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 A B S T R A C T

Smart farming relies on precise environmental data to optimize agricultural practices, with key 
metrics such as air temperature, humidity, rain, ambient light, ultraviolet (UV) radiation and 
soil moisture to play a crucial role in agricultural decision-making. However, the vast spatial 
coverage of agricultural fields and the high cost of deploying numerous physical sensors pose 
significant challenges, particularly for small and medium-sized farms. To address these issues, 
virtual sensors – machine learning models that predict sensor values based on data from relevant 
physical sensors – offer a cost-effective and scalable alternative. In this research, a number of 
Arduino-based IoT devices are designed and deployed equipped with various physical sensors, 
a lithium-polymer battery which recharges continuously using a 6 W waveshare solar panel, 
and a Real-Time Clock (RTC) module that synchronizes data logging. The IoT devices operated 
across two agricultural fields over a span of almost three months. The data collected form the 
basis for evaluating multiple machine learning models as virtual sensors. Furthermore, the use 
of open weather data to develop a hardware-free solution is explored. Experimental results show 
that virtual sensors provide a cost-effective and accurate method for replacing physical sensors. 
The Light Gradient Boosting Machine emerged as the most accurate model for virtual sensors, 
achieving prediction errors of less than 1% in most of the cases. This makes it a valuable tool 
for enabling cost-effective and data-driven farming in resource-constrained IoT devices.

. Introduction

Smart farming integrates advanced technologies such as Internet of Things (IoT), data analytics, and Artificial Intelligence (AI) 
o streamline and automate various aspects of agricultural production [1]. One of the key advantages of smart farming is its ability 
o analyze real-time data from diverse sources, such as sensor networks, drones, robots, and weather stations [2]. This empowers 
armers with actionable insights, enabling them to make more informed and precise decisions about farm management.
Smart farming equips farmers with the tools to oversee and optimize every stage of the agricultural process, from irrigation 

nd fertilizer application to plant disease prevention [3]. By incorporating technologies such as virtual sensors and autonomous 
ystems, smart farming helps reduce resource waste, improving crop yields, enhance pest and disease management, and increase 
verall agricultural efficiency through real-time data analysis and automation [4]. IoT sensors positioned strategically across the 
ield measure critical parameters like soil moisture, temperature, air humidity, and light intensity, providing a continuous stream of 
ata [5]. This data is analyzed to deliver actionable insights, enabling precise and timely interventions tailored to the specific needs 
f each section of the field and enables farmers to respond more swiftly and effectively to changing environmental conditions, pest 
utbreaks, crop stress, and resource inefficiencies.
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Virtual sensors are becoming increasingly important in smart farming, using data from physical sensors to estimate conditions 
in areas lacking direct measurements [6]. This integration combines the precise, location-specific accuracy of physical sensors with 
the cost-effective, broad coverage offered by virtual sensors, albeit with slightly lower accuracy [7].

To address this challenge, in this paper, a Machine Learning (ML) model that establishes the relationship between physical sensor 
measurements and virtual sensor estimates is developed, by initially deploying physical stations equipped with sensors at locations 
designated for virtual measurements. After collecting time-series data from these sensors, an ML model is trained for the virtual 
sensors. Once the model is trained, the physical stations are replaced by virtual stations [8].

Additionally, a scenario is explored in which the model uses open data as input rather than physical sensors. In this configuration, 
all physical stations are removed entirely, and variables such as temperature, humidity, soil moisture, light, and UV levels are 
estimated solely through virtual sensors.

To investigate how monitoring data from physical sensors can be utilized to train virtual sensors, this study first designs and 
deploys IoT-enabled monitoring stations equipped with six physical sensors each across two agricultural fields in Anonymized city, 
Anonymized Country. The larger field initially hosted three stations, while the smaller field had two. However, during the 84-day 
experiment, natural disasters in the region resulted in the loss of one station [9]; three stations were recovered from the larger field, 
and only one from the smaller field.

Hence, this research explores the construction of physical stations using Arduino and integrated physical sensors, exchanging 
data via the LoRaWAN protocol into a centralized processing and storage node. It also analyzes the collected data using exploratory 
techniques such as time series plots, violin plots, and correlation matrices. Furthermore, multivariate, multi-output ML models 
are developed designed to function as virtual sensors, providing an efficient alternative to physical monitoring. Additionally, two 
representation and modeling approaches are examined, the time-series-based and the feature-vector-based wanted to see whether 
capturing temporal dependencies can improve the performance of virtual sensors.

Furthermore, this paper also tackles a common challenge in the field: the lack of publicly available, real-world datasets for 
training supervised and unsupervised ML models. Many organizations collecting such data do not share it openly, or access comes 
at a prohibitive cost, which underscores the importance of our contribution to advancing smart farming research. To overcome this 
limitation and promote innovation and collaboration in smart farming research, a comprehensive dataset has been made publicly 
available. This dataset, collected from two agricultural fields, includes measurements obtained from physical sensors, aiming to 
lower barriers for researchers and developers.

Thus, the major contributions of our work can be summarized as follows:

• This work demonstrates the process of designing and integrating physical sensors with IoT devices in a smart farming use case.
• Experiments are conducted in agricultural fields to collect data, resulting in a publicly available dataset.
• Various ML models are evaluated and compared to identify the most accurate for virtual sensor applications.
• Key insights and lessons learned from deploying smart agriculture IoT devices in real-world settings are shared.

The rest of the paper is organized as follows. Section 2 presents the background and related work regarding the topics of smart 
farming and virtual sensors. Section 3 presents our methodology to build virtual sensors. Section 4 presents the IoT implementation 
of the virtual sensors. Section 5 explores potential ML models that can serve as the foundation for a virtual sensor. Following the 
deployment of IoT devices in real-world fields, measurements are collected in order to compiled a dataset, detailed in Section 6. 
To develop the most accurate and efficient virtual sensors, experiments were conducted, which are detailed in Section 7. Section 8 
presents the observations and lessons learned from our experiments, as well as insights gathered from discussions with farmers 
Finally, Section 9 concludes the paper giving some future directions for further exploration of virtual sensors for smart farming.

2. Related work

IoT-enabled monitoring in farms relies on a network of sensors strategically placed across the fields to measure vital parameters 
like temperature, humidity, light intensity, UV radiation, and soil moisture [10]. These sensors continuously collect real-time data, 
which is transmitted to a centralized system not only for informational and alert purposes but also for explanatory insights and 
predictive analysis [11]. With this infrastructure, farmers gain granular visibility into the environmental conditions of their farms 
without the need for manual inspections [12]. This real-time monitoring allows for timely interventions, such as adjusting irrigation 
schedules [13] automated machinery [14], disease [15] and pest [16] management, and precision farming [17]. Monitoring is 
essential in agriculture but poses challenges due to high costs, including system initialization (hardware like IoT devices and 
infrastructure) and operating expenses (like maintenance and sensor calibration), which must be balanced against the low profit 
margins and risks inherent in farming [18]. To address these economic constraints, replacing physical sensors with virtual sensors 
can be a cost-effective solution.

Virtual sensors, also known as soft sensors, are computational tools that estimate parameters or measurements by leveraging 
mathematical models, ML algorithms, and available sensor data, based on physical sensing devices that are deployed in a different 
location or measuring different parameters [19]. In the context of the IoT, virtual sensors play a pivotal role by integrating diverse 
data streams from IoT-enabled devices such as environmental sensors, robotic equipment, and agricultural machinery [20]. This 
synergy enhances real-time monitoring and predictive analytics in smart farming. The use of virtual sensors in agriculture offers 
numerous benefits beyond reducing the need for expensive physical sensors, including improved scalability for monitoring large 
areas and enhanced decision-making capabilities through pattern recognition techniques and historical data [21]. By providing 
2 
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continuous, reliable estimates of critical parameters like soil moisture, crop health, and weather conditions, virtual sensors empower 
farmers to optimize resource use, improve yields, and promote sustainable farming practices [22].

Virtual sensors involve several essential steps in their development. First, a dataset is collected and prepared, addressing issues 
like missing data, outliers, and synchronization of multirate data [23]. Next, prepossessing techniques are applied to ensure data 
quality and alignment with application requirements [7]. Furthermore, feature selection is performed to identify relevant input 
variables through methods like correlation analysis or mutual information, ensuring that redundant features are eliminated [24]. 
During training, selected features are used to develop a predictive model, such as linear regressor, neural networks, or support vector 
machines, to capture relationships between easy-to-measure inputs and hard-to-measure targets [25]. Finally, validation ensures the 
virtual sensor’s accuracy and generalization by employing techniques like cross-validation and performance metrics such as mean 
squared error and mean absolute error.

Closer to our work is the research by Wongchai et al. [8], which examines virtual sensors for predicting various crop parameters, 
such as yield and environmental conditions, using input features like soil moisture, temperature, and historical cultivation 
data collected via IoT devices. Their study employs a weight-optimized neural network with maximum likelihood for feature 
representation and utilizes an ensemble architecture combining a stacked autoencoder and kernel-based convolution network for 
making predictions. Another relevant study by Patrizi et al. [6] proposes virtual sensors for soil moisture prediction, utilizing input 
features such as ambient temperature, relative humidity, soil temperature, solar radiation, and rainfall data gathered through a 
wireless sensor network. Their study employs a long short-term memory (LSTM) network, a deep learning approach optimized for 
time-series data, to predict soil moisture levels accurately. Both approaches eliminate the need for expensive physical equipment, 
offering a cost-effective and efficient solution for smart farming applications.

