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A B S T R A C T

Spent coffee grounds (SCG) waste poses significant environmental challenges, including greenhouse gas emis
sions and contamination risks. However, the existing reverse logistics (RL) systems remain inefficient, costly, and 
prone to contamination. Although previous studies have explored RL strategies, economically viable logistics 
models for small-scale SCG operations remain underdeveloped. However, the role of digitalization in optimizing 
SCG collection has not yet been explored. This study addresses these gaps by developing and evaluating sus
tainable business models that integrate circular economy principles with Industry 4.0. A mixed-integer linear 
programming (MILP) model was formulated to optimize the location, allocation, and routing decisions for 
“circular coffee shops, ” which serve as local collection and preprocessing nodes. Using real data from 1000 
coffee shops in Montreal, three case scenarios were analyzed to assess the impact of pre-drying technologies and 
smart logistics on cost reduction and environmental performance. The results show that, while smart bins and 
real-time data analytics improve network efficiency and sustainability, the strategic placement of pre-drying 
technologies significantly reduces transportation and processing costs. By introducing a novel framework that 
integrates digitalization and collaborative waste management, this study advances SCG valorization and mini
mizes waste-related environmental impact. The findings offer actionable strategies for municipalities and food 
service stakeholders, providing a scalable, data-driven approach to promote the adoption of circular economy 
principles in urban organic waste management.

1. Introduction

Global coffee consumption has steadily increased in recent years, 
resulting in a corresponding increase in spent coffee grounds (SCG), a 
waste stream with significant economic and environmental implications 
[16]. Although SCG contains valuable organic compounds suitable for 
applications such as heavy metal removal, biofuel production, com
posting, and antioxidant extraction (T. A. [48]), these compounds are 
often disposed of through incineration or landfilling. These conventional 
methods overlook their resource potential and contribute to environ
mental pollution through the emission of toxic gases such as carbon 
monoxide (CO) and nitrogen oxides (NOx) [7].

To address these impacts, companies such as Nestlé have initiated 
SCG valorization efforts by using waste as a renewable energy source at 
several European facilities (T. A. [48]). However, most valorization 
initiatives operate on large industrial scales [13], whereas coffee shops, 
one of the primary producers of SCG, generate relatively small and 
scattered volumes of waste. These small and medium producers face 

barriers to waste recovery due to the lack of economically viable models 
and the high cost of collection logistics [26,33].

Comprehensive techno-economic assessments are needed to evaluate 
the feasibility of decentralized SCG valorization networks (T. A. [48]). 
Effective implementation depends on coordinated collaboration be
tween waste generators (e.g., coffee shops) and collectors. However, 
uncertainty in waste generation rates and logistics constraints compli
cate this coordination, often resulting in inefficiencies, higher costs, and 
lower quality of recovered materials [53];[37].

Current SCG recovery systems suffer from fragmented decision- 
making, limited utilization of real-time data, and suboptimal resource 
allocation. Reverse logistics (RL) frameworks, which facilitate the effi
cient collection and transportation of waste, are essential yet underde
veloped in this context [51]. Indeed, although Industry 4.0 technologies, 
such as the Internet of Things (IoT), machine learning, and predictive 
analytics, can potentially improve logistics systems, evaluating the 
impact of their integration into SCG recycling remains minimal [49].

Despite growing interest in circular economy (CE) strategies and 
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logistics optimization for SCG collection from coffee shops, essential 
research gaps remain. Most studies focus on centralized processing, 
neglecting decentralized, small-scale valorization models. Collection 
from dispersed coffee shops presents logistics challenges as current RL 
systems struggle to minimize routing costs or perform reliably under 
uncertainty [3]. Smart technologies, such as real-time analytics, adap
tive routing, IoT infrastructure, smart bins, and automated SCG 
pre-drying, are rarely integrated into CE logistics models to address 
dynamic routing or real-time waste flows [8]. Additionally, the influ
ence of policy, stakeholder collaboration, and governance on the effec
tiveness of RL systems is underexplored, hindering their practical 
adoption. Addressing these gaps is crucial for designing resilient, 
cost-effective, and sustainable systems for SCG valorization that can 
adapt to real-world urban and rural waste management challenges.

This study proposes a novel, data-driven, Industry 4.0-enabled 
framework for reverse logistics in SCG collection and valorization, 
integrating advanced technologies with optimization models that sup
port decentralized recovery operations. The framework aims to convert 
SCG into valuable products, such as activated carbon, a high-demand 
material in environmental and industrial applications [37,38]. Mon
treal was selected as a case study due to its growing network of inde
pendent coffee shops and supportive waste management policies. 
Moreover, previous studies have shown that SCG collection systems in 
Montreal can significantly improve sustainability and resource effi
ciency [11]. The framework will optimize logistics decisions under 
operational uncertainty and variability in waste flow, including loca
tion, allocation, capacity, and routing. To guide this research, the 
following key questions are addressed: 

1. How can Industry 4.0 technologies improve the efficiency of waste 
valorization within reverse logistics networks?

2. What optimization methods best balance cost reduction, waste re
covery rates, and environmental impact?

3. How can the proposed framework be aligned with urban sustain
ability policies and principles of the circular economy?

To answer these questions, we propose a mixed-integer linear pro
gramming (MILP) model that optimizes waste collection, transportation, 
and processing decisions for SCG. The model is validated using munic
ipal data from SCG collection programs in Montreal. The activated 
carbon valorization pathway is analyzed from both cost and environ
mental perspectives, as our industrial partner, the collector, focuses on 
this valorization pathway. Additionally, the study will assess the per
formance impact of integrating smart infrastructure, including IoT- 
based waste tracking and adaptive routing. By answering these 
research questions, we aim to make the following contributions: 

1. From a methodological development perspective, this paper pro
poses a novel, Industry 4.0-enabled, data-driven decision-support 
framework that integrates MILP with advanced smart infrastructure, 
including IoT, adaptive routing, and real-time waste tracking. This 
framework aims to optimize decentralized SCG reverse logistics 
networks in the face of operational uncertainty.

2. From a practical implementation perspective, the study thoroughly 
analyzes the impacts of dynamic changes, uncertainty, and advanced 
Industry 4.0 technologies on small-scale SCG valorization through a 
real-world case study conducted in Montreal. This analysis provides 
actionable insights for urban planners, policymakers, and waste 
management stakeholders, facilitating the achievement of circular 
economy objectives and promoting sustainable urban logistics 
transformation.

The remainder of this paper is organized as follows: Section 2 re
views the relevant literature on reverse logistics and smart waste man
agement. Section 3 outlines the research methodology. Section 4
presents the mathematical model and its assumptions. Section 5 applies 

the model to the collected data and analyzes the results. Section 6 pre
sents a detailed sensitivity analysis regarding critical parameters. Sec
tion 7 presents the economic analysis, and Section 8 discusses the main 
findings and implications. Finally, Section 9 concludes the study and 
suggests directions for future research.

2. Literature review

2.1. Waste management in the coffee industry

The food industry is a significant contributor to global waste, with a 
considerable portion comprising restaurant food waste, which can lead 
to environmental and social problems and food safety risks [56]. This is 
particularly relevant for SCG because it is a common type of restaurant 
food waste, and more specifically, in coffee shops.

SCG, a natural byproduct of the brewing process, is rich in sugar, oil, 
and other energy-dense compounds with inherent value [16]. SCG is 
often produced in coffee shops and households, and the quantity 
generated depends on various factors, such as coffee consumption pat
terns, brewing methods, and the scale of coffee production. SCG, a wet 
organic waste, poses a significant threat, creating numerous adverse 
environmental and social impacts. Typically, SCGs are disposed of as 
general waste and sent to landfills, where they release methane. Potent 
greenhouse gases (GHG) are major contributors to global warming. 
Disposing of organic waste in landfills can produce hazardous gases, 
significantly contaminating soil and water bodies. Integrating these CE 
principles into SCG waste management can substantially reduce waste, 
lower environmental impact, and create value from recycled materials 
[34].

SCG can undergo various treatment processes to extract value or 
mitigate environmental impacts [59]. Composting is a standard method 
in which SCG is mixed with other organic wastes to produce 
nutrient-rich compost for soil amendment [59]. Additionally, SCG can 
generate energy through anaerobic digestion or combustion [24,58]. 
The production of activated carbon from SCG is one of the several 
products that can be obtained after treatment [38]. The process involves 
pretreating the SCG, activating it, washing and drying the resulting 
activated carbon, and then sizing and packaging it for commercial use. 
Activated carbon from SCG can be utilized in water treatment, air pu
rification, environmental remediation, and industrial processes, thereby 
offering a sustainable solution for waste management [10] and creating 
valuable products with diverse applications. During the SCG collection 
phase, pre-drying can be performed at the local depot using modern 
technologies to reduce moisture content before further treatment. The 
equipment has various sizes, ranging from ultra-small to medium and 
large. Once pre-dried, SCG can be transported to a treatment facility for 
additional drying processes [41].

