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Abstract—Span Loss is a pivotal characteristic of optical 

networks, and its accurate prediction enables adjustment for 
optimal performance and proactive monitoring. Deep learning 
models such as transformers, with their self-attention mechanism, 
have shown potential for various prediction tasks. In this study, we 
propose the Transformer-XL (Extra Long) model for single-step 
and multi-step forecasting, trained with field data. We report on 
models predicting span loss from 15 minutes to 5 days, using 
window sizes of 15 minutes to 10 days. The single-step model's 
average Absolute Maximum Error (AME) is better than the naive 
model by 2.13 dB and outperforms linear regression by 0.05-0.32 
dB across different window sizes. Our single-step model also 
achieves better performance than the Recurrent Neural Network 
(RNN) with an AME improvement of 0.02 dB. The average AME 
of our multi-step model exceeds the naive model's performance by 
a range of 2.95-3.05 dB, linear regression by a substantial 0.02-0.15 
dB and RNN by a range of 0.04-0.54 dB across different window 
sizes and forecast horizons. Based on Root Mean Square Error 
(RMSE), the single-step model performs better than the naive 
approach across various window sizes by 0.07 dB, achieves up to 
0.07 dB improvement over linear regression, and delivers 
comparable results to RNN. Moreover, our multi-step model 
improves upon the naive approach with RMSE by 0.04 dB and 
RNN by 0.02 across various window sizes and forecast horizons. It 
also demonstrates a slight improvement over linear regression. 
 

Index Terms— Attention mechanism, deep learning models, 
multi-step prediction, optical networks, single-step prediction, 
span loss, time series forecasting, Transformer-XL, Transformers. 

I. INTRODUCTION 
PTICAL networks, serving as the backbone of modern 
communication infrastructures, have revolutionized 
the way data is transmitted across vast distances. These 
networks, being analog in nature, require continuous 

monitoring to ensure optimal performance. Key metrics, such 
as optical power levels, bit error rates, and signal-to-noise 
ratios, provide insights into the health and efficiency of these  
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networks, acting as vital indicators of their operational status. 
Central to these metrics is the span loss, which is defined as the 
reduction in optical signal power caused by optical fiber 
attenuation and losses due to connectors and splices as it 
traverses through fiber optic cables. Monitoring span loss is 
imperative, as even slight increases can result in alterations in 
the signal-to-noise ratio, which directly affects the Quality of 
Transmission (QoT). 

While real-time monitoring provides a snapshot of the 
current state, predicting future span loss can offer a proactive 
approach to network management. By anticipating potential 
issues, network operators can implement preventive measures 
such as cable repair or replacement, ensuring uninterrupted and 
high-quality data transmission. Machine learning, a subset of 
artificial intelligence that excels in recognizing patterns and 
making predictions based on data, offers a powerful solution to 
this problem. Within machine learning, deep learning models, 
characterized by their layered neural architectures, have shown 
utility in handling complex prediction tasks. Their ability to 
process vast amounts of data and extract intricate patterns 
makes them particularly suited for predicting span loss in 
optical networks. 

Among the deep learning architectures, Transformer models 
have revolutionized tasks ranging from natural language 
processing to time-series forecasting. In the context of optical 
networks, the Transformer's ability to capture long-range 
dependencies and intricate relationships in data suggests 
promise for accurate and efficient span loss prediction.  

In this study, we employ the Transformer with extra-long 
context model, better known as Transformer-XL.  This model 
was pioneered by researchers at Google Brain and Carnegie 
Mellon University [1]. The "XL" suffix underscores its 
enhanced capacity to process extended contexts or sequences 
relative to its predecessors [1]. Our investigation encompasses 
both single-step and multi-step predictive models. We 
benchmarked these models against foundational models, 
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namely the naive and linear regression. The comparative 
analysis was conducted based on prediction error metrics Root 
Mean Square Error (RMSE), Absolute Maximum Error (AME), 
as well as the computational time required for each model's 
execution. 

The rest of this paper is structured as follows: Section II 
presents related work. Section III defines span loss and explains 
how this parameter is calculated. Section IV describes the field 
data used in this study and focuses on data preprocessing, 
encompassing three facets: Extraction, Transformation, and 
Loading (ETL), addressing missing values, and statistical tests 
for time series stationarity. Section V outlines the principles of 
Transformer architecture and discusses its key advantages, 
including the use of multi-head attention for capturing long-
range dependencies in data. Section VI describes the design of 
the Transformer forecasting models, as well as the parameter 
optimization process, and presents performance results for both 
single-step and multi-step prediction tasks. We conclude 
Section VII with a summary of our contributions and future 
directions of research. 

