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ABSTRACT Smart grid development is required to accommodate the integration of renewable
generation resources into systems. Energy management is improved by smart devices that allow two-way
communication. A multi-criteria decision analysis framework is used in this study to provide a model for
decisionmaking. Prior to communicating with the energymarket aggregator, it considers the human-oriented
viewpoint to offer an interface with a smart device within smart grid system. In this research, the proposed
framework is utilized for decision-making optimization based on six criteria, evaluated using three multi-
criteria decision-making techniques. To assess criteria, a thorough investigation has been undertaken across
five load classes aiming at demand side management (DSM) options from high load class to lowest load
class and concerned load-generation balance. The findings of this research make it convenient for the
framework that communicates the actual results of the energy system and the energy markets aggregator
for an energy management plan. The findings of this study support the development of a framework that
effectively communicates the actual performance of the energy system and the energy markets aggregator
for an energy management plan. The results have been evaluated using sensitivity analysis across five DSM
options, and trade-off studies have been conducted to support effective decision-making in practice. Finally,
this research offers a cost-effective, clean, and efficient system configuration aimed at consumer preferences.

INDEX TERMS Demand side management, energy management system, multi-criteria decision-making
(MCDM), preference ranking organization method for enrichment of evaluations (PROMETHEE), smart
grid, technique for order of preference by similarity to ideal solution.

I. INTRODUCTION
Renewable energy sources (RESs) use is increasing exponen-
tially across the globe. Many nations use RES technologies
to serve a range of goals, including energy security, the
diversification of economies and energy sources, meeting
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rising demand, and promoting social and environmental
welfare [1]. The reliability and stability of electric networks
are put at risk by the intermittent characteristics of some
RES i.e., PV and wind generation [2]. In comparison to
conventional counterparts like hydropower, there is also a
lack of controllability over the generation [3]. The concept
of Demand side management (DSM) is used in the literature
to explain this enhancement on the user side [4]. A
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higher integration of intermittent RESs, while maintaining
voltage stability, can be enabled through a gradual shift
from heavy reliance on load following toward enhanced
generation-following strategies [5]. DSM programs have
considerable potential subjected to their reliance on consumer
behavior and can only be successful considering consumer
incentives [6].

II. LITERATURE REVIEW
Smart grid offers modernization to deliver a compact solution
under many conflicting criteria, that encompasses several
factors that call for decision-making tools and approaches,
across several criteria that belong to different genres [7], [8].
The geographic increase of the new mechanism necessitates
consideration of environmentally benevolent and socially
suitable solutions in addition to technological and financial
considerations. To create a win-win situation, the quantity
of potential solutions (alternatives) must be assessed across
multiple criteria [9]. Such approaches have been utilized to
achieve home energy management allowing consideration of
consumer preferences along with dynamic pricing, aimed
at improving demand side management (DSM) across
distribution side of the grid [10]. Rather than increasing
power generation, congestion management systems for
dynamic pricing programs along with demand response
(DR) solutions, require decision making under competing
criteria [11].

Several research propose an interesting idea that focuses
on smart homes for a smart grid, by interacting with their
surroundings rather than serving as passive system compo-
nents, proactive clients can negotiate and collaborate in an
intelligent network [12]. An information and communication
technology (ICT) architecture has suggested accomplishing
the aims of the smart home, smart building, and smart
grid [13]. The methodical review in [14] offers an in-depth
discussion regarding the importance of meteorological data,
load profiles, component modelling, and cost and reliability
factors in size optimization. Different methods for size
optimization, such as analytical, iterative, and artificial
intelligence approaches. Notably, computational costs have
been reduced, and optimal global solutions were obtained
using artificial intelligence approaches including genetic
algorithm (GA), particle swarm optimization (PSO), and
ant colony optimization (ACO). The work in [15] offers
insights into several important areas, including the system
configuration, future prospects, improvements to improve
their utilization, and economic feasibility. The paper also
covers methods for creating efficient storage systems. Addi-
tionally, it provides a succinct overview of improvements
made in cost analysis methods, reliability indices, and opti-
mization strategies specifically for hybrid renewable energy
systems.