Given the increasing awareness and need for sustainable practices, 
there is a compelling demand to adopt innovative SCG management 
strategies that align with the principles of a CE [16,34]. Circularity in 
the coffee value chain encompasses forward logistics, which involve 
growing, processing, and distributing coffee, as well as reverse logistics 
(RL), where SCG are collected, treated, and redistributed. Initially, 
coffee is grown on farms, sorted, and distributed for sale in the intended 
markets. Subsequently, SCG is collected from waste generation sites, 
with coffee shops being a significant source of such waste. Owing to the 
realization of the effects of SCG, these coffee shops utilize diverse ap
proaches in line with RL network designs and regulations. As an illus
tration, specific coffee shops can create compost from SCG on their 
premises, while others seek to collaborate with collectors (treatment 
facilities) to address challenges in coffee valorization [18]. However, 
various factors, including environmental conditions, market demand 
fluctuations, and disruptions such as the COVID-19 pandemic, 
contribute to these uncertainties. The coffee industry faces additional 
challenges, such as climate change, overproduction, price volatility, and 
the need for sustainable practices [4].
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2.2. Industry 4.0 integration in waste management

The literature emphasizes the importance of effective waste man
agement strategies for SCG in reducing environmental pollution and 
enhancing resource recovery. Integrating emerging technologies [49]
and optimization techniques into reverse logistics (RL) network design 
presents promising opportunities for improving the collection, treat
ment, and valorization of SCG [39]. Key objectives include minimizing 
travel distances, preventing waste bin overflow and contamination, and 
reducing routing time, all of which contribute to improved operational 
efficiency [45]. Technologies such as the Internet of Things (IoT), arti
ficial intelligence (AI), and cloud computing have demonstrated the 
potential to enhance operational efficiency, support circular economy 
(CE) principles, and advance sustainability goals [14]. Recent studies 
emphasize the value of I4.0 across the coffee value chain, suggesting that 
future research should address system uncertainties, optimize SCG 
treatment, evaluate social and environmental impacts, incorporate 
stakeholder perspectives, conduct cost-benefit analyses, and consider 
regulatory frameworks [60]. However, realizing the full potential of 
these technologies requires addressing adoption barriers and developing 
scalable solutions [27].

The global shift toward CE principles has driven greater interest in 
digital transformation within RL. Disruptive technologies, such as IoT, 
AI, digital twins (DT), and robotics, are being gradually implemented to 
modernize RL systems. Yet, Sun et al. [49] note a lack of systematic 
analysis of I4.0’s impact on RL. To address this gap, Sun, Yu, Solvang, 
and Govindan [50] propose a two-level decision-support framework 
combining multi-objective optimization with dynamic simulation to 
support strategic decision-making under uncertainty [50]. To strengthen 
circularity in the coffee value chain, further research is needed on the 
impact of technological innovations on RL design and operations. A 
particular focus should be placed on the role of Industry 4.0 (I4.0) 
technologies in enabling sustainable and intelligent waste management 
systems despite the implementation challenges [22].

2.3. Reverse logistics network design and vehicle routing

Reverse logistics (RL) models for waste management are commonly 
classified into three hierarchical levels: strategic, tactical, and opera
tional. At the strategic level, models address long-term decisions such as 
network design and infrastructure investment, including the optimal 
location of collection centers and recycling facilities. These models often 
integrate sustainability objectives, as seen in circular supply chain 
frameworks that align logistical planning with environmental goals 
[28].

At the tactical level, the focus shifts to medium-term planning and 
resource allocation. Inventory management models are employed to 
optimize stock levels of reusable materials, while multi-objective opti
mization approaches aim to balance trade-offs among cost, environ
mental impact, and service performance [31]. Forecasting models 
enhanced by artificial intelligence (AI) further support decision-making 
by predicting waste return flows [1].

At the operational level, models address short-term, day-to-day ac
tivities such as real-time waste collection and processing. Dynamic 
vehicle routing problems (DVRP) are used to optimize collection routes, 
while scheduling models manage sorting and processing operations 
[28]. These are increasingly supported by real-time decision support 
systems that leverage IoT and AI to adapt operations in response to 
fluctuations in waste volume.

Network design plays a central role across all levels, significantly 
influencing the efficiency, sustainability, and environmental footprint of 
waste management systems. Van Engeland et al. [52] conducted a 
comprehensive review of RL applications in waste management, with 
particular emphasis on strategic network design. Their work under
scored the importance of integrating environmental, social, and per
formance indicators into multi-objective models, and highlighted the 

value of involving multiple stakeholders to accommodate future de
velopments [52]. They provided an overview of existing efforts in this 
area, highlighting the importance of environmental, social, and perfor
mance indicators in multi-objective models. Additionally, they empha
sized the potential of incorporating various stakeholders into the 
network design to address future developments.

RL and vehicle routing problem (VRP) models provide a robust 
framework for optimizing waste collection and disposal processes (A. 
[47]). This is particularly critical in the context of organic waste man
agement, which presents unique logistical challenges. Organic waste is 
highly perishable and decomposes rapidly, necessitating frequent and 
timely collection. Its volume often varies seasonally, requiring adaptive 
routing strategies [2,21]. Additionally, specialized equipment, such as 
vehicles equipped with temperature control or compaction systems, is 
essential for managing leakage and odor.

Unlike general waste streams, organic waste is typically routed to 
specific facilities such as composting or anaerobic digestion plants. 
Therefore, routing decisions must consider both the nature of the waste 
and its destination. Furthermore, environmental concerns play a 
prominent role, with green VRP models aiming to minimize travel dis
tances and fuel consumption, thereby reducing the environmental 
impact of collection activities [17].

2.4. Modeling the reverse logistics network design and vehicle routing 
problem

Location Routing Problem (LRP) models, as extensions of the Vehicle 
Routing Problem (VRP), optimize vehicle routes and facility locations 
under constraints such as capacity, time windows, and environmental 
considerations [32]. Recent reviews, such as Sar and Ghadimi [45], 
highlight trends in VRP applications within reverse logistics (RL), 
emphasizing the growing role of Industry 4.0 (I4.0) technologies in 
enabling data-driven and adaptive solutions [45].

Smart features like intelligent bins provide real-time data critical to 
operational efficiency. Ramos et al. [42] demonstrated that integrating 
sensor data with optimization algorithms improves waste collection by 
enabling dynamic route planning based on bin fill levels. They advocate 
for models that jointly consider location and routing decisions [42].

Various VRP variants have been applied in RL contexts to address 
complex waste management scenarios. These include the Capacitated 
VRP (CVRP) [40], Periodic LRP (PLRP) [20], Capacitated LRP (CLRP) 
[30], and Time-Dependent LRP (TD-LRP). Recent contributions also 
explore multi-level models, such as the multi-level capacitated arc 
routing problem with intermediate facilities (MLCARPIF), which opti
mizes routing and facility use in hierarchical waste systems [55], as well 
as cost-efficient CVRP models that incorporate real-time constraints and 
depot positioning.

A recent study presents an optimized vehicle routing model for 
efficient waste collection, focusing on the CVRP. This model optimizes 
service costs and total travel distance, highlighting the benefits of real- 
time cost considerations and strategic depot positioning in waste man
agement [44]. Another study examines the MLCARPIF in the context of 
waste collection. It focuses on optimizing routes and facilities such as 
waste collection huts and transfer stations, demonstrating substantial 
cost savings and improved efficiency through integrated optimization in 
multi-level waste collection systems [55]. In the coffee sector, inte
grating circular economy principles into SCG management has drawn 
attention. Digital technologies support traceability and 
decision-making, particularly when routing waste between circular 
coffeeshops (CCs) equipped with pre-drying technologies and smart 
bins. However, optimization models tailored to these systems remain 
underdeveloped.

Based on these studies, future research should take into account the 
unique characteristics of each network, which are shaped by the di
versity of stakeholders, their specific objectives, and relevant environ
mental, social, and economic factors. This perspective highlights the 
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need for a more comprehensive understanding of network-specific 
challenges and the development of targeted solutions. Furthermore, 
the literature highlights the critical role of technological advancements 
and the transition toward sustainability through intelligent systems. 
Recent studies highlight the benefits of integrating smart technologies in 
waste management, particularly in enhancing collection efficiency. 

These insights indicate a promising direction for future research to 
explore the application of intelligent solutions in this domain.

2.5. Literature gaps

Despite growing interest in circular applications for SCG, significant 

Table 1 
Summary of VRP Applications in Reverse Logistics for Waste Management.

Authors Problem 
type

Facilities in 
routing

Objective type Decisions Technology 
integration

Case Study Waste type

Giasoumi et al., 
[19]

multi-trip 
VRP

Waste generation 
points and 
disposal sites

Total travelled distance 
minimization

Road selection and 
Routing

IoT-equipped bins Netherland Municipal solid waste

Rekabi et al., 
[43]

Multi- 
depot LRP

Waste generation 
points, Depot, and 
Recycling Centers

Cost and Job 
Opportunities

Recycling Facilities 
Location and Routing

IoT at recycling 
facilities

Numerical 
example

Solid Waste

Salawudeen 
et al., [44]

CVRP Depots and waste 
collection points

Minimize service cost 
and total travel distance

Routing, depot 
positioning, truck 
allocation

Global Positioning 
System (GPS)

Nigeria Solid waste

Wei et al., [55] MLCARPIF Waste collection 
huts and transfer 
stations

Minimize total cost Routing, intermediate 
facility location, fleet 
allocation

- China Solid waste

Mohammadi 
et al., [35]

CVRP Waste generation 
points and 
separation centers

Total cost minimization 
Pollution minimization

Location, allocation, 
routing

IoT-equipped bins Iran Municipal solid waste

Ma et al., [30] CLRP Waste generation 
points and 
recycling centers

1) Recycling center 
obnoxious effects 
minimization 
2) Logistics cost 
minimization

Location and scale, 
allocation, routing

- China Municipal solid waste

Flores-Carrasco 
et al., [15]

PLRP Waste generation 
points and 
collection centers

Logistics cost 
minimization

Location, allocation, day 
of collection. routing

- Chile Glass, batteries, 
cardboard and paper, 
plastic, wood, organic 
and electronic waste

Chaabane et al., 
[12]

