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A B S T R A C T

Exposed rock surfaces reflect diverse topographical features shaped by underlying geological and geomechanical 
conditions, such as mineral composition, weathering, excavation methods, and structural geology. These features 
directly influence the mechanical behavior of in-place materials, providing a robust basis for differentiating 
geological and geomechanical units in engineering. Their explicit spatial differentiation relies on time-consuming 
and subjective visual assessments, or the inefficient and difficult to reproduce measurement of topographical 
features (e.g., roughness, undulation) at arbitrary scales. This work aims to offer an objective, reproducible, and 
efficient topographical analysis framework to differentiate geological and geomechanical features arising from 
natural and man-made origins. This study introduces a scale-dependent recursive analysis method to system
atically evaluate and characterize roughness conditions of exposed rock surfaces. By analyzing point clouds 
across multiple scales, the method derives scale-dependent trends and computes parameters that distinguish 
topographical features associated with specific geological and operational settings. A moving-window algorithm 
is applied as a second layer of analysis to capture localized trends, integrating these as an explicit scalar field 
within point clouds for direct differentiation of features. This methodology improves accuracy and efficiency 
compared to traditional roughness measurement techniques by reducing biases and subjectivity associated with 
visual-based assessments. The approach is demonstrated using four datasets from diverse geological and geo
mechanical contexts, showcasing its applicability and the insights gained. The influence of point cloud density 
and moving-window size on the recursive analysis is further discussed, highlighting the method’s potential to 
provide objective and quantifiable topographical differentiation for mining, tunneling, and construction 
applications.

1. Introduction

Exposed rock surfaces exhibit widely variable topographical features 
reflecting upon the broad geological and geomechanical conditions 
observable. The topographical nature of an exposed outcrop depends on 
a plurality of factors, such as mineral composition, weathering and 
alteration, excavation method, structural geology, etc. Conversely, fea
tures which affect topographical conditions of rock surfaces directly 
influence the mechanical behavior of the in-situ material, and thus 
provide robust grounds for objective differentiation of geological and 
geomechanical units in engineering applications.

Figure 1 exemplifies the broad extent of plausible topographical 
conditions along natural and excavated rock outcrops. Such conditions 

directly influence conventional interpretation towards engineering 
classifications and design practices. Fig. 1 (a) shows a picture of the 
infamous Vajont (Italy) rockslide event (Hoek, 2007) for a historical 
perspective on the event and its influence on modern rock engineering. 
The exposed rock surface is characterized by a smooth and persistent 
discontinuity plane. Such topographical conditions highlight the post- 
failure nature of the sheared asperities along the sliding plane. Fig. 1
(b) shows an excavated bench at a limestone quarry. The open face 
orientation bends from near parallel strike with respect to camera 
orientation on the left, to near perpendicular on the right. The change in 
open face orientation leads to very different topographical conditions 
dictated by the natural joint incidence angle. The left section of the 
figure exhibits pronounced stepping of the blocks along the open face. 
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The right section presents a flatter surface due to near parallel face strike 
with one of the discontinuity sets. Fig. 1 (c) presents a limestone quarry 
near Montreal, Canada. The exposed rock face exhibits volcanic in
trusions through the sedimentary layers in the form of a near-vertical 
dyke on the left, and a horizontal sill near the bottom of the bench. 
The different geological units along the face present different levels of 
fracture intensity and weathering, which are easily recognized by the 
different topographical conditions observed. Fig. 1 (d) presents a freshly 
blasted roadcut featuring prevalent blasthole traces from engineered 
perimeter blasting practices. The resulting face is characterized by a 
smooth and consistent plane formed by the radial fractures connecting 
the blastholes.

The examples illustrated in Fig. 1 underscore the inherent correlation 
between topographical features and geomechanical conditions. It is thus 
asserted that topographical characterization can provide a robust and 
systematic framework towards geological and geomechanical differen
tiation in the context of engineering applications.

Traditional methods for characterizing rock surfaces primarily rely 
on visual assessments and subjective interpretations, often leading to 
inconsistencies in classification and limiting reproducibility. While such 
assessments provide a practical and intuitive understanding of rock mass 
behavior, they typically evaluate rock surfaces based on qualitative 
descriptors, lacking standardized and quantifiable parameters that 
ensure consistency and comparability across different studies or prac
titioners. Furthermore, these methods often simplify complex surface 
variations by grouping multiple geological or geomechanical sub-units 
into broad classification categories. Such oversimplifications fail to 
capture the inherent heterogeneity of rock masses, where distinct me
chanical properties may exist within seemingly homogeneous units. 
Consequently, these limitations can lead to inaccurate assessments, 

misinterpretations of discontinuity behavior, and suboptimal engineer
ing designs.

The present work introduces an analytical, computational, and pro
cedural framework for topographical differentiation of exposed rock 
interfaces in geoengineering applications. Unlike conventional ap
proaches that rely heavily on visual assessments, this framework in
tegrates advanced computational techniques to establish a reproducible 
and quantifiable method for characterizing rock surfaces. A key contri
bution of this study is the development of a multi-scale, data-driven 
approach that systematically captures topographical patterns of various 
geological units along rock surfaces, representing them with unique 
quantitative descriptors at local scales. This approach leverages high- 

Fig. 1. (a) the Vajont (Italy) rock slide discontinuity plane characterized by smooth interface caused by intense shearing following the instability event; (b) limestone 
quarry with face orientation varying from near perpendicular strike on the left to near parallel strike on the right with respect to camera point of view; (c) aggregate 
quarry in a sedimentary deposit with distinct vertical (dyke) and horizontal (sill) volcanic intrusions; (d) road cut with visible blastholes following perimeter blasting 
to achieve a smooth resulting surface.

Table 1 
Parameters and acronyms of reference for this work.