In this research work several novel contributions to the development and application of virtual sensors in smart farming are 
presented. Unlike existing approaches that typically focus on single-input, single-output systems, virtual sensors are designed to 
integrate inputs from multiple heterogeneous physical sensors to predict multiple distinct outputs, enabling more comprehensive 
and versatile monitoring. Additionally, this study explores both time-series-based and feature-vector-based modeling approaches to 
assess their effectiveness in capturing temporal and contextual relationships in agricultural data. Our study also addresses a critical 
aspect of scalability: evaluating the performance of virtual sensors in predicting measurements not only within the same agricultural 
field but also across fields located many kilometers apart. Furthermore, this study explores the potential of leveraging open data as 
an alternative to physical sensor measurements, aiming to overcome challenges related to data accessibility and significantly reduce 
reliance on costly physical sensors required for virtual sensor input. These innovations are intended to broaden the scope, enhance 
the efficiency, and increase the applicability of virtual sensors in smart agriculture, addressing critical gaps in current research.

Monitoring systems are important components for optimizing agriculture resource management, improving crop yield, and 
adapting to weather changes [26]. The emergence of intelligent, programmable, and delay- and disruption-tolerant wireless networks 
has significantly advanced the development of scalable and real-time monitoring solutions that are not only cost-effective but 
also resilient, adaptable, and suitable for deployment in smart environments [27]. LoRa (Long Range) technology, known for 
its low power consumption and long-range communication capabilities, has proven especially effective for IoT-based agricultural 
applications, such as free-range cattle monitoring, where energy-efficient, secure, and mobile sensor networks are essential for 
reliable data collection in remote and unpredictable environments [28].

Recent advances in ML, remote sensing, and monitoring technologies have shown immense potential in addressing critical 
challenges in smart farming. Integrated approaches using remote sensing and wireless sensor networks enable early detection 
and effective management of insect pests, offering scalable solutions for sustainable crop protection [29]. The enhancement of 
irrigation efficiency and promotion of sustainable agriculture has been investigated through the integration of advanced soil moisture 
monitoring technologies, including remote sensing and IoT-based systems, which offer timely, cost-effective, and high-resolution 
data to support precision water management, particularly in resource-constrained agricultural settings [30]. Precision nitrogen 
management also benefits significantly from sensing and AI, allowing timely and non-destructive crop nitrogen assessments and 
improving fertilization strategies through dynamic modeling and in-field digital twins [31]. Similarly, AI-enhanced sensing and 
geographic information systems tools are enhancing soil erosion monitoring by enabling high-resolution mapping and predictive 
modeling, which support informed land management and conservation strategies [32]. Building on these developments, there is a 
growing trend toward harnessing the combined power of IoT, Big Data, and AI to advance Climate-Smart Agriculture and broader 
environmental goals through predictive analytics and real-time monitoring [33].

Despite these advancements, a common limitation across these studies is the reliance on open and accessible data. While some 
researchers overcome this constraint by leveraging satellite and drone-based remote sensing, many do not incorporate ground 
sensors, which offer higher accuracy in monitoring localized environmental conditions. This gap is largely due to regional data 
unavailability and the high cost associated with deploying ground-based sensor networks. Virtual sensors present a promising 
solution to this challenge, providing an opportunity not only for farmers to optimize their practices but also for researchers to 
conduct high-quality experiments while contributing valuable data to the broader agricultural community.

3. Proposed methodology for virtual sensors

In our proposed methodology physical and virtual stations are integrated. Physical stations are equipped with the necessary 
physical sensors, while virtual stations rely on data from these physical stations or open weather data APIs to simulate measurements 
at various points in the field using ML models. Table  1 provides an explanation for the terms physical/virtual sensors, stations and 
base stations.
3 
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Table 1
Definition of key terms.
 Term Description  
 Physical sensors These are tangible devices that directly measure environmental parameters, such as

soil moisture, temperature, humidity, or UV radiation, in the field. They are
part of the hardware in physical stations and provide real-time, location-specific data
by interacting with the physical environment

 

 Physical stations These are hardware setups consisting of a microcomputer and four physical sensors.
They are deployed in the field to directly measure environmental parameters such as
soil moisture or temperature.

 

 Base station This physical station is designated as the central hub of the system, responsible for
collecting data from other stations, processing it locally, or forwarding it to a cloud
service. It serves as the primary anchor point within the monitoring network.

 

 Virtual sensors These are digital tools within virtual stations that replace individual physical sensors.
They predict measurements (e.g., soil moisture or temperature) by analyzing data
from existing physical sensors and applying ML algorithms.

 

 Virtual stations These are conceptual replacements for physical stations. Instead of using physical
hardware to gather data, virtual stations rely on computational models to simulate
the presence of a station in the field

 

Fig. 1. The logical workflow of building virtual sensors.

3.1. System description

Fig.  1 illustrates the process followed to build the ML models for the virtual sensors that monitor the agricultural fields. The 
process starts with setting up and deploying physical stations at various locations across the agricultural field (Fig.  1a). Data collected 
from these physical stations is then gathered, verified, converted into time series, and stored to create a training dataset (Fig.  1b). 
Using this dataset, virtual sensors within virtual stations are trained. Each 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠𝑒𝑛𝑠𝑜𝑟𝑖 learns the relationship between the base 
station and 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑖 (Fig.  1c). This enables the removal of all physical stations, leaving only the base station in place (Fig. 
1d). By utilizing the measurements from the base station and the virtual sensors, farmers can access highly accurate predictions for 
multiple locations within the agricultural field (Fig.  1e).

The proposed solution involves equipping physical stations with LoRa modules, specifically the SX1278 module, to transmit 
data to the base station which operates as central gateway. The Arduino MKR WAN 1310 (ABX00029) serves as a viable gateway 
option, capable of logging and forwarding data either to the cloud or to a centralized base station. The receiver utilizes the high-
performance RFM95 W module, which has demonstrated exceptional range and reliability under real-world conditions. This setup 
ensures a centralized communication system, allowing all gathered data to be stored in a structured manner. Moreover, this system 
can function independently of cloud services, enabling local operation.

After the data collection phase, data validation, normalization, and transformation into time series format are performed. Based 
on these measurements a dataset is constructed that includes pairs of physical sensor time series between the measurements of a 
physical station with the other physical stations scattered in the agricultural fields. This dataset will serve to train the ML models of 
the virtual sensors. Following, the virtual sensors are integrated in virtual stations that operate on monitoring data of the physical 
stations, creating a robust pair of physical and virtual monitoring points. These steps will be explained in greater detail in the 
following subsections.

3.2. Centralized communication system

A centralized communication system connects the physical stations to a central processing unit (or base station). The preference 
for a centralized communication system stems from its ability to enhance the organization, efficiency, and accuracy of data 
management. By synchronizing field stations, a centralized system ensures systematic data collection and seamless transmission 
4 



A. Chourlias et al. Internet of Things 32 (2025) 101611 
Fig. 2. Agriculture fields deployed with physical stations.

to the cloud. This enables real-time predictions to be generated directly in the cloud, removing the limitations imposed by resource-
constrained models on edge devices. Moreover, the centralized setup supports the use of computationally intensive models, which 
can improve the overall performance of the system.

The centralized communication system can be realized using the LoRaWAN protocol, which is favored for IoT applications due 
to its unique benefits. It supports long-range communication, making it well-suited for large agricultural fields, and is optimized for 
low power consumption, ensuring extended battery life—an essential feature for remote field stations. The physical stations include 
a LoRaWAN transceiver that communicates the data to the base station which includes a LoRaWAN gateway.

3.3. Normalization and data transformation into time series format

Normalization methods are employed to ensure data comparability across different sensors. This includes standardizing mea-
surements to common units and correcting discrepancies caused by varying measurement scales, which ensures that the dataset 
is ready for analysis. Raw data measurements from sensors can be organized into time series by associating each data point with 
a precise timestamp, ensuring temporal continuity. This process involves structuring the data into sequential intervals, allowing 
trends, patterns, and temporal dependencies to be analyzed effectively.

3.4. Training

The training process for our models starts with paired datasets collected from the base station and a physical station, both 
situated within the agricultural fields, as shown in Fig.  2. These datasets provide a foundation for training and evaluating the 
predictive capabilities of the virtual sensors.

Initially, the data from station 2 was designated as the reference dataset of the physical station which acts as base station, while 
the data from station 1, 3, and 4 were used to simulate virtual stations. The objective is to train models capable of predicting 
the readings of the virtual station based on the reference data. For each virtual sensor a multi-output and multi-variate ML 
model was trained using the input features of the physical station and the target values of the virtual stations. The features are 
detailed in Section 6. An alternative approach explored in this study involves training a model to predict a single output—namely a 
specific sensor value using input data from multiple other sensors. In addition, this study tested modeling multiple virtual stations 
simultaneously. However, as discussed in the experimental evaluation section, these two approaches yielded significantly lower 
performance.

3.5. Virtual stations

Virtual stations are ML models designed to predict sensor readings at specific locations leveraging data from physical stations. 
These models capture correlations arising from minor differences in soil properties, geographic positioning, or environmental factors 
such as the interplay of temperature and humidity. The most efficient and computationally lightweight approach utilizes a single 
model to simultaneously predict multiple values for one or more virtual stations, based on input from the physical station that acts 
as base station.
5 
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Fig. 3. The physical station setup before deployment (left) and actively measuring during operation (right).

