ exhibit similar flow characteristics. For model evalu-
ation, eight wind directions are allocated for training, and
the remaining three are reserved for testing.
In addition to the windward façade, which is oftenmore

straightforward to reconstruct due to relatively uniform
pressure distributions, the study extends to the right-side
and leeward façades, where complex flow interactions—
such as vortex shedding and wake turbulence—pose
greater challenges for wind pressure coefficient predic-
tion. This allows for a more rigorous assessment of the
framework’s ability to reconstruct high-fidelity pressure
distributions across different aerodynamic conditions.
The proposed hybrid methodology operates on the full

wind pressure field without subtracting the mean flow,
preserving both steady and fluctuating components to
ensure accurate reconstruction of the complete pressure
distribution. The mean flow is removed only during the
QR decomposition-based sensor placement optimization
to ensure that sensor locations are selected based on the
dominant fluctuating features of the pressure field rather
than the static mean distribution.

3.2 Constrained sensor placement and
low-fidelity reconstruction

To evaluate the proposed framework under realistic sensor
deployment constraints, several constrained sensor place-
ment scenarios are considered as outlined in Section 2.1
and shown in Figure 2. These scenarios include:

1. Predefined sensor locations: This scenario addresses sit-
uations where a subset of sensors is already installed
on the building façade or where specific sensor loca-
tions are predetermined due to structural, logistical, or
legacy system constraints. The remaining sensors are
then optimally placed while taking into account the
existing sensor configuration. This setup mimics real-
world retrofitting or expansion of existing monitoring
systems (Figure 2c).

2. Restricted sensor placement regions: This scenario con-
siders situations where certain areas of the façade are
inaccessible or unsuitable for sensor placement due to
the presence of architectural features (e.g., windows,
doors), structural elements, or other practical restric-
tions (Figure 2d). The sensor placement algorithm is
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8 NAV et al.

F IGURE 2 (a) Wind direction (α) in the plan view and sensor configurations for the four scenarios in the windward case: (b)
unconstrained, (c) predefined locations, (d) restricted region, and (e) limited number of sensors.

constrained to avoid these designated regions, opti-
mizing the placement of the available sensors within
the permitted areas. This scenario assesses the adapt-
ability of the proposed framework to complex façade
geometries and practical limitations.

3. Severely limited number of sensors: This scenario
addresses budget constraints or situations where min-
imizing the number of sensors is a primary objec-
tive. The framework is evaluated with a significantly
reducednumber of sensors (Figure 2e), pushing the lim-
its of accurate field reconstruction. This represents a
more challenging scenario, as capturing the full com-
plexity of the pressure field with very fewmeasurement
points is inherently difficult. This evaluation deter-
mines the framework’s performance under extreme
resource limitations and identifies the minimum num-
ber of sensors required for acceptable accuracy.

For each sensor placement scenario, a low-fidelity pres-
sure coefficient field is reconstructed using the constrained
QRDP technique as detailed in Section 2.1. This method
selects a minimal yet optimal set of sensors and utilizes
their measurements to estimate the full pressure coef-
ficient field. The resulting low-fidelity snapshot matrix
𝑋𝐿𝐹𝑊𝑃 is constructed, where each row represents a spa-
tial location (125 in total), and each column corresponds
to a time instant (8000 in total, with a time step of 0.001
s, covering a duration of 8 s). While this reconstruction
does not fully resolve the fine-scale spatial complexity
of wind-induced pressure variations, it effectively cap-
tures the dominant pressure distribution characteristics.
This low-fidelity representation serves as the input for the
dynamic mapping process, where the LSTM-based surro-
gate model enhances the initial reconstruction to predict
the corresponding HFWP coefficient field. By training the

LSTM model to learn the relationship between the low-
fidelity and high-fidelity POD coefficients, the proposed
framework effectively reconstructs the complete HFWP
coefficient field, even when sensor availability is highly
constrained.

