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Abstract

This paper tackles the problem of robust and accurate fixed-time tracking in
human–robot interaction and deals with uncertainties. This work introduces
a control approach for a wearable exoskeleton designed specifically for reha-
bilitation tasks. The approach combines prescribed performance control-based
fixed-time terminal sliding mode with a neural network. Its main objectives are
to achieve trajectory tracking, reduce chattering, ensure fixed-time stability, and
maintain robustness against uncertainties. The controller includes a radial basis
function neural network to estimate unknown dynamics and incorporates pre-
scribed performance criteria. This enables precise joint space trajectory tracking,
even in the presence of uncertain dynamics and disturbances. The prescribed
performance ensures that the trajectory tracking error evolves within prescribed
limits. The combined neural network and fixed-time terminal sliding mode
technique are proposed to ensure robustness and fixed-time convergence. The
closed-loop stability is analyzed using the Lyapunov theory, and a new fixed-time
convergence is provided. Numerical simulations demonstrate a reduction track-
ing compared to another advanced SMC technique, while experimental results
on a 7-DoF ETS-MARSE exoskeleton show better tracking with control torques
free of chattering compared with two advanced SMC techniques.
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1 INTRODUCTION

Rehabilitation treatments are now widely recognized as
essential post-surgery exercises for individuals recover-
ing from neurological injuries such as strokes, trauma,
or paralysis [1]. Physiotherapists typically oversee these
physical rehabilitation tasks for patients with disabilities.
However, the global rise in limb impairments requires

external support. Robotic systems have gained traction in
the medical field, with exoskeleton robots being integrated
into physiotherapy as intelligent assistive solutions for
enhanced rehabilitation [2]. Wearable exoskeleton robots
are advanced robotic systems designed to be worn by indi-
viduals to assist in movement and physical rehabilitation
[3]. These robots are engineered to support and augment
the movements of the upper limb of the user, providing
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precise control and support that mimics natural functions
of the limb such as in [4]. The NEUROExos study in [5]
demonstrates real-world validation through human trials,
assessing the effectiveness of an elbow exoskeleton for
physical rehabilitation. Wearable exoskeletons, such as the
ETS-MARSE system discussed in this paper, are particu-
larly valuable in rehabilitation, as they help patients regain
mobility and strength through guided exercises. The wear-
able nature of these exoskeletons ensures that patients
can comfortably use them, allowing for prolonged and
effective therapy sessions. The design requirements of an
exoskeleton—such as range of motion, compactness, com-
fort, and safety—directly influence the selection of con-
trol algorithms. For instance, achieving a natural range of
motion necessitates control strategies that can accurately
replicate complex movements, while ensuring user com-
fort and safety may require adaptive algorithms capable of
responding to real-time biomechanical feedback [6].

In recent years, extensive research has been conducted
on the development and application of various control
methods to track the control of exoskeleton robot systems.
The key motivation behind these studies is to improve
the performance and robustness of exoskeletons, ensuring
precise and reliable support during rehabilitation. How-
ever, many advanced control strategies face the challenge
of high computational cost, which hinders their real-time
applicability, especially in complex systems with high
degrees of freedom. One widely studied control method
is proportional–derivative (PD) control, which has been
effectively used in several applications due to its simplic-
ity and ease of implementation [7]. However, PD control
often struggles with nonlinearities and uncertainties in
exoskeleton dynamics, prompting the exploration of more
advanced strategies. Adaptive control methods have also
gained traction, as they can adjust control parameters in
real time to accommodate variations in system dynamics
[8, 9]. For example, adaptive control has been success-
fully implemented to improve the accuracy and adapt-
ability of exoskeletons under different operating condi-
tions [10]. Sliding mode control (SMC) is another popular
approach, known for its robustness against disturbances
and uncertainties. SMC has been applied to exoskeleton
robots to achieve precise trajectory tracking, despite the
inherent nonlinearities of the system [11–13]. SMC vari-
ations, such as the terminal SMC (TSMC), have been
developed to improve the convergence speed and control
precision [14, 15]. Fuzzy logic control (FLC) and neural
network control (NNC) are intelligent control methods
that have shown promise in handling the complexities of
exoskeleton dynamics. These methods leverage the abil-
ity of fuzzy systems and neural networks to approximate
nonlinear functions and adapt to changing conditions
[9, 16,17]. Model predictive control (MPC) has also been