Fig. 4. From left to right: soil moisture sensor, rain detector sensor, temperature & humidity sensor, light & UV sensor. The last two images show the temperature 
& humidity sensor attached to the protective case and the electrical enclosure.

The model selection process involves careful evaluation of several factors, including the model’s accuracy with the available 
dataset, its training and retraining efficiency, and its compatibility with different platforms, such as cloud services, local base 
stations, or resource-constrained MCUs like Arduino and STM32. This complexity is amplified for edge-level systems, where 
computational resources are limited. While larger models can improve performance on complex datasets, simpler tasks often benefit 
from lightweight models, which also require less computational power [34].

4. IoT infrastructure for smart farming sensors

This section outlines the technical details of our physical stations. Each station features an Arduino Nano microcontroller, 
which communicates with six sensors using Inter-Integrated Circuit (I2C) and Serial Peripheral Interface (SPI) protocols [35] and 
is synchronized with a real-time clock. The stations are powered by a cylindrical lithium-polymer (Li-Po) battery, continuously 
recharged by a Waveshare 6 W Solar Panel. Most components are securely housed within an electrical enclosure, while the soil 
moisture sensor is embedded in the soil. Additionally, a custom-designed protective case safeguards the temperature and humidity 
sensor, as well as the light and UV sensor. Fig.  3 illustrates the physical station both prior to deployment and during active operation. 
The components of the physical stations are depicted in Fig.  4 and further detailed in the following subsections.

4.1. Arduino Nano

The Arduino Nano is a compact microcontroller unit (MCU) based on the ATmega328 chip, widely used for embedded systems 
and prototyping due to its small size, ease of use, and versatility. It features digital and analog input/output pins that allow it to 
interface with various sensors, enabling the collection and processing of environmental data. The Arduino Nano connects to sensors 
using protocols like I2C, SPI, and analog inputs, allowing it to read data such as temperature, humidity, or light intensity. This 
makes it an ideal platform for sensor-based applications, where the MCU can receive sensor data, process it locally, and send it to 
other devices or cloud services for further analysis. Its low power consumption and compatibility with a wide range of sensors make 
it a popular choice for IoT and smart farming projects.

4.2. Soil moisture sensor

The physical stations were equipped with the V1 DFRobot Capacitive Soil Moisture Sensor which is a durable and efficient device 
designed for accurate measurement of soil moisture levels. Unlike traditional resistive sensors, it uses capacitive sensing technology 
to detect soil moisture without corrosion, ensuring long-term stability and reliability. The sensor operates with a voltage range 
6 
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of 3.3–5.5 V, making it compatible with most MCUs, including Arduino. With a measurement depth of up to 22 cm, it provides 
precise readings that are unaffected by soil salinity. The sensor outputs analog signals, allowing seamless integration with MCU 
analog pins for real-time monitoring. Compact and easy to use, it is ideal for applications in smart farming, automated irrigation, 
and environmental monitoring.

For the soil moisture measurements, as well as the rain detector, which will be discussed in the next subsection, a unitless value 
is obtained, derived from the voltage generated by a variable resistance. The sensor generates an analog output, which is converted 
into a digital value by the processor using an analog-to-digital converter and calculated according to Eq.  (1). 

𝐷 =
[

𝑉𝑖𝑛
𝑉𝑟𝑒𝑓

× (2𝑛 − 1)
]

(1)

where D is the ADC digital value, 𝑉𝑖𝑛 is the analog voltage at the ADC pin, 𝑉𝑟𝑒𝑓  is the reference voltage of the ADC and 𝑛 is the 
ADC resolution in bits.

4.3. Rain detection sensor

The rain sensor module is a simple and effective tool for detecting rain by measuring changes in resistance on its exposed copper 
traces. It operates with a voltage range of 3.3–5 V and provides both analog and digital outputs, making it compatible with various 
MCUs. The module is equipped with a sensitivity adjustment potentiometer, allowing fine-tuning for specific applications. Compact 
and easy to integrate, it is ideal for weather monitoring, automated irrigation, and smart home projects.

4.4. Protective case

For the temperature & humidity sensor and the light & UV sensor, which will be presented in the following subsections, a 
3d printable protective case was designed. This protective case enables the sensors to obtain accurate readings from the external 
environment while safeguarding them from adverse external conditions. The light and UV sensor required an unobstructed view of 
the sky. The protective case was modified to include a large window in the top section. The window was made from large window 
in the top section. The window was made from laser-cut glass and affixed securely with thermal resistant silicone adhesive. The 
accuracy of the sensors within the protective case was tested using the MCU to validate and calibrate them prior to deployment for 
the experimental process.

4.5. Temperature & humidity sensor

For temperature and humidity measurements, the DFRobot DHT22 sensor was employed. It offers humidity measurement range 
of 0%–100% RH and a temperature range of −40 ◦C to 80 ◦C, providing accurate readings with minimal drift. The sensor features 
a factory-calibrated digital signal output, making it easy to integrate with MCUs via its simple single-bus interface. Compact and 
energy-efficient, the DHT22 offers a reliable solution for smart farming, weather stations, and indoor climate control systems. The 
units of measurement for temperature are degrees Celsius (C), while for humidity, they are expressed as a percentage (% relative 
humidity) which is a measure of the amount of water vapor in the air compared to the maximum amount the air can hold at a 
given temperature, expressed as a percentage.

4.6. Light & UV sensor

The Gravity LTR390UV-01 light sensor is a versatile and high-performance sensor designed for ambient light measurement 
within the wavelength range of 280–430 nm and UV radiation detection in the 450–700 nm range. Featuring both I2C and UART 
communication interfaces, it is easy to integrate with Arduino MCU. The sensor provides high precision and fast response, making it 
ideal for monitoring UV radiation and light intensity in applications like environmental monitoring, smart agriculture, and wearable 
devices. Based on the data sheet of the LTR390UV-01 Light Sensor1 it measures light in lux, while measures UV levels using a unitless 
UV index (UVI) scale, derived from the sensor’s digital output and a calibration factor called UV sensitivity. Specifically, the UVI is 
calculated as given by Eq.  (2). 

𝑈𝑉 𝐼𝐶𝑎𝑙𝑐 =
𝑈𝑉 𝑆𝑒𝑛𝑠𝑜𝑟𝐶𝑜𝑢𝑛𝑡
𝑈𝑉 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

×𝑊𝐹𝐴𝐶 (2)

where 𝑊𝐹𝐴𝐶 (Window Factor) depends on the type of material covering the sensor (e.g., no window = 1) and the 𝑈𝑉 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
2300.

1 https://optoelectronics.liteon.com/upload/download/DS86-2015-0004/LTR-390UV_Final_%20DS_V1%201.pdf.
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4.7. Real time clock

Enhancing the accuracy and reliability of the monitoring system was achieved by integrating the Gravity I2C DS1307 real-time-
clock (RTC) module into the physical stations. The RTC ensures precise timekeeping, which is critical for off-grid deployments, 
enabling synchronization of data across all stations. This synchronization facilitates cross-referencing and validation of measure-
ments, paving the way for real-time monitoring and dataset construction. Each physical station was configured with a three-minute 
counting interval, determined experimentally to balance memory usage and data granularity. This interval was sufficient for 
capturing meaningful changes in parameters like soil moisture, which typically evolve over several hours, thereby optimizing 
resource use while maintaining data integrity.

Furthermore this study implemented a data persistence function alongside periodic synchronization and communication among 
physical stations. In this configuration sensor data are saved to our SD card every hour to protect against data loss in the event of 
power failures or system malfunctions.

4.8. Battery & solar panel

Each physical station is powered by a single 18650 cylindrical lithium-polymer (Li-Po) battery with a nominal voltage of 3.6 V 
and a capacity of 3400 mAh. To ensure continuous operation in off-grid environments, the battery is recharged via a Waveshare 
6 W solar panel, enabling sustainable energy supply. Based on simulations conducted using Altium, the battery-panel combination 
can sustain the MCU for a minimum of six years before experiencing significant degradation [36].

The battery, charger, and panel combination was selected following an experimental evaluation in which the station’s hardware 
was powered via a regulated supply, and the average current consumption was recorded. Notably, the data acquisition frequency 
was initially set to 1.5 min, which is twice the final resolution, thereby representing a higher-than-normal power demand. The 
measured average current consumption was 60 mA, and accounting for the buck-boost converter efficiency, which regulates power 
to the Arduino Nano, we determined that the station could remain operational for approximately 54 h without recharging.

Further analysis assessed the solar panel’s power output under varying weather conditions. On a sunny day, the panel delivered 
a peak power output of 5 W, supplying ∼ 850 mA to charge the battery while simultaneously powering the Arduino at ∼ 60 mA. 
Under cloudy conditions, the panel produced 2–3 W, which, while lower, was still sufficient to prioritize battery charging when 
excess power was unavailable. Moreover, we calculated that the battery would need 3.4 h to fully recharge, which corresponds with 
our experiment where the battery charger in a span of 4.2 h, in sunny weather and in a span of 7 h in cloudy weather.