II. RELATED WORK 
Optical Performance Monitoring (OPM) in optical networks 

ensures the reliability and efficiency of data transmission by 
providing real-time insights into the network's health. By 
predicting trends and changes in network parameters, operators can 
reduce downtime and maintain optimal performance, facilitate 
proactive management, and resolve issues before they arise. A 
broad range of methods based on machine learning have been 
proposed for performance prediction tasks. In [2], Tremblay et 
al. used 13-month field performance data to train Long Short-
Term Memory (LSTM), Encoder-Decoder LSTM, and Gated 
Recurrent Unit (GRU) models for lightpath Signal-to-Noise 
Ratio (SNR) prediction over forecast horizons up to four days. 
In a related work, Mezni et al. demonstrated the robustness of a 
1D Convolutional Neural Network over forecast horizons up to 
24 hours for multi-step performance prediction using field bit 
error rate data [3]. Chouman et al. trained a Multilayer 
Perceptron (MLP) architecture using field data from 52 
lightpaths deployed in two optical networks [4]. This study 
evaluated whether MLP and LSTM models could be used to 
forecast estimated received SNRs of established lightpaths 
compared to naive and linear regression methods.  

In 2021, Allogba et al. proposed the use of two multivariate 
neural network models, based on GRU and LSTM methods, for 
predicting lightpath SNR over forecast horizons extending up 
to four days. These models were trained using field 
performance data and network features [5]. In a subsequent 
study [6], they reported superior performance of the single-step 
univariate LSTM model in comparison to the encoder-decoder 
LSTM and GRU models for the task of lightpath QoT 
forecasting. In 2023, Sun et al. proposed a method that uses 
receiver digital signal processing and nonlinear distortion 
analysis to accurately locate excess loss of wavelength selective 
switches (WSSs) and insufficient amplification of erbium-
doped fiber amplifiers (EDFAs), without requiring additional 
monitoring hardware [7]. 

In the context of span loss analysis, Yaméogo et al. 
implemented a time-series decomposition method on a year's 
worth of span loss data from four bidirectional spans within a 
production network, with the objective of identifying long-term 
degradation trends in the fiber plant [8]. Following the 
extraction of the trend component, they applied the Mann-
Kendall test to the span loss curves and utilized Sen's slope 
estimator test to determine the magnitude of span loss change, 
providing a deeper understanding of the fiber plant's 
degradation over time.  

Despite its utility in trend analysis and basic forecasting, the 
time series decomposition method faces several challenges. It 
may struggle with nonlinear relationships and sudden changes 
in the data due to external factors such as maintenance activities 
or environmental impacts, which can mislead trend analysis and 
skew results. Moreover, statistical tests like Mann-Kendall and 
Sen’s slope, though robust to non-normal distributions, do not 
adapt well to complex or abrupt changes in data structure [9]. 
Advanced deep learning models may offer an advantage in 
overcoming these limitations. In particular, transformers model 
complex dependencies in time series data without assuming 
linearity. Abrupt changes can be handled through their attention 
mechanisms, and learning from vast amounts of data to uncover 
subtle patterns that traditional methods might overlook [10]. 
Furthermore, the ability to dynamically weigh the importance 
of data points across time series allows for more precise and 
accurate predictions.  

III. SPAN LOSS: DEFINITION AND CALCULATION 

Determining QoT in optical networks requires an 
understanding of the noise sources for each of the optical 
signals. This noise can be broken into two broad categories: 
linear and nonlinear.  Linear impairments include filtering and 
noise from amplifiers called amplified spontaneous emission 
(ASE) [11]. Nonlinear impairments arise from the light 
interacting with the nonlinear medium of the fiber through the 
Kerr effect.  Nonlinear impairments can be modeled as a noise 
source using the GN model [12].  The magnitude of these noise 
sources is influenced by the span loss wherein the power 
launched at the head-end of the fiber drives the non-linear noise 
while the power at the tail-end of the span determines the linear 
signal-to-noise ratio.  There is an optimal launch power which 
balances these two noise sources for a given amplifier setup, 
fiber type and span loss [13].  