3.3 Training performance

Asdescribed in Section 2.2, the POD technique is employed
to reduce the dimensionality of both the LFWP recon-
structions, derived from sparse sensor measurements, and
the HFWP reconstructions, representing the complete
pressure field obtained using all available pressure taps
during wind tunnel experiments. Following dimension-
ality reduction, LSTM models are trained to establish
a dynamic mapping between the low-fidelity and high-
fidelity representations. The LSTM models are trained
for each of the following sensor placement scenarios: (1)
unconstrained sensor placement, (2) predefined sensor
locations, (3) restricted sensor placement region, and (4)
limited number of sensors. The sensor configurations for
these four scenarios are visually presented in Figure 2 for
the windward case. Additionally, for the unconstrained
sensor placement scenario, separate LSTM models are
trained for each building façade (windward, right-side, and
leeward) using 25 sensors to reconstruct the LFWP field.
To evaluate the effectiveness of LSTM training, the

following analysis focuses on the windward façade for the
unconstrained scenario. The same methodology is applied
to all other scenarios and façades, yielding comparable
results. In this scenario, 15 POD modes are retained for
both the LFWP and HFWP datasets for LSTM training.
The LSTM network is designed to predict the time series
of HFWP POD coefficients (𝑐𝐻𝐹𝑊𝑃) using time, wind
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NAV et al. 9

direction, and LFWP POD coefficients (𝑐𝐿𝐹𝑊𝑃) as inputs.
This results in an LSTM model with 17 input features and
15 output features.
The hyperparameter optimization of the LSTMnetwork,

including learning rate, batch size, and network archi-
tecture, was conducted using Bayesian optimization. The
Bayesian optimization process iteratively evaluates 100
different trials, minimizing the loss function to identify
the best hyperparameter combination. The following key
parameters were explored:

1. Hidden dimension: Ranges between 32 and 1024.
2. Number of LSTM layers: Ranges between 1 and 8.
3. Learning rate: Varies between 1e-6 and 1e-2 on a

logarithmic scale.
4. Batch size: Ranges between 16 and 512.

During each trial, the model is trained for 200 epochs,
and the validation loss is used to guide the search for bet-
ter hyperparameters. The Adam optimizer is employed
for training, and mean squared error (MSE) is used as
the loss function to assess model performance. Once the
optimal hyperparameters are identified, the final model
is trained for 2000 epochs using the selected settings and
saved for further testing. Additionally, early stopping is
employed to prevent overfitting, and dropout regulariza-
tion is integrated into the LSTM layers to further reduce
overfitting risks. This Bayesian optimization approach
effectively balances exploration and exploitation, leading
to an optimized LSTM model with improved predictive
performance. The optimal configuration identified com-
prised a single recurrent layer with 43 hidden units, a
learning rate of approximately 1.48 × 10−5, and a batch
size of 21. The LSTM model was trained for 1000 epochs,
incorporating early stopping to mitigate overfitting. Model
performance was assessed using the root mean square
error (RMSE) metric. The training and testing set RMSE
values were found to be 1.88e-04 and 7.63e-04, respectively,
indicating effective model training. To further investigate
model performance, RMSE values were computed for all
time steps corresponding to each wind direction and at
specific time steps (1000th, 5000th, and 8000th, each rep-
resenting 0.001 s). The results of these evaluations for the
unconstrained scenario are summarized in Table 1. As the
proposed model predicts the time history of wind pres-
sure coefficients, the presented RMSE values are therefore
dimensionless.
The results demonstrate consistently low RMSE values

across all wind directions for both the training and test-
ing sets. To provide further insight, RMSE was calculated
in two ways: across the entire temporal and spatial domain
(labeled “Total RMSE” in Table 1) and at randomly selected
time steps across all points on the building façade (labeled

TABLE 1 Root mean square error (RMSE) values for
predicting wind pressure coefficients (windward case).

Wind
direction

Time
step RMSE

Total
RMSE

Training set 5◦ 1000 0.0115 0.0159
5000 0.0164
8000 0.0185

30◦ 1000 0.0091 0.0121
5000 0.0154
8000 0.0112

50◦ 1000 0.1389 0.0134
5000 0.0118
8000 0.0221

Test set 0◦ 1000 0.0173 0.0193
5000 0.0237
8000 0.0185

20◦ 1000 0.0084 0.0144
5000 0.0162
8000 0.1780

45◦ 1000 0.0322 0.0328
5000 0.0363
8000 0.0223

“RMSE” in Table 1). For instance, the overall training set
RMSE does not exceed 0.0159 (observed at 5◦), with lower
values obtained at 30◦ (0.0121). Similarly, the testing set
exhibits low RMSE values, reaching 0.0328 at 45◦, com-
pared to 0.0144 at 20◦. Analogous trends are observed for
other wind directions within both sets. Furthermore, the
consistently low RMSE values across different time steps
(1000th, 5000th, and 8000th) indicate the effectiveness of
the LSTMmodel in predicting time series wind pressure.