According to the battery manufacturer’s specifications, the Li-Po battery maintains at least 500 charge–discharge cycles before its 
capacity significantly depletes. Given the observed charging and discharging currents, the battery capacity must fall below 900 mAh 
(37% health) before it fails to sustain overnight operation or prolonged cloudy periods. Extrapolating from current power demands 
and charge rates, the system is expected to remain operational for at least six years before requiring a battery replacement.

4.9. Calibration of sensors

Before initiating our experiments and deploying the stations, a series of calibrations were performed on the sensors to ensure 
accurate measurements. Firstly, the RTC was synchronized with the current date and time. In accordance to the manufacturers 
datasheet recommendations, a one-week experiment was conducted to measure the clock’s drift. Based on the observed drift, a 
correction function was developed and programmed to run continuously, with weekly adjustments applied to compensate for the 
known drift.

Additionally, the LTR390 Light and UV sensor required calibration according to the datasheet specifications. Using the SPI 
protocol, two registers where configured using the SPI protocol to set the UV and ambient light readings under controlled conditions 
in a completely dark room

An optional calibration procedure was also undertaken for the soil moisture sensor. Measurements were recorded in two distinct 
environments: completely dry and fully submerged in water. These readings were used to map the raw ADC values to a percentage 
scale using standard Arduino library functions. This approach was implemented to improve interpretability and standardize the 
output.

4.10. Accuracy of sensors

The accuracy of physical sensors plays a vital role in the overall performance of a smart farming system, especially in the 
effectiveness of virtual sensors that depend on this data. Our approach focuses on using affordable, widely available sensor hardware 
to reduce costs and promote broader adoption of precision agriculture technologies among farmers. The sensors used in our system 
offer the following levels of accuracy: the DFRobot Capacitive Soil Moisture Sensor [37] has an accuracy of ±4.2%, the rain detection 
sensor [38] ±10%, the LTR390UV-01 light and UV sensor [39] ±1%, and the DHT22 Temperature & Humidity sensor [40] maintains 
an accuracy of ±0.5% under harsh conditions and ±0.1% in normal environments.

Furthermore, although the sensors used in our system are low-cost, they provide sufficient reliability for a wide range of 
agricultural applications—particularly when combined with AI-based virtual sensors that can mitigate or correct minor inaccuracies 
over time. Machine learning models, especially those designed for time-series data in agriculture, have been shown to tolerate 
moderate levels of noise without significant performance degradation. For example, a 5% reduction in sensor data accuracy led 
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to only a 1.8% drop in crop yield prediction accuracy [41]. Similarly, increasing data accuracy from 95% to 99% resulted in just 
a 0.5% improvement in model performance for climate-based agricultural forecasts [42]. These findings support our decision to 
prioritize cost-effectiveness and scalability, especially in light of recent advancements in noise-resistant, low-cost sensors that offer 
a practical and reliable solution for large-scale deployment [43].

4.11. Long-term reliability measures in harsh environmental conditions

Ensuring the long-term reliability of virtual sensors in smart farming requires addressing two critical challenges: physical 
degradation of hardware components and value drift in sensor readings over time. To mitigate these risks, a combination of 
structural protections, protective coatings, and calibration strategies was implemented. These measures include sealing mission-
critical components in IP65-rated enclosures,2 applying conformal coatings to exposed electronics, using custom-designed protective 
casings, and performing initial and periodic sensor calibrations where necessary. Together, these protective and maintenance 
strategies enhance the durability and accuracy of the virtual sensor system, supporting consistent performance even in harsh and 
dynamic environmental conditions common in agricultural settings.

4.11.1. Degradation management
The physical degradation of sensor nodes, particularly in outdoor agricultural settings, is largely influenced by environmental 

exposure. Mission-critical components such as the MCU, charging board, and battery were securely housed within sealed IP65-rated 
electrical enclosures, as shown on the right of Fig.  4. This enclosure rating provides protection against dust ingress and resistance 
to water jets, effectively shielding internal electronics from moisture, debris, and other environmental stressors. Post-experiment 
inspections revealed no signs of corrosion or physical degradation, validating the effectiveness of this approach for medium-term 
deployments.

For components exposed to environmental conditions, including the soil moisture sensor, temperature and humidity sensor, 
and light and UV sensor, additional protective measures were necessary. A two-layer application of 419D acrylic conformal 
coating3 was applied to exposed circuitry before deployment. This coating served to isolate sensitive surfaces from humidity 
and airborne contaminants, significantly reducing oxidation and mechanical wear. While certain elements such as connectors and 
switches could not be coated due to functional constraints, custom-designed 3D-printed protective casings were used to shield the 
temperature, humidity, and UV sensors without compromising measurement accuracy. For the soil moisture sensor, an enclosure was 
intentionally avoided based on preliminary testing, which showed that enclosed designs could trap water and accelerate connector 
degradation. Instead, a thicker layer of conformal coating was applied to ensure long-term durability during soil contact. For 
extended deployments, additional strategies such as selective conformal coating using masking techniques, the use of ruggedized 
connectors, and the inclusion of humidity-absorbing materials within enclosures can further enhance long-term protection and 
reliability.

4.11.2. Value drift management
In addition to hardware durability, maintaining sensor accuracy over time is essential. All sensors requiring calibration were 

calibrated prior to deployment, as described in Section 4.9. Components such as the RTC, which are known to exhibit drift over 
extended periods, are supported by software-based periodic recalibration functions. Other sensors, including the soil moisture and 
light/UV sensors, generally do not experience significant drift and only require an initial calibration to establish reference maximum 
values.

5. Regression models for virtual sensors

Regression analysis is used to predict one or more continuous dependent variables based on the values of one or more input 
variables. Regression models can be trained to map independent variables from the physical station, such as temperature and 
humidity, to the outputs of the virtual stations. The mapping between the independent variables (features) and the dependent 
variables (targets) is unknown, necessitating model learning to uncover underlying patterns. Factors such as geographical orienta-
tion, soil properties, vegetation cover, irrigation practices, microclimatic variations and exposure to sunlight or wind can influence 
the connection between the temperature and humidity of the reference and target spaces. These factors make it challenging to 
represent these relationships with a numerical equation. Consequently, nonlinear or data-driven approaches, including black-box 
models, are often preferred. The primary categories of ML and statistical regression models suitable for virtual sensors are detailed 
in the following subsections. These models will be applied and evaluated in Section 7 to identify the most effective prediction model.

2 https://www.polycase.com/ip65-enclosures.
3 https://www.e-praud.eu/conformal_coatings/acrylic_conformal_coatings/419d_mg_chemicals.
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5.1. Linear regression

Linear regression (LR) models are among the most widely used techniques in ML and statistical modeling, particularly for 
regression tasks. These models operate on the principle that a linear equation can reasonably approximate the relationship between 
independent variables and dependent variables [44]. Their simplicity, interpretability, and efficiency make them foundational 
methods in many applications.

LR models assume that the response variable 𝑦 can be expressed as a linear combination of the terms in the vector of independent 
variables, 𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑛]. The model parameters are typically estimated using methods like Ordinary Least Squares, which 
minimizes the sum of squared deviations between observed and predicted values. One of the key advantages of linear regression 
is its simplicity, offering a clear and interpretable relationship between variables. This makes it particularly valuable in scenarios 
where understanding and explaining the model’s behavior is essential [45]. Additionally, linear models are computationally efficient, 
even when applied to large datasets.

5.2. Support vector regression

Support Vector Regression (SVR) is a ML technique designed for regression tasks, which involves predicting continuous values 
from input data [46]. A key strength of SVR is its ability to handle sparse data and efficiently address nonlinear problems. It works 
by identifying a regression function that generalizes well to the training data while minimizing the deviation between actual and 
predicted values. This is achieved by optimizing a symmetric loss function, which equally penalizes both large and small deviations.

For data that is not linearly separable, SVR leverages kernel functions to map the data into higher-dimensional spaces. This 
enables the model to handle nonlinear relationships effectively, providing flexibility for diverse types of data [47]. Additionally, 
it performs particularly well when the dataset is small compared to the number of input variables. Despite its advantages, SVR’s 
performance is highly sensitive to the selection of hyperparameters, such as the kernel type and its parameters. This often necessitates 
careful tuning and extensive testing to achieve optimal results.

5.3. Bootstrap aggregating

Bootstrap Aggregating, or Bagging, is an ensemble learning technique that enhances the accuracy and stability of ML models by 
combining predictions from multiple models trained on different bootstrap samples—random subsets of the dataset created through 
sampling with replacement [48]. Bagging reduces variance and mitigates overfitting by leveraging diversity among models, making 
it effective for high-variance algorithms like decision trees. Random Forest (RF), a popular bagging method, builds multiple decision 
trees independently on different bootstrap samples and aggregates their predictions, improving robustness and reducing overfitting.

5.4. Boosting

Boosting is a ML technique aimed at improving the accuracy of predictive models. Similar to Bootstrap Aggregating, it operates 
on variations of the historical dataset. However, the key distinction lies in how these variations are generated. In Bagging, datasets 
are created by sampling with a uniform distribution, while in Boosting, data points with higher prediction errors are more likely to 
be sampled than those predicted correctly.

Boosting involves iterative phases of dataset creation and base model training [49]. Initially, all data points have an equal 
probability of being sampled, and the first base model is trained and evaluated on this dataset. For subsequent iterations, new 
datasets are generated where the sampling probability is weighted by the prediction errors of the previous model. This process of 
dataset generation, model training, and evaluation continues until the error rate falls below a predefined threshold or a specified 
number of base models are added to the ensemble.