VRP Dealers and 
broker

Total cost minimization Routing - North 
America

End-of-Life Vehicles

Qiao et al., [40] CVRP Disposal center 
and smart bins

1) Vehicle cost 
minimization 
2) Carbon emission cost 
minimization

Routing Smart bins China Wet waste

Qiao et al., [40] CVRP Disposal center 
and waste bins

Total cost minimization Routing - China Municipal solid waste

Lu et al., [29] CVRP Disposal center, 
transfer stations 
and smart bins

1) Transportation cost 
minimization 
2) Carbon tax cost 
minimization

Assignment of bins to 
transfer stations and 
routing

ICT, IoT, Smart bins China Recyclable and non- 
recyclable waste, 
hazardous waste

Wu et al., [57] CVRP Disposal center 
and smart bins

1) Total cost 
minimization 
2) GHG emission 
minimization 
3) Total distance 
minimization

Routing and amount of Smart bins with 
different priorities

China Municipal solid waste

Bottani et al., 
[9]

CVRP Vending machines 
companies and 
pellet production 
plant

Logistics cost 
minimization

Routing and vehicle type ICT tool Italy SCG to produce 
combustible pellets

Schmidt et al., 
[46]

TD-LRP Customers and 
depots

Total driving time 
minimization

Location, allocation, 
period, truck load, 
routing

- Canada Urban freight

Ramos et al., 
[42]

CVRP Disposal center 
and smart bins

1) Transportation cost 
minimization 
2) maximization of 
profit

Routing and flow amount ICT, IoT, Smart bins Portugal Municipal solid waste

Hemmelmayr 
et al., [20]

PLRP Hunger relief 
agencies and 
recycling centers

Logistics cost 
minimization

Location and size, 
allocation, schedule, 
routing

- Vien-USA Cardboard boxes

Our work LVRP Business model 1: 
CS and treatment 
facility 
Business model 2: 
CC and treatment 
facility

Business model 1: 
Minimization of the 
transportation cost 
Business model 2: 
Minimization of the 
transportation cost 
* Contamination risk 
minimization entails 
technology integration

Business model 1: 
Routing 
Business model 2: CC 
Location, pre-drying 
equipment capacity, 
allocation of CS to CC, 
routing

Smart bins, pre- 
drying technology 
equipment, Electric 
Vehicle (EV)

Canada SCG to produce 
activated carbon
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research gaps remain, particularly concerning their integration into 
reverse logistics and supply chain systems. Existing studies largely 
overlook the logistical complexities that hinder large-scale SCG recov
ery. First, SCG is generated in small, dispersed quantities across decen
tralized sources such as cafés, households, and offices, increasing 
collection complexity and cost. Second, its high moisture content 
(60–80 %) leads to rapid degradation, necessitating timely collection or 
pre-treatment to maintain material quality. Third, contamination and 
variability—due to mixing with filters, stirrers, and food waste, as well 
as inconsistent grind sizes and moisture levels—pose challenges for 
standardization and downstream processing. Fourth, economic viability 
remains a major obstacle, as SCG has low intrinsic value and high lo
gistics costs, often making recovery economically unfeasible without 
government subsidies or innovative business models. Finally, the inte
gration of digital technologies (e.g., IoT, mobile apps, real-time tracking, 
and smart routing) into SCG logistics is underexplored, limiting oppor
tunities for data-driven optimization. These gaps highlight the need for 
research into tailored, scalable, and technology-enabled reverse logistics 
models that address the specific characteristics of SCG and support its 
effective valorization within circular supply chains. Therefore, this 
paper aims to fill the following three gaps: 

1. From a modeling perspective, no existing research proposes or 
evaluates logistical business models designed explicitly for SCG. A 
comparative analysis of their feasibility under different conditions is 
also lacking.

2. From a methodological perspective, no studies have addressed the 
location-routing problem for SCG reverse logistics, particularly from 
geographically dispersed and small-scale generators such as coffee 
shops.

3. From a decision-support perspective, there is a lack of decision- 
making models and managerial insights based on real cases that 
consider the role of Industry 4.0 in SCG reverse logistics network 
design.

3. Research framework

We aim to develop a decision support system (DSS) specifically 
designed to address the challenge of optimizing a circular supply chain 
for coffee waste, thereby addressing the associated business challenge. 
To achieve this, we adhere to a methodology centered on the "Data First 
/ Model Second" (Fig. 1). By applying this method to our problem, we 
emphasize a systematic approach that prioritizes understanding and 
preparing data before developing the appropriate analytical model to 
manage the reverse logistics for waste management. The step-by-step 
methodology involves framing the business problem, defining the ana
lytics problem domain, collecting and understanding data, selecting a 
methodology, building models, deploying models, and managing the 
model lifecycle [23].

3.1. Business problem description and analytical problem framing

Our study evaluates various RL network configurations as business 
models supporting SCG collection and valorization. Within these net
works, coffee shops generate SCG daily, which must be collected and 
transported to a treatment center to produce activated carbon. The 
treatment company is responsible for collecting and processing SCG and 
preparing it for sale in target markets for water purification and air 
filtration applications. The treatment process involves drying and acti
vating the SCG at elevated temperatures.

This problem involves determining the most efficient strategy for 
collecting SCG. This can be approached from two economic perspec
tives: minimizing total cost and maximizing total profit. Our study 
tackled this problem from a cost-minimization perspective, as our pri
mary interest lies in examining cost efficiency. To develop a realistic 
case study, we collaborated with a company in Montreal that specializes 
in collecting and treating SCG. Our objective was to explore various 
configurations of the SCG reverse logistic network. These configurations 
provide decision-makers with a spectrum of potential business model 
options. Consequently, we identified two primary business models for 
SCG collection. The first model assumes no collaboration between coffee 
shops, requiring the collection process to visit each location where SCG 
is generated individually. In contrast, the second model is based on 
cooperation among coffee shops, allowing SCG to be aggregated at 
strategically selected sites. These designated collection points, referred 
to as Circular Coffee Shops (CCs), serve as hubs where SCG from nearby 
shops is consolidated for more efficient pickup.

In the current logistics model (Baseline), trucks are scheduled to visit 
all coffee shops to collect SCG, as illustrated in Fig. 2(a). In this baseline 
scenario (Case 1), the network does not include any pre-drying equip
ment at the coffee shop locations. As a result, the SCG is collected in its 
wet state and transported directly to the treatment center. All subse
quent processing steps—namely drying and activation—are carried out 
exclusively at the treatment facility. In Business Model 1 (Case 2), we 
propose integrating ultrasmall pre-drying equipment, each equipped 
with an IoT system, at individual coffee shops. The collector provides 
this equipment, enabling partial drying of the SCG on-site before 
collection. As shown in Fig. 2(b), this configuration reduces the moisture 
content—and consequently, the weight—of the SCG before trans
portation to the treatment center. This can lead to lower transportation 
costs and minimize the risk of contamination during transit. However, it 
is essential to consider the additional investment and operational costs 
associated with deploying and maintaining the pre-drying equipment.

In Business Model 2 (Case 3), SCG are first transported to CC 
equipped with a pre-drying system. This model introduces financial 
incentives and government subsidies to encourage participation from 
city-based delivery drivers. Within this setup, smart bins at the CC are 
equipped with sensors that enable waste segregation, enhancing the 
quality of the final product. These sensors also collect valuable data on 
the type and quantity of SCG, as well as other parameters such as 
moisture content and temperature. The CC serves several functions: it 
consolidates SCG from multiple coffee shops into larger, more 
economical batches for transportation; removes non-organic contami
nants, such as plastics and metals; and provides temporary storage 
before the SCG is sent to the treatment facility. After dehydration and 
compaction at the CC, the SCG is transported to the processing facility, 
where it is transformed into activated carbon for use across various in
dustries. Fig. 3 illustrates the configuration of Business Model 2 under 
Case 3. The decisions stemming from this business model aim to deter
mine the optimal location for the CC and efficiently allocate coffee shops 
to it. This optimization seeks to minimize transportation costs, mitigate 
environmental risks, and minimize contamination.

3.2. Data collection

This section presents the data required to solve the proposed business Fig. 1. Research Design Process (Adapted from [23]).
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problem. We can classify data into three categories. 

• Data related to coffee shops, including location and the amount of 
SCG generated in these establishments.

• Data related to transportation: Capacity of EV, Maximum distance 
an EV can travel (in kilometers), fixed cost of route, electricity con
sumption rate per unit time while EV is idle, electricity consumption 
rate per unit distance while the EV is moving, price of electricity per 
unit consumption, and the cost of transferring SCG from coffee shops 
to CC.

• Data related to circular coffee shops: Capacity of pre-drying 
technologies installed at CC, fixed installation cost, service time in 
CC to collect SCG, the amount of dehydrated SCG collected from CC, 
and the yield factor at CC.

3.3. Methodology selection

For each business model, we identified the problem’s assumptions, 
utilizing insights from the literature review and information gathered 
about the coffee industry. In Business Model 1, since we focus on 
designing a collection route from a wide range of coffee shops, it is 
essential to solve the VRP efficiently. Different resolution methods can 
be used [25]. In our case, we employ a two-phase heuristic approach, 
where the first phase involves clustering, and the second phase requires 

routing. This approach is widely used to solve complex routing prob
lems, such as the Electric Vehicle Routing Problem (eVRP) [5]. This 
method offers several advantages, particularly for large-scale or 
computationally intensive issues, such as those involving a significant 
number of coffee shops [6]. Therefore, the significance of clustering is 
evident in its ability to effectively address VRP models [54]. The 
methodology employed to solve the VRP in the first phase is a hierar
chical clustering approach, which benefits from the required properties. 
Unlike other clustering methods such as k-means clustering, hierarchical 
clustering does not require the specification of the number of clusters in 
advance [54]. This makes it worthwhile because we only need the final 
clusters to be less than a specific amount. This clustering phase is 
composed of five steps: 1) Initial clustering, 2) Cluster center and service 
aggregation, 3) Distance estimation, 4) VRP with cluster centers, and 5) 
Sub-VRP within clusters and recursive clustering. The algorithm devel
oped in this study can be summarized as follows. The algorithm begins 
by clustering points and estimating the routing distances within each 
cluster. It iterates, refines the clusters until it reaches a target number, 
and saves the subclusters into a tree structure. Routes are then generated 
by solving the VRP using an exact method (CPLEX solver) for each 
cluster. For each vehicle, the algorithm optimizes the route from the 
depot to the cluster points. It continues the VRP process until a specified 
stopping condition is satisfied, ultimately producing the final optimized 
routes.

