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A B S T R A C T

The split-ring resonator (SRR) has become widely popular in the design of artificial two-dimensional materials at 
the sub-wavelength scale, known as metasurfaces. When exposed to an intense electric field, this meta-atom 
deposited on a suitable substrate can exhibit electromagnetic coupling and become a bianisotropic meta-atom 
metasurface, where various nonlinear phenomena can occur. In this paper, the collective properties of the 
nonlinear SRR meta-atom model subjected to an alternating current (AC) and direct current (DC) field in the 
terahertz (THz) frequency portion of the spectrum are investigated in detail. Our investigation seeks to identify a 
new pathway to leverage the controlled bias field for reducing the required AC field that triggers the desired 
nonlinear effects. Using bi-parameter diagrams, we demonstrate how irregular oscillations emerge from con
trolling the DC field with a relatively low AC field. This result represents a key strategy and a promising route for 
translating these significant nonlinear interactions into practical, real-world applications utilizing nonlinear 
metasurfaces. To further examine some interesting properties correlated to the multi-sensitivity of the material in 
the low AC field regime, we first consider the normalized amplitude of the AC field as a control parameter for a 
fixed DC value. This approach reveals important phenomena, such as the transition to chaos via period-splitting 
bifurcation, as well as the emergence of multistable windows where the system exhibits a variety of coexisting 
periodic signals, including the coexistence of two and three distinct periodic patterns. Additionally, we uncover a 
rare case of bistability consisting of two different irregular signals. Next, the dynamic characteristics of the 
system are analyzed by varying the normalized DC field, for a fixed value of the normalized AC amplitude. In this 
situation, an interesting route to chaos is found through the creation and annihilation of periodic orbits. We also 
highlight a striking region in which the system exhibits the coexistence of three or two regular and irregular 
behaviors, resulting from a combination of hysteresis and parallel bifurcations. To distinguish these coexisting 
patterns, we compute the cross-sections of the initial domain, phase images, and time series associated with each 
signal. These findings substantially advance the development of multifunctional metasurface-based devices, with 
potential applications ranging from secure communication systems to enhanced signal detection.

1. Introduction

The electromagnetic (EM) frequency range between 300 GHz and 10 
THz, known as the “THz gap”, lies between electronics and photonics. It 
has long had limitations in terms of signal generation, guidance, pro
cessing and control. Today, however, it is attracting growing interest 
and showing increasing promise in a wide range of fields and applica
tions [1]. Over the past decade, the field of terahertz (THz) wave 
research has expanded to include the study and potential manufacture of 
nonlinear optical devices and materials [2–7]. This recent expansion of 
THz science towards nonlinear interactions has been fueled by the 

development of intense THz sources [8–10], which are essential to 
enable nonlinear behavior in this frequency range [11]. This is partic
ularly interesting with devices based on nonlinear metamaterials (MM) 
and/or metasurfaces (MS), which have recently emerged as powerful 
tools for exploring and unlocking the potential of this new regime 
[2,4–6]. Although traditionally used in the design of microwave devices, 
nonlinear metamaterials are now being extended to the THz range. 
Consequently, nonlinear MM engineering is one of the promising ave
nues for research and development of new nonlinear photonic devices, 
meta-electronic devices [12,13] and materials operating at THz 
frequency.
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Metasurfaces are two-dimensional (2D) structures of metamaterials 
that exhibit extraordinary properties when exposed to incident radiation 
[5,14]. Indeed, they are artificially engineered on a scale well below the 
wavelength, so that the response to an EM wave is precisely dictated/ 
controlled by the microstructure. The best-known metamaterials are 
those with negative refractive indices (i.e., both permeability and 
permittivity are negative), which can be designed using split-ring reso
nators (SRRs) as meta-atoms [15]. Therefore, much attention has been 
paid to the design of metasurfaces based on SRRs due to their unique and 
interesting interaction with EM waves [14,15]. In fact, the SRR is a well- 
known unit cell that promotes charge accumulation due to its gap, which 
acts as a barrier to the flow of circulating current [5,16]. Following the 
application of an intense electric field by intense incident radiation on 
the surface of the structure deposited on a suitable substrate, the motion 
of charge carriers in the gap junction can induce complex nonlinear 
effects including regular and irregular oscillations, bifurcation, hyster
esis, to name a few [17,18]. Interestingly, these nonlinear effects can 
lead to phenomena such as multistability and various transition paths, 
including period-doubling and period-bubbling. Multistability, where 
multiple stable states coexist, has been studied in several dynamical 
systems, including nanoparticle food chain models [19], predator-prey 
interactions [20], and nonlinear acoustic-gravity waves in a rotating 
atmosphere [21]. In the context of period-doubling and period- 
bubbling, these pathways are critical for explaining the transition to 
chaotic behavior, as explored in several studies [22,23]. These concepts 
are essential for understanding the nonlinear dynamics in systems 
exposed to intense EM radiation, as described in this paper. In this 
context, a coupled nonlinear U-shaped split-ring resonator has been 
considered and investigated [24]. Taking into account the magnetic 
coupling between the two SRRs, its model has been derived to study its 
nonlinear properties. The one-dimensional bifurcation diagram was 
used to show the region where regular and irregular oscillations can be 
observed when the normalized drive frequency is varied. Next, by 
considering two structures of the same meta-atom-based SQUIDs (for 
superconducting interference devices) coupled by their mutual induc
tance, their dynamic behavior has been studied numerically when the 
model is driven by a harmonic field [25]. The authors demonstrated that 
the proposed coupled SQUID material is capable of exhibiting multi- 
branch resonance, a quasi-periodic transition to chaos, and hysteretic 
resonance. Using the bifurcation and Lyapunov exponent analysis, the 
nonlinear behavior of the RLD (resistor–inductor–diode) circuit was 
predicted with a nonlinearity resulting from the parallel combination of 
a semiconductor rectifier diode and a fixed capacitor [26]. In [27], the 
authors generate and control chimera states in the SQUID metasurface 
when the model is biased by a time-independent (DC) flux gradient and 
driven by a sinusoidal (AC) flux field. The appearance of chimera states 
in the introduced ring metasurface, interrupted by a Josephson nonlin
earity was monitored by adjusting the DC flux or the AC field amplitude. 
It is important to emphasize that all the above work has been studied in 
the frequency range of a few GHz (gigahertz), which is a limit for certain 
applications (e.g., telecommunications, imaging, sensing, etc.) [28]. For 
the THz range, due to the need for intense sources to induce these 
nonlinearities, this approach remains largely limited to research labo
ratories. Fortunately, it has been demonstrated in various contexts that 
applying a DC electric field could be a key solution to facilitate the 
desired interactions, such as nonlinear interactions [12,29]. To date, 
however, electric-field-biased control of birth of irregular oscillations 
via multistability in a nonlinear THz meta-atom hasn't been investigated 
numerically and remains an open problem.