explored for exoskeleton trajectory tracking, offering the
advantage of optimizing control actions over a finite-time
horizon while considering system constraints [18, 19].
MPC has effectively achieved smooth and accurate move-
ment trajectories for exoskeleton robots [19]. Addition-
ally, robust control techniques, such as H-infinity control,
have been applied to ensure the stability and performance
of exoskeleton systems under uncertain conditions [20].
These methods provide a systematic way to handle model
uncertainties and external disturbances, ensuring reliable
trajectory tracking. Recent studies have also investigated
the use of hybrid control approaches, combining differ-
ent control strategies to leverage their respective strengths.
For instance, combining SMC with adaptive control or
fuzzy logic has shown improved performance in trajectory
tracking tasks [16, 17].

Among these strategies, SMC stands out as one of the
most prevalent for uncertain robots [21–23]. The funda-
mental objective of SMC is to guide the dynamics of the
nonlinear system to slide along a surface that eventually
converges to an equilibrium point. This characteristic con-
tributes to SMC's ability to reduce the system's complexity
[24, 25]. Nevertheless, SMC is not without its challenges,
notably the well-known issue of chattering phenomena.

The chattering phenomenon can destabilize the system,
elevate the input signal frequency, and potentially
damage the hardware [26]. To address the chattering
problem effectively, multiple enhancements to SMC
have been introduced, including second-order SMC
[27], adaptive SMC [28], fractional-order SMC (FOSMC)
[29], exponential-reaching SMC [30], and TSMC [31].
Second-order SMC improves upon traditional SMC by
adding second-order dynamics to the control law [32].
Instead of applying a discontinuous control directly, it
employs continuous control with these dynamics to guide
the system's state. This reduces chattering and results in
smoother control. However, second-order SMC requires
some unavailable information for measurements and
suffers from complexity in designing and tuning, high
computational time, and sensitivity to model mismatches
and internal uncertainties [33]. Adaptive SMC also suffers
from high tuning and computational costs [21]. FOSMC
demonstrates its capability to mitigate chattering in com-
plex systems by incorporating fractional calculus within
the formulation of the sliding manifold. Nevertheless, the
utilization of fractional calculus introduces intricacies in
the system's stability analysis, resulting in a more complex
and nuanced process when it comes to design and tuning
[34]. In [30], the solution of using an exponential-reaching
SMC has been introduced to reduce chattering and main-
tain the quality of the tracking performance of nonlinear
systems. The work uses an exponential-reaching law
function that adapts to dynamic changes in the reaching
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ABDALLAH ET AL. 3

phase. However, the exponential-reaching-based SMC
has increased the number of tuning parameters with a
certain condition to meet, which leads to an increase in
the computational cost.

Over the past few years, fast TSMC [35] has emerged
as a more advanced version of the previous SMC tech-
niques. Fast TSMC aims to guarantee finite-time stability,
rapid convergence, rejection of the model uncertainties
and disturbances, and precise tracking [36]. Fast TSMC
may have a singularity issue, but this can be resolved
by using a non-singular terminal sliding mode (NTSMC).
NTSMC solves the singularity problem that arises in the
terminal sliding mode while still ensuring the finite-time
convergence [37]. Fast TSMC has been applied to vari-
ous robotic systems, including exoskeletons and serial-link
manipulators [38–40]. The simulation results of the stud-
ies mentioned above demonstrate the effectiveness of
fast TSMC. However, the heavy dynamic model of a
high-degree-of-freedom robotic exoskeleton restricts the
applicability of fast TSMC to simulation only. Therefore,
addressing this issue and finding ways to overcome it is
crucial.