Fig. 2. Business Logistics Model 1: No Collaboration Between Coffee Shops.

Fig. 3. Business Logistics Model 2: Collaboration Between Coffee Shops.
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For the second business model, a Location-Routing Problem (LRP) 
was formulated to identify the most cost-effective logistical configura
tion. Potential CC sites were selected from among the existing coffee 
shops already participating in the program. To generate the list of 
candidate CC locations, the partnering company employed a multi- 
criteria decision-making (MCDM) approach. Each coffee shop was 
evaluated and assigned a score based on several criteria, including the 
potential volume of SCG, proximity to the treatment center and other 
clusters, infrastructure readiness, willingness to participate in the pro
gram, and the associated environmental benefits. These scores informed 
the potential CC sites, ensuring that both logistical efficiency and sus
tainability objectives were considered in the configuration process.

Next, we developed a location-routing optimization model by 
defining the objectives, constraints, and relevant parameters for which 
we gathered the data. The objective function represents the goal we aim 
to achieve, while the constraints represent the limitations and re
quirements that the solution must adhere to. To solve the LRP model 
within the Python programming environment, we utilized exact opti
mization solvers, specifically Gurobi.

3.4. Deployment and life-cycle management

To address our research questions, we developed a decision support 
system (DSS) framework as depicted in Fig. 4. The framework consists of 
three modules: the Data Management module, the Optimization module, 
and the Evaluation module. The “data management” module is 
responsible for managing and validating data to construct the case 
study. We gathered essential data using available databases from Mon
treal coffee shops, the case company, and other related projects. The 
optimization module is developed to solve the optimization models 
developed for each business model and case. The evaluation module is 
used to analyze results. Following the resolution of the mathematical 
model, the focus shifts towards evaluating its performance metrics and 
analyzing the obtained results to gain valuable insights to inform 
decision-making, refine strategies, and optimize implementations. To 
assess the robustness of our model under varying conditions and un
derstand its behavior under uncertainty, we conducted a sensitivity 
analysis using parameter variation and created different scenarios.

4. Optimization models

4.1. Assumptions

The development of mathematical models (VRP and LRP) is based on 
the following assumptions: 

• The number and location of coffee shops are known.
• Distances were calculated based on address and postal codes.
• All the coffee shops’ demands should be collected.
• The network has only one treatment facility, and its location is 

known.
• The quantity of SCG in the coffee shops was estimated and deter

mined. We assumed that this was calculated by assessing the size of 
the coffee shop. This assessment considers average coffee sales data, 
which include information on the number of coffee cups sold, the 
volume of those cups, and a conversion factor for the weight of the 
generated SCG.

• The transportation costs of using EVs were estimated and 
determined.

• The electricity consumption rates of EVs vary and are determined for 
different operating modes.

• The service time is estimated and determined based on observations.
• Each EV had a predefined capacity, weight, and maximum allowable 

crossing length.
• The velocity of each EV is estimated based on the urban area context 

of the study.
• The fixed cost of each route is estimated and determined.

Additionally, several specific assumptions are considered for Busi
ness Model 2 (Case 3): 

• A limited amount of SCG regarding capacity issues can be allocated 
to each coffee shop.

• The coffee shop has an intelligent bin with notification capabilities.
• Following the pre-drying treatment in the CC, the amount of SCG 

decreased due to dehydration and compaction.
• The inflow into the CC was equal to the outflow, accounting for the 

determined dehydration rate.
• The establishment costs of CC equipped with pre-drying technology 

were estimated and determined based on its capacity features, spread 
over the initial five years of use.

• An innovative financial mechanism estimates and determines the 
transportation costs between coffee shops and CC.

• Candidate locations for setting up CC were selected from the avail
able coffee shop sites through an integrated selection process.

• The estimated establishment costs of smart bins amounted to 30 % of 
the costs of CC equipped with pre-drying technology.

The mathematical model for Business Model 1 (VRP) is described in 
the Appendix.

Fig. 4. DSS Framework for a Circular SCG Reverse Logistics Network.
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4.2. Mathematical formulation for business model 2

To address this problem, we developed a mathematical model to 
minimize the total cost of the SCG collection network. We chose cost 
minimization over profit maximization to analyze the route costs and 
cost per kilogram of SCG. This approach enabled us to determine the 
most efficient and cost-effective method for collecting SCG. The math
ematical model for Business Model 2– Cases 3 and 4 includes sets, pa
rameters, decision variables, an objective function, and constraints, as 
outlined below:

4.2.1. Sets and indices
i Index of coffee shops as the SCG generation point
j, h Index of potential sites for CC equipped with pre-drying tech

nology.
k Index of routes
c Index of capacity of CC (e.g., small =1, or large = 2)

4.2.2. Decision variables
yhcIf CC h with the capacity level of cis established in the location of 

an existing coffee shops
zhiIf CS iis allocated to CC h
xhjkIf a route k exists when transporting from CC h to CC j

4.2.3. Parameters
wiAmount of SCG generated in coffee shops i (kg)
QCapacity of EV (kg)
LMaximum length that an EV can traverse (km)
QhcCapacity of CC hwith a capacity level of c (kg)
FkFixed cost of route k ($)
FhcFixed cost of establishing CC hwith a capacity level of c ($)
dhjDistance between CC h and CC j (km)
tjService time in CC j (min)
ρidleElectricity consumption rate per unit time while EV is idle (L/ 

min)
ρhjElectricity consumption rate per unit distance while the EV is 

moving (kWh/km)
ρPrice of per unit electricity consumption ($/kWh)
αihCost of transferring SCG from coffee shops ito CC h ($)
qhThe amount of dehydrated SCG that is collected from CC h(kg)
βyield factor for the dehydration process at CC.
γyield factor for the activation carbon process at the treatment center 

(collector)

4.2.4. Objective function
Objective Function (1) aims to minimize the total cost associated 

with designing and operating a reverse logistics network for managing 
SCG. The function integrates five key cost components, each repre
senting a real-world operational element: 

1. Fixed cost of vehicles: This term represents the cost incurred for 
making transportation vehicles available within the network, 
regardless of usage. It includes leasing, insurance, and depreciation 
costs.

2. Variable transportation cost Between CC: This cost encompasses 
electricity consumption, maintenance, and driver wages necessary 
for transporting SCG between CC. It depends on the distance or time 
traveled and models the operational flow of materials between in
termediate facilities.

3. In-Service time cost at CC: This accounts for the time-based pro
cessing cost of SCG at each CC, including labor, sorting, temporary 
storage, and material handling. It reflects the efficiency and capacity 
constraints of each coffee shop acting as a circular node.

4. Establishment Cost of CCs: This fixed cost captures the investment 
required to set up and operate each CC as a collection or processing 

point in the circular supply chain. It includes infrastructure, utilities, 
and administrative overhead.

5. Transportation cost of SCG from coffee shops to CCs: This represents 
the cost of collecting SCG from individual coffee shops and delivering 
it to the assigned CCs. It represents first-mile reverse logistics and 
varies based on location, frequency, and quantity transported.

MinF=
∑K

k=1

∑N

j=0
(x0jk ∗Fk)+

∑N

h=0

∑N

j=0
(xhjk ∗dhj ∗ρhj ∗ρ)+

∑N

j=1
(xhjk ∗ tj ∗ρidle ∗ρ)

+
∑N

h=0

∑2

c=1
(Fhc ∗yhc)+

∑N

i=1

∑N

h=1
(αih ∗zih)

(1) 

4.2.5. Constraints

∑K

k=1

∑N

h=0

xhjk = 1, ∀j = 1,…,N (2) 

∑

k=1

∑

j=0
xhjk = 1, ∀h = 1,…,N (3) 

∑N

h=0
xhjk =

∑N

h=0
xjhk = 1,∀j = 1,…,N; k = 1,2,…,K (4) 

∑N

j=1
xhjk ∗ qh ≤ Q, ∀h = 0, 1,…,H (5) 

qh =

(

1 − β

)

∗

[
∑N

i=1
zih ∗ wi

]

∀h = 0, 1,…,H (6) 

∑N

h=0

∑N

j=0
dhj ∗ xhjk ≤ L, ∀k = 1, 2,…,K , h ∕= j (7) 

∑N

h=0

∑N

j=0
xhjk ≤ |S| − 1, S ⊆ {1,2,…,N}, ∀k = 1,2,…,K (8) 

∑N

h=0
zih = 1, ∀i = 1,2,…, I (9) 

∑C=2

c=1
yhc = 1, ∀h = 1,2,…,H (10) 

∑N

i=1
zih ∗ wi ≤ Qhc ∗ yhc ∀h = 1,2,…,H ,∀c = 1, 2 (11) 

xhjk, yhc, zih = {0,1} (12) 

Constraint (2) ensures each CC is visited exactly once, guaranteeing 
timely SCG collection and preventing material buildup. It mirrors real- 
world policies where every collection point must be serviced during 
the planning period. Constraints (3) and (4) define the start and end 
points of vehicle routes. Each vehicle departs from the central depot 
(Constraint 3) and returns to the treatment facility after servicing its 
assigned CCs (Constraint 4), reflecting a closed-loop reverse logistics 
system. Constraint (5) limits the amount of SCG on each route to the 
vehicle’s maximum load, ensuring safety, compliance with legal weight 
limits, and operational feasibility. Constraint (6) models the trans
formation of wet SCG to dehydrated SCG at CCs. It enforces mass bal
ance by applying a fixed yield factor, based on moisture content, to 
avoid overestimating usable output. Constraint (7) limits each vehicle’s 
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total travel distance to a predetermined maximum, reflecting physical, 
regulatory, or operational limitations (e.g., driver hours, urban con
straints), thereby ensuring practical and efficient routing. Constraint (8) 
prevents subtours, ensuring that all routes form a single, connected path 
from the depot through assigned CCs to the treatment facility, avoiding 
isolated loops that disrupt SCG consolidation. Constraint (9) assigns 
each coffee shop to exactly one CC to simplify logistics, reduce handling 
complexity, and ensure efficient routing and scheduling. Constraint (10) 
enforces a single capacity type (e.g., small, medium, large) per CC, 
supporting infrastructure planning and ensuring operational consis
tency. Constraint (11) ensures that the SCG assigned to each CC does not 
exceed its processing capacity, aligning shop assignments with CC ca
pabilities and thereby avoiding bottlenecks. Constraint (12) defines bi
nary decision variables for routing, facility setup, and assignments, 
capturing essential yes/no decisions within the reverse logistics 
network.