The work in [16] focuses on the application of DSM
schemes in distributed generation system development and
building energy management (BEM). The study high-

lights that DSM strategies, primarily implemented through
utility-initiated demand response (DR) programs, are geared
towards real estate sectors encompassing residential, com-
mercial, institutional, and industrial buildings. It emphasizes
the economic implications of power generation curtailments
and argues that the disposal of excess energy is not
as cost-effective as it may seem, as it incurs additional
costs and power losses. The paper [17] presents a metric
system based on multiple criteria decision analysis (MCDA)
to quantitatively measure Building Information Modeling
(BIM) effects in BEM, specifically for existing housing. The
key performance indicators (KPIs) is used to evaluate the
optimization aspects of cost and interoperability, for priori-
tizing optimization aspects during BIM implementation. The
study in [18] employs a model-based MCDA framework that
aids in choosing the very efficient measures for sustainable
growth depending on their macroeconomic, environmental,
and social consequences. The hybrid PROMETHEE and
SIMOS methods emphasize the importance of prioritizing
the efficiency pillar to further decarbonize the energy system
while maximizing health benefits, quality of life, resilience,
and competitiveness.

The study in [19] offers an innovative method for
integrating technological, economical, and environmental
aspects into energy planning. The goal is to find the best
system configuration among several off-grid power supply
system alternatives using universal priority criteria. This
strategy combines multi-criteria decision analysis based on
the Analytical Hierarchy Approach (AHP) with system
optimization to develop a planning strategy for off-grid power
supply systems. The study in [20] aims to offer a model
that maximizes the use of locally accessible RESs while
minimizing electricity prices and reducing the probability of
load loss. The C-DEEPSO technique is used for optimization,
and the AHP-TOPSIS model then makes use of the resulting
data. The AHP-TOPSIS model evaluates and identifies the
best alternative by using expert weights. The paper in [21]
presents MCDA model to enhance the energy efficiency of
public buildings. The suggested model incorporates energy
efficiency, financial viability, and environment preservation
requirements. By employing the ELECTRE approach, the
model effectively categorizes energy retrofitting actions
based on their overall performance. By categorizing energy
retrofitting activities, decision-makers can prioritize and
allocate financial resources accordingly.

TOPSIS framework considers six distinct energy resources
have employed in order to develop low-carbon energy
solutions for residential buildings [22]. This framework
utilizes various engineering tools, including residential
building energy analysis, renewable energy analysis, MCDA
techniques, and cost-benefit analysis, to provide valuable
insights. The proposed model in [23] combines the identi-
fication, definition, and evaluation of decision criteria and
utilizes MCDA framework. A case study involving the use
of an intelligent decision system demonstrates how the
evidential reasoning approach is used to aggregate evaluation
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information. Sensitivity and trade-off studies have been
useful in aiding decision-making procedures in practice. The
application of an analytic hierarchy process (AHP) analysis
is used in [24] encapsulating key ecosystem stakeholders to
identify major challenges and formulate policies to foster
an effective BEMS industry ecosystem. The survey assesses
elements of the ecosystem including economic, institutional,
technological, and social systems, assigning weights to each
element in decreasing order.

The work in [25] incorporates social, environmental, and
economic criteria into decision-making models for energy
projects. It acknowledges the limitations of cost-benefit and
life cycle cost analyses in capturing complex social impacts
and expressing them in monetary terms. To address these lim-
itations, the study emphasizes the use ofMCDA as a family of
decision-making protocols that evaluate and prioritize multi-
objective problems. The research highlights the advantages
of MCDA approaches over traditional cost-benefit analyses
in the context of sustainable energy planning and decision-
making. The research in [26] introduces a DSM approach
to an institutional building, integrating the concept of user
satisfaction. Fuzzy-AHP and Fuzzy-TOPSIS models are
utilized to select the best configuration. The research offers
a cost-effective, clean, and reliable energy configuration with
sensitivity analysis. An approach is presented in [27] for eval-
uating sustainable energy consumption in the industrial sector
of selected European countries, study employs four MCDA
methods (TOPSIS, VIKOR, COMET, and PROMETHEE
II) to assess energy consumption sustainability based on
criteria. Optimal energy source arrangement among the six
options is evaluated using TOPSIS approach [28]. Five
criteria are modelled and computed using a historical demand
side dataset. To build a comprehensive dataset, the TOPSIS
approach is used, and outcomes are integrated with demand
side data.