An approach to enhance the effectiveness of the tra-
ditional SMC is to incorporate prescribed performance
functions that modify the tracking error of the system.
The goal of these functions is to reformulate the dynamic
error of the system to guarantee convergence and enhance
transient behaviors and steady-state accuracy [41]. Many
previous works utilized different prescribed performance
expressions to improve SMC in manipulator tracking
[42–44].

In order to tackle the issue of high computational cost
and complexity in dynamic models, various types of neu-
ral networks can be utilized to approximate their nonlinear
behavior. Among these, radial basis function (RBF) net-
works [45] are particularly useful in controlling robotic
manipulators. RBF networks are a type of neural network
that excels in function approximation and interpolation.
They are widely used in tasks such as trajectory generation
[46], inverse kinematics [47], and adaptive control [48],
due to their ability to model complex nonlinear dynam-
ics. By improving the precision and efficiency of robotic
manipulators, RBF networks enable them to accomplish
complex tasks with greater accuracy and agility [49–51].
Therefore, RBF networks play a crucial role in advancing
robotics, allowing for the development of more sophisti-
cated and capable robotic systems.

The focus of this paper is to introduce an RBF neural
network-based fixed-time SMC (FTSMC) that is designed
to provide prescribed performance for uncertain robotic
systems for upper-limb rehabilitation. The FTSMC offers
several advantages in the context of human–robot inter-
action for a seven-degree-of-freedom (7-DoF) exoskeleton.

It ensures fixed-time stability within a predefined time
regardless of initial conditions. Additionally, the FTSMC
provides robustness against uncertainties and external dis-
turbances, making it well suited for dynamic environ-
ments. The integration of an RBF neural network helps
reduce chattering, leading to smoother control actions
that enhance user comfort and prolong hardware lifespan.
Furthermore, the FTSMC achieves high tracking accu-
racy, keeping errors within strict bounds for precise and
stable movements. Importantly, it maintains a balance
between robustness and computational efficiency, ensur-
ing real-time feasibility for several robotics applications.

Indeed, the proposed method will be tested on the
7-DoF ETS-MARSE in real time. The motivation behind
developing this controller is driven by the need to tackle
various challenges associated with existing SMC tech-
niques. These challenges include unknown dynamics,
external disturbances, uncertainties, and the substantial
complexities arising from the heavy dynamics of a 7-DoF
ETS-MARSE model. These issues, combined with the lim-
itations of earlier approaches, underscore the necessity for
a more robust solution. The proposed method aims to over-
come these challenges by utilizing an RBF neural network
to estimate the ETS-MARSE dynamic model efficiently.
The first step in designing the approach is to define the
prescribed performance function, which is responsible for
reforming the tracking error of each joint of the robot,
ensuring that it remains within a narrow band around
the equilibrium point. The sliding surface then will be
a function of the newly formed tracking error. Then, an
RBF model will estimate the nonlinearities of the robot,
including centrifugal and Coriolis forces, gravity force,
motor frictions, and uncertainties. The RBF model takes
the robot's states as input and outputs an estimated func-
tion that is added to the mathematical expression to better
model nonlinearities. Having the optimal prescribed per-
formance and the estimated function of nonlinearities will
form the control scheme of the fixed-time TSMC. Lya-
punov stability analysis will be used to ensure the stability
and the fixed-time convergence of the proposed perfor-
mance taking into consideration the limits of the tuning
parameters and the hyperparameters of the RBF.

The contributions of this paper could be summarized as
follows:

• Propose a switching terminal sliding surface with pre-
scribed performance that ensures a new fixed-time con-
vergence.

• Inspiring from the proposed surface, a new fixed-time
reaching law is proposed to drive the system's trajecto-
ries to the designed sliding surface.

• Combine the proposed fixed-time technique with the
RBF that estimates the dynamics to reject the effect of
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4 ABDALLAH ET AL.

the uncertainties and to reduce the complexity compu-
tations due to the high number of DoF.