5. Experimentation, results, and insights

5.1. Case study: data collection

The proposed approach for creating a smart and sustainable RL 
network for SCG valorization was implemented in a case study in 
Montreal, Canada. With a population exceeding 1.7 million, Montreal 
produces considerable SCG daily, demanding significant attention. To 
evaluate the applicability of this research, 1000 CS in Montreal that are 
potentially willing to participate in collaborative SCG collection and 
treatment are considered as waste generation points. This list was ob
tained from our industrial partner and represents the list of coffee shops 
that confirmed their voluntary participation in this pilot project. To 
ensure data accuracy, we validated available datasets using Google 
Maps. Finally, the dataset was cleaned by standardizing variables (e.g., 
shop names, addresses, categories), geocoding location data, and 
filtering out incomplete or irrelevant entries.

For SCG generation rates, these were derived from actual data ob
tained through our partner and supplemented with estimates based on 
average coffee sales volumes from selected coffee shop chains. Each 
coffee shop typically sells between 4000 and 10,000 cups of coffee per 
week, resulting in daily outputs of 5–7 kg of SCG. For 1000 coffee shops 
participating in this program, 6271 kg of SCG were generated daily.

For the transportation data, a hybrid approach was employed. Real- 
world cost parameters were collected from local logistics providers and 
government databases. Routing distances were simulated using GIS- 
based tools to model various collection scenarios. Additionally, ac
cording to our observations, servicing each coffee shop takes approxi
mately 3–5 minutes. Finally, based on the company’s data for the EV, 
the values are as follows: Q = 2, 000Kg,L = 150km, and Fk = 300$.

In our analysis, we considered the fixed costs associated with 
establishing pre-drying capabilities at coffee shops and CCs by assuming 
specific capacities and cost parameters for different types of pre-drying 
machines. For the ultra-small pre-drying machine, which has a capacity 
of 40 kg, we assumed a capital cost of $10,000. This machine is deployed 
in Model 1 – Case 2, and a daily operational cost of $13 was considered 
in the model to represent its amortized fixed cost over time. For CC in 
Model 2 – Case 3, we examined two types of pre-drying equipment based 
on their capacity levels. The small pre-drying machine, with a capacity 
of 100 kg, was assumed to cost $16,000, and its daily fixed cost was set 
at $36 per day. Similarly, the medium-sized pre-drying machine, 
capable of handling 300 kg, was estimated at $20,000, with a corre
sponding daily fixed cost of $45. These daily costs were incorporated 
into the models to reflect the fixed costs of establishing CCs with 
different pre-drying capacity levels, thereby enabling a comparative 
evaluation of the investment requirements and economic performance 
across the various business models and scenarios. The computational 
experiments were conducted on a workstation equipped with an Intel 
Core i7–1165G7 processor operating at 2.80 GHz, 16 GB of RAM, and 

running a 64-bit version of Windows 11 Pro. The implementation was 
conducted using Python 3.10, with optimization tasks managed by 
CPLEX and Gurobi solvers. Performance metrics of the proposed system 
were computed and analyzed to evaluate its efficiency. Most of the VRP 
instances were successfully solved by CPLEX within one hour. For the 
LRP model, Gurobi was able to solve most instances within an average 
computation time of 20 minutes.

5.2. Results for Case 1

To manage the complexity of the routing problem in Case 1, we 
began by clustering the 1000 participating coffee shops into 12 
manageable groups, referred to as efficient points (EF), using a 
customized hierarchical clustering approach based on geographical 
distribution. The decision to use 12 clusters strikes a balance between 
geographical accuracy and computational efficiency. This configuration 
represents a trade-off between granularity, problem manageability, and 
computational tractability. Specifically, our system’s computational 
capabilities enable the solution of the VRP for 12 clusters within a 
reasonable timeframe, making the optimization process both feasible 
and effective. Each cluster is represented by a virtual center, as illus
trated in Fig. 5. These virtual centers do not necessarily correspond to 
the location of a specific coffee shop but instead serve as aggregated 
representations of all shops within the cluster. For each virtual center, 
we aggregated the total service time and the total amount SCG generated 
by the coffee shops in that cluster. These virtual centers then served as 
single nodes in the initial routing computations, significantly simpli
fying the problem size and structure. Since the exact distances between 
coffee shops within a cluster were unknown before solving the full VRP, 
we estimated initial distances for the preliminary calculations. This 
estimation involved calculating the average distance from all coffee 
shops in a cluster to the cluster’s virtual center and applying necessary 
adjustments to improve approximation accuracy. Using this approach, 
we conducted a preliminary VRP, treating the treatment facility and the 
12 cluster centers as nodes, as shown in Fig. 6. The actual and estimated 
distances from the treatment facility to each virtual cluster center were 
calculated to determine the optimal number of routes and the optimal 
sequence for visiting these clusters. This method enabled a rapid and 
efficient estimation of routing logistics, facilitating subsequent, more 
detailed VRP solutions within each cluster.

After solving the VRP for the cluster centers, we proceeded to opti
mize the routes within each cluster through a secondary VRP. This step 
aimed to determine the most efficient path for visiting all the coffee 
shops associated with each cluster. For clusters containing more than ten 
coffee shops, a recursive subdivision method was implemented, dividing 
them into smaller subclusters with no more than ten coffee shops each. 
This hierarchical approach significantly enhances computational 

Fig. 5. Creation of Clusters of Coffee Shops.
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efficiency, ensuring that each VRP instance can be solved within a 
practical timeframe. Fig. 7 illustrates the outcome of applying the 
recursive clustering technique to Business Model 1 in our case study. The 
figure highlights the six optimized routes required to collect all spent 
coffee SCG.

In Case 1, as illustrated in Fig. 7, the collection of 6271 kg of SCG per 
day required six routes, covering a combined distance of 611 km. The 
entire collection process took approximately 65.25 hours, including 
24 hours of transportation time and 41 hours of service time at the 
coffee shops (CS). The total transportation cost was $1835.73, 
comprising $1800 for routing operations and $35.73 for the energy 
consumption of EVs. This results in a unit transportation cost of $0.29 
per kilogram of SCG. With a two-shift daily operation, consisting of 10- 

hour shifts, it was feasible to schedule the SCG collection process over 
three days to complete all six routes. Adhering to this timeline is crucial, 
as exceeding it significantly increases the risk of SCG contamination. 
Table 2 presents detailed metrics for each of the six routes. It is essential 
to note that no investment costs were incurred in this scenario, as 
neither smart bins nor pre-drying equipment were implemented.

5.3. Results for Case 2

In Business Model 1 – Case 2, each coffee shop is equipped with IoT- 

Fig. 6. VRP Solution Based on 12 Cluster Centers.

Fig. 7. Optimal Route Configuration – Business Model 1, Case 1.

Table 2 
Detailed Information on the VRP Plan in Case 1.

Route SCG amount (kg) Number of coffee shops Distance (km) Time (h)

1 800 120 53.59 4.89

2 1462 230 96.65 10.61

3 447 100 117.70 13.91

4 1288 150 124.00 9.10

5 1258 170 81.23 14.14

6 1016 230 138.11 12.60

Total 6271 1000 611 65.25
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enabled smart bins and ultra-small pre-drying technology. This config
uration allows for the safe storage of pre-dried SCG on-site for up to one 
week, eliminating the need for daily collection. The pre-dried SCG 
produced under this model maintains a quality suitable for activated 
carbon production, with no risk of contamination at the source. How
ever, the incorporation of these advanced technologies results in higher 
costs compared to Case 1. Specifically, an annual investment of $10 
million (10,000 $ * 1000) is required over five years to deploy the 
intelligent bins and ultra-small pre-drying units across participating 
coffee shops.

If daily collection were implemented in Case 2, the utilization rate of 
EVs would decrease due to underutilized truck capacity, leading to in
efficiencies. In contrast, the weekly collection model proves to be more 
efficient and cost-effective, as it minimizes the number of trips and 
maximizes EV capacity utilization. This approach also reduces overall 
maintenance expenses, resulting in a more predictable and consistent 
operating cost structure. While daily collection provides greater flexi
bility, it introduces lower efficiency and higher maintenance costs, 
which may offset its perceived operational advantages in the long term. 
Table 3 presents a comparison of EV utilization rates for Cases 1 and 2 
under daily and weekly collection scenarios, highlighting the opera
tional benefits of the weekly collection strategy in Case 2.