The MCDA framework in [29] is based on personal
preferences and sustainability criteria, where the scenarios
are scored and evaluated. MCDA platform incorporates
life-cycle assessment, energy and economic modules, and
multi-criteria decision analysis. It empowers decision-makers
to gain a thorough understanding of the technical, environ-
mental, economic, and social dimensions associated with
decarbonizing energy systems. The study in [30] proposes
a method for assisting investment decisions regarding smart
shading devices in office buildings. The approach combines
PROMETHEE-II with EnergyPlus, enabling the examination
of smart building aspects, considering criteria encompassing
energy, finance, environment, and occupants’ well-being.
The analysis reveals that although smarter options may
come at a higher cost, the increased comfort and energy
savings they provide compensate for the additional expen-
diture. The paper in [31] presents a systematic literature
review focused on passive strategies for optimizing energy
consumption in buildings. The review employs multiple
criteria decision-making techniques to identify the most

suitable passive strategies and the relevant criteria for their
selection.

The study in [32] employs a MCDA framework for
determining the best mix of energy efficiency and indoor
air quality strategies. The framework considers criteria such
as educational attainment, health, energy performance, and
costs. By comparing various combinations of energy retrofit
and indoor environment quality schemes, the MCDA results
provide insights into the trade-offs between energy efficiency
and indoor environmental quality while reducing carbon
emissions. The article in [33] analyzes and compares various
options for renewable electricity storage, ranging from small
batteries to large-scale storage systems, utilizing MCDA and
TOPSIS. The solution is evaluated considering nine criteria,
including investment requirements, power density, efficiency,
and duration of operation. The study in [34] explores the
application of GIS technology, including machine learn-
ing, deep learning, and multiple criteria decision analysis,
to estimate the energy-saving potential and investment energy
value of photovoltaic systems. The research in [35] proposes
a system dynamics approach for evaluating the techno-
economic, environmental, and social indicators associated
with sustainable power systems where MCDA methods are
employed to assess the sustainability of different scenarios
and policies. Research effort in [36] presents a sustainability
framework for benchmarking the life cycle performance on
environmental axis across modular buildings. The framework
aims to develop sustainability index and benchmarks based
on residential buildings. A TOPSIS based model in [37]
is presented to support smart appliances such as dish
washer is presented across six criteria across decision energy
management in smart grid paradigm.

Besides the above literature, recent literature (2023-2025)
has increasingly concentrated on the use of multi-criteria
decision-making (MCDM) and multi-objective optimization
techniques for demand-side management (DSM), with a
special emphasis on including both consumer preferences and
generation characteristics. Uzair and Kazmi [38] used tradi-
tional MCDM methods such as TOPSIS and multi-criteria
evaluation (MCE) to optimize building energy management
by balancing generation and load based on parameters such
as energy efficiency, cost savings, and interior comfort.
Zabala et al. [39] suggested an agent-based optimizer for
DSM in energy communities that schedules appliance and
EV charging depending on user preferences and avail-
ability, thereby optimizing PV self-consumption. Similarly,
Rollo et al. [40] simulated different load-shifting solutions in
renewable energy communities and assessed their influence
on economic efficiency, social cohesion, and environmental
sustainability.

Elavarasan et al. [26] used fuzzy AHP and fuzzy TOPSIS
to integrate technical, economic, and social parameters for
DSM in institutional buildingswhile stressing user happiness.
AHP, fuzzy AHP, TOPSIS, fuzzy TOPSIS, ELECTRE,
PROMETHEE, and MCE are examples of popular MCDM
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techniques used in these investigations. The researchers
in [41] reviewed and emphasized the importance of power
system flexibility in incorporating renewable energy sources
such as wind and solar into the grid. Because these resources
vary, innovative solutions are required to maintain grid
stability and reliability. Energy storage devices, demand
response programs, grid expansion, enhanced forecasting
techniques, and variable generation sources were among the
key options proposed. The fuzzy MCDM is used in [42] for
selection of biomass resources considering various objective
weights across four alternatives.

In this paper, bridging the limitations left in the literature
serves as the very novel aspects. The additional costs
with high power usage and use of application of DSM
strategies to reduce the load equating the optimal generation
is one aspect of this study. To propose a model that
maximizes the use of locally accessible renewable energy
sources while minimizing electricity prices and reducing
user discomfort. To entitle the consumers with the optimal
solutions across contradicting criteria that might negatively
affect traditional market conditions. To allow decision-
makers as per prioritization and allocation of available
resources accordingly. This study offers use of MCDA
protocols for decision-making considering MCE, TOPSIS
and PROMETHEE as hybrid scheduling problem, which
evaluates and prioritizemulti-criteria problems across various
load classes and finding out a tradeoff solution amongst the
conflicting criteria. The results have been evaluated with
sensitivity analysis and trade-off studies have been carried out
usefulness in aiding effective decision-making procedures.