Parameter/ 
Acronym

Description

TLS Terrestrial laser scanner
RMSD Root Mean Square Deviation
ξr (m) Overall roughness of a surface with respect to the scale of 

measurement r
A, H Scale dependent regression parameters for ξr − r
D Fractal dimension
RMS Root Mean Square
N Number of points within a circle of radius r
LiDAR Light Detection and ranging
H Hurst exponent
r (m) Radius of roughness measurement
Rr,i Roughness value for the point 

Pi measured at r (m)
s Average point spacing
rw Radius of local spheres centered around point Pi
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resolution point cloud data, automated roughness extraction, and clus
tering algorithms to enhance the objectivity and accuracy of rock mass 
assessments. This study provides a structured methodology that enables 
precise differentiation of geological and geomechanical units based on 
measurable criteria. Systematic topographical characterization explic
itly contributes to efficient geomechanical differentiation, offering 
practical benefits in mining, tunneling, and construction applications. 
Furthermore, the proposed methodology facilitates a standardized and 
objective comparison of exposed outcrops under varying geological 
conditions, improving predictive modeling, stability analysis, and en
gineering design decisions.

The present research implements a Scale-dependent recursive anal
ysis method to evaluate roughness conditions and differentiate topo
graphical features associated with specific geological and 
geomechanical conditions. Roughness is measured at different scales 
from surveyed point clouds to derive scale-dependent trends. The 
computed parameters provide the basis to formulate topographical 
characteristics for various geomechanical features and operational set
tings (e.g., excavation method). A moving-window based algorithm is 
then applied to evaluate the local scale-dependent trends. This second 
layer of recursive analysis is integrated as an explicit scalar field into the 
point cloud to offer a direct differentiation scheme for topographical 
features. Cumulative passing distribution analysis is also conducted to 
support spatial and operational clustering. The approach is exemplified 
through four datasets surveyed from different geological and geo
mechanical settings to showcase the application framework and derived 
results. The selection of these case studies aimed to capture a broad 
spectrum of geomechanical and operational conditions reflected directly 
by topographical features. A discussion is later provided on the influence 
of point cloud density and the size of the moving windows for the second 
layer of recursive analysis. The effectiveness of the proposed method is 
evaluated through case studies selected from known geological settings, 
where contrasting features were pre-identified. These case studies serve 
as a form of back analysis, allowing for the comparison of the method
ology’s performance against expected geological and geomechanical 
outcomes. While the features were known beforehand, the evaluation 
focuses on how well the method differentiates and quantifies these 
features, providing a robust framework for assessing its applicability in 
real-world scenarios. Symbols and acronyms for this work are outlined 
in Table 1.

2. Background

Topographical conditions along rock outcrops are often represented 
by the broadly defined concept of roughness. According to the Inter
national Society of Rock Mechanics (ISRM, 1978), surface roughness 
represents the extent of asperities and undulations relative to the fitted 
flat plane at the considered scales. Roughness plays a central role in 
numerous empirical classifications (Barton et al., 1974; Bieniawski, 
1989; Hoek and Marinos, 2007), and shear strength criteria (Grasselli, 
2001; Liu et al., 2017; Singh and Basu, 2018; Barton et al., 2023).

Various formulations have been proposed to capture linear (2D) and 
planar (3D) discontinuity geometries and roughness characteristics 
(Tatone and Grasselli, 2010; Azarafza et al., 2019; Magsipoc et al., 2020; 
Azarafza et al., 2021; Guo et al., 2022; Liu et al., 2022). Barton (1973)
introduced the term “Joint Roughness Coefficient” (JRC) which is an 
empirical measure employed to assess the impact of roughness on the 
shear strength of rock interfaces. JRC has since been converted into 
quantifiable measurements and reproducible topographies for system
atic evaluation (Zheng and Qi, 2016; Liu et al., 2017; Stigsson and Mas 
Ivars, 2019; Bao et al., 2020). Nevertheless, scale limitations and the 
subjective nature associated with JRC and similar empirical measure
ments led to mathematical and statistical representations of roughness 
for objective comparison purposes. These computational frameworks 
leverage topographical surveys from remote sensing tools (e.g., LiDAR, 
photogrammetry) to derive quantifiable measurements.

Magsipoc et al. (2020) presented a detailed review of various 
computational and statistical frameworks to evaluate 2D and 3D 
roughness for geoengineering applications. In this review, Magsipoc and 
collaborators describe at length fractal-based (i.e., scale-dependent) 
computational methods given their potential for objective differentia
tion and scalability of the measurements. The applicability of such 
fractal models has also been investigated in a number of other studies 
(Lee et al., 1990; Hyslip and Vallejo, 1997; Bagde et al., 2002; Fardin 
et al., 2004; Kolay and Kayabali, 2006; Fardin, 2008; Tatone and 
Grasselli, 2013; Lai et al., 2014; Li and Huang, 2015; Li et al., 2023).

Expanding from procedural algorithms presented by Shepard et al. 
(2001), Aubertin and Hutchinson (2022) implemented a fractal-like 
scale-dependent approach to compare various rock surfaces character
ized by different excavation methods or conditions (e.g., blast damage 
intensity and corresponding ground control efforts). A power formula
tion was proposed to correlate overall roughness ξr (m) of a surface with 
respect to the scale of measurement r (m). 

ξr = ArH (1) 

where A and H are parameters that characterize topographical trends 
occurring over a range of different scales. The exponent H in Eq. [1] is 
often referred to as the Hurst exponent which can be correlated to 
different geometrical features. The fractal dimension D (m) describes the 
scaling properties of an irregular geometry, and is measured from H 
using the relation D = 3 - H for a 3D profile (Mandelbrot, 1967).

Various statistical approaches to describe the overall roughness of 
surfaces exist (Tatone and Grasselli, 2010; Berti et al., 2013; Lê et al., 
2018). These representations are determined through the use of aver
aging techniques such as the arithmetic mean and the root mean square 
(RMS) (Shepard et al., 2001; Chae et al., 2004; Ban et al., 2020; Ge et al., 
2022). Other statistical representations of roughness may involve 
assessing the spatial variation between points to measure the topo
graphical gradient and determine the angle of inclination (e.g., Glenn 
et al., 2006; Lai et al., 2014; McKean and Roering, 2004; Poropat, 2008; 
Tatone and Grasselli, 2013).

In this study, the overall roughness of a given topographical dataset 
(ξr) (m) is assessed using Root Mean Square Deviation (RMSD) of 
measured point roughness values at given scales of r (Rr,i): 

ξr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N

1

(
Rr,i − Rr

)2

√
√
√
√ (2) 

where N is number of points, and Rr (m) is the measured point roughness 
average at for radius of measurement r.