• Implement the proposed control scheme on the 7-DoF
ETS-MARSE experimentally and use it for the applica-
tion of rehabilitation. To the best of the authors' knowl-
edge, this has not been introduced in the literature.

The following sections of this paper are outlined after
this introductory section: Section 2 presents the wearable
robotic exoskeleton model and formulates the problem.
Section 3 discusses the proposed controller design pro-
cedure and the stability analysis. Section 4 presents case
studies where the controller is compared to two other
advanced techniques in simulation and is implemented in
real time on a rehabilitation prototype robot, and Section 5
concludes the paper.

2 DYNAMIC MODEL

ETS-MARSE has three modes of operation: passive, active,
and assistive rehabilitation. In the passive mode, the robot
functions like a standard manipulator, with the human
upper limb being treated as an external disturbance. In
active rehabilitation, the patient's arm generates a force
that is applied to the end-effector of the ETS-MARSE. The
assistive mode is the same as the active mode, but the robot
assists the patient by predicting his intention. In all modes,
the dynamic model of the ETS-MARSE is:

D(𝜃)𝜃̈ + C(𝜃,
.
𝜃)

.
𝜃 + G(𝜃) + F(

.
𝜃) − 𝜏p = 𝜏, (1)

where 𝜃 ∈ R
7 denotes the joint space position vector;

D(𝜃) ∈ R
7×7 denotes the bounded and invertible iner-

tia matrix; C(𝜃,
.
𝜃)

.
𝜃 ∈ R

7 is the Coriolis and centrifugal
forces vector; G(𝜃) and F(

.
𝜃) are, respectively, the (7 × 1)

gravitational and friction vectors; 𝜏p ∈ R
7 is the vector of

matched disturbances and unknown patient–robot inter-
action forces; and 𝜏 ∈ R

7 is the vector of torque inputs. In
this paper, we assume that 𝜏p is bounded such as

||𝜏p|| ≤ 𝜏
max
p , (2)

where 𝜏max
p is a known positive constant.

TABLE 1 Modified DH parameters of the studied robot.

Joint (i) ai−1 (m) di (m) 𝛼i−1 (◦) 𝜃i (◦)
1 0 ds 0 𝜃1

2 0 0 −90 𝜃2

3 0 de 90 𝜃3

4 0 0 −90 𝜃4

5 0 dw 90 𝜃5

6 0 0 −90 𝜃6 − 90
7 0 0 −90 𝜃7

Furthermore, the robot dynamics in (1) can be
rewritten as

𝜃̈ = D−1(𝜃)
[
N(𝜃,

.
𝜃) + 𝜏p + 𝜏

]
, (3)

where N(𝜃,
.
𝜃) = −C(𝜃,

.
𝜃)

.
𝜃 − G(𝜃) − F(

.
𝜃).

Equation (1) represents the dynamic model of the
ETS-MARSE exoskeleton, formulated using the standard
Lagrangian approach to account for inertia, Coriolis and
centrifugal forces, gravity, friction, and external distur-
bances. This model serves as the foundation for con-
troller design, enabling the proposed FTSMC to achieve
precise trajectory tracking and robustness against uncer-
tainties. Additionally, it explicitly incorporates unknown
human–robot interaction forces, which are essential in
rehabilitation robotics, where human effort varies dynam-
ically. Because certain dynamic terms, such as friction and
patient–robot interactions, are challenging to model accu-
rately, an RBF neural network is employed in Section 3
to approximate these unknown dynamics, enhancing
real-time implementation. Moreover, the model plays a
crucial role in ensuring stability and fixed-time conver-
gence, as the Lyapunov-based stability proof and pre-
scribed performance function are formulated directly from
it, ensuring theoretical rigor in the control approach.

FIGURE 1 ETS-MARSE links frame. [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE 2 Key specifications of the ETS-MARSE exoskeleton
robot.