The paper has been arranged as follows. Literature review
has presented in section II. Methodology is illustrated in
section III. Section-IV includes MCDA techniques used
in hybrid scheduling problems. Section-V encapsulates test
setup. The results and simulations are shown in section VI.
The paper is concluded in section VII.

III. METHODOLOGY
The methodology is illustrated in Fig 1. This study’s
technique is designed to address qualitative intuitive client
inputs and transfer them so that the aggregator algorithm
can deal with them in an organized and quantitative manner.
In a hybrid model, three MCDM techniques were used.
Projects involving energy planning are complex and involve
a variety of stakeholders, necessitating the use of many
objective functions. The steps of the applied methodology are
as follows:

1. To define decision criteria and customer alternatives,
data must first be collected. The granular load classifi-
cation and service prioritization across classes is such
that it varies from critical Class 1 (C1) down to highly
flexible Class (C5) loads. The four seasonal variations
are considered with respective load curves.

2. There are five classes considered in the methodology
according to consumer optionswithDSM that includes,

FIGURE 1. Flowchart of the proposed approach.

high, average high, medium, average medium and low
classes as per load and generation balance, respectively.
However, to keep the discussion pertinent and to the
point, only high, medium, and low load classes will be
discussed in detail.

3. There are six decision criteria, across which, all the
evaluations are carried out:

C1 = Energy cost (EC) = To Decrease (−ve)

C2 = Adjusting (load) demand(ALD) = To Increase (+ve)

C3 = Comfortlevel(CL) of consumer = To Increase (+ve)

C4=Total home/building demand (THD)

= To Decrease (+ve)

C5 = Urgency(U) = To Decrease (−ve)

C6 = Energy Efficiency(EE) = ToIncrease (+ve)

4. It is assumed that the real-time data integration
and forecasting is provided, where smart meters and
IoT Sensors can provide sub-hourly measurements
of home/building demand (THD), comfort indices
(e.g., temperature, etc.), and instantaneous energy costs
(real-time tariffs for energy cost). The load forecasting:
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Short-term predictions feed back into adjustingweights
wi, for example, if a cold front is forecast, urgency (C5)
and comfort (C3) weights rise preemptively.

• High-criticality classes see minimal THD (C4 ↓)
and Urgency (C5 ↓) at the expense of peak Energy
Cost (C1).

• Low-criticality classes allow more aggressive load
adjustments (C2 ↑) to reduce overall cost (C1 ↓)
and improve Efficiency (C6 ↑).

5. The effect on six criteria C1–C6 is as follows:
• Energy Cost (C1↓): Shifting flexible loads (C2

↑) to low-tariff periods and peak shaving via
automated DR events.

• Adjusting Demand (C2↑): Provided real-time
signaling and automated control of thermostats,
EV chargers, and appliances.

• Consumer Comfort (C3↑): Minimum comfort
thresholds encoded as constraints—no DSM event
can breach a user’s comfort band.

• Total Home/Building Demand (C4↓): Coordi-
nated load shedding and peak clipping across
classes reduces peak draw without violating com-
fort or urgency constraints.

• Urgency (C5↓): Critical loads flagged with low
urgency weights are never deferred; less urgent
tasks (e.g., dryer cycles) can be postponed.

• Energy Efficiency (C6↑):Continuous monitoring
of device efficiency and preferring modes (e.g.,
heat-pump low-rate operation) that maximize out-
put per kWh.

6. To prioritize and optimize the best solutions in
light of consumer restrictions, MCE, TOPSIS and
PROMETHEE are used. Cross-validation is conducted
via multiple MCDM techniques, where all score DSM
options against C1–C6. It will result in collaborative
decision: Final action chosen through majority ranking
or a weighted consensus of the three methods, ensuring
robustness against any one method’s bias.

7. For the load-generation scheduling algorithms, the
framework’s output provides a foundation. Where the
weights are either objective or they are equal weights.

8. This model can be employed for various consumer
needs and equipment across system optimization and
their contribution towards grid operations.

9. The proposed model can-be scalable and adaptable
across following dimensions and will be explored in
detail in future studies.