One of the most well-known Boosting algorithms is AdaBoost. It works by training a base model on an initial dataset, then creating 
new datasets based on the prediction errors of the model, and iteratively refining accuracy through additional training cycles [50]. 
While highly effective, it is important to note that Boosting models, including AdaBoost, come with increased computational 
complexity and should be applied cautiously, particularly in resource-constrained environments.

Other popular Boosting algorithms include LightGBM (LGBM), XGBoost (XGB), and Histogram-Based Gradient Boosting (HGB). 
LGBM is optimized for speed and efficiency, using a histogram-based approach to split data and handling large datasets with 
lower memory consumption [51]. XGBoost, a highly scalable and flexible algorithm, employs advanced regularization techniques 
to prevent overfitting and has become a standard in many competitive ML tasks [52]. HGB, leverages histogram-based splitting 
to improve training efficiency and is particularly well-suited for large datasets [53]. These modern algorithms enhance Boosting 
by addressing computational challenges, making them more practical for real-world applications, though they still require careful 
tuning and consideration of resource limitations.

5.5. Feedforward neural networks

Regression Feedforward Neural Networks (FNN) are powerful tools in ML for predicting continuous dependent variables. Their 
core strength lies in the ability to represent and transform input data through a network of interconnected layers to model complex 
nonlinear relationships [54]. FNN utilize a hierarchical structure comprising three main types of layers: input, hidden, and output. 
Input data is processed through multiple hidden layers, each consisting of neurons that apply nonlinear activation functions such as 
the Rectified Linear Unit (ReLU) or softmax. These functions enable the network to capture intricate patterns in the data, facilitating 
accurate predictions.
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Table 2
Overview of features and their respective descriptions.
 ID Feature Description  
 t1 Timestamp This feature represents, as the name implies, the timestamp of each and every measurement

in a unix time format. This is recorded with a high precision RTC clock.
 

 f1 Temperature The temperature of the environment, measured from inside a waterproof weather station
3D printed box with appropriate venting. This is done in order to avoid false temperature
readings when the sun is hitting it all day.

 

 f2 Humidity Measures the humidity of the air, this sensor is on the same board as the temperature
sensor.

 

 f3 Rain This feature is the raw measurements from the rain sensor. By raw it is meant that the
resistance value is read directly from the control module of the sensor and stored
without further processing.

 

 f4 Light This feature represents the raw values recorded from the ambient light sensor, raw is the
value recorded by the sensor in lux.

 

 f5 UV This sensor is in the same board as the light sensor and is located underneath a glass
windows at the top of our station. These feature measurement unit is milliwatts per
square centimetre.

 

 f6 Soil
moisture

This is a crucial feature for many applications this dataset can be used for and measures
the humidity of the soil, at a depth of 15 centimetres. A capacitive sensor measures the
dielectric constant of the soil. When the soil is irrigated, it becomes wetter and more conductive.
This increase in conductivity can be used to scale the measurements from 0 to 100.

 

5.6. Time series neural networks

Time Series Neural Networks are specialized architectures designed to process and analyze sequential data, where observations 
are dependent on time. These networks aim to capture temporal patterns, trends, and dependencies in data, enabling tasks such as 
predicting sensor measurements for smart farming applications, including soil humidity, light intensity, and UV levels. Time Series 
Feedforward Neural Networks (TSFNN) rely on engineered lagged features, using fixed windows of past data as input but lack 
inherent sequential memory, making them suitable for simpler time series problems [55]. Time Series Recurrent Neural Networks 
(TSRNN) address this limitation by introducing loops within their architecture, allowing information to persist across time steps, 
thus effectively modeling sequential dependencies [56]. Time Series Long Short-Term Memory (TSLSTM) networks, an advanced 
form of TSRNNs, incorporates specialized gating mechanisms to handle long-term dependencies and mitigate the vanishing gradient 
problem, enabling them to excel in complex time series tasks where patterns span over long durations [57].

6. Exploratory data analysis

In this section, the structure and characteristics of the gathered sensor measurements are described. The dataset was collected 
from IoT-enabled monitoring stations deployed across the two agricultural fields depicted in Fig.  2: a larger field equipped with three 
physical stations and a smaller field with one operational physical station, as the second station became non-functional after the 
flood in Anonymized city. These data offer crucial insights into the environmental conditions of the fields, serving as the foundation 
for our analysis and modeling. After the dataset collection, missing values and outliers were inspected, while the timestamps and 
the values of the different sensors were cross checked, in order to determine the validity of the recorded data. Table  2 presents the 
features of the dataset along with their corresponding descriptions.

Each feature derived from a physical sensor at a distinct physical station has its own unique distribution, characterized by a set 
of different statistical properties. Time series plots and violin plots where used to observe the distribution of values. The time series 
plots visually represent how a variable changes over time, revealing trends, patterns, and fluctuations in the data. The shape of the 
violin plots illustrates the density of the data and revealing areas of concentration or spread. In the middle of each violin plot is a 
small box plot, where the rectangle marks the first and third quartiles, and the central dot or line represents the median.

The analysis begins by examining and analyzing the data collected from physical station 1 in agricultural field 1 (Section 6.1). 
Next, the data from physical stations 2, 3, and 4 in agricultural field 2 are briefly presented (Section 6.2). Following this, feature 
correlations within the same field (Section 6.3) and across different fields (Section 6.4) are analyzed. This analysis includes 
visualizing and interpreting the data to uncover significant patterns and relationships.

6.1. Physical station in agricultural field 1

Agricultural field 1 is the smallest of the experimental sites, spanning over 80 acres. It includes physical stations 1 and 5, though 
physical station 5 was destroyed by the natural disaster in Anonymized city. Fig.  5 displays the violin plots for temperature, humidity, 
light, UV, and soil moisture recorded at the first physical station. The plots highlight that each feature has a distinct distribution, 
varying in skewness and deviation from the median. The four time series plots in Fig.  6 include the segments of the dataset that 
11 
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Fig. 5. Violin plots showing the distributions of features measured at physical station 1.

comes from four distinct irrigation periods. The 𝑥 axis represents various timestamps (in a day-month-year and hour format), while 
the 𝑦 axis shows the values of the soil moisture (blue), light intensity (red) and humidity (green).

A consistent pattern is observable across the time series plots. During the day, the air humidity tends to decrease, as expected, 
while at night it increases. This daily fluctuation is further amplified during irrigation periods, where atmospheric humidity levels 
are noticeably higher. Focusing on soil moisture, an interesting observation arises, particularly in the second and final time series 
plot: the soil moisture levels do not increase proportionally or immediately after irrigation starts. Instead, a delay of several hours 
is observed before any significant change occurs. This delay is attributed to the sensor’s placement deep and near the plant’s root 
zone, where it takes time for water from the irrigation system to reach.

It is important to note that the rain detector sensor operates by measuring changes in electrical resistance. When water comes 
into contact with the sensor’s surface, it alters the module’s resistance, which is then used to determine the presence and intensity of 
rain. A low resistance output typically indicates rain detection; however, this can result in false detections, as water may contact the 
sensor surface for reasons unrelated to rainfall. This issue can be mitigated by applying a Moving Average (MAVG) to the sensor’s 
data points. As shown in Fig.  7, individual instances of low resistance often represent false rain signals, but using MAVG allows for 
more accurate detection of actual rainfall events.

Furthermore, natural rainfall can disentangle from irrigation events by using MAVG, as the consistent patterns associated with 
irrigation are more easily differentiated from the irregular and intermittent characteristics of rainfall. This type of distinctions is 
crucial for accurately analyzing water usage and can be used for optimizing irrigation strategies.

Fig.  8 presents the soil moisture, the temperature and the light over two irrigation periods and two heavy rainfalls, spanning 
approximately two weeks. It is observed that during the first irrigation period, there is high soil moisture. This matches expectations 
because farmers aim to keep the soil and plants with high moisture during this season. This trend persists throughout the dataset. At 
the start of the plot, a fluctuation in the light sensor values is observed indicating the presence of dense clouds obstructing daylight. 
These readings are corroborated by the rain sensor data, which confirms that the cloud cover was accompanied by rainfall.

During the first irrigation period, rainfall preceded the start of watering, as marked by the horizontal lines. The watering lasted 
approximately one day, and the combined effect of the rain and irrigation kept the soil at consistently high moisture levels. In 
the second irrigation period, the soil was notably dry before watering began. As irrigation commenced, a gradual increase in soil 
moisture was observed, reaching its peak at the second blue line, which indicates the end of the watering period.

Fig.  9 provides a more detailed view of the second watering period. The blue line represents the soil time series, showing a 
gradual increase in moisture levels after the start of irrigation, which aligns with expectations. While the air humidity decreases 
when the irrigation closes to the end and the light increases.

6.2. Physical stations in agricultural field 2

Agricultural field 2 is the largest of the experimental sites, covering over 160 acres and includes physical stations 2, 3, and 4. To 
evaluate whether all sensors record similar feature distributions, their violin plots are presented. As shown in Fig.  10, the violin plots 
reveal substantial differences compared to the violin plots of agricultural field 1 of Fig.  5. This indicates that the sensors measure 
significantly varied feature distributions. Furthermore, for the soil moisture, its noteworthy that the values varies significantly among 
the physical stations 2, 3 and 4 of the field 2.