A. Span Loss Definition 
Span loss is defined as the total attenuation of optical power 

as the optical signal propagates through a designated segment 
or span. Contributors to this loss include factors such as fiber 
attenuation, splice and connector loss, as well as fiber bending 
[8]. Service Providers (SPs) extract and analyze span loss data 
to perform root cause analysis (RCA) on problems such as 
component degradation, and cable aging [8]. Careful 
monitoring and management of span loss is imperative for the 
preservation of long-term stability and optimal performance of 
optical networks. 
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B. Span Loss Calculation 
Fig. 1 shows the optical line system configuration with and 

without Raman amplification. The span loss is defined as the 
sum of all losses in the fiber segments between sites including 
the attenuation of the optical fiber as well as the loss of the patch 
panels, splices, and connectors.  

In this study, the calculation of span loss was performed 
automatically by the Network Elements (NEs) using (1) or (2), 
depending on whether Raman amplification is used, 
respectively: 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑃𝑃𝑖𝑖𝑖𝑖 −  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜                                        (1) 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑃𝑃𝑖𝑖𝑖𝑖 −  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅                     (2) 

  
where 𝑃𝑃𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜  indicate input power and output power of a 
probe channel, respectively, and 𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the Raman gain. 

In optical links without Raman amplification (Fig. 1(a)), the 
probe used for input and output powers is the optical 
supervisory channel (OSC) channel at 1510 nm which is 
referenced through in-factory calibration to the faceplate 
connectors connecting to the transmission fibers.   

In optical links with Raman amplification (Fig. 1(b)), the 
probe used for input and output powers is the telemetry channel 
at 1527 nm again referenced to the faceplate connectors. The 
Raman gain is measured at turn up using the telemetry channel. 
The wavelength of this channel is chosen to be close to the 
traffic carrying channels but just outside the gain range of the 
Erbium-Doped Fiber Amplifiers (EDFAs) such that it is limited 
to the span of interest and experiences a similar Raman gain as 
the channels themselves. 

IV. FIELD DATA AND DATA PREPROCESSING 
Performance Monitoring (PM) data were collected at 15-

minute sampling intervals over the course of 18 months for 532 
fiber spans in a production network in Canada. Data collection 
was performed in optically amplified links of lengths ranging 
from 6 to 138 km. The resulting 532 time series of span loss 
data were divided into two categories, stable or dynamic. Fiber 
spans were considered dynamic if the span loss changed by at 
least 2 dB between the highest and lowest values recorded 
during the observation period. Most spans were considered 

stable, while only 58 fiber spans (11%) were labeled dynamic. 
In the dataset, each span is a bidirectional pair of fibers. Among 
the 58 dynamic spans, 30 spans exhibited dynamic 
characteristics in both fiber directions and 28 spans showed 
dynamic loss variation in only one direction.  

The dataset comprised 58 distinct time series, representing 
dynamic spans with various features, including Card ID, Slot 
number, Port number, Shelf number, Date and Time, and Span 
loss values. For training the ML models in this study, we 
utilized the Date and Time and Span loss value features. The 
Date and Time feature provided temporal context, while the 
span loss value was the primary metric for forecasting future 
span loss amounts. Each of the time series had 51,936 samples 
of span loss. The data preprocessing pipeline involves essential 
steps, outlined as follows: 

A. Extracted, Transformed, and Loaded (ETL) 
In the initial phase of data preprocessing, the measured span 

loss data was extracted, transformed, and loaded (ETL) from 
the database. The network topology was recovered from 
network provisioning tools and stored in a proprietary Manage, 
Control and Plan (MCP)-export file, containing detailed 
information such as the Terminal Identifier (TID), the Access 
Identifier (AID) comprising the shelf, slot, and port as well as 
the source, destination, and path information for each fiber in 
each span. 

B. Missing Values in the Time Series 
Among 58 time series, 51 had missing values totaling 13% 

or slightly higher relative to their total data. The remaining 7 
time series had missing values, ranging between 27% to 33%. 
We used the strategy of reindexing followed by interpolation 
with the nearest value for filling the gaps in the time series. 
Reindexing involved adjusting the data for a consistent time 
index, filling gaps where data points were missing, and ensuring 
a complete sequence for subsequent interpolation.   