This paper presents the charge carrier dynamics of the generalized U- 
shaped nonlinear SRR model in the THz frequency portion. The main 
contributions and novelty of this work are summarized as follows. 

i) Investigates the onset of irregular oscillations under a low AC 
field, with the DC field as the controlling factor. Using bi- 
parameter diagrams, the study examines how the DC field 

triggers the emergence of nonlinear behavior at low AC fields, 
which is the core contribution of this research.

ii) The transition between different oscillation modes is studied 
using bifurcation diagrams and the maximum Lyapunov expo
nent (MLE). The results indicate two important scenarios leading 
to irregular oscillations: (a) a period doubling transition and (b) a 
transition involving the formation and destruction of bifurcation 
bubbles (also known as period-bubbling).

iii) We have numerically explored the parameter-relied bifurcations, 
revealed the interesting phenomenon of coexisting bifurcations 
and attractors, and comprehensively described its mechanisms.

iv) By analyzing the parallel branch and the enlargement of the 
hysteresis zones, we have detected a region of periodic tristability 
and a large zone where two MLE are all positive, characterizing 
the existence of one of the rare chaotic bistability. To the best of 
the authors' knowledge, such a striking bistability and tristability 
have not been reported in the literature on such a material and 
thus deserve dissimilation.

The paper is organized as follows. In Sec. 2, we derive and present 
the physical model describing the dynamics of the carriers in the gap of 
the meta-atom. The collective nonlinear behavior of the meta-atom 
metasurface is well studied and discussed in Sec. 3. We summarize 
this work with a conclusion in Sec. 4.

2. The physical model and its description

The sketch of the SRR material under study is shown in Fig. 1. It 
consists of a single-gap square-shape meta-atom of thickness h, length l, 
line width w. The material is illuminated with an electromagnetic wave 
of a specific polarization. Ei is the electric field and the double arrow 
indicates its polarization. It is also subjected to a DC bias voltage (i.e., 
time-invariant component), EDC, which can be useful to control the 
surface loss and thus enhance the field in the gap. The incidence EM 
radiation induced a circulating current in the ring which promotes 
charge storage in the gap. The gap of width d thus behaves as a nonlinear 
capacitor (due to the intense field) whose voltage dependence is 
expressed in [30]. The ring (metal frame) forms the material coil (with 
self-inductance L and ohmic resistance R). Recently, the physical 
modeling of the material has made it possible to extract the total charge 
Qjn accumulated inside the gap and to establish its mathematical model 
when illuminated by an electromagnetic wave [17]. In order to generate 

Fig. 1. The physical structure of the bianisotropic meta-atom metasurface is 
illuminated by a continuous wave (CW) and controlled by a constant polari
zation field (EDC).
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a complex nonlinear response with a weaker field, we have proposed an 
improved model given by Eq. (1), in which a DC field is added to the AC 
field. 

L
dI
dt
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Vξ = EDC + Eind(t) (1) 

where I is the current flowing in the ring, Vξ is the intrinsic potential, C0j 

is the zero-bias junction capacitance, d/dt is the first derivative with 
respect to time t, γ is the gradient coefficient, and EDC is the applied DC 
field. The electromotive force Eind(t) induced by the incident radiation is 
given by 

Eind(t) =
∫

Ei • dl = E0cos(Ωt) (2) 

where Ei is the electric field, E0 and Ω are the amplitude and driving 
frequency of the field, respectively. The following transformation of 
variables and parameters are established and used to normalize eq. (1)
in the adimensional space (τ, q): 
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Here, σ stands for the normalized loss parameter, μ and ω are the 
normalized amplitude and frequency of the AC field, respectively. δ is 
the bias term derived from the applied DC field, while β and η are the 
nonlinearity parameters. Substituting Eq. (3) into Eq. (1), we derive the 
nonlinear model describing the dynamics of the normalized current (i) 
flow in the ring and the normalized charges (q) accumulated in the gap 
of the bianisotropic meta-atom metasurface subjected to both AC and DC 
fields as given in Eq. (4). 
⎧
⎪⎨

⎪⎩

q̇ = i,

q̈ + σq̇ = −
dφj

dq
,

(4) 

where the dot indicates the derivative with respect to the normalized 
time τ, and the normalized potential φj is expressed by 

φj(q, τ) =
1
2
q2 −

β
3
q3 +

η
4
q4 − (δ+ μcos(ωτ) )q. (5) 