5.4. Results for Case 3

In Case 3, a total of 6271 kg of SCG was transported from coffee 
shops to the CC. However, after applying the consolidation and pre- 
drying process at the CC, only 1500 kg of pre-dried SCG was ulti
mately collected. As shown in Fig. 8, 21 out of 28 potential sites were 
selected for the establishment of CC, each equipped with medium-sized 
pre-drying technology. Existing coffee shops were then allocated to 
these selected CCs. Due to the consolidation of SCG and efficient route 
planning, only one route—with a total travel distance of 89.5 km—was 
required to collect all pre-dried SCG. Moreover, the total collection time 
was reduced to 4.9 hours, which includes 3.5 hours of transportation 
and 1.4 hours of service time at the CC. This represents a significant 
improvement compared to the longer collection process observed in 
Case 1.

Additionally, Case 3 offers operational advantages, including 
reduced time spent on the road and lower risk of EV accidents and SCG 
contamination. This is made possible by the ability to safely store 
dehydrated SCG at the CCs for up to one week. The total transportation 
cost in Case 3 was $305.44, which includes $300 for routing and $5.44 
for EV energy consumption. As a result, the unit cost for collecting and 
transporting SCG is $0.29/kg in Case 1 and significantly lower at $0.04/ 
kg in Case 3. These costs are considered reasonable and justifiable when 
compared to the market value of activated carbon and its valuable 
byproducts, reinforcing the economic viability and sustainability of the 
overall process. A cost comparison between Cases 1 and 3 in Table 4
highlights the superior transportation cost-effectiveness of Business 
Model 2, which achieves substantial savings by leveraging centralized 
collection and pre-drying. In this scenario, we also assumed that trans
portation from coffee shops to CCs is supported through a subsidy, 
provided to the collector as an incentive. Since this cost is not directly 

compared to the fixed costs of establishing CCs, the optimization algo
rithm tends to reduce the total system cost by selecting fewer CCs, even 
if this results in longer travel distances for bikes or other local transport 
methods.

6. Sensitivity analysis

6.1. Change in the participation rate of coffee shops in SCG generation

This analysis evaluated the impact of varying participation rates 
among coffee shops in the SCG collection program under both optimistic 
and pessimistic scenarios. Pessimistic scenarios, such as accidental 
disposal of SCG, were considered for the post-network establishment 
phase. In contrast, optimistic scenarios reflect improved participation 
driven by effective awareness campaigns. To capture a broad spectrum 
of potential outcomes, we developed scenarios by assigning participa
tion rates ranging from 65 % to 125 %, based on realistic assumptions. A 
uniform distribution was used to randomly assign corresponding SCG 
weights, allowing for a comprehensive assessment of program perfor
mance under various participation conditions.

The sensitivity analysis results and the performance comparison 
between Cases 1 and 3 in terms of collection cost per unit of SCG under 
varying coffee shop participation rates reveal that Case 1 consistently 
incurs higher collection costs across the analyzed scenarios. This 
outcome highlights the impact of economies of scale, where increasing 
the volume of SCG collected results in lower unit collection costs. In 
pessimistic scenarios, where SCG generation is lower than anticipated, 
the pre-drying equipment may be underutilized, potentially rendering 
the investment in such technology economically unjustifiable.

In Business Model 2 – Case 3, the network was initially configured 
with 21 CCs. However, in the most optimistic scenario—driven by suc
cessful awareness campaigns and higher-than-expected participation at 
coffee shops—five additional CC were required, increasing the total to 
26. This outcome highlights the importance of strategic planning in 
meeting future demand growth, particularly during the project exten
sion phase. Ongoing investment in awareness initiatives is also critical to 
maintaining high levels of participation.

Conversely, in the most pessimistic scenario, eight CCs remained 
unused due to the limited volume of SCG collected, emphasizing the 
importance of aligning infrastructure investments with realistic partic
ipation expectations. Furthermore, the analysis reveals a clear correla
tion between participation rates and time-related performance metrics. 
As coffee shop participation increases, total transportation and service 
time rise proportionally. This indicates that higher engagement levels 
place greater operational demands on the collection system. To address 
this, managers should consider strategies that enhance efficiency, such 
as route optimization based on real-time data on participation and SCG 
volumes at each location. Improving scheduling and resource allocation 
can also reduce idle time and enhance productivity during SCG collec
tion operations.

6.2. Change in the number of coffee shops during the program contract

Participation in the SCG collection program may fluctuate over time, 
as some coffee shops may exit the program while others may join. These 
changes can be driven by various factors, including shifts in ownership, 
evolving business priorities, operational challenges, increased market 
competition, regulatory changes, and growing interest in sustainability 
initiatives. The results indicate that, under the same network configu
ration as in Case 3, a reduction in the number of participating coffee 
shops led to a decrease in the total distance traveled during the collec
tion process. However, this decrease was accompanied by a reduction in 
the utilization rate of EVs. This suggests that although fewer partici
pating coffee shops can result in lower transportation distances and 
potential cost savings, it also reduces vehicle efficiency and resource 
utilization.

Table 3 
Comparison of EV Utilization Rates by Route: Daily vs. Weekly Collection.

Route EV utilization rate – Case 1 (Daily 
collection)

EV utilization rate – Case 2 (Weekly 
collection)

1 27 % 7 %
2 49 % 12 %
3 15 % 4 %
4 43 % 11 %
5 42 % 10 %
6 34 % 8 %
Average 35 % 9 %
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This finding highlights the interconnectedness of key operational 
variables in the SCG collection program. Evaluating program perfor
mance requires a holistic perspective that accounts not only for direct 
cost metrics but also for vehicle utilization and system adaptability in 
response to changing participation levels.

However, the observed decrease in EV utilization rates indicates a 
potential underutilization of resources, which can negatively affect 
overall operational efficiency. To address this, managers should priori
tize building and maintaining strong relationships with participating 
coffee shops (and implement targeted measures to encourage their 
sustained involvement in the program. These measures may include 
providing continuous support, proactively addressing operational chal
lenges, and offering incentives or reward systems for participation.

Equally important is balancing the recruitment of new coffee shops 
with strategies aimed at retaining existing participants. Ensuring pro
gram stability requires consistent engagement with current partners, 

which can be achieved through ongoing communication and respon
siveness to their needs. Furthermore, leveraging data analytics and 
feedback mechanisms to monitor coffee shops’ engagement and satis
faction levels can help managers quickly identify emerging issues and 
respond with timely interventions. This proactive approach fosters long- 
term commitment and contributes to the overall success and scalability 
of the SCG collection program.

The yield of pre-drying equipment may vary due to uncertainty 
factors, which can affect overall system performance. Fig. 9 illustrates 
the impact of fluctuations in the consolidation rate on electric EV uti
lization. This analysis reveals a clear trade-off between the weight 
reduction of SCG achieved through pre-drying and the utilization rate of 
EVs. Specifically, as the yield rate at the CCs decreases, meaning less 
effective weight reduction of SCG, the EV utilization rate increases. 
While higher EV utilization might appear beneficial, a lower consoli
dation rate undermines the purpose of pre-drying and reduces the 
overall efficiency of the consolidation strategy. Conversely, increasing 
the yield rate results in a more significant weight reduction; however, 
this may also lead to decreased EV utilization due to lighter loads and 
fewer full-capacity trips. As illustrated in Fig. 9, the EV utilization rate 
increases linearly with the SCG yield. This linear relationship can be 
explained using a single vehicle for SCG collection from CCs in Case 3. 
Since the quantity of SCG generated is directly proportional to the yield, 
and the vehicle’s capacity remains constant, the utilization rate of the 
EV also follows a linear trend with respect to the yield. Managers must 
carefully navigate this trade-off to strike an optimal balance between 
transportation efficiency and waste processing effectiveness. Recog
nizing and addressing this dynamic is essential for optimizing waste 
management operations and maximizing the benefits of pre-drying 
technologies within the SCG collection network.

6.3. Business models’ behavior in areas with different velocity ranges

In our analysis, we examined two distinct types of operational en
vironments: areas with low potential for velocity and those with high 

Fig. 8. Optimal Locations, Allocations, and Routes for Case 3.

Table 4 
Comparative Analysis of Business Model 1 and Business Model 2.

Criteria Case 1 (Baseline ) Case 2 
(no collaboration)

Case 3 
(with 
collaboration)

Infrastructure - Smart bin and ultra 
small pre-drying in 
all coffee shops

Pre-drying and 
smart bins in some 
coffee shops (CC)

Transportation 
Cost

1835.73 $ 1829.89 $ 305.44 $

Operational 
Efficiency

High 
transportation 
weight

Medium 
transportation 
weight

Low 
transportation 
weight

Environmental 
Impact

No monitoring, 
high 
contamination 
risk

Moderate efficiency 
of monitoring, 
medium 
contamination risk

High efficiency of 
monitoring, low 
contamination risk

SCG Quality for 
Treatment

Low Medium Standard
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velocity potential. In regions with low-velocity zones, EVs travel at an 
average speed of 25 km/h, with possible fluctuations ranging from 22 to 
32 km/h. These variations are influenced by factors such as traffic 
density, road conditions, and local speed limits. In contrast, high- 
velocity potential zones support higher average travel speeds, typi
cally around 50 km/h, with variations ranging from 45 to 55 km/h. 
These differences are attributed to better road quality, favorable terrain 
conditions, and fewer regulatory speed constraints. Scenarios classified 
under high-velocity potential include regions such as the agricultural 
heartland, historic rural towns, tourist destinations, cultural heritage 
sites, and retirement communities. In contrast, low-velocity potential 
scenarios encompass settings like bustling downtown financial districts, 
vibrant and trendy neighborhoods, tranquil suburban residential com
munities, innovative tech hubs, and culturally diverse urban areas.