Additionally, a rise in humidity with minor fluctuations was detected at station 3. Further investigation revealed that a small 
leak in the irrigation system persisted throughout the season, as confirmed by the responsible farmer. This finding underscores how 
sensor data and exploratory analysis can provide valuable insights into the impacts of both natural phenomena and human activities 
in smart farming.

For the sake of brevity, time plots and analysis for stations 2, 3 and 4 are not repeated in this article. The corresponding figures 
can be found in the GitHub repository of the article’s first author.
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Fig. 6. Time series plots depicting soil moisture, air humidity, and light across four distinct irrigation periods.

6.3. Inner-field feature correlation

This subsection analyzes the correlation of features across the features of the physical stations 2, 3, and 4 within the agricultural 
field 2. The resulting correlation heat-map is displayed in Fig.  11. The value of correlation coefficient lies between −1 and 1. If 
there is no correlation between the features 𝑓𝑖 and 𝑓𝑗 then 𝜌(𝑓𝑖, 𝑓𝑗 ) = 0. A perfect negative correlation is found if 𝜌(𝑓𝑖, 𝑓𝑗 ) = −1 and 
a perfect positive correlation is found if 𝜌(𝑓𝑖, 𝑓𝑗 ) = 1.

The results align with expectations, showing a high positive correlation among the features of the same type of sensors. 
Furthermore, there is a strong positive correlation between temperature and light alongside a strong negative correlation between 
temperature and humidity. Temperature and light are strongly positively correlated because higher light intensity directly heats 
13 
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Fig. 7. Moving average of data points from rain detection sensors over time.

Fig. 8. Temperature, Soil humidity, Ambient light during heavy rainfall and Watering intervals.

Fig. 9. Second day of irrigation.

surfaces and the air, while temperature and humidity are strongly negatively correlated because higher temperatures enhance 
evaporation, reducing relative humidity by increasing the air’s capacity to hold moisture.

It is worth noting that the soil moisture readings from physical station 2 show almost no correlation with those from the other 
two stations. Upon investigation, it was discovered that this discrepancy is due to the irrigation schedule; the field monitored by 
the physical station 2 was irrigated only after the areas covered by the other physical stations had completed their irrigation cycles.

Additionally, weak yet noteworthy correlations where identified between soil moisture, temperature, and humidity. These 
relationships indicate that as soil moisture increases, both temperature and humidity tend to rise as well. Lastly, there is a positive 
correlation between soil moisture and atmospheric humidity for stations 2 and 3, while station 4 exhibits a negative correlation 
with the other stations.
14 
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Fig. 10. Violin plots of the features from physical stations 2, 3, and 4 located in agricultural field 2.

Fig. 11. Correlation Heat-map between physical sensors in the same field.

6.4. Cross-field feature correlation
The correlation between stations located in different geographical areas is examined and presented in Fig.  12. As shown in the 
correlation plot, the features exhibit similar relationships across fields separated by a distance of 3 km. This finding demonstrates 15 
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Fig. 12. Correlation heat-map of physical sensors across different fields.

that the underlying patterns can be captured effectively, allowing us to model not only nearby fields but also those further apart. 
This reinforces the applicability of the virtual sensor methodology across diverse geographical locations, without being limited by 
proximity.

7. Experimental evaluation

This section describes the experimental process that was followed to evaluate the performance of the virtual sensors and compare 
the various ML models they utilize. To accomplish the experimental evaluation the physical stations where deployed as explained in 
Section 4, and the models where trained as described in Section 5 using the dataset as outlined in Section 6. From the dataset 80% 
of the observations where used from each physical station to train the models and the remaining 20% for evaluation. Furthermore, 
experiments were carried out in which the virtual stations used open weather data as inputs instead of relying on the base station. 
The dataset collected from the physical stations, along with the associated code, is publicly available on the first author’s GitHub 
repository [58].

7.1. Natural disaster during our experiment

A notable event during our experiment was the catastrophic flooding that occurred in the Anonymized region, which caused 
extensive damage across multiple sectors, including agriculture and livestock [9]. Many farmers not only lost their annual yields 
but also faced the destruction of costly equipment, including advanced smart farming systems. Our stations were partially affected by 
the disaster. Four out of the five deployed stations were working successfully. Unfortunately, the fifth station, located in a low-lying 
area, was submerged and could not be recovered. In the smaller field, only one station was operational, whereas all three stations 
in the larger field were functioning successfully.

7.2. Evaluation metrics

To evaluate the performance of the prediction models, three metrics are employed: Mean Squared Error (MSE), Mean Absolute 
Error (MAE), and Hit Rate, with thresholds set at 0.5%, 1%, or 5%, depending on the specific feature. These metrics enabled us to 
evaluate the performance of each model and identify the one that delivered the best results. MSE measures the average of the squared 
differences between predicted and actual values. The goal is to minimize MSE, with 0 indicating a perfect model. MAE calculates the 
average of the absolute differences between predicted and actual values. The Hit Rate metric evaluates the percentage of predictions 
made by the ML model that falls within a specified error threshold. For instance, stating that the Hit Rate (1%) for Temperature 
using the LGBM method is 90.8% means that 90.8% of the predicted values have an error of less than 1%. The features vary in range 
and significance to farmers. Therefore, after consulting with them, specific thresholds where established, tailored to each feature.
16 
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Table 3
MAE and MSE metrics for virtual stations 1, 3, and 4.
 Method Station 1 Station 3 Station 4
 MAE MSE MAE MSE MAE MSE

 LGBM 0.089 0.021 0.079 0.022 0.064 0.017 
 XGB 0.465 0.945 0.089 0.029 0.329 0.594 
 AdaBoost 0.535 0.935 0.087 0.037 0.352 0.621 
 HGB 0.734 0.945 0.088 0.029 0.331 0.464 
 LR 0.223 0.033 0.093 0.032 0.078 0.017 
 RF 0.123 0.032 0.103 0.029 0.086 0.017 
 SVR 0.097 0.028 0.094 0.035 0.074 0.018 
 FNN 0.421 0.315 0.457 0.363 0.368 0.377 
 TSFNN 0.262 0.366 0.285 0.323 0.298 0.139 
 TSRNN 0.018 0.092 0.088 0.021 0.073 0.011 
 TSLSTM 0.118 0.027 0.071 0.023 0.289 0.061 

Table 4
Hit rate prediction of virtual station 1.
 Method Temp.

(1%)
Hum.
(5%)

Rain
(0.5%)

Light
(5%)

UV
(5%)

Moist.
(1%)

 LGBM 90.8 88.8 99.8 78.9 66.9 83.9  
 XGB 64.3 44.6 93.4 15.5 5.5 12.4  
 AdaBoost 46.2 24.7 97.2 1.7 3.3 7.5  
 HGB 18.7 16.2 97.2 7.7 3.4 3.2  
 LR 46.1 39.1 98.9 8.7 2.9 2.3  
 RF 38.9 21.8 99.9 0.8 3.4 2.9  
 SVR 60.3 45.3 99.9 19.5 3.2 5.4  
 FNN 65.7 73.4 42.5 12.9 14.9 2.5  
 TSFNN 45.4 55.5 25.6 18.2 9.5 7.9  
 TSRNN 38.0 52.4 40.8 43.6 10.2 5.9  
 TSLSTM 49.8 57.9 45.7 37.8 28.9 47.9  

Table 5
Hit rate prediction of virtual station 3.
 Method Temp.

(1%)
Hum.
(5%)

Rain
(0.5%)

Light
(5%)

UV
(5%)

Moist.
(1%)

 LGBM 88.2 93.2 97.8 84.3 85.4 96.4  
 XGB 79.8 67.7 87.8 63.2 58.3 45.6  
 AdaBoost 76.5 65.4 95.6 43.2 36.5 88.7  
 HGB 81.2 64.5 87.4 54.9 41.5 89.4  
 LR 88.9 67.4 98.8 58.9 61.3 90.3  
 RF 56.7 33.4 89.9 34.3 23.4 80.9  
 SVR 84.5 56.4 99.8 55.6 45.6 88.9  
 FNN 86.9 62.9 79.1 45.4 43.6 76.9  
 TSFNN 63.8 71.2 89.9 24.5 60.8 70.9  
 TSRNN 47.5 67.4 86.4 35.4 57.6 65.3  
 TSLSTM 44.5 76.4 72.3 43.8 22.4 78.9  

7.3. Outcomes & discussion

The performance of the virtual sensors is showcased following four different approaches. In Section 7.3.1, the use of ML models 
is evaluated to predict measurements for multiple sensors of a single virtual station. In Section 7.3.2, the performance of predicting 
virtual sensor measurements using a single-output methodology is examined. Section 7.3.3 details experiments involving a multi-
output ML model to simultaneously predict sensor measurements for multiple physical stations. Lastly, Section 7.3.4 explores the 
feasibility of using satellite measurements as inputs for modeling a virtual station.

7.3.1. Multi-output modeling for a single virtual station using a physical base station
In this approach, the physical station 2 was set as the base station and use its features to predict the values at stations 1, 3, and 4 

based on separate multi-output models. Each multi-output model represents a separate virtual station, and each output corresponds 
to the metrics of a virtual sensor. Table  3 provides a comparison of performance metrics with MAE and MSE aggregated for all 
features, across all models. The first double column represents models trained and evaluated to predict station 1, while the latter 
columns correspond to models trained and evaluated to predict station 3 and 4. The evaluation reveals that LGBM has significantly 
better evaluation outcomes. This occurs due to its leaf-wise tree growth strategy, which effectively minimizes loss and captures 
complex patterns in the data with high computational efficiency. Extensive experimental research was conducted in order to explore 
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Table 6
Hit rate prediction of virtual station 4.
 Method Temp.