Each aggregation node (e.g., building energy manager)
runs theMCDM engine locally on its fleet of devices, passing
only summarized flexibility bids and aggregated demand
to the grid operator. This feature aims at decentralized
execution.

Grid-level controller reconciles bids by selecting those that
best improve system-wide C1 (minimized cost), C4 (flattened
demand), and C6 (maximized efficiency), while respecting

local priorities on C2, C3, and C5. This feature refers to
hierarchical coordination. By considering these six criteria
into a dynamic, class-aware, and cross-validated MCDM
framework, supported by real-time data and decentralized
coordination, the proposed strategy scales to millions of
heterogeneous users while ensuring each user’s power supply
needs and preferences are met subjected to high computation
power, by incorporating this feature C1–C6 to be met across
thousands of users.

IV. MULTI-CRITERIA DECISION TECHNIQUES
A. MULTI-CRITERIA EVALUATION (MCE)
The technique has application for calculating rank of the best
among multiple solutions like m alternatives evaluated across
n criteria, with highest score and other solutions are ranked
as per following scores. where i = 1, 2, . . .m, SMCE shows
the score for weighted sum, sij is the normalized score of ith

alternative/solution from the reference of jth criterion, and wj
is the weight associated with jth criterion.

SMCE =

m∑
i=1

sijwj (1)

where,
∑C=6

C=1 wj are the weights across six criterion and sum
of all weights is equal to 1.

C=6∑
C=1

wj = wEC + wALD + wCL + wTHD + wU + wEE = 1

(2)

B. TECHNIQUE FOR ORDER PREFERENCE BY SIMILARITY
TO IDEAL SOLUTION (TOPSIS)
It is based on determining the optimum option given all
potential tradeoffs. It depends on increasing advantages
and choosing the greatest options as those that are the
furthest from the least acceptable ones, also referred to as
the negative ideal solutions. Developed normalized decision
matrix follows definition of i = 1, ..n criteria (cij) and j =

1, ..m choices (Aj).

nij =
cij√∑m
j=1 c

2
ij

(3)

Normalized weighted values Tij in the decision matrix is
then calculated.

Tij = nijwj (4)

Positive ideal A+ and negative ideal solution A− are then
derived, where I ′ and I

′′

are related to benefit and cost criteria
(positive and negative variables).

A+
= {T+

1 , . . . ,T+

1 } = {(MAXjTij|i ∈ I ′), (MINjTij|i ∈ I
′′

)}

A−
= {T _

1 , . . . ,T _
1 } = {(MINjTij|i ∈ I ′), (MAXjTij|i ∈ I

′′

)}

(5)
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From n-dimensional Euclidean distance, D+

j and D−

j
are calculated as separation of every alternative from the
positive/negative ideal solutions.

D+

j =

√∑n

i=1

(
Tij− T+

i

)2
;D_

j =

√∑n

i=1
(Tij− T _

i )
2

(6)

Relative closeness Cj to ideal solution of each alternative
is calculated, where Cj = 1 is positive ideal solution and
Cj = 0 is negative ideal solution, larger index shows
better performance and closeness to the ideal solution, as the
optimal solution.

Cj =
D_
j

(D+

j + D_
j )

(7)

C. PREFERENCE RANKING ORGANIZATION METHOD FOR
ENRICHMENT OF EVALUATIONS (PROMETHEE)
The method has designated as follows.

Step 1: Decision matrix has to be normalized:

Pij =
{
Rij − min

(
Rij

)}
/{max(Rij) − min

(
Rij

)
(i = 1, 2, . . . , n, j = 1, 2, . . . ,m) (8)

where Rij is routine performance quantity of ith alternative
with jth criterion. The non-beneficial criteria, Equation (19)
is shown as follows:

Pij =
{
max(Rij) −

(
Rij

)}
/{max(Rij) − min

(
Rij

)
(9)

Step 2: Calculate the differences of ith alternative from
other alternatives pairwise.

Step 3: Calculate the preference function, Tj
(
i, i′

)
.

Tj
(
i, i′

)
= 0 if Pij ≤ Pi′j

Tj
(
i, i′

)
= (Pij − Pi′j) if Pij ≥ Pi′j (10)

Step 4: Find accumulated preference function considering
criteria weights (wj) of jth criterion.