Figure 2(a) plots overall roughness ξr for the topographical model of 
a rock face shown in Fig. 2(b) surveyed in an underground mine 
(adapted from Aubertin and Hutchinson (2022)). The plot presents 
overall roughness with respect to scale r in a log-log plane. The data 
points follow consistent power trends following the formulation of Eq. 
[1] over two distinct ranges of radii of measurement r. The different 
ranges where Eq. [1] is consistently observed differentiate the distinct 
topographical features at small scales (e.g., fractures, joints, asperities) 
versus large scales (e.g., face undulation, blastholes toe).

Aubertin and Hutchinson’s (2022) work underscored the potential to 
leverage the parameters of Eq. [1] to compare different mining condi
tions such as the performance of blasting methods, ground control set
tings, mining dilution, and mechanical scaling efforts (see also Aubertin 
et al., 2019). Sadeghi et al. (2023) further explored the potential of 
scale-dependent roughness measurements to contrast geological and 
geomechanical features. Until now, these studies required manual seg
mentation of the different sections to explicitly compare their respective 
topographical conditions. The present work automates this process 
through a two-layer recursive algorithm to provide a systematic differ
entiation framework.
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3. Experimental methods

3.1. Scale-dependent roughness analysis

The proposed recursive algorithm is based on the three-dimensional 
definition of roughness. In this work, roughness refers to the local de
viation from planarity. Roughness values of 3D point cloud models are 
measured as the shortest distance between individual points and best-fit 
local planes. Considering a point Pi =

[
xi, yi, zi

]
, the 3D roughness Rr,i 

(m) of that point is computed as the distance between the plane best 
fitted by all points within a radius r (m) from point Pi. That plane is 
described by its normal vector nr,i

̅→
=

[
ar,i, br,i, cr,i

]
. Roughness Rr,i (i.e., 

the distance between the plane and point Pi) is computed by the 
following equation: 

Rr,i =
ar,ixi + br,iyi + cr,izi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2
r,i + b2

r,i + c2
r,i

√ (3) 

Roughness measured using Eq. [3] is by definition scale dependent. 
Aubertin and Hutchinson (2022) underscored that different scales of 
measurements reflect different features along natural and excavated 
rock outcrops. For example, a large radius of measurement (> 1 m) will 
typically reflects upon the overall topography of the rock face, high
lighting changes in face orientation, undulation, and excavation related 
damage if any. By contrast, roughness measurement at small scale (≤

0.5 m) will highlight superficial fractures, fissures, and the crystalline 
matrix of the rock mass.

Figure 3 highlights the influence of scale in roughness measure
ments. The figure shows a freshly blasted face at an underground mine. 
Roughness was measured with radii of measurement r of 0.1 and 2 (m) 
respectively. Roughness measurement at small scale reflect very local
ized asperities and protrusions, while the larger scale of measurement 
emphasizes lumps and blasthole remnants.

Roughness values and their resulting statistical representations like 
ξr (Eq. 2) are highly dependent upon the scale of measurement r. In this 
study, scale-dependent behavior of topographical datasets is evaluated 
by plotting ξr against the radius of measurement in log-log plane (Fig. 2). 
Linear trends (in the log-log plane) can be extracted to fit the relation
ship of Eq. [1], and derive characteristic parameters A, H and fractal 
dimension D. It will next be demonstrated that the variability of these 
trends can be leveraged to differentiate geological and geomechanical 
conditions.

3.2. Automated moving window analysis

Exposed rock outcrops often present variable topographical features 
which differentiate operational and geomechanical conditions. The 
spatial distinction between different topographical units is achieved by 
applying the concept of scale-dependent trend measurements recur
sively. The procedural framework is outlined next, and was 

0.001

0.01

0.1

0.01 0.1 1 10
(m) 

(m
)

r = 0.048r0.93

r ≤ 0.5m

r = 0.041r0.5

r ≥1.0m

16 m

(a) (b)

Fig. 2. (a) Overall roughness with respect to scale for the rock face illustrated in (b). Datasets originally presented in (Aubertin and Hutchinson, 2022).

Fig. 3. Point roughness visualization at (a): small scale and (b): large scale.
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implemented in Python version 3.11.7 (Python Language Reference, 
2023).

Roughness values for different radii of measurement (Rr,i) are 
computed for all data points of the topographical dataset (Eq. [3]). 
Overall roughness ξr (Eq. [2]) is computed for a subset of the cloud 
defined by a sphere of radius rW (m) centered around point Pi. Overall 
roughness ξr is computed for each point of the dataset and for each 
radius r considered.

A linear regression is performed between log (ξr) and log(r) to obtain 
parameters A and H (Eq. [1]) for each point. As noted in Fig. 2 (a), 
different sets of parameters A and H may be computed from the analysis. 
In this work, A and H are computed exclusively from r < 1 m. This 
imposed restriction ensures that the analysis focuses on topographical 
conditions at the rock block scale rather than at full excavation scale. 
The implications of this assumption are discussed further in a later 
section.

The procedural workflow described above is summarized by a series 
of steps representing a readily scripted algorithm. For each point P in 
cloud C: 

1: Compute the normal vector n→ corresponding to a best-fit plane1 for 
all points within a distance r from point P.

2: Compute the roughness Rr,i of point P, i.e., the distance between the 
point and the best fit plane defined at step 1 (Eq. [3]).

3: Repeat steps 1 and 2 for all radii of measurement r required.
4: Compute the RMSD (ξr,Eq. [2]) with respect to all Rr,i measured for 

all points within a distance rw from point P, for all radii of mea
surement r required.

5: Evaluate the linear regression between log(ξr) and log(r) to deter
mine coefficient A, exponent H, and parameter D = 3 − H.