C. Statistical Tests for Time Series Stationarity 
To gain insights into the underlying structure of the dataset, 

we first conducted an exploratory analysis based on time series 
decomposition and autocorrelation. Results indicated that most 
of the series exhibited a stationary trend. To further substantiate 
this finding, we employed the Augmented Dickey-Fuller (ADF) 
test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, 

Fig.  1. Optical line system configuration: (a) without Raman amplification; (b) with Raman amplification. 
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two well-known statistical methods for evaluating time series 
stationarity. The analysis yielded results indicative of 67.24% 
trend-stationarity (39 time series out of 58), 24.13% difference-
stationarity (14 time series out of 58) and 8.62% stationarity (5 
time series out of 58). Consequently, a first-order differencing 
of time series was implemented as a preprocessing step. 
Subsequent reapplication of the ADF and KPSS tests to the 
transformed time series affirmed the stationarity of the series, 
except for two instances. To mitigate the influence of outliers 
within the dataset, the transformed samples were subsequently 
subjected to normalization utilizing a robust scaler.  

V. TRANSFORMERS AND THEIR MULTI-HEAD ATTENTION 
MECHANISM 

Transformers were introduced by Vaswani et al. in 2017 for 
natural language processing (NLP) [10]. They have 
demonstrated superior performance in modeling sequential 
problems, surpassing Recurrent Neural Networks (RNNs) [14]. 
Compared to RNNs, transformers leverage self-attention 
mechanisms to process data in parallel rather than sequentially. 
This approach captures long-range dependencies, enhancing the 
model's pattern recognition capabilities.  

Central to the success of transformers is the attention 
mechanism. By assigning attention scores to various parts of the 
input, this mechanism dictates the model's focus during 
prediction, allowing simultaneous consideration of different 
elements. This not only overcomes the limitations of previous 
sequential models in capturing long-range dependencies but 
also offers interpretability through attention scores. The 
reduction in computational time, owing to parallel processing, 
adds to its advantages [15]. The self-attention mechanism in 
transformers can be described as follows [10]. 

 
1) Calculate Query, Key, and Value matrices 

Query, Key, and Value matrices are derived from the 
input and are used to calculate the attention scores:  
 

                    𝑄𝑄 = 𝑋𝑋.𝑊𝑊𝑄𝑄 ,𝐾𝐾 = 𝑋𝑋.𝑊𝑊𝐾𝐾 ,𝑉𝑉 = 𝑋𝑋.𝑊𝑊𝑉𝑉                   (3) 
 

       where  is the input, and 𝑊𝑊𝑄𝑄 ,𝑊𝑊𝐾𝐾and 𝑊𝑊𝑉𝑉 are weight 
matrices.  
 

2) Calculate Attention Scores 
The attention scores are computed using the dot product 
of the Query and Key matrices, followed by scaling, and 
applying the SoftMax function: 

 
            Attention(𝑄𝑄,𝐾𝐾,𝑉𝑉) = softmax �𝑄𝑄𝑄𝑄

𝑇𝑇

�𝑑𝑑𝐾𝐾
� 𝑉𝑉 (4) 

 
where 𝑄𝑄,𝐾𝐾and 𝑉𝑉 represent the query, key, and value 
matrices, respectively, and 𝑑𝑑𝐾𝐾  is the dimensionality of the 
key vectors. 
 

3) Multi-head Attention  
Transformers often use multiple attention heads to 
capture different aspects of the relationships in the data. 

The outputs of these heads are concatenated and linearly 
transformed as represented in (5). 
 

MultiHead(𝑄𝑄;𝐾𝐾;𝑉𝑉) = Concat(head𝑖𝑖)𝑊𝑊𝑂𝑂 
where head𝑖𝑖 = attention(𝑄𝑄𝑊𝑊𝑖𝑖

𝑄𝑄 ,𝐾𝐾𝑊𝑊𝑖𝑖
𝐾𝐾 ,𝑉𝑉𝑊𝑊𝑖𝑖

𝑉𝑉)   (5) 
 
In this study, the Transformer-XL model was utilized for 

single-step and multi-step span loss forecasting based on 
historical data. In contrast to the Vanilla Transformer model, 
which uses a fixed-length context in language modeling and 
consists of identical layers with self-attention mechanisms [10], 
the Transformer-XL model uses a recurrence mechanism across 
segments. The model can therefore handle a larger context than 
the vanilla Transformer's fixed-length constraint, which allows 
it to remember and use information from earlier portions of the 
data sequence more efficiently and improves its ability to 
understand and process long data sequences [16]. Moreover, 
unlike Vanilla Transformer's absolute positional encoding, 
Transformer-XL introduces relative positional encoding, 
enhancing the model's awareness of token positions within the 
sequence. As a result, the model can also capture dependencies 
between segments and handle long sequences more efficiently 
by reusing computations from previous segments [1]. 