Pi (π) ,
(
i, i′

)
=

 m∑
j=1

wjTj
(
i, i′

) /

m∑
j=1

wj (11)

Step 5: Find leaving (or positive) / entering (or negative)
outranking flows for ith alternative.

Fi(ϕ)+ (i) =
1

n− 1

n∑
i′=1

Pi (π)
(
i, i′

)
,
(
i ̸= i′

)
(12)

Fi(ϕ)_ (i) =
1

n− 1

n∑
i′=1

Pi (π)
(
i′, i

)
,
(
i ̸= i′

)
(13)

Step 6: Calculate net outranking flow for every alternative.

Fi(ϕ) (i) = Fi(ϕ)+ (i) − Fi(ϕ)_ (i) (14)

Step 7: Find rank of alternatives that depends on values of
Fi(ϕ) (i) .When the value of Fi(ϕ) (i) is higher, the alternative
is preferred in terms of the best solution.

V. TEST SETUP
Consumer behavior has a significant impact on demand-

shifting model under DSM and it is essential to incorporate
consumers’ needs. This model incorporates consumer pref-
erences by providing a simple and intuitive user interface
for typical users, translating their inputs into a quantitative
framework that supports the development of algorithms
aligned with customer needs.

FIGURE 2. Load curves across seasons in a year and anticipated DSM
adjustments.

For that purpose, the season variations of the load and
generation needs to be incorporated because it has direct
impact on consumer trends. The test setup is taken from [43],
where in simulations and benchmarking, miniature scaled
down version of IEEE 33 bus system is considered at 0.1 %
scaling for home automation level. It must have been shown
and it will be shown in author’s action. The 3750 kW of
complete scaled version of IEEE 33-bus test feeder (Baran
and Wu) is considered at 0.1 % scaled level at 1 pf that is
3.75 kW, to provide a fully reproducible benchmark. That
level is considered normal load level and medium and high
load level is the scaled version of it. This scaled load gives
the average house hold load. The loads have considered
fromU.S residential energy splits, categorizations and energy
demands, as shown in Table -1 with respective classes,
devices and their ratings. The test setup includes three-load
levels i.e., normal load 3.75 kW, medium load 5.4 kW and
high load of 7.7 kW is considered in this study. The overall
load distribution varies between these three levels. The load
without DSM and two variations of DSM like load shifting
and valley clipping is utilized as shown in Fig. 2, along with
four seasonal variations are considered with respective load
curves or simply considered load profiles, as aforementioned
in step-1 of the methodology. The load profile-1 is shown
as DSM_0 across four seasons (winter, spring, summer
and autumn). Similarly, load profile_2 and load profile_3
have designated as DSM_1 and DSM_2, respectively. The
snapshot of load profiles has shown across 24 hours, as shown
in figure 2.
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FIGURE 3. The alternatives across five classifications of load-generation balance, load-generation balance across (b) Low load, (c) Medium load, (d) High
loa.

VI. RESULTS AND DISCUSSIONS
The load and generation balance is shown in Fig 3(a). The
load is shown in the distribution (1). Now there are two
ways, either high load is balanced with high generation or
load is reduced to the decreased generation. The distribution
(1) also shows a high load at 7.7 kW with a step of 5%
decreased till 3.75 kW. Between distributions (1) to (2), the
average high load with generation via respective alternatives
has been shown. Also, the distribution (2) shows reduced load
till 5.4 kW that is medium load and balanced generation via
each alternative. Between distributions (2) to (3), the average
medium load with generation via respective alternatives has
been shown. Similarly, the distribution (3) shows reduced
load till 3.75 kW that is low/normal load and balanced
generation via each alternative, respectively.

Firstly, (left side top to bottom in (1) of Fig 3(a)), the
load is increased and generation needs to be increased i.e.
load of 7.7 kW is met by generation starting from 3.47 kW
in alternative A1 and completely 7.7 kW by alternative
A8, as shown in Fig 3(a)-3(b). Secondly, (top left to right
side of Fig 3(a)), load is decreased and generation is
decreased throughout the distribution (1) till (3). Thirdly,
(Right side top to bottom in (1) of Fig 3(a)), load is decreased
and generation is increased. Fourthly, (bottom left to right

side of Fig 3(a)), both load and generation are increase
simultaneously in balanced way from low to high value
throughout the distribution (3) until (1). Fig 3(c) is aimed at
medium load following and medium generation for optimal
solution. Likewise, Fig 3(d) is aimed at high load following
and high generation for optimal solution.