The above procedural workflow requires a defined range of radii r to 
perform the linear regression trend, and compute scale-dependent pa
rameters A,H and D. Aubertin and Hutchinson (2022) noted that 
different trends can be observed at different ranges of radii. A change in 
trend signifies a change in dominating features, e.g., crystal size 
morphology at small scale and excavation profile at larger scale. In this 
work, a preliminary assessment of scale-dependent trends is performed 
on large sections of the dataset to evaluate the testing range 
rmin ≤ r ≤ rmax. rw is determined based on the multiple factors, including 
scan density (for all case studies, local scale-dependent trends were 
observed for r ≥ 10× average point spacing, s), the intended application 
and the extent of the scan.

4. Experimental applications

4.1. Differentiating exposed rock from massive support in advancing 
tunnel

The first case study was selected from a point cloud model of an 
advancing underground tunnel, surveyed using a FARO X-130 (FARO 
Technologies, 2021) terrestrial laser scanner (TLS). The studied span 
includes two distinctly different surfaces: a shotcrete-covered section 
and the exposed rock surface of the tunnel wall. This initial example 
serves as a proof of concept, highlighting the noticeable contrast be
tween these two surfaces. A span of approximately 5.5 m × 6 m was 
selected from the surveyed area, with an average point spacing of 0.01 
m. Fig. 4 shows a dataset representing the tunnel’s topographical model.

Scale-dependent topographical trends were first computed for the 
entire dataset to evaluate characteristic scale thresholds. Fig. 5 (a) plots 
overall roughness ξr with respect to radius of measurement r for the full 
dataset. Two linear trends are observed at 0.03 ≤ r ≤ 0.5 and r ≥ 0.5 

and it is also inferred that the topographical behavior of the cloud below 
r < 0.03 m reflects upon point density. The cloud was then manually 
segmented to explicitly distinguish the two surface types. Fig. 5 (b) plots 
overall roughness ξr with respect to radii of measurement r for the two 
distinct subsets. The most consistent and distinguishable trends are 
observed for the different subsets in the range of 0.05 ≤ r ≤ 0.5 . Above 
this range, it is inferred that topographical conditions are dominated by 
tunnel geometry.

Based on the observations from manual measurements, recursive 
topographical classification was conducted at 0.05 ≤ r ≤ 0.5, following 
the workflow outlined in the previous section. After testing a range of rw 
values, the smallest value at which meaningful local trends were 
observed was 0.1 m, which is 10 times the average point spacing of the 
cloud. To better assess the algorithm’s performance and compare clas
sification quality, another rw value, almost twice the smallest possible 
one was also tested. Fig. 6 and Fig. 7 show results of the analysis, with 
point cloud color scale for the parameters A,D and D/A.

The plots in Figs. 6 and 7 highlight the topographical divergence 
between the two different surfaces considered. The recursive algorithm 
assigns scale-dependent values associated with trends regressed from 
roughness measurements. The plots offer similar level of resolution for 
both spherical radii rw, and it is thus inferred that the selection of that 
parameter is more subject to the intended application rather than 
topographical nature of the surfaces, as long as it exceeds a certain limit, 
which in this case study is approximately 10 times the average point 
spacing of the point cloud. However, smaller rw values result in greater 
data loss compared to larger ones, as a smaller radius reduces the like
lihood that a local neighborhood contains enough points to meet the 
algorithm’s conditions for the minimum number of points required to 
measure RMSD of point roughness values. As a result, these neighbor
hoods are excluded from the cloud.

It is asserted from the spatial distribution of scale-dependent pa
rameters observed in Figs. 6 and 7 that a threshold value can be deter
mined to differentiate objectively topographical zones. Fig. 8 plots the 
model with binary color scale threshold of D/A = 150 for rw = 0.1 m and 
0.25 m. The concrete-lined section is clearly differentiated in the model. 
It is noted that although the distribution for rw=0.25 is better than that 
for rw=0.1, it is not yet perfect. However, it reflects a distinctive sta
tistical distribution associated with the scale-dependent parameter. This 
later notion offers additional benefits towards quantifying spatial vari
ability as discussed in a later section.

4.2. Structural differentiation along open pit slope

The topographical differentiation algorithm was applied along a 
slope section of an active open-pit mine. The pit walls were surveyed 
using a FARO X-130 TLS with 1/8 resolution (12 mm point spacing per 
10 m increments) and repeated point measurements of three times. The 
selected span presents a discernible wedge failure creating two inter
secting surfaces with respect to the blasted pit profile. The analysis 
carried out in this example aimed to differentiate the different sliding 
surfaces and contrast roughness conditions from the design pit wall.

Fig. 9 shows the topographical model investigated as part of this case 
study. The extent of the segmented part is about 7.5 m × 10.5 m with an 
average point spacing of approximately 0.02 m. The pit wall shown in 
Fig. 9 strikes due South. The two sub-vertical structures delineating the 
failure event are henceforth referenced as the North (left in the figure) 
and South (right in the figure) faces.

Preliminary scale-dependent roughness analysis was carried on the 
topographical dataset shown in Fig. 9. Fig. 10 (a) plots the overall 
roughness ξr with respect to scale of measurement r for the dataset. 
Trends for the ξr − r relationships consistent with Eq. [1] formulation 
are noted in the figure. Transition scales are observed at r = 0.2 m and 
r = 1 m. The scale-dependent parameters change for r > 1, reflecting a 
change in scale of dominant features. The trend below r < 0.1 also di
verges, reflecting upon point spacing of the point cloud.

1 See algorithm presented in Stewart (2003) or Aubertin and Hutchinson 
(2022)
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Scale-dependent roughness analysis was also carried out on manu
ally segmented sections of the dataset corresponding to the two struc
tural planes seen in Fig. 9, and a section of the pit wall. Fig. 10 (b) plots 
the ξr − r relationships for the three sections. Various trends are denoted 
from the different curves with different transition scales. It is asserted 
that the transition scales highlighted with Fig. 10 (a) are valid for all 
three different morphologies, and these are therefore implemented in 

the automated recursive analysis.
Automated recursive scale-dependent analysis was performed on the 

topographical dataset with a radius range of 0.1 < r < 1 m. Similar to 
the previous example, different rw values were tested for the differen
tiation algorithm. The smallest value where a meaningful trend could be 
observed was 0.1, which is approximately 10 times the average point 
spacing of the cloud. Another rw value, nearly twice the smallest one, 

Fig. 4. 3D point cloud model of (a) the whole span of the advancing tunnel dataset from a pseudo-isometric view and (b) plan view of the subset analysed.