VI. ARCHITECTURE AND PERFORMANCE ANALYSIS OF THE 
FORECASTING MODELS  

This section is organized into two main subsections. The first 
subsection details the implementation and parameter 
optimization for both single-step and multi-step Transformer-
XL model forecasting. The second subsection presents the 
performance results and discussion, structured into separate 
subsections for single-step and multi-step models. 

A. Architecture and Parameter Optimization 
For single-step forecasting, we used the Transformer-XL 

model to predict span loss one time step ahead, corresponding 
to a 15-minute interval. To explore the impact of historical 
context on prediction accuracy, we used measured span loss 
sequences of various lengths—25, 50, 100, and 200 hours— as 
input into the model. On the other hand, for multi-step 
forecasting, as with single-step models, the measured span loss 
values, characterized by varying sequence lengths, are used as 
input for the model. Depending on the input sequence length, 
the model is designed to predict span loss at different forecast 
horizons. Specifically, for input lengths of 48, 144, and 240 
hours, the model predicts span loss for forecast horizons of 24, 
48, 96, 72 and 120 hours. For clarity, models are designated 
based on their input sequence lengths, measured in hours. For 
example, a model that processes an input length of 48 hours, is 
labeled as "Transformer-XL 48". Consequently, we considered 
three distinct transformer models, corresponding to our varied 
input lengths of 48, 144, and 240 hours.  

The single-step and multi-step Transformer-XL models were 
implemented in Python 3 using the PyTorch package. For 
model training, we divided the dataset into training and test sets 
using a ratio of 80:20. A total of 51,937 samples are included in 
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each dataset, of which 10,388 are used for testing and the others 
for training purposes. The development and optimization of the 
model involved two distinct categories of hyperparameters. The 
first category relates to the training process and includes the 
input sequence length (represents the amount of historical data), 
the output sequence length (represents the forecast horizon, 
which is set to one for single-step forecasting), the learning rate, 
the batch size, and the number of epochs. Model learning 
dynamics and convergence are controlled by these 
hyperparameters, as well as how quickly and accurately the 
model adapts to underlying patterns. The second category of 
hyperparameters defines the model's architecture, such as the 
dimensionality of the model (d-model), the number of layers 
(num-layers), dropout rate (dropout) and the number of 
attention heads (nhead). These structural hyperparameters 
control the complexity and capacity of the model. 

 
TABLE Ⅰ 

OPTIMIZATION OF MODEL HYPERPARAMETERS 

Hyperparameter  Tested Values Optimum 
Value 

Learning rate 0.001,0.0001, 0.00001, 
0.000001 0.00001 

d-model 64, 128, 256, 512 128 
Number of layers 2, 3, 4, 5, 6, 7, 8 6 
Number of heads 2, 4, 6, 8 4 

Optimizer 
Adam, AdamW, Adamax, 
SGD, ASGD, Adamgrad, 

RMSprop, Adadelta 
Adamax 

Dropout rate 0, 0.1, 0.2 0 
Batch-size 22, 25, 32, 40, 50 32 

Number of epochs 20, 30, 50, 100 20 
  
The different values considered for each hyperparameter are 

reported in Table Ⅰ. While several values were tested for d-
model, including 128, 256, and 512, we found that the models 
were not highly sensitive to this hyperparameter and that a 
value of 128 worked well in most cases. The model’s 
performance is also affected by the window size, which 
corresponds to the number of observations N in the sequence of 
inputs (in single-step forecasting the prediction horizon is 
always set to 15 minutes). 

B. Model Performance Results and Discussion 
Following training, the performance of the models was 

evaluated on an independent test set spanning roughly 3.6 
months selected temporally from the last portion of the data. 
We compare the model's results with linear regression, naive 
and RNN models, giving a detailed view of its effectiveness in 
forecasting tasks. This approach aligns with prior studies [4], 
[5], and [17] that used these approaches as comparison 
baselines.  

The naive model is a simple and straightforward forecasting 
approach that predicts the future value of a time series as the 
last observed value in the observation window. Specifically, for 
span loss forecasting at horizon T, the naive model assumes that 
the span loss value will be equal to the most recent value in the 
observation window. This can be represented as: 

  
                                    𝑦𝑦𝑡𝑡+1 =   𝑦𝑦𝑡𝑡                                           (6) 
 

where  𝑦𝑦𝑡𝑡+1 is the predicted span loss value at time t+1 and 𝑦𝑦𝑡𝑡 
is the observed value at time t. Despite its simplicity, this 
method often achieves better results than more complex models 
[4, 5] , which are more sensitive to noisy time series.   