Without electric field illumination of the meta-atom surface (i.e., μ =

0), the normalized potential φj depends on the normalized charge in the 
gap and the bias term δ and is time independent. In this case, the po
larization of the gap junction is varied by adjusting the DC field values. 
When the material is now illuminated with an incident harmonic field (i. 
e., μ ∕= 0), the potential becomes time-dependent. In addition to varying 

with time, it can also fluctuate as a function of the applied DC field, 
inducing highly exciting and complex dynamics. Fig. 2(a)-(c) illustrates 
each of the above scenarios and depicts how the shape of the potential 
varies with DC field [Fig. 2(a)], AC field [Fig. 2(b)], or both fields [Fig. 2
(c)]. The last two cases show the evolution in the time interval τ ∈ ]0,
T/4], where T = 2π/ω is the normalized period. This work deals with the 
latter case, using bifurcation diagrams with their corresponding Lya
punov exponents, the power spectrum to demonstrate the emergence of 
attractors, and the basin of attraction with phase images to characterize 
the coexistence of different attractors. The fundamental oscillation fre
quency of the system f (obtained in the lossless, entrainment-free case) 
strongly depends on the geometric parameters of the SRR material and 
can be described by the formula 

f =

(
c0

2πl ̅̅̅̅εr
√

) ̅̅̅̅
d
w

√

=
ω0

2π (6) 

where c0 = 3 × 108 m.s− 1 is the speed of light in vacuum, εr is the 
relative permittivity of the medium, ω0 is related to the physical pa
rameters by ω0 = 1/

̅̅̅̅̅̅̅̅̅
LC0j

√
, with L = μ0l2/h and C0j = εwh/d. μ0 rep

resents the permeability of free space and ε is the permittivity of the 
medium between the armatures (i.e., the response of the medium to an 
electric field). The meta-atom metasurface in Fig. 1 is designed with the 
geometric parameters w = 6μm, h = 300nm, d = 4μm, and l = 60μm for 
an oscillation frequency of f = 0.4THz. These parameters are based on a 
real structure previously published in [3,31,32].

3. Collective nonlinear properties of the meta-atom

In this section, we present and discuss the results of the striking 
nonlinear properties of the meta-atom metasurface modeled by Eq. (4)
in the THz frequency range. First, the birth of irregular oscillations at 
low alternating field is presented using bi-parameter diagrams. Under 
this condition, the window of multisensitivity and multistability in the 
parameter space is analyzed. Then, a graph of the maximum Lyapunov 
exponent is used to highlight a window of hysteresis revealed in the bi- 
parameter space. To obtain the dynamics in two-dimensional space, the 
Wolf algorithm [33] is used to numerically compute and analyze the 
maximum Lyapunov exponent (MLE) on a grid of 600 × 600 values of 
the defined space parameters. A fourth-order Runge-Kutta algorithm 
with a fixed step size of 0.002 is also used to integrate the model. In the 
fourth subsection, the bifurcation diagrams are used to explore the 
emergence of attractors in the system, and the exciting phenomenon of 
coexisting attractors is examined in detail. The last subsection presents 
the complete dynamical characteristics of the system when the bias term 
is considered as the only bifurcation parameter.

3.1. Birth of irregular oscillations at low alternating field

To demonstrate the birth of irregular oscillations at low AC field 
values in response to a high AC destruction scenario, we study the dy
namics of the system in the two-dimensional space defined by the pa

Fig. 2. Curve of the normalized potential φj expressed in Eq. (5) for β = 0.4, η = 0.08. (a) for μ = 0, (b) δ = 0 and μ = 20, (c) δ = 20 and μ = 20.
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rameters μ and σ. This analysis is carried out by gradually monitoring 
the normalized bias constant δ. For this purpose, the following dynamic 
range was considered: 20 ≤ μ ≤ 49 for the normalized AC field ampli
tude parameter, and 0.05 ≤ σ ≤ 0.45 for the normalized loss parameter. 
To construct the bi-parameter diagrams in the (μ, σ) space, we vary the 
two control parameters μ and σ, starting from μmin = 20 and σmin = 0.05 
up to μmax = 49 and σmax = 0.45, with initial values (q0 = 0.3, i0 = 0.1), 
while keeping the other parameters fixed at ω = 1.0, β = 0.4, η = 0.08. 

For each pair of parameters, the values of the maximum Lyapunov 
exponent (MLE) are then analyzed. When we smoothly adjust the 
normalized DC field parameter, different dynamics are observed that 
better explain the death of irregular oscillations at high AC field values 
or their birth at relatively low alternating field values. First, for 
normalized DC field values δ = 5 and δ = 9, two distinct bands of 
irregular oscillations appear in the two-parameter space, as shown in 
Fig. 3a(i) and a(ii), respectively. For δ = 12, a single band of irregular 

Fig. 3. Spatial diagrams in the μ − σ plane showing birth with the emergence of irregular oscillations (area in the color bar where λmax > 0) in the range of high (a) 
and low (b) values of the normalized AC field for different values of the normalized DC field δ. The initial points used are q0 = 0.3, i0 = 0.1 and the other parameters 
are set to ω = 1.0, β = 0.4, and η = 0.08. From a(i) to a(iii), δ = (5,9, 12) and from b(i) to b(iii), δ = (15, 17,18).
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oscillations is seen in parameter space, as shown in Fig. 3a(iii). These 
irregular behaviors emerge from three different critical values of μ, i.e., 
μ > 34.7 for δ = 5 [Fig. 3a(i)], μ > 36.5 for δ = 9 [Fig. 3a(ii)], and μ >

40 for δ = 12 [Fig. 3a(iii)]. In other words, irregular oscillations are 
mainly concentrated in the areas where the normalized AC field is high. 
This sequence demonstrates the death of irregular oscillations at high 
normalized AC field values as the normalized DC field values increase. 
This is even highlighted in Fig. 3a(ii) and a(iii), where it is clearly 
observed that the dynamic range of the irregular oscillations in 
parameter space shrinks as the normalized bias term δ increases. By 
further increasing the bias term δ, irregular oscillation modes then begin 
to be born in regions where the normalized AC field is low. Fig. 3b(i)-b 
(iii) show three situations illustrating these cases for δ = 15, δ = 17, and 
δ = 18. In these last cases, we observe that there is no irregular oscil
lation in the region where μ > 25.5. For example, when δ = 15, irregular 
oscillations start to be born in a very small window of the two-parameter 
space and at low values of the normalized AC field, as shown in Fig. 3b 
(i). For δ = 17, this irregular region expands, while remaining in the 
region of low values of the normalized AC field and not exceeding 
μ ≈ 23.77. As the bias term δ increases slightly further, this region ex
pands again up to μ ≈ 25.2, as shown in Fig. 3b(ii). The exciting and 
interesting results presented in this subsection clearly show that there 
are critical values of the normalized DC parameter δ for which irregular 
oscillations can appear only at high values of the normalized AC 
parameter μ, as well as values of δ for which these oscillations can 
emerge only at low values of the normalized AC parameter. The latter 
case is of particular interest since it allows nonlinear effects to be 
induced and controlled at low AC fields simply by adjusting the DC 
parameter. Another interesting case is shown in Fig. 4, for a low AC field 
with δ = 20. In this case, we have zoomed into the interval to demon
strate that the same scenario can occur via multistability (see section 
3.2).