Fig. 5. ξr with respect to radius of measurement r (in log-log planes) for (a) the entire studied span from the advancing tunnel dataset and (b) segmented sections of 
contrasting surfaces (shotcrete and tunnel wall rock).

Fig. 6. Visualization of local scale-dependent parameters (a) D, (b) A, and (c) D/A using scalar fields on the advancing tunnel dataset, with spherical neighborhood 
radius of 0.25 m.
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was also tested to compare the classification quality. Figs. 11 and 12
show the topographical dataset with color scales for parameters D, A, 
and D/A with moving spherical window of radius rw = 0.25 and 0.1 m, 
respectively.

The classification results in Figs. 11 and 12 are quite similar for both 
spherical radii rw. However, rw = 0.1 captures finer local variations, 
while rw = 0.25 provides a more continuous distribution. Since this case 
study aims to differentiate broader-scale structural trends, rw = 0.25 
offers a clearer representation. The plots for parameter D for both rw 
values provide stark contrast between the structural surfaces and the pit 
wall with notable statistical variability. By contrast, the plots for 
parameter A present consistent scalar distribution along the distinct 
surfaces. The plots for D/A present discernible profiles that can be 
subdivided into three distinct profiles: structural (sheared) surfaces, pit 
wall, and damaged rock mass at the bottom of the wedge. It can be noted 
for all three plots that the North structural plane shows consistent trends 
along its central portion, while the edges show roughness conditions 
comparable to the broken rock mass section at the bottom of the wedge 
extent. It is inferred that the instability event involved sliding (and 
intense shearing) along the South plane (right on the figure) and a 
portion of the North plane, compounded with tensile breakage along the 
edges. Shearing of asperities is made apparent by a steep ξr − r rela
tionship in the log-log plane (i.e., high parameter D) which implies low 
roughness conditions at small scale.

4.3. Topographical variability with the mining cycle of an advancing 
tunnel

The next case study investigates scale-dependent topographical 
features measured along blasted rock surfaces in an underground mine. 
The original dataset was presented in Aubertin and Hutchinson (2022). 
Rock blasting is followed by mechanical scaling of tunnel walls as part of 
the standard mining cycle. Fig. 13 shows the topographical datasets and 

Fig. 7. Visualization of local scale-dependent parameters (a) D, (b) A, and (c) D/A using scalar fields on the advancing tunnel dataset, with spherical neighborhood 
radius of 0.1 m.

Fig. 8. Topographical model of the tunnel subsection with binary color scale for D/A with threshold value of 150 for (a) rw = 0.1 m and (b) rw = 0.25 m.

Fig. 9. 3D point cloud model of the surveyed area from the graphite mine 
consisting of a wedge failure.
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the roof subset considered for the investigation. The studied span covers 
approximately 4.8 m × 9 m with an average point spacing of 0.01 m.

The dataset contrasts the freshly blasted section of the roof from 
normal post-scaling conditions. Overall roughness ξr was measured and 
plotted on a log-log scale in Fig. 14 (a). Fig. 14 (b) plots ξr with respect to 
scale of measurement for manually segmented subsets of the model to 
contrast observed conditions. It is noted from the preliminary manual 
investigation shown in Fig. 14 (b) that topographical trends differ within 
the range of radii of measurement of 0.1 ≤ r ≤ 1 m, with the blasted 
surfaces exhibiting higher roughness values. Topographical behavior of 
the cloud below and above this range is mostly dominated by the cloud 

density and tunnel geometry, respectively.
The automated recursive scale-dependent analysis was applied to the 

roof section of the model shown in Fig. 13 for 0.1 ≤ r ≤ 1. Considering 
the cloud’s average point spacing and the objective of this case study, 
differentiating topographical patterns across different mining cycles, a 
spherical measurement radius of rw = 0.25 m was selected. This choice 
ensures the capture of larger-scale topographical trends associated with 
different mining cycles.

Figure 15 shows the model with color scale for parameters D, A, and 
D/A. It is noted from the figure that parameter D, associated with 
exponent H, presents significant spatial variability without meaningful 

Fig. 10. ξr with respect to scale for (a) the entire studied span from the graphite mine dataset and (b) segmented sections of contrasting surfaces.

Fig. 11. Visualization of local scale-dependent parameters using scalar fields on the graphite mine dataset, with spherical neighborhood radius of 0.25 m.

Fig. 12. Visualization of local scale-dependent parameters using scalar fields on the graphite mine dataset, with spherical neighborhood radius of 0.1 m.
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differentiable sections. In contrast, parameter A displays apparent 
zoning. These latter observations concur with trends observed in Fig. 14, 
as the slope of the trends in the log-log plane were seemingly parallel 
(parameter D), and presented a curve offset (parameter A) along the 
considered range of radii.

Further investigation of the distribution for D/A seemingly shows a 
progressive increase in parameter D/A from left to right in Fig. 15, 
corresponding to a decrease in overall roughness from the blasted front 
to the scaled section. Fig. 16 plots the model with binary color scale, and 
with a threshold of D/A = 110. The figure also distinguishes the three 
consecutive advance rounds associated with the mining cycle. It is 
inferred from the plot that the freshly blasted section presents the largest 
spatial concentration of high roughness conditions. The second round of 
the mining advance received one scaling cycle, and therefore presents a 
lower proportion of high roughness conditions. The last segment on the 
left of the figure corresponds to a section scaled on multiple occasions, 
and presents much lower overall roughness than the other two sections.

4.4. Weathering and mechanical erosion contrasts

The next case study is part of an ongoing research program to eval
uate the impact of cyclical snow and winter debris dumping along rock 
slopes at an abandoned limestone quarry (Niknezhad et al., 2024). The 
surfaces impacted by material dumping are characterized by severely 

accentuated weathering conditions induced by poor drainage, freeze- 
thaw cycles and mechanical erosion. The blocky structures of the 
quarry are defined by 2 sub-vertical joint sets and a recurring horizontal 
sedimentary lithology mostly composed of limestone with occasional 
shale horizons. The severe weathering results in the near-complete su
perficial erosion of the blocky structures, creates a new artificial struc
tural plane striking perpendicular to the dumping direction, and results 
in substantial weakening of the localized rock mass. The algorithm 
introduced in this research was applied to a section of the pit wall to 
differentiate spatially the geomechanical conditions observed.