3.4 Application and results

This section presents a comprehensive evaluation of the
proposed framework’s performance across the four sensor
placement scenarios: the unconstrained scenario (Sce-
nario 1), the predefined sensors scenario (Scenario 2), the
region-constrained scenario (Scenario 3), and the limited-
number-of-sensors scenario (Scenario 4). Each scenario is
examined under three distinct wind directions to assess
the framework’s ability to generalize across varying wind
conditions. The accuracy of the proposed framework is
evaluated at two different time steps for each scenario. The
model performance is assessed by comparing the predicted
resultswith true pressure data, utilizing both visual inspec-
tion and quantitative analysis using the RMSE metric.
The results of this comparative analysis for the windward
façade are visualized in Figure 3.
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10 NAV et al.

F IGURE 3 Predicted wind pressure distributions at two-time steps for different wind directions and sensor constraints (windward).

Figure 3 demonstrates the capability of the proposed
model to generate accurate pressure distributions across all
scenarios, including both unconstrained and constrained
sensor placements. This consistency is observed not only
for the wind direction of 0◦, for which the sensor place-
ment was optimized for the windward façade but also

for other directions where sensor placement may be less
ideal. Notably, even in the most challenging scenario (Sce-
nario 4), which involves the use of only five sensors,
the model demonstrated the ability to produce accurate
simulation results. Quantitative analysis further supports
these observations. For the windward façade, at the 0◦
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NAV et al. 11

wind direction, RMSE values at time step 2000 are 0.0224,
0.0220, 0.0158, and 0.0132, respectively, for scenarios 1–4.
At time step 5000, these values are 0.0234, 0.0302, 0.0226,
and 0.0237. The low RMSE values obtained for differ-
ent scenarios demonstrate the capability of the proposed
framework in reconstructing wind pressures considering
various constraints. Similar trends are observed for other
wind directions. For the windward façade, at the 20◦ wind
direction, RMSEvalues at time step 2000 are 0.0135, 0.0107,
0.0184, and 0.0297, and at time step 5000 are 0.0144, 0.0106,
0.0175, and 0.0171. Likewise, for the windward façade, at
the 45◦ wind direction, RMSE values at time step 2000
are 0.0471, 0.0102, 0.0340, and 0.0165, and at time Step
5000 are 0.0289, 0.0159, 0.0264, and 0.0381. These results
consistently demonstrate the model’s ability to generalize
and provide accurate predictions across a range of wind
conditions.
Despite the complex aerodynamic effects of wake turbu-

lence and vortex shedding on the right-side and leeward
façades (illustrated in Figure 4), the model maintains
strong predictive performance, which was further eval-
uated by selecting different time steps for visualization
and comparison. The LSTMmodel successfully learned to
map the low-fidelity pressure field (reconstructed using 25
unconstrained sensors) to the high-fidelity field. For the
right-side façade, total RMSE values of 0.1640, 0.0293, and
0.0794 were obtained for wind directions of 10◦, 20◦, and
40◦, respectively. While higher than the windward case,
the reconstructed high-fidelity distributions still closely
match the real data. The leeward façade exhibited even
better predictive accuracy, as shown in Figure 4, with sig-
nificantly lower total RMSE values of 0.0336, 0.0248, and
0.0264 for the samewind directions. This demonstrates the
model’s ability to generalize effectively to complex wind
interactions beyond simple windward conditions.
The model’s ability to capture the temporal evolution

of wind pressure is demonstrated by the time histories of
the pressure coefficients at several key locations. Figure 5
shows the results for four representative points on the
leeward façade (𝛼 = 10◦) and two on the right face (𝛼 =

20◦) for Scenario 1. Notably, Sensors 2 and 3 on the lee-
ward side, and Sensor 6 on the right side, achieve the
highest accuracy, with RMSE values of 0.0129, 0.0204,
and 0.0173, respectively. In contrast, the corner sensors
exhibit the highest RMSE values of 0.0549, 0.1481, and
0.1391 for Sensors 1, 4, and 5. Comparable results are
also observed at other sensor locations, further under-
scoring the model’s robust performance. Despite these
variations, all RMSE values remain below 0.15, indicating
strong agreement between the predicted and true pres-
sure coefficients and emphasizing the model’s precision in
capturing the dynamic fluctuations of the wind pressure
field.