3.2. Analysis of multisensitive dynamic regions

In this subsection, we focus on the multisensitive dynamics in the low 
AC field region (as shown in Fig. 3(b)). In this case, we have shown that 
irregular oscillations emerge in the region μ < 28, depending on the 
chosen value of the normalized DC bias constant δ. Therefore, to better 
explore the multisensitive dynamics, we consider the bi-parameter (μ, σ)
space and analyze the zones between 20 and 31.5 for the value of μ and 
between 0.05 and 0.35 for the value of σ for δ = 20. This striking 
multisensitivity (e.g., periodic oscillation, chaotic oscillation, multi
stable oscillations) of the nonlinear SRR material modeled by the 
nonlinear model (4) is obtained by analyzing the MLE when all other 
parameters are set to ω = 1.0, β = 0.4, η = 0.08. The complex and rich 
dynamics of the system can be observed in the two-parameters phase 
diagrams shown in Fig. 4. The parameter range chosen in the μ − σ plane 
is the one featuring the most interesting dynamic characteristics. First, 
the system is numerically investigated when the value of the initial point 
is maintained at (q0 = 0.3, i0 = 0.1). In this case, the couple of pa
rameters (μ, σ) is scanned upwards [Fig. 4(a)] and then downwards 
[Fig. 4(b)] in their corresponding regions (20 ≤ μ ≤ 31.5 and 
0.05 ≤ σ ≤ 0.35). The MLE are recorded at each iteration until the pair 

(caption on next column)

Fig. 4. Space diagrams in the μ − σ plane for two different initial points (q0, i0), 
showing the regular, irregular and hysteresis behaviors (circled areas) in the 
system. The space diagrams (a) and (c) are calculated by up-sweeping the 
normalized amplitude μ and loss parameter σ while (b) is calculated by down- 
sweeping these parameters. The color codes other than red indicate regular 
period nT oscillations and chaos is presented in red. The black and white circles 
denote regions of hysteresis dynamics (see text for more details). The initial 
points used are q0 = 0.3, i0 = 0.1 for (a) and (b); q0 = − 4, i0 = σ for (c). The 
other parameters are set to ω = 1.0, β = 0.4, η = 0.08 and δ = 20. (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

G.D. Leutcho et al.                                                                                                                                                                                                                              Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 198 (2025) 116586 

5 



of parameters (μ, σ) attain their highest values 
[μmax = 31.5, σmax = 0.35]. Next, we reinvestigate the dynamics of the 
system by scanning upwards the range of the pair (μ, σ) and updating the 
initial value of the normalized charge q0 at each iteration according to 
(q0 = σ, i0 = 0.1) and recording the MLE once more [Fig. 4(c)]. In other 
words, the initial value in this case changes at each iteration, anytime σ 
is updated. From the results reported in Fig. 4, we can now categorize 
the different dynamics exhibited by the nonlinear SRR model. Indeed, 
two main behaviors can be seen in Fig. 4 depending on the value of the 
maximum Lyapunov exponent indicated on the color bar segment. That 
is, an irregular behavior observed in red regions (where the MLE (λmax) is 
positive) and a regular behavior observed in regions other than the red 
area (this case corresponds to negative values of the λmax). We notice 
that irregular oscillations (i.e., chaotic behaviors) are predominant in 
the range 21 < μ < 26.8 and surrounded by two regular zones (i.e., 20 ≤

μ < 21 and 26.8 ≤ μ ≤ 31.5). Also, some tiny windows of regular os
cillations can be observed in the irregular domain of Fig. 4. By observing 
Fig. 4(a) and (c) and according to the values of λmax, we can definitively 
conclude that the irregular oscillations are always localized in the region 
where σ < 0.26 and regular/periodic oscillations always in the region 
where σ > 0.26. Fig. 4(b) shows a slight shift in the bidimensional graph. 
Irregular oscillations are observed for σ < 0.21, whereas above this 

critical value, only regular oscillations can be found. This two-parameter 
projection is essential for detailed analysis and in-depth study of the 
different behaviors exhibited by the nonlinear SRR system. In addition 
to revealing areas of regular and irregular oscillations, various regions 
where coexisting patterns or multistability (places where each mark of 
difference is seen) is expected are also highlighted. By closely analyzing 
the graphs presented in Fig. 4, one can notice that they are not all 
identical. Differences can be appreciated, for example, by comparing 
Fig. 4(a)-(c) in the black and white circled areas. The coexisting dy
namics observed are due, on one hand, to the shift observed in the 
irregular oscillation region in Fig. 4(b) and, on the other, to the hys
teresis phenomenon uncovered in the system and highlighted by circled 
regions above when the control parameters are scanned up and down. 
We can therefore conclude that the proposed model exhibits the exciting 
phenomenon of multistability [24,34–37]. However, it is difficult to 
count both the number and the variety of coexisting patterns in the 
system with these two-parameter charts. In the coming sub-section, the 
maximum Lyapunov exponent and the basins of attraction will be 
exploited to investigate this particular feature of the model in detail and 
to determine the number of coexisting states that can emerge in each 
parameter range.