Fig. 10 illustrates the collection time associated with each scenario, 
considering the distinct velocity characteristics of the respective envi
ronments for Case 1 (baseline) and Case 3 (with CC). The results clearly 
show that collection times are consistently longer in low-velocity po
tential areas. This disparity is primarily due to factors commonly found 
in urban environments, such as higher traffic volumes, congestion, 
frequent stops, and shorter distances between collection points, which 
collectively slow down the collection process. Conversely, high-velocity 
potential areas enable faster and more efficient SCG collection. The 
reduced traffic, fewer interruptions, and more fluid traffic flow, 

combined with longer distances between stops, contribute to shorter and 
more consistent collection times. The contrast in operational perfor
mance between these two types of environments underlines the impor
tance of incorporating environmental and contextual factors into the 
planning and optimization of EV-based SCG collection systems.

6.4. Business models’ behavior in rural and urban areas

We further extended our evaluation by comparing the effectiveness 
of Business Model 1 – Case 1 (Baseline) and Business Model 2 – Case 3 in 
collecting SCG from 40 coffee shops located in rural areas, specifically in 
the cities of Drummondville and Victoriaville, near Montreal. Table 5
presents a comparative analysis of the performance of both models in 
rural versus urban settings. The results reveal that Business Model 1 – 
Case 1 outperformed Business Model 2 – Case 3 in rural areas, particu
larly in terms of cost per collection, demonstrating greater cost- 
effectiveness in low-density regions. This suggests that the use of 
centralized pre-drying equipment at CCs, as proposed in Case 3, may be 
less suitable or economically viable in rural contexts where the distances 
between coffee shops are more significant and the volume of collected 
SCG is relatively low.

These findings emphasize the need for further research and the 
development of tailored strategies to optimize SCG collection in rural 
areas, where logistical and economic considerations differ significantly 

Fig. 9. Relationship Between Pre-Drying Yield Rate and EV Utilization (Case 3).

Fig. 10. Impact of Vehicle Velocity on SCG Collection Time.
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from those in urban environments.
Table 5 compares the performance of Business Model 1 – Case 1 and 

Business Model 2 – Case 3 across both high- and low-density scenarios. 
In rural areas, the difference in cost per unit between the two business 
models was relatively small, amounting to only $0.04 per kg. This 
marginal difference suggests that, in low-density regions, the choice 
between Business Models 1 and 2 has minimal impact on the cost of SCG 
collection per unit. As a result, managers operating in rural settings may 
prioritize other decision-making factors, such as operational efficiency, 
equipment availability, and community engagement levels, when 
selecting the appropriate model. This indicates that either business 
model could be considered viable for rural applications, depending on 
local context and strategic objectives.

In contrast, the cost differential in urban areas is significantly more 
pronounced, with Business Model 2 offering a $0.25 lower cost per unit 
compared to Business Model 1. This substantial gap highlights the 
importance of selecting the most cost-effective model in high-density 
environments, where optimized logistics can lead to significant finan
cial savings and enhanced overall profitability. Therefore, in urban 
settings, decision-makers should conduct detailed cost-benefit analyses 
that incorporate factors such as route optimization, vehicle utilization, 
and labor allocation to inform the selection of the optimal business 
model.

7. Economic analysis

The results from the optimization model provide estimates of oper
ational expenses (OPEX); however, capital expenditures (CAPEX) are 
also critical for evaluating the project’s overall feasibility. A compre
hensive financial analysis includes a five-year cash flow projection, 
encompassing both costs and revenues, to assess the economic viability 
of the proposed solution. It is assumed that 6271 kg of SCG are gener
ated daily across the 1000 coffee shops. Therefore, on an annual basis, 
this results in a total of 2288,915 kg of SCG (6271 kg/day × 365 days), 
which must be collected under both models. In Model 1, the daily cost of 
SCG collection is approximately $1836. In contrast, Model 2 presents a 
significantly lower daily collection cost of roughly $305. Revenue is 
assumed to be generated from the sale of activated carbon, which is 
produced by treating SCG. To estimate revenue, we use a conversion 
efficiency (yield rate), which reflects the percentage of activated carbon 
obtained from SCG after the activation process is complete. For this 
analysis, a yield rate of 0.22 is assumed for Case 1, while a higher yield 
rate of 0.25 is applied to Case 3. The improved yield in Case 3 is 
attributed to the pre-drying process conducted at CCs, which enhances 
the quality of SCG for activation. Operating costs are assumed to remain 
constant over the five years, while capital expenditures are incurred 
entirely at the start of the project (Year 0). Table 6 presents a summary 
of the cost and revenue estimates for both business models.

Based on the five-year cash flow projections presented in Table 6, 

Business Model 2 – Case 3 demonstrates a more favorable financial 
outlook compared to Business Model 1 – Case 1, despite requiring a 
higher initial investment. While the upfront capital cost for installing 
equipment at CCs may seem substantial at the project’s outset, it is 
essential to recognize that this investment is a one-time expense typi
cally incurred in the early stages and amortized over the project’s life
span. Unlike recurring operational costs such as transportation and 
routine maintenance, this capital expenditure represents a long-term 
asset that contributes to improved yield and overall efficiency in the 
reverse logistics network.

Fig. 11 presents a comparison of the discounted cumulative cash 
flows for two business models, Case 1 (Baseline) and Case 3 (Business 
Model 2), over a five-year period, using a discount rate of 5 %. Case 1 
starts without any initial investment, resulting in a neutral cash flow 
position at year zero. In contrast, Case 3 requires a one-time upfront 
investment of $2.1 million, leading to a negative starting cash flow.

Over the five-year horizon, both models generate consistent annual 
profits. Case 1 yields a yearly profit of approximately $39.6 million, 
whereas Case 3 achieves a higher annual profit of $43.6 million. This 
difference of nearly $4 million in additional yearly profit gives Case 3 a 
substantial financial advantage.

Despite the initial investment cost, Case 3 quickly surpasses Case 1 in 
cumulative discounted cash flow before the end of the first year. This 
early crossover point indicates a remarkably short payback period, 
demonstrating the exceptional profitability of Case 3. As time pro
gresses, the financial gap between the two models continues to widen. 
By the end of the five-year period, Case 3 significantly outperforms Case 
1, with its higher profit margin compounding over time. The discounting 
effect at 5 % has minimal impact given the scale of the returns. In 
summary, although Case 3 involves a substantial initial investment, it 
proves to be financially superior in the medium term. Its rapid payback, 
higher recurring profits, and stronger overall financial performance 
make it a more attractive and strategically beneficial business model 
over the five-year timeframe.

Interest rate fluctuations can significantly impact project valuation, 
making the financial outlook a critical consideration. Fig. 12 illustrates 
that Business Model 2 consistently yields a higher net present value 
(NPV) than Business Model 1 across a range of interest rates. This trend 
highlights the financial robustness of Business Model 2 under varying 
economic conditions. Moreover, the figure shows that as the interest rate 
increases, the NPV of both projects declines, reflecting the more signif
icant discounting effect on future cash flows. This underlines the 
importance for decision-makers to carefully evaluate both short-term 
and long-term financial implications when selecting a business model. 
It also calls for the development of contingency plans to address risks 
arising from uncertain economic variables such as interest rate 
volatility.

8. Discussion and managerial implications

Following a thorough analysis of the three case studies within the 

Table 5 
Comparative Analysis of Business Model Behavior in Urban and Rural Areas.

Urban Rural

Business model 1 
(Baseline)

2 
(case3)

1 2

Number of coffee shops 1000 1000 40 40
Number of routes 6 1 1 1
Number of CC 0 21 0 3
Distance (km) 611 89.5 319.51 305.73
Time (h)Time (h)Time (h)Time (h) 

Time (h)Time (h)Time (h)
65.25 4.9 8.80 6.35

Total transportation cost ($)Total 
transportation cost ($)

1835.73 305.44 316.70 313.86

Cost of collection per unit ($ per 
kg)Cost of collection per unit ($ 
per kg)

0.29 0.04 3.73 3.69

Table 6 
Cost and Revenue Summary for Business Models (Case 1 and Case 3).

Business model 1 - Case 1 
(Baseline)

Business model 2 - 
Case 3

Annual SCG collected (kg) 2 288 915 2 288 915
Yield factor ( γ) 0.22 0.25
Annual activated carbon 

(kg)
503 561 572 228

Price of Activated carbon 
($/ kg)

80 80

Annual Collection Cost ($) 670 140 111 325
Investment Cost ($) - 2 100 000
Annual Revenue ($) 40 284 904 45 778 300
Annual Profit ($) 39 614 764 43 566 975

H. Zohourfazeli et al.                                                                                                                                                                                                                          Supply Chain Analytics 10 (2025) 100126 

14 



framework of the two distinct business models, we will outline the 
ensuing discussion and managerial implications that emerge from our 
findings. This exploration aims to underscore the key insights gleaned 
from the cases, offering a comprehensive framework for grasping the 
operational dynamics and strategic opportunities present in each model. 
Throughout this dialogue, we will present actionable recommendations 
for managers eager to leverage these insights to improve organizational 
effectiveness and foster sustainable growth.