F IGURE 4 Predicted wind pressure distributions for right-side
and leeward façades with sensor locations indicated.

Finally, to demonstrate the effectiveness of the pro-
posed POD-LSTM framework, a comparative analysis is
conducted against two alternative approaches:

1. LSTM without POD: A model trained directly on the
original high-dimensional sensor data, without prior
dynamic feature extraction.
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12 NAV et al.

F IGURE 5 Time history comparison of predicted and actual pressure coefficients for four sensors on the leeward façade (𝛼 = 10◦) and
two sensors on the right façade (𝛼 = 20◦) in Scenario 1.

2. ANNmapping: A fully connected network that directly
maps sparse sensor inputs to the full pressure field,
similar to the approach used by Erichson et al. (2020)
who employed shallow neural networks for vorticity
field reconstruction from limited sensors in fluid flow,

demonstrating the potential of ANNs for flow field
approximation.

This comparison is performed for the windward façade.
The results of this comparison, presented in Figure 6,
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NAV et al. 13

F IGURE 6 Performance comparison of the proposed hybrid model against LSTM and ANN.

demonstrate that the proposed POD-LSTM framework
outperforms both the LSTM without POD and the ANN
mapping, achieving higher accuracy and demonstrating
the benefits of dimensionality reduction and dynamic fea-
ture extraction. Similar results are obtained for the other
façades. It should be noted that according to Figure 6, the
ANNmodel performs slightly better than the LSTMmodel
because a separate ANN model is trained for each wind
direction due to the complexity of the pressure distribution
and the ANN’s limited ability to generalize across different
wind directions. In contrast, a single LSTM network was
trained for all wind directions.

In summary, the results across all façades demonstrate
the effectiveness of the proposed POD-LSTM framework
in accurately reconstructing wind pressure distributions,
even in complex scenarios and with constrained sensor
configurations. Specifically, even for the right-side and lee-
ward façades, where the flow fields are more complex due
towake effects and vortex shedding, themodel consistently
achieves low RMSE values, indicating its ability to gener-
alize and provide reliable predictions under challenging
conditions. This highlights the potential of the framework
for real-world applications in structural health monitor-
ing and digital twin development, where accurate pressure
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14 NAV et al.

field reconstruction is crucial for ensuring the safety and
serviceability of high-rise buildings.

4 DISCUSSION

The current study demonstrates the potential of the
proposed hybrid POD-LSTM model in predicting wind
pressure coefficient distributions across building façades
using a limited number of sensors. By leveraging a
reduced sensor configuration, the model accurately esti-
mates wind pressure for various wind directions, show-
casing its capability in practical applications where sen-
sor placement may be constrained due to budgetary,
structural, or aesthetic factors. Three different constrain-
ing scenarios—including predefined sensor locations,
restricted regions, and a scenariowith an extremely limited
number of sensors—were thoroughly evaluated, confirm-
ing the model’s robustness under these conditions.
Unlike conventional sensor-based interpolation or

direct ML-based reconstructions, the proposed approach
maps the dynamic features of the wind pressure field
from low-fidelity to high-fidelity representations. Even
when the sensor placement was optimized for only one
wind direction, the model generalizes well to other wind
directions, demonstrating its ability to handle different
flow conditions. This is attributed to the dynamic map-
ping approach (Conti et al., 2024), which transforms
low-fidelity pressure reconstructions obtained from a
highly constrained sensor setup into an enhanced high-
fidelity representation. Additionally, accurate predictions
are achieved not only on the windward façade but also
on the right-side and leeward façades, which are more
aerodynamically complex due to wake turbulence and
vortex shedding.
Despite the promising results, several limitations should

be acknowledged. A key assumption is the availability of
high-fidelity data, in this case, obtained from wind tun-
nel experiments. While CFD simulations could also serve
as a data source, significant changes in the surrounding
environment (e.g., construction of new buildings) would
inevitably alter local wind conditions and affect the exist-
ing PODmodes. Reanalysis would be necessary to capture
the updated system dynamics. Furthermore, although
POD effectively extracts dominant flow features, multi-
resolutionDMD,wavelet decompositions, or autoencoders
could be explored to handle nonstationary flow dynamics
and improve robustness in varying environmental con-
ditions. To further improve the model’s generalization
ability, especially when labeled training data are scarce,
exploring alternative spatiotemporal ML models like self-
supervised learning techniques (Rafiei et al., 2024a, 2024b)
could be beneficial. Additionally, hybrid ML approaches,