3.3. Coexisting graph of Lyapunov exponent

In this subsection, we explore the maximum Lyapunov exponent 
(MLE) and cross-section of the basins of attraction, to characterize the 
diverse nonlinear behaviors of the model and demonstrate the different 
types of signals that can coexist for a given parameter value. The 
normalized DC bias parameter δ used in the numerical computation is 
set as in Fig. 4 for σ = 0.2. The coexisting MLE shown in Fig. 5(a) en
ables to visualize and detect the regular periodic, irregular chaotic and 
hysteretic ranges when the normalize amplitude μ of the driving field is 
monitored. In this figure, the blue curve segment is obtained by 
sweeping upwards the normalized amplitude μ, while the cyan curve 
branch is generated by sweeping down the same parameter with the 
initial point (q0 = 0.3, i0 = 0.1). From these overlaid graphs, the regular 
(periodic) and irregular (chaotic) regions can be well distinguished since 
the MLE is positive in chaotic regions (and negative in periodic regions). 
When the normalized amplitude μ is weak (i.e., when μ < μc1 where 
μc1 = 21.8), the nonlinear SRR exhibits the coexistence of periodic 
oscillation modes. In the hysteresis region defined by μc1 ≤ μ ≤ μc2 
(where μc2 = 23), the MLE of the blue curve is positive while that of the 
cyan curve is negative. In this range, the nonlinear SRR model reveals 
the coexistence of an irregular mode (blue curve), where the value of the 
MLE does not breach 0.065, with a periodic mode (cyan curve). Besides, 
since the multistable region has a small width (Δμ = μc2 − μc1 = 1.2), a 
slight variation of the initial conditions is sufficient for the system to 
switch from one state to another. When the normalized amplitude μ 
exceeds the critical value μc2 = 23, the two maximal Lyapunov exponent 
branches merge, no hysteresis window is observed, and the system can 
only evolve in a chaotic or periodic mode. Compared to the irregular 
oscillation mode of the multistable region, the one of the monostable 
region is broader (Δμ = 3.2), however, the value of the MLE does not 
rise above 0.028. In Fig. 5(b), we plot the cross-section of the basin of 
attraction that allows the coexistence of the two modes (irregular and 
regular) demonstrated in the hysteresis region above for a value of the 
normalized amplitude (μ = 22.43). The cyan area corresponds to the 
domain of the pair of initial points (q0, i0) leading to a periodic signal, 
and the blue area is the domain of the initial points (q0, i0) converging 
towards a chaotic signal, as observed in Fig. 5(a).

3.4. Dynamic characteristic with normalized AC amplitude

The aim of this subsection is to investigate the different processes 
leading to irregular oscillations, the emergence of attractors, and the 
sensitivity of the system to a slight variation of the loss parameter (the 

Fig. 5. (a) Maximum Lyapunov exponent for σ = 0.2 demonstrating three 
different dynamic regions (periodic, chaotic, or both chaotic and periodic) for 
decreasing (cyan) and increasing (blue) values of the normalized amplitude μ. 
(b) demarcation region (basin of attraction) of the coexistence of chaotic signal 
(blue) and periodic signal (cyan) obtained at μ = 22.43. The rest of parameters 
are set as in Fig. 4. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
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value of the normalized DC bias parameter remains the same as in Fig. 4) 
by considering the normalized AC amplitude as the bifurcation param
eter. We always choose the value of the loss parameter within the region 
where an irregular pattern is observed in Fig. 4. More precisely at σ =

0.15. The bifurcation diagram and corresponding maximum Lyapunov 
exponent are performed once again when the normalized amplitude μ 
varies in the same range as in Fig. 5 (i.e., from 20 to 31.5). These graphs 
are shown in Fig. 6 and the results we present reveal that it features 
several interesting phenomena. Fig. 6(a) and 6(b) show the peak values 
of the normalized charge (q) and normalized current (i) inside the 
nonlinear SRR material as a function of the normalized amplitude μ.

Three different graphs are superimposed, plotted using three distinct 
initial conditions. The bifurcation branches in black and cyan are ob
tained by sweeping upward the normalized amplitude μ with initial 
points (q0 = 6,i0 = 0.1) and (q0 = − 4,i0 = 0.1), respectively, whereas 
the magenta graph is obtained by sweeping downward μ with initial 
point (q0 = 0.3,i0 = 0.1). As we examine each of the curves in Fig. 6(a), 
and 6(b), we can see that the bifurcation diagrams of the nonlinear SRR 
system undergoes a sequence from regular to irregular oscillation via the 
period-doubling scenario [38,39] as the normalized amplitude of the 
excitation force μ increases, starting from μ = 20.

The range of μ where irregular behavior is observed is broader 
(Δμ ≈ 5.82) compared to the previous case [see Fig. 5(a)]. The wide 
range of the chaotic state is also highlighted and confirmed on the plot 
depicted in Fig. 6(c), where the MLE is positive over the whole range 
from 21.64 to 27.46. As the normalized amplitude μ of the excitation 
field increases, the period-doubling phenomenon occurs (which is not 
evident in Fig. 4), and then the motion of the charges in the material 

exhibits chaotic behavior once μ rises to the critical value μc1 ≈ 21.64.
When the excitation field amplitude μ is higher than μc1, this chaotic 
band is always observed until the critical value μc2 ≈ 27.46. After the 
critical valuer μc2, the chaotic regions are eliminated, and the system 
flips into a periodic oscillation mode. This interesting transition is 
confirmed in Fig. 6(c) by a negative MLE value that appears exactly at 
μc2 ≈ 27.46. The bifurcation diagrams in Fig. 6(a) and (b) show two 
main transitions. The first is the transition from regular mode to irreg
ular mode (which occurs at the critical point μc1) and the second is the 
reverse process, i.e. the transition from irregular to regular mode 
occurring at the critical point μc2. One application of such a transition is 
the detection of a periodic signal in a noisy environment [40].