Figure 17 shows an isometric view of the quarry. Remnants of winter 
and snow debris are present at the bottom of the pit. This accumulation 
tends to remain present almost year-round, which notably impact the 
drainage conditions along the slope. A large concrete pad is used for 
truck dumping of the snow debris, which impact the rock slope of the 
abandoned quarry.

The pit walls were surveyed using a drone-mounted DJI Zenmuse L1 
LiDAR coupled with a D-RTK station. The resulting topographical 
dataset has a point spacing of 6 cm. Fig. 18 shows an isometric view of 
the topographical dataset collected from the LiDAR survey. The detailed 
analysis was conducted for the upper half of the dataset corresponding 
to the first 10 m high bench of the abandoned quarry (this zone is 
identified as the extended zone of investigation on the figure).

Preliminary scale-dependent analysis was carried out on the full 

Fig. 13. 3D point cloud model of surveyed area consisting of freshly-blasted and scaled sections along the mine drift.

Fig. 14. ξr with respect to scale for (a) the entire studied span from the Pugwash mine drift dataset and (b) segmented sections of contrasting surfaces.
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dataset and two manually selected subsets (identified in Fig. 18) of the 
cloud to determine the scale of interest for topographical differentiation 
purposes. Fig. 19 shows the overall roughness ξr with respect to radius of 
measurement r for the two subsets corresponding to blocky structures 
and pronounced weathering and mechanical erosion. The presence of 
linear trends with varying slopes and intercepts across different scales of 
measurement represents the dominance of distinct features at each 
scale.

From Fig. 19, it is noted that the trends for r < 1 m are comparable 
between the two contrasted surfaces. It is inferred that the associated 
small-scale topographical features pertain to the local geological units 
consistent for the two zones. The trends seemingly diverge after r > 1 m 
for the weathered surface. It is thus inferred that the induced mechanical 
weathering is observable at a much larger scale than in the previous case 
studies, and corresponds to larger geomorphological features. From this 
preliminary analysis, the investigation range is set to 1 m ≤ r ≤ 7 m.

The recursive scale-dependent topographical analysis was performed 
on the upper bench identified in Fig. 18. The analysis was conducted for 
the range of 1 m ≤ r ≤ 7 m, with moving-window spherical radius of 
rw = 5m. Similar to previous case studies, selection of rw is based on the 
average point spacing of the scan and the intended application which is 
determined from the defined range for the algorithm where the scale- 
dependent topographical trends of the studied geomorphological fea
tures remain distinguishable. Fig. 20 plots the distribution of the scale- 
dependent parameter values computed for the topographical dataset. In 
the figure, the distribution values (horizontal axis) are normalized by 
the mean of the measured parameter. All distribution curves represent 
the same cumulative total number of data points. It can be observed 
from the distribution of measured parameter D (associated with expo
nent H) presents two relative peak values. These distinct peaks are also 
clearly discernible in the D/A distribution. It is inferred that these two 
subsets of the distributions correspond to the different topographical (i. 
e., geomechanical) conditions of interest noted for this case study. As 
noted with Fig. 19, the differentiated trends for the different topo
graphical units are characterized by distinct slopes (i.e., exponent H and 
parameter D) in their respective log(ξr) - log(r) trends.

Fig. 21 shows the topographical dataset investigated with three 
different color scales for parameters D, A, and D/A. The plots for 

Fig. 15. Topographical model of the tunnel roof section with color scale for 
parameters (a) D, (b) A, and (c) D/A.

Fig. 16. Topographical model of the mine tunnel roof section with binary color scale using a threshold of D/A = 110.
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parameter D and D/A show a distinct variation in topographical pa
rameters within the horizontal position range of 145 m to 362.5 m. This 
range is consistent with the denoted zone of dumping observed in 
Fig. 18. The values measured for the different parameters present sta
tistical variability as expected given the geomorphological conditions. It 
is inferred however that distinct threshold values can be leveraged to 
differentiate topographical conditions. This approach is investigated in 
the next section for the different case studies presented in this research.

The threshold approach is again leveraged to distinguish the 

different topographical zones. Fig. 22 shows the topographical model 
with binary color scale and D/A threshold value of 34. The weathered 
zone is clearly delineated between 145 m and 362.5 m. Spatial vari
ability is still present in this example, and it is inferred that local 
anomalies reflect distinct topographical features. For example, the zone 
near 290 m appears to have sustained a structural instability which 
would explain the localized topographical conditions. It is thus inferred 
that a predetermined number of differentiated subzones may not always 
be achievable, and this topographical investigation provides a more 
objective framework towards classification of subsets.

5. Discussion

The research presented in this work highlighted the strong correla
tion between topographical features and geomechanical conditions. The 
approach presented an objective method to differentiate different clus
ters through a specific set of geometric criteria. The results showed 
important spatial and statistical variability with respect to topographical 
measurements. Such variability is to be expected in most geo- 
engineering applications, and it is often in fact part of the design pro
cess to determine a confidence threshold and an associated analytical 
framework towards distinct geomechanical classifications.

Spatial variability was observed with all four case studies investi
gated. The concrete-lined tunnel section presented the most apparent 
topographical contrast between the two types of interfaces. It is noted 
from Fig. 8 that binary differentiation is near perfect, albeit some small 
overlap in topographical criteria along the two surfaces. The advancing 
mine tunnel and the pit wall case studies revealed pronounced spatial 
variability. Further investigation revealed that the preliminary clus
tering criteria may have been insufficient. The advancing tunnel 
revealed three distinct zones with variable roughness intensity. In this 

Fig. 17. Isometric view of an abandoned limestone quarry located in Montreal, Canada. The pit is used for winter and snow debris storage dumped from a large 
concrete pad. Severe weathering and mechanical erosion arise from the intensive cyclical and seasonal dumping.