(1%)
Hum.
(5%)

Rain
(0.5%)

Light
(5%)

UV
(5%)

Moist.
(1%)

 LGBM 99.9 97.7 99.2 85.1 89.5 91.4  
 XGB 76.6 66.7 89.7 22.3 55.3 76.5  
 AdaBoost 71.6 53.2 97.5 4.3 53.2 88.2  
 HGB 75.2 52.7 97.1 21.9 53.4 79.8  
 LR 79.5 60.1 37.3 18.2 9.8 58.4  
 RF 54.3 58.8 99.2 18.5 7.7 43.5  
 SVR 79.3 63.5 88.6 23.7 8.4 53.4  
 FNN 78.5 70.9 98.6 16.2 61.9 82.2  
 TSFNN 50.3 70.4 56.5 20.4 63.6 98.7  
 TSRNN 38.1 60.3 70.4 55.6 28.6 75.2  
 TSLSTM 46.7 73.4 72.5 39.8 20.5 80.0  

Fig. 13. Actual (blue line) and predicted (green line) humidity of base station 1 with multi-output model.

different topologies for time-series models, with a focus on LSTM, utilizing Bayesian optimization to fine-tune hyperparameters. From 
these experiments we concluded that LGBM using feature vectors outperforms time series methods like LSTM. LGBM efficiently 
captures complex feature interactions and handling high-dimensional data, making it less reliant on sequential dependencies and 
more robust to short-term noise.

The values in Table  3 represent aggregated errors, which do not provide stakeholders with a clear understanding of the prediction 
accuracy. Therefore, this study presents the Hit Rate in the subsequent tables for better interpretability. Table  4 summarizes the 
outcomes for the features of the virtual sensor 1, Table  5 summarizes the outcomes for the features of the virtual sensor 3, and 
Table  6 summarizes the outcomes for the features of the virtual sensor 4.

Bold entries indicate the best performance for each feature, and it is evident that LGBM consistently outperforms other models in 
most cases. Even in scenarios where LGBM ranks second, such as rainfall at Station 1 or temperature at Station 2, its predictions are 
very close to those of the top-performing model. Furthermore, considering that Station 4 is located approximately 50 m from Station 
2, while Station 1 is about 3 km away, the experimental results validate the effectiveness of virtual sensors in both neighboring and 
distant field locations.

Additionally, to provide a visual representation of the predictions, Fig.  13 illustrates the predicted humidity values at station 1 
in orange alongside the actual values in blue. The model exhibited high accuracy, with predictions staying within a 2% margin of 
the actual values in most cases.

7.3.2. Single-output modeling for a single virtual station using a physical base station
In the previous experiments, a multi-output model was employed that uses data from all sensors at the base station to predict 

all the measurements of a virtual station simultaneously. In this section, a single-output approach is investigated, where a separate 
model is trained to predict a single variable, such as soil moisture, using inputs from multiple sensors. However, this approach 
proved less effective than the multi-output method. Fig.  14 illustrates the performance of the single-output model, showcasing its 
limitations in accurately predicting individual variables.

These outcomes made us to conclude that a multi-output model is more accurate than a single-output model. This occurs because 
the multi-output model leverages shared learning across outputs, capturing common patterns and relationships in the data that 
benefit all predictions. The shared representation allows the model to generalize better, as features learned for one target can inform 
others, especially when outputs are correlated or interdependent. Additionally, multi-output learning acts as a form of regularization, 
reducing overfitting by encouraging the model to balance multiple objectives rather than focusing narrowly on a single target. By 
utilizing all available information more efficiently, a multi-output model can achieve improved accuracy and robustness.
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Fig. 14. Actual (blue line) and predicted humidity (green line) with single-output model.

Table 7
Hit rate predictions of an ML model concurrently outputting virtual stations 3 and 4.
 Method Station 3 Station 4
 Temp.

(1%)
Hum.
(5%)

Rain
(0.5%)

Light
(5%)

UV
(5%)

Moist.
(1%)

Temp.
(1%)

Hum.
(5%)

Rain
(0.5%)

Light
(5%)

UV
(5%)

Moist.
(1%)

 LGBM 89.5 83.4 90.3 27.6 17.5 35.1 52.1 43.2 74.1 21.9 9.1 7.3  
 XGB 85.8 78.9 89.9 56.8 43.8 73.4 76.6 67.5 63.7 22.5 34.3 94.3  
 AdaBoost 87.8 73.2 70.4 35.9 20.7 59.9 78.9 70.9 67.7 26.6 8.0 98  
 HGB 89.9 79.8 81.2 28.9 14.9 64.3 75.5 69.9 77.9 23.1 9.3 98.1  
 LR 91.6 73.5 19.8 37.8 26.5 53.2 85.6 68.8 8.5 20.8 9.5 96.3  
 RF 52.3 27.2 98.2 26.4 11.2 65.6 55.4 58.9 98.9 11.5 7.6 88.9  
 SVR 90.6 57.5 98.5 30.6 15.1 98 80.2 67.1 98.9 25.2 7.2 86.9  
 FNN 64.4 59.9 49.8 25.1 19.9 55.6 65.4 63.2 48.5 19.8 19.3 76.3  
 TSFNN 45.9 56.4 11.5 24.5 3.8 97.2 49.3 69.8 23.4 34.3 6.9 87.3  
 TSRNN 40.5 55.6 21.3 39.9 34 64.3 45.4 68.9 22.9 33.5 23.4 86.3  
 TSLSTM 56.7 39.6 21.6 27.4 15.2 79.8 60.5 53.3 68.9 26.4 25.5 97.8  

7.3.3. Multi-output modeling for multiple virtual stations using a physical base station
The effectiveness of multi-output modeling inspired us to explore whether a multi-output model could predict the measurements 

for all virtual stations simultaneously. In these experiments, features from the base station were used as input, and features 
from all other stations were used as target outputs. Numerous experiments were conducted, testing various configurations and 
hyperparameters, but the results were not promising. Table  7 presents some evaluation outcomes, showing that while the model 
performs well on certain features, it struggles with others. These findings led us to conclude that employing separate multi-output 
prediction models for each virtual sensor is a more effective approach.

7.3.4. Multi-output modeling for a single virtual station using open data
In the final set of experiments, the use of weather observations from an open-data platform was explored as an alternative to 

measurements from the physical base station. This approach involved training the virtual sensors to model the relationship between 
open-data measurements and sensor data gathered from agricultural field stations. To acquire the open-data measurements, the 
Weather API provided by Visual Crossing [59] was used. This API provides access to both historical and forecast weather data on 
a global scale, sourced from over one hundred thousand worldwide stations, including satellite and maritime sources.

Visual Crossing offers access to a wide range of features. For our experiments, the following variables where selected as inputs: 
1. Temperature, 2. Humidity, 3. Precipitation, 4. Dew Point, 5. Solar Radiation, 6. Solar Energy, 7. Wind Speed at 50 m, 8. Soil 
Moisture at 0.35 m, and 9. Soil Moisture at 0.4–1 m while the target features where kept the same. Table  8 presents the evaluation 
results. Temperature, humidity, precipitation, UV index, and soil moisture features can be predicted with high accuracy. However, 
light intensity shows lower prediction accuracy, primarily due to its variability caused by the unpredictable movement of clouds, 
resulting in patterns that do not align with those captured by the open-data measurements.

Although the accuracy of virtual sensors using open data is lower than that achieved with a physical base station, this approach 
offers a hardware-free solution. It enables the estimation of virtual sensor measurements without the need to deploy any physical 
devices in agricultural fields.

8. Observations & lessons learned

Through the development and deployment of physical and virtual sensors in real agricultural fields, integrated with IoT 
devices and AI models, and through direct engagement with farmers, valuable insights where gained into the functioning of these 
cyber–physical systems within the context of smart farming. These important findings are detailed in this section.
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Table 8
Hit rate predictions using open-data.
 Method Temp.

(5%)
Hum.
(5%)

Rain
(5%)

UV
(5%)

Light
(5%)

Moist.
(5%)

 LGBM 84.3 76.7 89.3 54.8 30.4 67.6  
 XGB 63.4 65.4 41.6 19.2 39.5 54.5  
 AdaBoost 55.4 73.6 74.3 16.3 43.4 75.4  
 HGB 56.4 71.2 76.3 29.2 34.5 78.2  
 LR 60.3 43.4 64.3 22.2 23.2 60.0  
 RF 67.4 71.2 78.3 22.3 24.3 87.4  
 SVR 48.9 60.3 90.2 20.2 28.3 76.3  
 FNN 64.3 32.5 33.4 28.3 28.3 43.3  
 TSFNN 43.3 29.3 38.4 22.3 11.2 43.4  
 TSRNN 45.6 33.4 12.3 18.2 18.6 45.5  
 TSLSTM 46.6 37.8 14.1 8.2 18.2 56.4  

First, a significant challenge in the agricultural sector is the limited availability and high cost of sensors. Electrical conductivity 
(EC) sensors, which are valuable for assessing soil quality, face issues of accessibility and integration. Many commercially available 
EC sensors are expensive and come with inadequate documentation for interfacing with MCUs or microprocessing units. This lack 
of transparency complicates their use in cost-effective and adaptable farming systems, limiting opportunities for innovative, farmer-
friendly solutions. For instance, most soil moisture sensors are restricted to a measurement depth of only 15 cm. This shallow range 
hinders effective monitoring of soil moisture at greater depths, which is essential for optimizing water usage and supporting plant 
growth. The demand for sensors capable of measuring moisture at depths of at least 30 cm remains unmet due to their high cost.