The first two critical bifurcation points for which period doubling 
(PD) is seen are obtained at μp1 = 20.6 and μp2 = 21.5. As an example, a 
series of phase trajectories illustrating the transition between regular 
and irregular oscillation modes of the black curve segment as μ pro
gressively increases is shown in Fig. 7. More precisely, at μ = 20, the 
bifurcation diagram associated with the black curve starts on period-2 
signal, as presented in its frequency spectrum [Fig. 7a(i)] and the cor
responding phase image [Fig. 7a(ii)]. The main peak in the spectral 
profile is located at the frequency f = 0.4fn = f0 = 0.4 THz (where fn is 
the normalized frequency), its unique subharmonic is observed at 
approximately half of the fundamental (i.e., at f ≈ 0.2 THz) while the 
first high harmonic appears around 0.598 THz (i.e., three times greater 
than subharmonic frequency). Once past the first bifurcation point μp1, 
the system remains in the regular oscillation mode, but switches from 
period-2 to period-4, as shown in Fig. 7b(i) and b(ii) for μ = 21. In the 
spectral profile [Fig. 7b(i)], one can identify the main peak at the same 

Fig. 6. (a)-(b) Bifurcation diagrams and corresponding maximum Lyapunov exponent (c) of the normalized charge and normalized current of the system for σ =

0.15. Scan up μ (cyan and black) with initial points (q0 = 6, i0 = 0.1) and (q0 = − 4, i0 = 0.1) respectively, and scan down (magenta) with initial point 
(q0 = 0.3, i0 = 0.1). The rest of parameters are set as in Fig. 4.
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frequency as the previous oscillation mode, but with three other sub
harmonics peaks appearing at 0.29 THz, 0.2 THz and 0.1 THz, respec
tively, from the fundamental. The periodicity of oscillations doubles 
again (until chaos) when μ is slightly above the critical value μp2. As a 
result, chaotic signals are formed at μ = 21.8 and μ = 27, as shown in 
Fig. 7c(i) and c(ii) and Fig. 7d(i) and d(ii), respectively. The signature of 
chaos in these cases can be highlighted by an unlimited number of 
subharmonic frequencies in the power spectrum [see Fig. 7c(i) and d(i)].

Another interesting and striking region of the system to explore in 
Fig. 6 is the multistable domain located between μ = 20 and μ = 21.93. 
Indeed, Fig. 6 shows that below the critical value μc3 ≈ 20.77, the three 
bifurcation branches (black, cyan and magenta) do not merge. But, 
beyond this value μc3, the cyan and magenta curve segment merge 
completely. The resulting curve coexists with the black bifurcation 
branch. The merging scenario is characterized by a jump (cyan curve) 
observed approximately at μc3. These features exhibited by the 

Fig. 7. Transition from a regular to an irregular regime through a period-doubling mechanism as μ increases with σ = 0.15. (a) Period-2 signal for μ = 20, (b) period- 
4 signal for μ = 21, (c) and (d) chaotic signals for μ = 21.8 and μ = 27, respectively. The initial point used is (q0 = − 4i0 = 0.1)or(q0 = 0.3i0 = 0.1) and the rest of 
parameters are set as in Fig. 4.
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bifurcation diagrams confirm the differences seen previously in two- 
parameter space diagrams of Fig. 4, in the same parameters range, 
and therefore demonstrated the coexistence of multiple stable signals 
[41–43] in the nonlinear SRR model. Further investigation using the 
coexisting graphs of the MLE allows to find an interesting and rare re
gion with two different positive maximum Lyapunov exponents, ob
tained with two different pairs (q0, i0) of initial values. The region can be 
seen in the graph shown in Fig. 8, more precisely in the range from μ ≈

21.45 to μ ≈ 22. Although this range is mostly dominated by irregular 
oscillations, we also observe some small windows of regular oscillations. 
The presence of these two positive maximum Lyapunov exponents (e.g., 
λmax1 ≈ 0.062 and λmax2 ≈ 0.018) confirms that our model is capable of 
generating two distinct chaotic signals for the same set of parameters. 
This property is particularly important for many applications [44–47]. 
For instance, in cryptography, the coexistence of two chaotic signals can 
increase the security of the secret key space. In other words, using one of 
the signals as an additional key in case of an attack improves the security 
of the encrypted image [48–50].

To highlight the different coexisting stable states in the nonlinear 
SRR system under EM excitation, we have developed time series, fre
quency spectra, phase image or cross-section of the basins of attraction 
by choosing the normalized amplitude of the excitation field within the 
multistable region of Fig. 6 and the enlarged curve investigated in Fig. 8. 
Fig. 9 reveals the case where up to three stable periodic states coexist. 
They have been obtained for μ = 20.5. These periodic signals, consisting 
of one period-2 [Fig. 9(a), middle] and two periods-1 [Fig. 9(a), upper 
and lower], are represented by the time series and corresponding phase 
image shown in Fig. 9(a) and (b), respectively.

We have also demonstrated the coexistence of two distinct irregular 
signals in the system, as indicated by the basin of attraction in Fig. 10(a) 
(or its zoomed version in 10(b)). It was obtained for μ = 21.75. In this 
basin, the two irregular signals are located in the black and cyan areas, 
respectively, and can be obtained by selecting the pair of initial value 
(q0, i0) in each of these demarcated regions. The waveforms and phase 
images of the associated coexisting signals are shown in Fig. 10(c) and 
(d) (upper and lower), respectively, where differences can be seen on 
both their shapes and amplitudes. Likewise, the black state corresponds 
to λmax1, while the cyan state corresponds to λmax2. It is worth mentioning 
here that cases of multistability involving the coexistence of three 

coexisting periodic signals (case Fig. 9) as well as two different irregular 
stable signals (case Fig. 10) are unique and have not been previously 
reported in the nonlinear SRR material [24,25].