On the other hand, the linear regression model learns a linear 
relationship between the span loss value at horizon T and past 
values within the observation window. It fits a linear equation 
to the observed data, minimizing the sum of squared differences 
between the observed and predicted values. The model then 
uses this relationship to predict future values. The linear 
regression equation can be expressed as: 
 
            𝑦𝑦𝑇𝑇 =  𝛽𝛽0 + 𝛽𝛽1𝑦𝑦𝑡𝑡−1 + 𝛽𝛽2𝑦𝑦𝑡𝑡−2 + ⋯+ 𝛽𝛽𝑛𝑛𝑦𝑦𝑡𝑡−𝑛𝑛             (7) 

 
where 𝑦𝑦𝑇𝑇  is the predicted span loss at horizon T, 𝑦𝑦𝑡𝑡−1, 𝑦𝑦𝑡𝑡−2, …, 
𝑦𝑦𝑡𝑡−𝑛𝑛 are the past span loss values, and  𝛽𝛽0, 𝛽𝛽1, …, 𝛽𝛽𝑛𝑛 are the 
coefficients learned by the model. The linear regression model 
employed in this study was derived from the neural network 
module of PyTorch. 

RNN model handles sequential data by maintaining an 
internal state, allowing it to capture temporal dependencies. 
RNNs are effective for time series forecasting and sequence 
prediction. We implemented the RNN using the same data 
pipeline as the Transformer model and both models were 
implemented using the PyTorch library. 

Two performance metrics were employed in the evaluation 
phase of the models’ performance as observed in previous 
works [5, 6]: 1) the RMSE, which measures the average 
magnitude of squared errors between predicted and observed 
values and then computes its root; 2) the AME, which measures 
the largest singular error made by the model, thus highlighting 
its potential worst-case performance. Finally, we also computed 
the training time of the model, which offers insights into its 
efficiency and speed. 
 
1) Single-step model performance results 
       For single-step models, the evaluation was conducted over 

a variety of window sizes of 15 minutes, 25 hours, 50 
hours, 100 hours, and 200 hours, which corresponds to 
input sequence lengths of 1, 100, 200, 400, and 800, 
respectively. We selected an initial input sequence length 
of 1 to align with the naive model that inherently uses a 
single input to forecast subsequent values. Despite the 
simplicity of this structure, the transformer still 
outperformed the naive, linear regression and RNN 
models, demonstrating its efficacy in making accurate 
predictions even with minimal input data. To compare the 
performance of all models, we computed the RMSE and 
AME for each time series. Then, to get a comprehensive 
measure, we averaged the RMSE and AME values across 
all time-series. Thus, when we refer to RMSE and AME 
of the models in this study, we refer to their averages 
across all analyzed time series. Fig. 2 shows the 
distribution of RMSE values obtained by the 
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Transformer-XL model for 58 time series across different 
window sizes. The RMSE values of some time series are 
higher than the average, which is mainly due to the 
presence of anomalies in these time series that lead to an 
increase in prediction errors. These anomalies may result  

 
Fig.  2. Variation of RMSE for 58 time series across different window sizes. 

 
       from data irregularities or sudden fluctuations in the 

observed values, which can be caused by various factors 
such as monitoring device malfunctions, network 
disruptions, or unexpected external events. The results of 
this study are summarized in Fig. 3, which compares the 
performance of our single-step Transformer-XL model 
against baseline models. As shown, the proposed model 
achieves RMSE/AME values of 0.0924/3.454 for a 
window size of 15 minutes, 0.0884/3.453 for a 25-hour 
window, 0.0891/3.452 for a 50-hour window, 
0.0894/3.453 for a 100-hour window, and 0.0920/3.450 
for a 200-hour window.  The single-step Transformer-XL 
consistently outperformed the naive baseline, achieving a 
0.069-0.073 dB lower RMSE and a reduction in AME of 
at least 2.13 dB, across various window sizes. Compared 
to linear regression, it achieved an RMSE improvement of 
0.014-0.071 dB and an AME improvement of 0.047–
0.315 dB, while surpassing the RNN with RMSE 
improvements of 0.002-0.01 dB and AME improvements 
of up to 0.02 dB. However, as window sizes increase, the 
difference in RMSE between the Transformer and RNN 
models decreases, likely due to added noise in larger 
windows, which reduces the Transformer's performance 

advantage. In terms of AME, while the values for linear 
regression, RNN, and Transformer-XL were relatively 
close, the Transformer-XL consistently outperformed 
both models, showcasing superior worst-case 
performance. Notably, its AME values remained steady 
across all window sizes, further underscoring the model's 
robustness in varying conditions.     