Degrees of freedom (DoF) 7
Actuation type Electric motors (Maxon brushless)
Range of motion (per joint) ± 45◦ to ± 120◦ (varies by joint)
Maximum torque output 9 to 40 Nm (varies by joint)
Weight 10.542 kg
Sensor type Encoders, force sensors
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ABDALLAH ET AL. 5

FIGURE 2 Control scheme block diagram. [Color figure can be viewed at wileyonlinelibrary.com]

Table 1 shows the DH parameters of the ETS-MARSE,
Figure 1 shows the ETS-MARSE links frame Simscape
model using MATLAB Simscape toolbox, and Table 2
summarizes the key specifications of the ETS-MARSE
exoskeleton, detailing its degrees of freedom, actuation
type, range of motion, and other essential parameters.

3 THE CONTROL SCHEME

The control scheme is developed into two stages. The first
stage is to develop the prescribed performance fixed-time
TSMC. The second stage is to exploit the RBF neural
network to approximate the uncertain nonlinearities of
the studied robot. The control scheme block diagram is
depicted in Figure 2.

The following key assumptions were made in the design
of the proposed controller:

1. The robot dynamics are modeled accurately using
Equation (3), and the inertia matrix D(𝜃) is bounded
and invertible.

2. The external disturbances and uncertainties, repre-
sented by 𝜏p, are bounded as stated in Equation (2).

3. The tracking error is initially within the bounds
defined by the prescribed performance function,
ensuring that the sliding mode surface can be reached.

4. The RBF neural network can approximate the nonlin-
ear dynamics of the system with negligible estimation
error under sufficient training.

3.1 Prescribed performance FTSMC
This section proposes a switching manifold that guar-
antees a fixed-time convergence and a good tracking
performance using the following prescribed performance
function [52]. The function is illustrated in Figure 3 and is

FIGURE 3 Prescribed function.

defined for i = 1, · · · , 7 by

𝜙i(t) =
(

𝜙
0
i − 𝜙

𝑓

i

)

exp(−𝛼it) + 𝜙𝑓i , (4)

where 𝜙
0
i > 𝜙

𝑓

i > 0 and 𝛼i > 0. Because 𝜙i(t) is a
positive-definite function while its first-time derivative is
a negative definite one ∀t > 0, 𝜙i(t) is a decreasing one.
Moreover, it can be observed that 𝜙i(t) converges to 𝜙

𝑓

i
when the time t converges to∞. The above function is used
to limit the tracking error as follows:

−𝜙i(t) < 𝜃i = 𝜃i − 𝜃d
i < 𝜙i(t). (5)

Let us introduce a new variable, denoted as 𝜓i:

𝜃i = 𝜙i(t)𝜓i, (6)

where

𝜓i =
1 − exp(−2𝜀i)
1 + exp(−2𝜀i)

, (7)
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6 ABDALLAH ET AL.

where 𝜀i is the tracking error transformation:

𝜀i = 0.5
(
ln
(
𝜃i + 𝜙i(t)

)
− ln

(
𝜙i(t) − 𝜃i

))
. (8)

The first-time derivative of (8) gives

.
𝜀i =

𝜙i(t)
.
𝜃i −

.
𝜙i(t)𝜃i

𝜙
2
i (t) − 𝜃

2
i

. (9)

Based on (8) and (9), the following fixed-time terminal
sliding surface is proposed [53]:

s = .
𝜀 + Ksig𝛾1(𝜀) + Λsig𝛾2(𝜀), (10)

where K andΛ are two diagonal positive-definite matrices,
sig𝛾𝑗 (𝜀) =

[
|𝜀1|

𝛾
𝑗1 sign(𝜀1), … , |𝜀7|

𝛾
𝑗7 sign(𝜀7)

]T with 𝛾1i and
𝛾2i are defined for i = 1, … , 7 by

𝛾1i =
{
𝛾
∗
1i, if |𝜀i| > 1,
1, if |𝜀i| ≤ 1, (11)

𝛾2i =
{

1, if |𝜀i| > 1,
𝛾
∗
2i, if |𝜀i| ≤ 1, (12)

where 𝛾
∗
1i > 1, 0 < 𝛾

∗
2i < 1. These parameters are

tuned in the real-time experiment section based on these
limitations. Also,

sign(𝜀i) =

{−1, if 𝜀i < 0,
0, if 𝜀i = 0,
1, if 𝜀i > 0,

(13)

It is worth mentioning that the proposed surface,
even when designed piecewise, ensures continuity at the
switching point [53].