3.5. Dynamic characteristic with bias parameter

This part is devoted to the investigation of the dynamic properties of 
the nonlinear model as a function of the bias parameter δ. The different 
oscillation regimes of the system are shown in Fig. 11 for μ = 35. These 
bifurcation diagrams represent the local maxima of the normalized 
charge as δ varies from 20 to 31. It is calculated by sweeping up the 
control parameter δ in the corresponding interval with initial value 
(q0 = 0.3, i0 = 0.1). Fig. 11(a)-(c) is obtained for σ = 0.15, σ = 0.2, and 
σ = 0.3, respectively. These graphs exhibit different dynamics when σ is 
slightly changed. In Fig. 11a(i) and c(i), chaotic regions dominate. They 
are delocalized and separated by small periodic windows. In these cases 
[Fig. 11a(i) and c(i)], irregular oscillations occur via the traditional PD 
mechanism as the bias parameter increases. However, Fig. 11c(i) shows 
bifurcation jumps, more precisely at δ ≈ 24.1, δ ≈ 27, and δ ≈ 29.3. 

Fig. 8. Graph of the maximum Lyapunov exponent illustrating regions of 
coexisting dynamics and the large window where two different chaotic signals 
coexist. It is obtained by increasing μ from 21 to 22 with initial points (q0 =

6, i0 = 0.1) for the cyan curve, (q0 = − 7, i0 = 0.1) for the magenta curve, and 
(q0 = − 4, i0 = 0.1) for the black branch. The rest of the parameters are fixed as 
in Fig. 6. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 9. Dynamics of the nonlinear SRR material showing the coexistence of 
three different periodic signals (two periods-1 and one period-2) for σ = 0.15 
and μ = 20.5. (a) Profile corresponding to the normalized temporal currents of 
each coexisting signal and corresponding (b) phase image of these signals. 
Other parameters remain the same as in Fig. 4, and the three initial points used 
to generate these signals are: (q0 = − 7, i0 = 0.1) for magenta, (q0 = −

4, i0 = 0.1) for black and (q0 = 6, i0 = 0.1) for cyan. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.)
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Fig. 10. (a) Cross-section of the basin of attraction and (b) it enlarged version giving initial points q0 and i0 when two distinct irregular signals coexist for σ = 0.15 
and μ = 21.75. (c)-(d) Time series (upper) and corresponding phase images (lower) of associated coexisting signals. Other parameters remain the same as in Fig. 4, 
and the two initial points used to generate these signals are: (q0 = − 4, i0 = 0.1) for black and (q0 = 6, i0 = 0.1) for cyan. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Bifurcation diagrams (top) showing the dynamics of the normalized charge (q) as a function of the bias parameter δ and the corresponding MLE (bottom) 
plotted for μ = 35, ω = 1.0, β = 0.4, η = 0.08 and initial value (q0 = 0.3, i0 = 0.1): a(i)-a(ii) σ = 0.15, b(i)-b(ii) σ = 0.2, and c(i)-c(ii) σ = 0.3.
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These jumps may be due to the presence of hysteresis or shadow 
branches, which can only be tracked by using different initial values (see 
Fig. 13). For the case shown in Fig. 11b(i), it can be observed that the 
periodic oscillation is dominant, while an irregular oscillation occurs in 
a weak band. More clearly, after a broad periodic oscillation is seen from 
δ = 20 to δc1 ≈ 25.7, a chaotic behavior abruptly appears above the 
critical δc1. For each of the curves shown in Fig. 11 (top panel), the 
corresponding maximum Lyapunov exponent (MLE) is shown in Fig. 11a 
(ii)-c(ii), confirming the different modes of oscillation observed in the 
bifurcation curves. The two oscillation modes are distinguished by the 
MLE, which is negative for a periodic mode and positive for a chaotic 
mode. To effectively confirm the appearance of irregular oscillations via 
the period-doubling mechanism, we always consider the same parame
ters as those fixed in Fig. 11 and the same control parameter range (i.e., 
20 ≤ δ ≤ 31). The bifurcation diagram of the peak of the normalized 
charge within the gap is plotted for different values of σ, as shown in 
Fig. 12. In particular, at σ = 0.37 and σ = 0.365 [Fig. 12(a) and (b)], the 
two different types of PD and inverse PD are created. As can be seen in 
Fig. 12, at each bifurcation point, a new branch is added to the old one to 
form a new bifurcation of period p = 2n. Thus, if a period-2 bubble is 
created, the branch evolves into period-4 bubbles, period-8 bubbles, and 
so on. When the highest periodicity in the considered variation range is 
reached, the opposite scenario begins to occur (i.e., inverse PD). The 
process is repeated until the chaotic bubble is formed as shown in Fig. 12
(c) and (d) for σ = 0.362 and σ = 0.351.This exciting transition inves
tigated here is interesting since reversals may be a way to control, 
perhaps even prevent, the onset of chaos in the system [51].

The coexistence of different kinds of stable signals is also highlighted 
when the bias constant varies. Since the trajectories followed by each 
competing solution in the multistable system depend on the choice of 
initial values, we first used the bifurcation diagrams to follow the path of 
coexisting states. Fig. 13 shows the coexisting bifurcation diagrams of 
the system computed in one of the regions where the jump phenomenon 
is observed in Fig. 11(c). To obtain these coexisting diagrams, we fixed 
σ = 0.3, μ = 35 and used the continuation technique to follow the stable 

state with two initial values. More simply, the graph in red is calculated 
by increasing the value of the bias parameter, starting from the lowest 
value, δ = 29.3, up to the highest value of the same parameter δ = 29.5 
with initial value (q0 = 2, i0 = 0.1). The same procedure is applied to 
obtain the green curve segment, but with initial value 
(q0 = 0.3, i0 = 0.1).