including customized kernel support vector regression
and probabilistic neural networks optimized using meta-
heuristic algorithms like those employing particle swarm
optimization (Hossain et al., 2019) and spidermonkey opti-
mization (Akhand et al., 2020), as well as other methods
(Wang et al., 2018), could be investigated to enhance pre-
dictive accuracy under complex conditions. On the other
hand, the proposed model assumes a fixed number of
functional sensors based on predefined configurations.
However, in real-world applications, sensor failures or
malfunctions are inevitable, leading to incomplete ormiss-
ing data (Kim et al., 2022). Since the proposed model
is trained on a specific sensor arrangement, its perfor-
mance may degrade if sensor data become unavailable.
To mitigate this issue, additional training with various
sensor failure scenarios might be necessary to improve
the model’s adaptability and reliability under such con-
ditions. Moreover, while the proposed methodology suc-
cessfully predicts wind pressure distributions for varying
wind directions within the given conditions, generaliza-
tion to different environmental conditions, exposure, and
building geometry may require additional training data;
however, the same proposed approach remains applica-
ble to different configurations, and techniques like transfer
learning (Azimi & Yang, 2024) might assist in adapting to
these new configurations. Furthermore, even with exten-
sive sensor coverage, accurately capturing highly localized
pressure features, particularly at geometric extremities,
can present a challenge. Additionally, the framework’s
reliance on relative pressure sensor data might necessitate
additional calibration and preprocessing steps for direct
application with absolute pressure sensors.While utilizing
the normalized pressure coefficients can reduce sensor-
specific biases, adapting the methodology for use with
absolute sensors (e.g., Hochschild & Gorlé, 2024a, 2024b)
would likely require further validation and adjustments.
Overall, the results confirm that the hybrid POD-LSTM

framework provides a robust and computationally effi-
cient solution for wind pressure coefficient reconstruction
under sensor constraints. By addressing the identified
limitations, the methodology can be further enhanced
for structural health monitoring, digital twin applica-
tions, and real-time wind pressure estimation in urban
environments.

5 CONCLUSION

This study presented a novel hybrid ML framework
for reconstructing HFWP coefficient fields from a lim-
ited number of sensors, addressing challenges in sensor
deployment due to cost, accessibility, and structural con-
straints. The proposed approach integrates constrained
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sensor placement and wind pressure reconstruction,
POD for dynamic feature extraction, and LSTM net-
works for time-dependent mapping, enabling accurate
wind pressure estimations with minimal sensor cov-
erage. The effectiveness of the framework is demon-
strated through case studies using wind tunnel data from
TPU, where multiple sensor placement constraints were
considered.
The results confirm that the model accurately recon-

structs wind pressure coefficient distributions across mul-
tiple façades—including the windward, right-side, and
leeward façades—even under extreme sensor limitations.
Notably, the model generalizes well to unseen wind direc-
tions, highlighting its ability to adapt to varying flow
conditions. For example, in the unconstrained sensor
scenario, the overall training set RMSE for the wind-
ward case remains below 0.0159, and the testing set
exhibits similarly low RMSE values, reaching up to 0.0328.
Even in the challenging scenario with only five sensors,
the RMSE values are around 0.03. For the more com-
plex right-side and leeward façades, which are affected
by wake turbulence and vortex shedding, the model
maintains strong predictive performance with expect-
edly higher RMSE values (around 0.04 for the leeward
side), still achieving a generally good reconstruction of
the full pressure field. A comparative evaluation with
alternative ML approaches further demonstrates the supe-
riority of the proposed method. The hybrid POD-LSTM
framework outperforms direct ANN-based mapping and
LSTMmodels trained without dynamic feature extraction,
achieving higher accuracy while maintaining computa-
tional efficiency. These results confirm the importance of
dynamic feature extraction and reduced-order modeling
in enhancing wind pressure field reconstruction. These
findings suggest significant potential for practical applica-
tions in structural monitoring and building design, where
sensor deployment may be constrained by cost, accessi-
bility, or architectural limitations. By enabling accurate
pressure estimations with minimal sensor requirements,
this framework provides a valuable tool for enhanc-
ing the safety and resilience of structures in urban
environments.
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