Fig. 18. Topographical dataset of the limestone quarry used for winter debris storage.

Fig. 19. ξr with respect to scale for (a) full dataset and (b) the zones of refer
ence corresponding to natural blocky structure along the pit wall and pro
nounced weathering and mechanical erosion near the dumping points.
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situation, the sub-sections are characterized by cumulative fractions 
beyond a certain threshold as opposed to explicit zoning. The open-pit 
case study provided insightful information on the failure mechanism 
associated with the studied geometry, showcasing apparent pronounced 

shearing along one of the two structural planes.
The spatial variability associated with topographical conditions 

presents another insightful perspective towards objective geo
mechanical, geological, and operational differentiation. As noted with 

Fig. 20. Histograms of the topographical dataset distribution for scale-dependent parameter D, A, and D/A.

Fig. 21. Topographical model of the analysed pit wall with color scale for scale-dependent parameters (a) D, (b) A, and (c) D/A. Scale units are in meters (m). The 
recursive analysis was conducted with rw = 5m.

Fig. 22. Topographical model of the pit wall with a binary color scale using a threshold of D/A = 34.
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the advancing mine tunnel (Fig. 16), blasting damage is not uniform and 
the topographical characterization is best described by spatial distri
bution of roughness conditions.

Figure 23 plots cumulative fraction (%) of the total point cloud with 
respect to measured parameters D/A. The cumulative passing repre
sentation distinguishes objectively the spatial distribution with respect 
to scale-dependent parameters for distinct geomechanical features. 
Fig. 23 (a) plots the cumulative distribution for the advancing tunnel. 
The exposed rock presents rougher overall conditions captured by lower 
values of D/A. Fig. 23 (b) plots the different cumulative distribution 
curves for the different topographical units observed in Fig. 12. It can be 
seen that the North structural plane and broken material surface present 
similar topographical conditions, while the South plane characterized 
by superficial shearing presents lower overall roughness conditions. 
Fig. 23 (c) plots the cumulative distributions for the advancing mine 
tunnel. The three subsets of the advancing mine cycles are characterized 
by progressively diminishing overall roughness as the cycle gets closer to 
freshly blasted conditions. Fig. 23 (d) shows the distinct spatial distri
butions between weathered surfaces and natural blocky conditions.

The cumulative distribution representation shown in Fig. 23 can 
further enhance the objective clustering of the topographical dataset. 

For case studies where clustering is required, the greatest spread in 
cumulative passing (vertical axis) is desired in order to better differen
tiate topographical units. For example, the limestone quarry case study 
binary threshold (Fig. 22) was set at D/A = 34. It can be seen from 
Fig. 23 (d) that the vertical spread at D/A = 34 between the weathered 
and blocky subsets is very large, thus offering a very objective frame
work towards differentiation. This approach can also be leveraged as an 
operational criterion towards various performance conditions (e.g., 
improving surface roughness of an excavation by shifting the curves to 
the right). This approach also offers an objective means to differentiate 
mixed conditions which are often encountered in realistic geological 
settings (see for example Fig. 8).

It is also inferred that the recursive scale-dependent analysis pre
sented in this research, coupled with the cumulative passing distribution 
plots approach (Fig. 23) can provide a quantifiable perspective towards 
classification systems and spatial distribution. Considering for example 
the limestone quarry case study, the geomechanical change induced by 
mechanical erosion may decrease a GSI-based rating (Hoek et al., 1995) 
by as much as 20 points. Referring to Fig. 23 (d) and imposing binary 
threshold of D/A = 34 as the largest cumulative spread, it becomes 
possible to assign a statistical distribution (% fraction) of the model 

Fig. 23. Cumulative passing distribution for parameter D/A for the four case studies presented in this research.
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associated with different classification values.
The work presented in this research implemented a number of pre- 

defined constraints pertaining to scales of measurements. Menezes 
et al. (2013) suggests using radius of measurement r greater than 5 to 10 
times point spacing of the investigated point cloud. It is asserted from 
the different ξr − r plots presented in this work (e.g., Fig. 5) that the 
exponent H (Eq. [1]) decreases when r is less than or equal to 3 times the 
point spacing, and can be used as a lower threshold for automated 
analysis.

The research presented in this work comprised procedural decisions 
that reflected special conditions specific to case studies considered. 
Point cloud density influences the range at which scale-dependent fea
tures can be observed. Fig. 24 shows the influence of varying density on 
multi-scale topographical analysis. Controlled subsampling of the point 
clouds was performed at 80 % and 20 % of the original number of points. 
Multi-scale topographical analysis was then conducted for each of the 
subsampled clouds. It is observed that scale-dependent trends vary with 
respect to density for small-scale conditions (i.e., r < 0.1). Such range is 
outside the scales considered for comparison analysis in the above work. 
Considering the corresponding average point spacing of the subsampled 
clouds, s, it is inferred that density will influence scale-dependent trends 
for r < 10s.

The selection of rw is based on two main factors: the average point 
spacing and the intended application. The appropriate range for rw is 
also determined from the range of radii used for the algorithm, where 
recursive linear regression is applied. Within this range, contrasting 
features remain distinguishable, ensuring effective analysis. Depending 
on the application and the extent of the scan, rw is typically chosen 
between 10 times the average point spacing of the scan and 2.5 to 5 
times the lower bound of the range used for the algorithm.

The scale of measurements implemented in this work captures rele
vant scales associated with mineralogical and physical (e.g., weath
ering) conditions. As noted by Shepard et al. (2001) for large landscapes, 
and Aubertin and Hutchinson (2022) for topographical datasets from 
underground mines, transition points are observed on the log(ξ) − log(r)
plots, reflecting a change in dominant scale-dependent features. For the 
first three case studies, a near-consistent range of approximate radii 

0.1 ≤ r ≤ 1 m is used to contrast topographical features. This range was 
also noted by Aubertin and Hutchinson (2022). The last case study 
involved a large-scale range of radii to contrast topographical features. 
Further automation of this process could implement iterative linear- 
regression to determine the best range of radii for specific case 
studies. It is emphasized however, that a sufficiently adequate range of 
contrasting radii can be determined from select subsamples following 
the rationale implemented in the different case studies (e.g., Fig. 19).

scale-dependent topographical characterization and differentiation 
has been used in the past to differentiate large-scale topographical fea
tures for extra-terrestrial bodies (Shepard et al., 2001), evaluate the 
performance of various rock excavation methods and processes 
(Aubertin et al., 2019; Aubertin and Hutchinson, 2022), and derive 
geomechanical parameters for rock interfaces (Grasselli, 2001). The 
present research expands from these niche applications to develop a 
systematic and objective classification and characterization method 
which can capture complex and mixed geomechanical and topograph
ical conditions. It presents substantial potential for automation and 
integration to open-source software (e.g., CloudCompare).