For the last curve, in blue, the calculation is performed by decreasing 
the control parameter, starting from the highest value, δ = 29.5, until 
reaching the minimum value of the same parameter δ = 29.3, with the 
same initial value as for the red diagram. In Fig. 13, we can see the 
difference between the coexisting regions. Indeed, below the critical 
value δc2 ≈ 29.341, the three bifurcation branches (red, blue, and green) 
coexist. This situation reflects the coexistence of a chaotic state (red) 
with two different periodic signals (blue and green). Then, beyond this 
critical value δc2, two different periodic signals can coexist, or a chaotic 
state can coexist with a periodic signal. It is important to note that in 
each of these coexisting cases, the characteristic (shape and size) of the 
green periodic signal does not change, which is also be confirmed by the 
graph shown in Fig. 13(b), where the value of the MLE associated with 
the green curve segment remains constant (λmax = − 0.15). Now, the 
final investigation of these multistable regions revealed in the coexisting 
bifurcations above consists in producing the domain of the initial values 
(or basins of attraction) of each of the range of coexisting behaviors, that 
is, the coexistence of a chaotic state with two periodic orbits, the 
coexistence of two periodic orbits, and the coexistence of a chaotic state 
with a periodic one. Furthermore, we choose, within these basins of 
attraction, the initial values that allow to obtain each stable state.

Here, all the parameters are fixed (i.e., σ = 0.3, μ = 35), and the 
value of δ is chosen in the graph of Fig. 13. Fig. 14 (top panel) shows 
three domains of initial values, for three different values of δ. These 
basins of attraction are plotted in the (q0, i0) plane, which defines the 
sets of initial values. Thus, the domain shown in Fig. 14a(i) represents 
the basin of initial values leading to one of the three stable states, chaotic 
(in red), periodic (in green), and another periodic (in blue). The domain 
in Fig. 14b(i) shows the case of a basin of initial values leading to the 

Fig. 12. Bifurcation transition scenario leading to chaotic island: (a) σ = 0.37, (b) σ = 0.365, (c) σ = 0.362, and (d) σ = 0.351. The initial values and other pa
rameters are the same as in Fig. 11.
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coexistence of two periodic signals. Finally, the basin of attraction in 
Fig. 14c(i) indicates initial values leading to the coexistence of a chaotic 
(blue) and a periodic (green) signal. The phase images and their corre
sponding time traces of each signal are shown in Fig. 14 (middle panel) 
and Fig. 14 (bottom panel), respectively. The color of each signal is the 
same as the color of its basin. In other words, each signal is generated by 
selecting the initial values in its associated basin of attraction. The re
sults obtained in this work are comprehensive and very enriching for the 
understanding of the nonlinear dynamic properties of the SRR material. 
They show that the investigated system exhibits very complex and 
diverse oscillation regimes. Using various nonlinear analysis tools, we 
have elucidated the different mechanisms and behaviors that the system 
is likely to exhibit. This is an important set of results to know about a real 
physical system.

4. Conclusion

In this research, we have theoretically and numerically studied the 
nonlinear dynamics of charge carriers in a meta-atom metasurface 

model subjected to an DC field and illuminated by electromagnetic ra
diation in the terahertz frequency domain. Bi-dimensional parameter 
space diagrams have been used to explore the behavior of the nonlinear 
system and demonstrate that by controlling the normalized DC field, 
irregular oscillations can gradually die at high alternative fields or be 
born at lower alternative fields. Under different initial conditions, the 
results of our investigation have proved that the model exhibits both 
chaotic and periodic oscillation modes, and their emergence has been 
demonstrated in the weak alternating field condition. We found that the 
onset of chaos in the material results from the strong interaction be
tween the incident wave and the cooperative charge carrier motion in 
the gap. When the normalized AC amplitude of the excitation field 
varies, the system develops a bifurcation with transition scenarios to
wards chaotic oscillations. The chaotic regime is located between two 
periodic regions, and the transition from one region to the other occurs 
via a period-doubling (PD) sequence or abruptly as the normalized 
amplitude of the field increases or decreases. Bifurcation bubbles are 
plotted to illustrate the PD and inverse PD mechanisms by varying the 
DC field parameter while controlling the loss parameter of the system.

Of most interest, the multistability phenomenon has been revealed 
and well-studied using coexisting graphs of Lyapunov exponent, bifur
cation diagrams, phase images, time series, and basins of attraction as 
methods. Our results have shown a variety of coexisting stable periodic 
signals (with up to three periodic states) for the same set of parameters, 
just by varying the initial values. In addition, we have demonstrated and 
reported the coexistence of two separate chaotic signals under two 
distinct initial values in a different parameter range. To the best of the 
authors' knowledge, these key features of multistability have not yet 
been reported in this type of material and deserve to be vulgarized. Such 
a complicated phenomenon of multistability has been attributed to the 
hysteresis phenomenon found in our model when the normalized 
amplitude of the excitation field is increased and decreased, or to the 
shifting of two bifurcation points leading to the appearance of parallel 
branches. The direct effect of the latter is to increase the number of 
coexisting states in the system.

The bifurcation diagrams and MLE plots clearly illustrate how the 
nonlinear SRR system transitions between different dynamical regimes: 
from regular (periodic) to irregular (chaotic) behavior as the normalized 
amplitude of the external field is varied. Each bifurcation point marks a 
qualitative change in the response of the system, corresponding to 
physical transitions in the oscillation modes of the carriers within the 
material gap. In particular, the presence of multistable regions in the 
bifurcation diagrams suggests that, for certain field amplitudes, multiple 
stable oscillation states coexist, leading to mode switching depending on 
the initial conditions. This multistability and the emergence of chaos, as 
confirmed by positive MLE values, provide a physical explanation for the 
complex carrier dynamics and nonlinear phenomena observed in the 
SRR structure, such as enhanced field localization and hysteresis-like 
behavior.

Although this work successfully focuses on understanding the dy
namics of the carriers, it does not explore how the electromagnetic ra
diation interacts with other SRR, like for metasurface. In fact, a 
metasurface function like an artificial brain, where information ex
change is generated by the interactions between meta-atoms when 
exposed to electromagnetic radiation. Future research on the propaga
tion of information patterns in a metasurface would therefore represent 
both an interesting application and a significant advance in the under
standing of wave-matter interactions in such systems. Furthermore, 
since this study concerns a single unit cell, we also plan to extend this 
work to the collective response of a metasurface that includes the 
coupling between meta-atoms.
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