It can be observed in Fig 3(b) that the load-generation
margin is highest for the case of low load-generation
optimization

whereas it is reduced in Fig 3(c) for medium counterpart
and least in Fig 3(d) for high load-generation balance (i.e.,
higher loads and higher generation).

There are six criteria considered in the proposed method-
ology, as aforementioned in the methodology section. The
methodology is initially applied across MCE as shown in
Fig 4. Fig 4(a) shows the alternatives trends across five load
classes. The highest standard deviation is observed across
alternative A1, A2, A6 and the least across A8, A7 and
A4, respectively. It can be observed in Fig 4(b) for lowest
class of load, evaluation with MCE across the contradictory
objectives, A8, A5 and A7 are the top alternatives. Similarly,
in Fig 4(c), across medium load class, A8, A6 and A7 are
the most feasible alternatives. Finally, in Fig 4(d), across high
load class, A5, A8 and A6 are the feasible trade-off solutions.
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TABLE 1. U. S. Residential energy splits, categorization and energy demand.

FIGURE 4. The alternatives evaluation with MCE based analysis.

The methodology is later applied across TOPSIS, across
load classes and six criteria, as shown in Fig 5. Fig 5(a)
shows alternatives trends via evaluations across five load
classes. The highest value of Pi via TOPSIS evaluation is
observed across alternative A8, A3 and the least across A1,
in Fig 5(b) respectively. In Fig 5(c) and 5(d), for medium
and high class of load, TOPSIS evaluation across conflicting

objectives, results in the same feasible trade-off solutions as
correlated by Fig 5(b) for lowest class of load.

Finally, methodology is evaluated with PROMETHEE,
as shown in Fig 6. Fig 6(a) shows alternatives trends
via evaluations across five load classes, with the highest
standard deviation found across alternative A2 and A4.
The leaving and entering flow with respective difference
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FIGURE 5. The alternatives evaluation with TOPSIS based analysis.

FIGURE 6. The alternatives evaluation with PROMETHEE based analysis.

(diff) is demonstrated across lowest load class as shown in
Fig 6(b), medium load class in Fig 6(c) and highest load class
across6(d), respectively. Where A8 is the optimal trade-off
alternative and A1 to be the worst amongst all alternatives

across lowest load class, as shown in Fig 6(b). Whereas,
in medium and high load class across Figs 6(c) and 6(d)
results in the A3 to be the optimal trade-off solution with
A1 amongst the worst solution. The suggested model can be
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FIGURE 7. Normalized weights of decision criteria for the alternatives across (a) H class; (b) AH class; (c) M class, (d) AM class, (e) Lowest
class, (f) Optimal across all load classes.

used to determine the results using the projected consumer
inputs shown in Table 1. The preferences for the DSM
application are measured on a Likert scale of 1 to 10, with
1 representing the least desired weight and 10 representing
the most desired weight. The preferences and applications
can then be modified based on the intended qualitative inputs
and the system under investigation to define the algorithm
requirements. The score based (MCE), separation metrics
(TOPSIS and PROMETHEE) for all the load classes (High
to lowest) across respective criteria as sensitivity analysis are
shown in Fig-7 (a)-(f). The normalized weights of decision
criteria for the alternatives across high load class is presented
in Fig 7(a), AH class in Fig 7(b), medium load class in
Fig 7(c), AM load class in Fig 7(d), lowest load class in
Fig 7(e) and optimal load class across all classes in Fig 7(f),
respectively. Moreover, the details of optimal weights are
provided in Table II and Table III, respectively.

In the worst optimized load category, the option of
switching on the equipment immediately has the highest
rating. Because of the lack of flexibility in user preferences,
this results in poor energy cost performance. As per highest
to lowest load class category, Criteria C4-C5 have the highest
scores. This means that the customer pays based on a high
rate per kWh when the consumption of electricity peaks,
which leads in high charges for the total cost of the electricity
bill when the total home/building demand and urgency is
coupled with highest weights to serve the consumer under
smart grid paradigm. Additionally, this alternative performs
poorly in locations where billing is based on highest power
usage, the energy efficiency C6 is a sort of trade-off, which

contributes to the high score in the negative optimum solution
and decrease in C1-C3. Consequently, due to its high ratings
for criteria across better trade-off alternatives receives a
relatively positive score. This shows that the instant turn-on
option provides the greatest level of customer convenience
and streamlines the usage of equipment in critical situations.