Theorem 1. Consider the proposed nonlinear slid-
ing surface with prescribed performance in (10), the
exoskeleton robot (1) is practical fixed-time stable at
𝜃 = 0. For each joint, the maximal convergence time is
given by

Ti =T1i + T2i,

T2i =
1
ki

ln
(

1 + ki

𝜆i

)

+ 1
𝜆i(𝛾∗1i − 1)

ln
(

1 + 𝜆i

ki

)

,
(14)

where T1i is the required time to the system trajectory to
converge to the designed fixed-time switching manifold
si such as si(T1i) = 0 and ki = (1 − 𝛾

∗
2i)ki.

Proof. Let us take a look at the following Lyapunov
function and its first-time derivative:

V1 =0.5𝜀T
𝜀,

.
V 1 =𝜀T .

𝜀.

(15)

Once the system's trajectories reach the sliding
surface, then

.
𝜀 = −Ksig𝛾1(𝜀) − Λsig𝛾2(𝜀). (16)

Substituting (16) into
.

V 1 gives

.
V 1 = 𝜀T (−Ksig𝛾1(𝜀) − Λsig𝛾2(𝜀)

)

= −
7∑

i=1

(
ki|𝜀i|

1+𝛾1i + 𝜆i|𝜀i|
1+𝛾2i

)
≤ 0

= −
7∑

i=1
ki(2V1i)0.5(𝛾1i+1) + 𝜆i(2V1i)0.5(𝛾2i+1)

≤ 0.

(17)

Moreover, let us rewrite (17) for i = 1, … , 7 as
follows:

.
V 1i =

{
−ki(2V1i)0.5(𝛾

∗
1i+1) − 2𝜆iV1i, if V1i > 1∕2,

−2kiV1i − 𝜆i(2V1i)0.5(𝛾
∗
2i+1)

, if V1i ≤ 1∕2.
(18)

Introducing a new variable 𝜂 such as 𝜂 = ln(2V1i)+1
if 2V1i > 1 and 𝜂 = (2V1i)0.5(1−𝛾

∗
2i) if 2V1i ≤ 1 such as (18)

can be rewritten as

.
𝜂 =

{
−2ki exp(0.5(𝜂 − 1)(𝛾∗1i − 1)) − 2𝜆i, if 𝜂 > 1,
−ki𝜂 − 𝜆i, if 0 < 𝜂 ≤ 1,

(19)

where ki = (1 − 𝛾
∗
2i)ki and 𝜆i = (1 − 𝛾

∗
2i)𝜆i. Hence, the

maximal convergence time is computed by solving the
above equation as follows:

Ti = T1i + T2i, (20)

where T2i is the solution of (19) when |𝜀i| > 1 and
|𝜀i| ≤ 1 that are computed as

T2i =
1
ki

1

∫
0

1
𝜂 + 𝜆i

ki

d𝜂

+ 1
2ki

∞

∫
1

1
exp(0.5(𝜂 − 1)(𝛾∗1i − 1)) + 𝜆i

ki

d𝜂

= 1
ki

ln
(

1 +
ki

𝜆i

)

+ 1
𝜆i(𝛾∗1i − 1)

ln
(

1 + 𝜆i

ki

)

.

(21)

Hence, the proposed sliding surface ensures
fixed-time stability.