       Computation time is a critical metric for assessing model 
efficiency. We measured the training time of each time 
series across different window sizes. We observed an 
increase in computational time as the input length 
increases, from 5.5 minutes with a window size of 1 (15 
minutes) to 1.8 hours for a window size of 800 (200 
hours). Transformers are particularly sensitive to input 
size, as their self-attention mechanism requires computing 
a separate score for each input pair, leading to complexity 
that grows quadratically with the number of inputs. This 
increase in computational time confirms the scalability 
challenges of transformers in relation to input size and 
underscores the inherent trade-off between input size and 
computational efficiency. 

 
2) Multi-step model performance results 
       Following training, the multi-step models were evaluated 

using the same test dataset and same metrics (RMSE, 
AME and computation time) as the single-step models. 
RMSE was calculated in two ways: based on the last 
predicted value and all predicted values. In this study, 
given the importance of evaluating how the model 
predicts across all forecast horizon time steps, we chose 
to focus on the RMSE calculated from all predicted 
values. This approach offers insights into the model's 
consistency and accuracy at each step of the forecast, 
rather than relying solely on its ability to predict the final 
value accurately. Fig. 4 compares the performance in 
RMSE and AME of the multi-step Transformer-XL 
model with naive, linear regression and RNN baselines. 
The Transformer-XL-48 model obtained RMSE/AME 
values of 0.0989/3.461 dB and 0.0995/3.468 dB for 24-
hour and 48-hour forecast horizons, respectively. In 
comparison, the Transformer-XL-144 model recorded 
RMSE/AME values of 0.0988/3.462 dB, 0.0998/3.464 
dB, 0.0996/3.467 dB, and 0.1008/3.545 dB for 24-hour, 
48-hour, 72-hour and 96 hour forecast horizons, 
respectively. Lastly, the Transformer-XL-240 exhibited 

Fig.  3. Performance comparison of single-step Transformer-XL with baseline (naive, linear regression, RNN) models: (a) RMSE; (b) AME. 
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RMSE/AME values of 0.0991/3.462 dB, 0.0998/3.465 
dB, 0.1008/3.536 dB, and 0.1000/3.465 dB, respectively, 
for forecast horizons of 24 hours, 48 hours, 96 hours, and 
120 hours.  As reported, the best performance was 
achieved for the 24-hour horizon. Results also show that 
the highest RMSE and AME values were observed for the 
144-hour and 240-hour window sizes across the 96-hour 
forecast horizon. Upon closer examination, the similarity 
of RMSE values across the 48-hour and 96-hour forecast 
horizons for both 144-hour and 240-hour window sizes, 
along with the closely aligned AME values, indicates the 
model's ability to capture long-term dependencies. This 
aligns with the expected performance of Transformer-XL 
in handling longer data sequences without compromising 
precision. 

       As illustrated in Fig. 4, the Transformer-XL model 
consistently outperformed naive model across all forecast 
horizons, with RMSE differences ranging from 0.0406 dB 
to 0.0419 dB and AME differences ranging from 2.948 to 
3.051 dB. Furthermore, the results show that the 
performance gap between the transformer and naive 
models widened as the forecast horizon increased. 
Similarly, comparing Transformer-XL with linear 
regression models reveals that Transformer-XL 
consistently surpassed them in terms of RMSE and AME 
values across all combinations of window sizes and 
forecast horizons. The improvements vary, with RMSE 
gains ranging from 0.004 to 0.01 dB and AME gains from 
0.017 dB to 0.149 dB. Transformer-XL also outperformed 
RNN models, demonstrating lower RMSE and AME 
across all window sizes and forecast horizons. It achieved 
RMSE improvements of 0.02 dB and AME gains ranging 
from 0.04 to 0.54 dB. Looking deeper into the results, 
RMSE for a 24-hour forecast horizon revealed some 
interesting trends: 0.0989 dB for the 48-hour window size, 
0.0988 dB for the 144-hour window size, and 0.0991 dB 
for the 240-hour window size. The 144-hour window 
provides the best balance between historical context and 
predictive accuracy, achieving the lowest RMSE and 
making it the optimal configuration for accurate short-
term forecasting in this study. The slight increase in 
RMSE for the 240-hour window size suggests that more 
historical data does not always lead to better accuracy, as 
it adds unnecessary complexity. Additionally, similar 