The overall alternatives performance with MCE, TOPSIS
and PROMETHEE across high load class, as sensitivity
analysis are shown in Fig 8(a), AH class in Fig 8(b), medium
load class in Fig 8(c), AM load class in Fig 8(d), lowest load
class in Fig 8(e) and optimal load class across all classes in
Fig 8(f), respectively. It can be observed from table-4 and
Fig 8 (a)-(f), the alternative A5 as per MCE is the optimal
trade-off solution across all load classes except A8 for the
AM load class. Similarly, as per TOPSIS, solution A3 is
the optimal trade-off solution across all load classes. As per
PROMETHEE, A3 is the optimal solution across all classes
except A8 as best solution for AH and lowest load class.

Due to its better performance in terms of energy cost,
flexibility to change demand, and overall house/building
demand, other alternatives rank well in the category of the
best beneficial solution. The time of use (ToU) rate structure
or critical peak pricing (CPP) can be more economically
designed by calibrating the equipment to maximize cost
reduction through the facilitation of avoiding peaks and
great flexibility. The result in other alternatives to receives
a poor score for both energy efficiency and comfort level.
Additionally, the safety of the equipment must be carefully.

considered because repeated interruptions might affect
energy efficiency, whereas alternatives result in high-energy
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TABLE 2. Evaluation of decision criteria and alternatives weights.

TABLE 3. Normalized optimal weights of the decision criteria in MCE, TOPSIS and PROMETHEE.

FIGURE 8. Overall alternatives performance in MCE, TOPSIS and PROMETHEE across (a) H clas; (b) AH clas; (c) M class, (d) AM class, (e) Lowest
class, (f) Optimal across all load classes.

cost and issues inALDwith a bit compromise in comfort level
of the consumer.

This demonstrates how crucial it is to consider consumers’
needs. To close the gap with the top two alternatives,
policymakers in the energy industry might take into account
other characteristics that assist the other three-highest alter-
native. This will encourage consumers to allow for more
flexibility. The rest of the alternatives may outperform top

two alternative and come closer to the optimal option if
incentives are proposed in areas like energy prices (e.g.,
a significant drop in off-peak usage hours) or urgency (e.g.,
permitting flexible and dependable equipment modifications
of selection at urgent need).

It is important to remember that various consumers may
have different preferences, and this could affect the results.
Additionally, for every type of equipment and at various times
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TABLE 4. Evaluation of alternatives across MCE, TOPSIS and PROMETHEE (∗ O = optimal weight; alt. Ranks = alternative ranks).

of the year, the needs of the same consumers can change.
The mathematical model can be used to calibrate the planned
algorithms by considering all these parameter changes.
In fact, a user interface that enables option modification for
customers is both feasible and helpful for them in finding
the balance that best suits their needs. Customers may
change their choices and track how those changes affect their
electricity bills.

VII. CONCLUSION
Higher degrees of system management are needed as RESs
are increasingly integrated into the distribution grid under
the smart grid paradigm. End users must actively participate
if the traditional electricity grid is transformed into an
intelligent smart grid. Deregulated energy market incentives
across various load classes are evolving under demand side
management approaches. This study emphasizes the critical
importance of considering consumer preferences while
creating scheduling algorithms for load-generation balance
with DSM across various load classes. The application of
DSM strategies is utilized to raise the usage of locally
accessible RESs and decrease electricity prices and reduce
user discomfort. Consumer entitlement has the optimal solu-
tions across contradicting criteria that might negatively affect
traditional market conditions. The hybrid scheduling problem
considering MCE, TOPSIS and PROMETHEE evaluates and
prioritize multi-criteria problems across various load classes.
It is suggested that customer preferences be prioritized and
build an interface that aids in decision-making in the context
of the deregulated energy market paradigm using a hybrid
MCE, TOPSIS and PROMETHEEmodel. The findings show
that consumer preferences can influence a general decision
that favors equipment usage right away without considering
real-time pricing incentives. The findings of this study make
it easier to define the chances to choose between consumer
preferences and reduce peak demand and electricity costs.
The results have been evaluated with sensitivity analysis
and trade-off studies have been carried out usefulness in
aiding effective decision-making procedures. The study also
offers a realistic solution to achieve while keeping the total
home/building demand and urgency like conflicting criteria
keeping at the highest values.
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