This completes the proof. □
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ABDALLAH ET AL. 7

Now, let us compute the derivative of s using (9), (10),
and the robot's known dynamics in (3):

.s = 𝜀̈ + K𝛾1⌊𝜀⌋
𝛾1−1 .

𝜀 + Λ𝛾2⌊𝜀⌋
𝛾2−1 .

𝜀

=RΦ ̈̃𝜃 − RΦ̈𝜃 +
.
R
(

Φ
.
𝜃 −

.
Φ𝜃

)

+ K𝛾1⌊𝜀⌋
𝛾1−1 .

𝜀 + Λ𝛾2⌊𝜀⌋
𝛾2−1 .

𝜀

=RΦD−1(𝜃)𝜏 − RΦ𝜃̈d +
.
R
(

Φ
.
𝜃 −

.
Φ𝜃

)

− RΦ̈𝜃 + K𝛾1⌊𝜀⌋
𝛾1−1 .

𝜀 + Λ𝛾2⌊𝜀⌋
𝛾2−1 .

𝜀,

(22)

where

• R = diag
(

1
𝜙

2
i (t)−𝜃

2
i

)

, for i = 1, … , 7;

•
.
R is the first derivative of R;

• Φ = diag(𝜙1, · · · , 𝜙7),
.
Φ = diag(

.
𝜙1, · · · ,

.
𝜙7), Φ̈ =

diag(𝜙̈1, · · · , 𝜙̈7)with
.
𝜙i and 𝜙̈i are, respectively, the first

and second time derivatives of 𝜙i;
• 𝜃̈

d =
[
𝜃̈

d
1 , · · · , 𝜃̈

d
7
]T is the desired acceleration vector;

• ⌊𝜀⌋𝛾𝑗−I = diag
(
|𝜀1|

𝛾
𝑗1−1

, |𝜀2|
𝛾
𝑗2−1

, · · · , |𝜀7|
𝛾
𝑗7−1) for 𝑗 =

1, 2 with I is the identity matrix;
• 𝛾𝑗 = diag(𝛾𝑗1, · · · , 𝛾𝑗7) for 𝑗 = 1, 2.

The equation mentioned above is used to calculate the
equivalent control by solving for .s when it is equal to zero.

𝜏eq = D(𝜃)𝜃̈d − D(𝜃)Φ−1R−1
𝜏0, (23)

where:

𝜏0 =
.
R
(

Φ
.
𝜃 −

.
Φ𝜃

)

− RΦ̈𝜃 + K𝛾1⌊𝜀⌋
𝛾1−I .

𝜀 + Λ𝛾2⌊𝜀⌋
𝛾2−I .

𝜀.

(24)

Remark 1. During real-time implementation, the term
|𝜀i|

𝛾2i−1 .
𝜀i may become unbounded as .

𝜀i ≠ 0 and
𝜀i → 0, due to the exponent 𝛾2i − 1 < 0. To limit its
amplitude, the saturation function (sat) is used, and
the term ⌊𝜀⌋𝛾2−I .

𝜀 is substituted by sat
(
⌊𝜀⌋𝛾2−I .

𝜀, 𝜇
)
=

[
sat

(
|𝜀1|

𝛾21−1 .
𝜀1, 𝜇1

)
, · · · , sat

(
|𝜀7|

𝛾27−1 .
𝜀7, 𝜇7

)]T such as

sat (•i, 𝜇i) =
{
𝜇isign(•i), if |•i| ≥ 𝜇i,

•i, if |•i| < 𝜇i,
(25)

with •i = |𝜀i|
𝛾2i−1 .

𝜀i for i = 1, · · · , 7 and 0 < 𝜇i < 1.
It is clear that the function used (sat) will limit the
amplitude to 𝜇isign(•i).