8.1. Discussion

First, it is recommended that Business Model 2 be adopted in urban 
settings. Given the substantial cost differences observed in such envi
ronments, Case 3—which incorporates SCG consolidation at Circular 
Coffee Shops (CCs) along with pre-drying technology—proves to be both 

more cost-effective and environmentally advantageous (reduced SCG 
contamination) [36]. Urban areas, with their higher volumes of SCG, 
benefit from economies of scale in both transportation and processing, 
resulting in significantly lower unit costs compared to Business Model 1. 
Second, it is advisable to implement Smart Bins selectively in 
high-volume or strategically located coffee shops. Although Case 3 
(business model 2 with coffee shop collaboration) requires a higher 
upfront investment due to smart bin deployment, its use in targeted 
areas enhances data-driven decision-making [37]. By collecting 
real-time data on SCG quality, quantity, and contamination risk directly 
at the source, smart bins support more efficient route planning and 
improve the overall quality of SCG. This justifies their deployment in 
locations with frequent or high-volume SCG generation, where the 
operational benefits outweigh the additional capital costs.

At the operational level, implementing weekly collection improves 

Fig. 11. Cash Flow Analysis: Business Model Comparison Over 5 Years.

Fig. 12. NPV Comparison at Different Discount Rates (3–10 %).
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cost efficiency (Case 2). Weekly collection of pre-dried SCG from coffee 
shops allows for greater truck capacity utilization, lower operational 
costs, and reduced wear on the EV fleet. This approach is particularly 
suitable for cases with stable and predictable SCG volumes, helping 
avoid underutilization and unnecessary trips [28]. The focus on Quality 
Control measures in the processing stages across the collection and 
processing stages (Case 3) enhanced the SCG yield for activated carbon. 
This focus on quality throughout the collection and pre-drying stages 
can minimize contamination and boost yield, thereby increasing the 
profitability of the processed SCG. For areas with widely spaced coffee 
shops, adjusting transportation cost weighting in routing algorithms can 
balance cost efficiency and distance, ensuring that remote locations are 
integrated without excessive costs to the network.

8.2. Managerial implications

The experimental results for the three cases highlight several key 
managerial implications. Strategic investment in high-cost infrastruc
ture is crucial for long-term returns. Business Model 2, which requires 
intensive collaboration between coffee shops, despite its higher initial 
capital expenditure, offers substantial financial advantages in urban 
contexts. Prioritizing this model in high-density areas enables managers 
to capitalize on economies of scale, reduce transportation costs, and 
improve operational efficiency. Additionally, enhanced data utilization 
is crucial for informed operational decision-making. The use of smart 
bins, as demonstrated in Cases 2 and 3, allows for data-driven optimi
zation of collection routes, transportation scheduling, and SCG man
agement. By capturing real-time data on SCG quality, quantity, and 
contamination risk, managers can make informed adjustments to 
improve collection strategies and processing outcomes.

Balancing environmental impact with operational efficiency is 
another critical consideration. Pre-drying technology, introduced in 
Cases 2 and 3, reduces SCG weight and contamination risk, which not 
only lowers transportation costs but also aligns with environmental 
goals by minimizing emissions and resource use. This ensures higher- 
quality SCG for downstream processing. Scenario-based planning is 
also recommended for resource allocation and network design. Sensi
tivity analysis reveals that variables such as SCG participation rates, 
yield rates, and quality have a significant impact on overall program 
performance. Adopting flexible, scenario-based strategies allows man
agers to respond to these uncertainties and maintain system resilience.

Furthermore, building strong relationships with coffee shops is vital 
to mitigating participation-related risks. Reliable partnerships can pre
vent disruptions, especially in areas with fluctuating engagement. Of
fering incentives, maintaining consistent communication, and 
addressing concerns can foster trust and sustained participation. Lastly, 
optimizing routes according to area-specific factors such as traffic con
ditions and velocity potential enhances efficiency. Comparisons be
tween urban and rural contexts indicate that tailored route planning 
improves electric vehicle utilization, reduces delays in low-velocity 
zones, and maximizes collection performance in both densely popu
lated and sparsely populated regions.

9. Conclusion

This paper presents a digital intelligence framework for developing a 
sustainable SCG recovery system in Montreal, leveraging Industry 4.0 
technologies to optimize a reverse logistics network. The proposed 
business models improve economic viability by consolidating SCG at 
Circular Coffee Shops and incorporating pre-drying processes to reduce 
weight, thereby significantly lowering transportation costs. These find
ings underscore the importance of circular economy principles in SCG 
recovery and highlight the transformative potential of intelligent tech
nologies in advancing efficient and sustainable waste management.

The integration of Industry 4.0 tools—such as smart bins, pre-drying 
equipment, and electric vehicles demonstrates how technological 

innovation can reduce contamination risks, maintain SCG quality, and 
improve operational efficiency across the coffee value chain. Applying 
the customized reverse logistics model to 1000 coffee shops in Montreal, 
the study shows how Circular Coffee Shops’ infrastructure can stream
line collection logistics, reduce transportation frequency, and enhance 
overall network performance. Key strategic and operational deci
sions—including the location of Circular Coffee Shops, the allocation of 
coffee shops within Circular Coffee Shops, and route opti
mization—demonstrate the critical role of digital intelligence in 
enhancing RL efficiency.

However, the study acknowledges certain limitations. The financial 
analysis may overestimate returns by assuming that transportation costs 
between coffee shops and Circular Coffee Shops are fully offset through 
incentives. Additionally, the use of specific assumptions and static data 
may limit the model’s generalizability and applicability in varied real- 
world contexts. Future research should investigate financial mecha
nisms to support SCG transport, explore diversified value-added prod
ucts from SCG treatment, and assess system performance under 
dynamic, real-time data conditions. Moreover, introducing flexibility 
into the circular coffee shops’ infrastructure—such as selectively 
deploying smart bins and pre-drying technologies—could enhance the 
model’s adaptability to fluctuating SCG volumes and site-specific 
characteristics.

Finally, as we observe a low rate of EV capacity utilization in current 
transportation systems, future research should explore the integration of 
EV charging possibilities directly into the VRP models. The underutili
zation of EV capacity is often linked to the limited driving range, lack of 
real-time charging infrastructure planning, and suboptimal routing de
cisions that fail to account for energy constraints and recharging op
portunities. This would enable more realistic and operationally viable 
routing solutions, particularly for urban waste collection and reverse 
logistics operations. Integrating real-time data, including traffic, battery 
status, and dynamic energy prices, can further enhance the respon
siveness and efficiency of routing decisions.

Overall, this study lays the groundwork for establishing an intelli
gent, economically viable, and sustainable SCG recovery network. By 
combining digital intelligence with circular economy principles, it offers 
a promising pathway toward more efficient urban waste management 
and greater environmental responsibility.
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Appendix

Mathematical model formulation for Business Model 1 (VRP)
The mathematical formulation of Business Model 1 includes sets, parameters, decision variables, an objective function, and constraints, as detailed 

below.
Sets and indices.
i, j Index of coffee shops as the SCG generation point
k Index of routes
Decision variables
xijkIf a route k exists when transporting from a coffee shopi to a coffee shop j
Parameters
QCapacity of EV (kg)
LMaximum length that an EV can traverse (km)
FkFixed cost of route k ($)
dijDistance between coffee shop i and coffee shop j (km)
tjService time in CC j (min)
ρidleElectricity consumption rate per unit time while EV is idle (L/min)
ρijElectricity consumption rate per unit distance while EV is moving (kWh/km)
ρPrice of per unit electricity consumption ($/kWh)
qjAmount of SCG collected from each coffee shop j(kg)
Objective function 

MinF =
∑K

k=1

∑N

j=0
(x0jk ∗ Fk)+

∑N

i=0

∑N

j=0
(xijk ∗ dij ∗ ρij ∗ ρ)+

∑N

j=1
(xijk ∗ tj ∗ ρidle ∗ ρ) (0.1) 

Constraints 
∑K

k=1

∑N

i=0
xijk = 1, ∀j = 1, ...,N (0.2) 

∑

k=1

∑

j=0
xijk = 1, ∀i = 1,…,N (0.3) 

∑N

i=0
xijk =

∑N

i=0
xjik = 1, ∀ j = 1,…,N ; k = 1, 2,…,K (0.4) 

∑N

j=1
xijk ∗ qj ≤ Q, ∀ i = 0,1,…, I ; k = 1, 2,…,K (0.5) 

∑N

i=0

∑N

j=0
dij ∗ xijk ≤ L,∀ k = 1,2,…,K, i ∕= j (0.6) 

∑N

i=0

∑N

j=0
xijk ≤ |S| − 1, S ⊆ {1,2,…,N}∀k = 1,2,…,K (0.7) 

xijk = {0,1} (0.8) 

The objective function (0.1) calculates the total cost, which includes both the fixed costs associated with route selection and the variable costs 
related to electric vehicle (EV) operations. The latter accounts for energy consumption while traveling between coffee shops and service time at each 
location, with electricity costs estimated based on values from the literature. Constraint (0.2) ensures that each coffee shop is visited exactly once by a 
vehicle. Constraints (0.3) and (0.4) specify that each vehicle route begins at the depot and ends at the treatment facility after visiting the last coffee 
shop. Equation (0.5) enforces the vehicle capacity constraint, stating that the quantity of SCG collected on each route must not exceed the vehicle’s 
maximum load. Constraint (0.6) limits the total length of each route, ensuring it does not surpass the maximum allowable travel distance. Constraint 
(0.7) eliminates subtours to maintain route feasibility. Finally, constraint (0.8) defines the nature of the decision variables.
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[52] J. Van Engeland, J. Beliën, L. De Boeck, S. De Jaeger, Literature review: Strategic 
network optimization models in waste reverse supply chains, Omega 91 (2020) 
102012, https://doi.org/10.1016/j.omega.2018.12.001.

[53] M. van Keulen, J. Kirchherr, The implementation of the Circular Economy: Barriers 
and enablers in the coffee value chain, J. Clean. Prod. 281 (2021) 125033, https:// 
doi.org/10.1016/j.jclepro.2020.125033.
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