RMSE values may result from several factors. First, the 
transformer's self-attention mechanism effectively weighs 
different parts of the input data, capturing relevant 
patterns even in longer sequences. Second, its model 
capacity, with multiple heads and layers, allows it to 
handle both short and long sequences with comparable 
accuracy. However, longer sequences can introduce more 
computational overhead, especially during training. This 
comparison between single-step and multi-step 
computation time shows that despite similar accuracy 
levels, resource requirements may be higher, such as 
increased processing time or greater memory usage. 

       In addition to the performance results, it is important to 
acknowledge the differences in model complexities. For 
single-step prediction, the computational complexity of 
the naive model at inference is O (1), as it simply predicts 
the last measured value. In comparison, linear regression 
has a complexity of O (𝑛𝑛), with 𝑛𝑛 being the number of 
past observations (window size), whereas each layer of 
the Transformer-XL has a complexity of O (𝑛𝑛2 × 𝑑𝑑 ×  ℎ), 
where 𝑑𝑑 is the feature dimension of the layer and ℎ is the 
number of attention heads. The quadratic term arises from 
the self-attention mechanism, which requires computing 
an attention weight between each pair of tokens 
(corresponding to past observations) in the network. 
Although this mechanism enables Transformer-XL to 
capture intricate patterns and dependencies in time series 
data and crucial for accurate forecasting, it also increases 
computational resources, training time, and inference 
time. The trade-off between complexity and accuracy is a 
critical consideration in model selection, depending on the 
specific requirements and constraints of the application. 
In real-world production networks, even small 
improvements in prediction accuracy can have a 
significant impact on proactive monitoring, justifying the 
use of more complex models like Transformer-XL. 

VII. CONCLUSION 
In this study, we explored the use of transformers in 

forecasting tasks, specifically focusing on the Transformer-XL 
models trained with field data for predicting the span loss in 
production networks. For the single-step forecasting task, the 
models were designed to predict span loss ranging from an hour 

Fig.  4. Performance comparison of multi-step Transformer-XL with baseline (naive, linear regression, RNN) models: (a) RMSE; (b) AME. 
 

This article has been accepted for publication in IEEE Photonics Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JPHOT.2025.3571220

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
to five days, utilizing window sizes ranging from 25 hours to 
10 days. In single-step forecasting, our model outperformed the 
naive method, showing an average RMSE improvement of 0.07 
dB across diverse window sizes. It also shows a range of 0.014-
0.071 dB improvement over linear regression and a range of 
0.002-0.01 dB over RNN. Notably, in terms of average AME, 
the Transformer-XL model significantly outperformed the 
naive approach by about 2.13 dB and linear regression by 
0.047-0.315 dB, though less significantly compared to the 
RNN, up to 0.02 dB across all window sizes. For multi-step 
forecasting, in terms of RMSE, the Transformer-XL model 
outperformed the naive model by 0.0406-0.0419 dB across 
varied window sizes and achieved a 0.004-0.007 dB and a 
0.004-0.016 dB improvement over linear regression and RNN, 
respectively. For average AME, the Transformer-XL model 
beated the naive model by 2.948-3.051 dB, linear regression by 
0.017-0.149 dB and RNN by 0.0420-0.5380 across all window 
sizes. 

This paper has showcased the advantages of employing the 
Transformer-XL model for predicting span loss. Future 
research will focus on enhancing the model’s interpretability by 
analyzing how the multi-attention mechanism identifies key 
patterns, providing deeper insights into its decision-making 
process. Additionally, validating these findings with larger PM 
datasets featuring diverse attributes and network topologies 
would strengthen the model's applicability. Moreover, the type 
of span (with or without Raman amplification) was not tracked 
in the dataset used in this study; how Raman amplification may 
affect the prediction accuracy would deserve further 
investigation in future works. The lower RMSE and AME 
values across various forecast horizons indicate that the 
Transformer-XL models consistently outperform basic naive, 
linear regression, and RNN models, particularly as the forecast 
horizon increases. This suggests that the model is well-suited 
for further exploration with larger datasets and longer 
prediction intervals, potentially in real-world applications 
across different domains.  
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