There is a need for developing and supporting open-source technologies in agriculture. While advanced irrigation control and 
automation systems from companies like Netafim4 offer promising capabilities, they are often prohibitively expensive and require 
specialized expertise to implement and maintain. Sensors, controllers, and software necessary for such systems often cost tens of 
thousands of euros per field. There is a growing demand for simpler, more affordable solutions that farmers can develop, adapt, 
and manage independently. Unfortunately, the scarcity of open-source alternatives and detailed documentation hampers farmers’ 
ability to harness technology tailored to their specific needs.

A further issue that should be taken into consideration is the inconsistency in sensor performance; for example, soil moisture 
sensors exhibited significant discrepancies between controlled laboratory conditions and real-world applications. Temporary fixes, 
such as applying conformal coating to protect sensitive sensor components.

Bridging the gap between complex AI models and practical agricultural use is essential for ensuring that smart farming solutions 
are both trustworthy and actionable. In our work, explainability plays a key role in making machine learning models more 
transparent and interpretable for end users, particularly farmers, who need to understand the reasoning behind the system’s 
predictions. Instead of relying solely on data-driven outputs, explainability techniques help contextualize predictions within real 
agronomic knowledge. This is especially important in agriculture, where understanding cause-and-effect relationships is critical for 
informed decision-making. Without explainability, AI models may be perceived as black-box systems, which can reduce user trust, 
obscure potential biases, and make it difficult to troubleshoot unexpected results [60].

In our implementation, we observe that vector-based models such as LGBM, XGB, LR, SVM, and RF deliver highly accurate 
results. This strong performance enables the effective use of well-established explainability techniques, including Shapley Additive 
Explanations (SHAP) and Permutation Importance. SHAP values offer both global and local interpretability by quantifying the 
contribution of each input feature, such as sensor readings, to individual model predictions [61]. This makes SHAP particularly 
valuable for applications such as soil moisture estimation, humidity prediction, and anomaly detection. Permutation Importance, 
while conceptually simpler, provides an efficient method for evaluating feature relevance by measuring the impact on model 
performance when individual input variables are randomly shuffled [62]. By applying these techniques, farmers can gain clearer 
insights into how virtual sensor outputs are generated from physical sensor data or satellite-derived metrics, thereby improving 
transparency, building trust, and supporting more informed decision-making in the field.

Another important issue to highlight is that, although the rain sensor performed well during our experiments, its measurements 
are likely to become inaccurate over time due to significant degradation. This degradation can be attributed to several factors, 
including the highly saline water in the area, exposure to a mixture of various chemicals sprayed onto it, and its unprotected 
placement outdoors. An alternative to capacitive sensors for rain detection could be considered in future work. For instance, the 
same technology employed in automotive rain detection systems [63] could be utilized. This type of sensor and board provides 
categorical outputs, such as light, moderate, or heavy rainfall, in contrast to our capacitive sensor, which delivers raw values that 
must be mapped to a scale, such as 0 to 100 or 0 to 1.

Furthermore, the station’s placement is important. Positioning it near the plant root provides highly accurate measurements of 
moisture at the plant. However, because the sensor was placed close to a single plant rather than between plants, it fails to capture 
a comprehensive view of the overall field moisture. When the sensors are close to the plants the measurements are affected by 
the plants. During the day, higher temperatures cause plants to uptake and recycle more water, and irrigation amplifies this effect. 

4 https://www.netafim.com/en/.
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Conversely, at night, the plants’ water requirements diminish, and evaporation combined with deeper water movement results in a 
decrease in observed soil moisture. These dynamics highlight the complex relationship between temperature, plant behavior, and 
irrigation in influencing soil moisture.

The virtual sensors developed in this system are data-driven machine learning models that operate independently of specific 
regional, climatic, soil, or crop conditions. Rather than relying on the physical characteristics of the environment, these models learn 
from the patterns and relationships within the sensor data itself captured over time. This allows the virtual sensors to generalize 
well and perform accurately across diverse agricultural environments. Their agnostic nature means they can adapt to different 
micro-climates, soil types, and crop varieties, as long as relevant sensor data is available for training. This flexibility was validated 
through successful deployments in fields with varying conditions and through additional experiments using open weather data, 
showing that virtual sensors can maintain strong predictive performance without being constrained to a specific location or setup.

The virtual sensor methodology has been evaluated in a variety of settings to assess its generalizability. The virtual sensor 
methodology was deployed and validated across two agricultural fields that were geographically distant from each other. These fields 
exhibited different environmental conditions, soil characteristics, and irrigation schedules, allowing us to assess the adaptability of 
the system. Prior to field deployment, all base stations were thoroughly tested in a controlled laboratory environment to ensure 
accurate sensor functionality. Additionally, the virtual sensor approach was successfully applied in a smart home environment, where 
it also demonstrated high accuracy [7]. Across all these scenarios, the system consistently delivered reliable results, confirming its 
robustness and general applicability across varied domains.

In this work, the Arduino platform was selected primarily due to its extensive community support and the availability of plug-
and-play modules. This makes it particularly suitable for the prototyping phase, a critical step in the development of most products. 
To transition from prototype to product development, the recommended approach would involve designing a custom printed circuit 
board (PCB). This can be accomplished using open-source tools like KiCad5 or professional design software such as Altium Designer.6 
Prototype PCBs could then be fabricated by manufacturers such as JLCPCB,7 with components sourced from distributors like Mouser8.

For this stage, the STM32 MCU platform would be a more appropriate choice. Designing a PCB around the STM32 platform 
allows for extensive customization, enabling the integration of features such as an on-board RTC or more precise sensors, such as 
the BME280 Bosch humidity and pressure sensor, directly onto the PCB. Furthermore, this approach allows for the selection of the 
MCU based on the specific requirements of the desired sensors. This flexibility eliminates the constraints imposed by preconfigured 
platforms like the Arduino Nano, which require choosing sensors compatible with the available pins. Instead, sensor selection can 
be prioritized and then tailor the STM32 MCU and PCB design to meet these needs.

Our research directly contributes to multiple United Nations Sustainable Development Goals (SDGs),9 particularly SDG 2 – Zero 
Hunger, SDG 1 – No Poverty, and SDG 12 – Responsible Consumption and Production. By enabling cost-effective smart farming 
through the development and deployment of virtual sensors, we significantly enhance the precision and scalability of agricultural 
monitoring. Farmers can make more informed decisions using real-time and predictive data on soil moisture, humidity, temperature, 
and other key environmental variables. These insights lead to better crop yields and more efficient farming practices, ultimately 
increasing food production [64]. This has a direct impact on food security (SDG 2) and supports the livelihoods of farmers, especially 
in low-income regions, thus contributing to poverty alleviation (SDG 1).

In addition, our system promotes responsible consumption and production (SDG 12) by optimizing water and energy use in 
irrigation systems. Using sensor-based irrigation models, farmers can reduce water consumption by 36% to 47% without affecting 
crop yield, as demonstrated in this study [65]. Given that annual irrigation on farms requires between 3.2 and 9.1 megaliters of 
water per hectare,10 the potential savings in water use are both environmentally and economically significant. Our approach also 
reduces dependency on costly hardware, democratizing access to precision agriculture by leveraging open-source tools, standardized 
communication protocols, and explainable AI. This not only facilitates sustainable farming practices but also fosters innovation and 
infrastructure development, aligning with SDG 9 – Industry, Innovation, and Infrastructure by bridging the gap between emerging 
technologies and practical, affordable agricultural solutions.

9. Conclusions & future work

This research has successfully demonstrated the integration of IoT-enabled physical sensors with AI-driven virtual sensors to 
optimize agricultural monitoring. Virtual sensors proved to be cost-effective and scalable, accurately predicting parameters such as 
soil moisture, temperature, and light intensity. The adaptability of these systems across both nearby and distant fields highlights 
their potential for widespread adoption in smart farming. Key contributions include insights into sensor placement, calibration, and 
data preprocessing, which address practical challenges while laying the foundation for more sustainable, data-driven agricultural 
practices.

Future work could explore integrating the proposed approach into a smart irrigation system that dynamically manages water 
supply using both physical and virtual sensors. This integration would optimize water usage by providing precise, data-driven 

5 https://www.kicad.org/.
6 https://www.altium.com/.
7 https://jlcpcb.com/.
8 https://gr.mouser.com/.
9 https://sdgs.un.org/goals.
10 https://agriculture.vic.gov.au/farm-management/water/irrigation/variation-in-irrigation-requirements-of-forages-northvic.
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irrigation strategies tailored to specific field conditions. Additionally, future efforts should focus on developing more affordable, 
reliable, and flexible sensors, alongside robust open-source platforms with comprehensive documentation. Empowering farmers to 
build and maintain their systems through these tools could significantly enhance agricultural efficiency and sustainability. Such 
advancements would not only provide cost-effective solutions for resource management and productivity improvements but also 
foster innovation and resilience in the agricultural sector.
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