The datasets investigated in this work captured a broad, albeit not 
exhaustive, spectrum of geomechanical settings corresponding to 
different geological conditions, weathering conditions, support systems, 
and excavation methods. The selection aimed to demonstrate the diverse 
applications of the method, and the fundamental objective nature of 
feature differentiation from topographical analysis. It is asserted based 
on the investigation carried out and the complex and diverse settings 
investigated, that the developed methodology has the potential to be 
replicated broadly to other geomechanical and operational settings not 
necessarily captured here.

Variable density and computational time represent additional limi
tations that may impede efficient and systematic implementation of the 
proposed method. As noted, point cloud density influences the window 
size rw and the reliable range of radii where scale-dependent trends can 
be measured. The datasets presented in this work featured fairly ho
mogeneous density, and advantageous point spacing, as demonstrated in 
Fig. 24. The figure also suggests that a lower density could have been 
used, and it is asserted that variable cloud density could be alleviated by 
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Fig. 24. Influence of variations in density on scale-dependent topographical analysis for (a) Advancing tunnel, (b) Graphite mine, (c) Pugwash mine drift, and (d) 
Limestone quarry.
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controlled subsampling to homogenize point spacing without impacting 
the results. Computational times for r > 1m can become prohibitive for 
larger datasets due to the recursive analysis framework. While not 
critical in the present study, this aspect could be alleviated by imple
menting octree-based (or similar) division schemes, and leveraging 
multi-core computing engines to reduce computational time.

6. Conclusion

This study introduces an automated algorithm for roughness-based 
geological and geomechanical differentiation from 3D point clouds, 
leveraging a scale-dependent approach to ensure robustness across 
varying geological conditions. Unlike traditional methods, which often 
rely on subjective or site-specific criteria, this approach provides a 
quantitative and adaptable framework for analyzing rock surfaces.

By employing a systematic, scale-dependent recursive analysis of 
roughness parameters derived from 3D point cloud data, the research 
provides a robust framework for quantifying and classifying topo
graphical features. The recursive method improves both accuracy and 
computational efficiency compared to traditional techniques. By 
capturing surface features at multiple scales, the method provides finer 
control over the analysis and reduces computational time, making it 
more efficient for large-scale applications in engineering geology. The 
recursive algorithm offers an objective methodology to identify and 
distinguish geological and geomechanical units across a wide range of 
operational settings. This helps reduce the human biases and errors that 
could arise from subjective interpretations, leading to more accurate 
assessments of the site’s conditions.

The case studies presented in this research demonstrated the vari
ability and spatial distribution of topographical features in natural and 
excavated rock outcrops, emphasizing how roughness parameters are 
affected by scale and measurement methods. These scale-dependent 
trends reveal the relationship between topography and geomechanical 
conditions and highlight their value in improving differentiation 
schemes towards engineering designs.

For all the case studies, the recursive automated analysis was con
ducted using measurement radii ranging from approximately 10 to 100 
times the average point spacing of each scan. For the first three case 
studies, this corresponded to a range of approximately 0.1 m to 1 m, 
depending on the specific case and point cloud density, while for the last 
case study, the range was selected between 1 m and 7 m due to the scan 
extent and the dimensions of contrasting features. In all cases, the 
smallest radius used for rw was 10 times the average point spacing of the 
scan. However, for some cases, depending on the specific application, it 
was chosen to be 2.5 to 5 times the lower bound of the radii used for the 
algorithm. The exponent H varied across different geomechanical 
components. For example, shotcrete and highly sheared surfaces 
exhibited lower roughness and higher H values, whereas freshly blasted 
or exposed rock surfaces on tunnel walls showed greater roughness and 
lower H values. These variations correspond to fractal dimensions, with 
D = 3 − H. The transition in these values reflects clear differences in 
surface morphology across operational and geological contexts. 
Furthermore, ratios such as D/A were used as indicators for clustering 
and binary thresholding, with effective thresholds (e.g., D/A = 34) 
identified for differentiating weathered from intact zones. The influence 
of point cloud density was evaluated through controlled subsampling, 
which showed a negligible effect on the analysis results within the 
selected scale range, provided that r ≥ 10 s. These findings establish a 
clear link between spatial resolution, scale selection, and geomechanical 
interpretation, reinforcing the robustness of the proposed methodology.

The cumulative passing distribution plots, as exemplified in Fig. 23, 
further enhance the differentiation framework by providing a quantifi
able basis for spatial and operational clustering. This approach offers 
practical implications towards site-specific considerations such as 
blasting performance optimization. Moreover, the findings underscore 
the potential of this methodology to complement and refine existing 

classification systems, such as GSI-based ratings, by incorporating sta
tistically robust topographical criteria.

In conclusion, the integration of scale-dependent roughness analysis 
and automated clustering represents a significant advancement in the 
objective characterization of rock outcrops. The proposed framework 
holds promise for enhancing geomechanical differentiation and 
advancing geoengineering practices in mining, tunneling, and con
struction applications. Beyond geoengineering fields, this methodology 
has the potential to benefit several other domains, including planetary 
geology, environmental monitoring, and geohazard assessment. The 
methodology presented in the research offers an objective character
ization for varying topographical features which can be applied to 
differentiate extraterrestrial landscapes, and distinguish the level of 
superficial deterioration induced by chemical agents. Further research 
should also be carried out to leverage this approach to detect geohazard 
failure precursors which could reveal changes, along certain scales, in 
superficial roughness conditions (e.g., surface erosion prior to landslides 
yielding localized changes in superficial roughness).
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