Otherwise, to reject the effect of the perturbations and
the unknown user–robot interaction force and to ensure
fixed-time convergence during the reaching phase, the fol-
lowing bi-power reaching law is added to the equivalent
control:

𝜏rl = −D(𝜃)Φ−1R−1 [
𝛽1sig𝜐1(s) + 𝛽2sig𝜐2(s) + 𝛽3sign(s)

]
,

(26)

where 𝛽1, 𝛽2, and 𝛽3 are (7 × 7) diagonal positive-definite
matrices tuned to meet the closed-loop stability conditions
and sig𝜐𝑗 (s) =

[
|s1|

𝜐
𝑗1 sign(s1), … , |s7|

𝜐
𝑗7 sign(s7)

]T for 𝑗 =
1, 2 with

𝜐1i =
{
𝜐
∗
1i, if |si| > 1,
1, if |si| ≤ 1, (27)

𝜐2i =
{

1, if |si| > 1,
𝜐
∗
2i, if |si| ≤ 1, (28)

where 𝜐∗1i > 1 and 0 < 𝜐∗2i < 1.

Remark 2. Note that when the robot states are far
away from the proposed sliding surface (|si| > 1), the
terms 𝛽1sig𝜐

∗
1 (s) take the lead and are responsible for

the convergence speed. Otherwise, when the value of
the designed terminal sliding surface becomes small
(|si| ≤ 1), the term 𝛽2sig𝜐

∗
2 (s) takes the lead, such

that slightly faster convergence is obtained in compar-
ison with the classical reaching law. Finally, the term
𝛽3sign(s) ensures the robustness and helps for faster
convergence.

Finally, the fixed-time TSMC with prescribed perfor-
mance is obtained by combining Equations (23) and
law (26) as follows:

𝜏 = 𝜏eq + 𝜏rl. (29)

To analyze the overall system's stability using the
Lyapunov theory, let us consider:

V2 =0.5sTs,
.

V 2 =sT .s.
(30)

Upon substituting the control law in (29) into the studied
robot model (3) to obtain the closed-loop error dynamics,
then,

.
V 2 becomes:

.
V 2 =sT [

𝜏p + N(𝜃,
.
𝜃) − 𝛽1sig𝜐1(s) − 𝛽2sig𝜐2(s) − 𝛽3sign(s)

]

≤ − 𝛽
1
||s||𝜐1+1 − 𝛽

2
||s||𝜐2+1 −

(

𝛽
3
− ||𝜏p + N(𝜃,

.
𝜃)||

)

||s||,
(31)

where ||•|| is the Euclidean norm of • and 𝛽
1
, 𝛽

2
, 𝛽

3
are,

respectively, the minimum eigenvalues of the matrices
𝛽1, 𝛽2, and 𝛽3. Moreover, it is clear that the time deriva-
tive of

.
V 2 is negative definite under the condition that 𝛽

3
verifies

𝛽
3
≥ ||𝜏p + N(𝜃,

.
𝜃)||. (32)

To meet the above stability condition, the value of 𝛽
3

will
be overestimated, which will lead to a high chattering. As
a solution, in the following, the dynamics N(𝜃,

.
𝜃) will be

estimated using the RBF neural network and added to the
control law.
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8 ABDALLAH ET AL.

3.2 RBF
Dealing with a 7-DoF serial-link manipulator with high
joint coupling results in significant nonlinearity and com-
putational Coriolis forces. Therefore, it is crucial to not rely
on the precise nonlinear expression and instead attempt
to estimate and replace the mathematical expression using
neural networks. RBF is commonly utilized for estimat-
ing nonlinear relationships in multi-input–multi-output
systems. In the presence of sufficient sampling data, RBF
can establish a precise correlation between the input and
output data.

The RBF network is made up of an input layer, a hid-
den layer that uses nonlinear activation functions, and a
linear output layer. These layers are connected to form a
typical neural network structure. The algorithm of an RBF
network can be expressed as

𝜑𝑗 = exp

(
−||X − c𝑗||2

2𝜎2
𝑗

)

, (33)

N(𝜃,
.
𝜃) = W T

𝜑 + er, (34)

where 𝜑𝑗 for 𝑗 = 1, · · · , k is the Gaussian function that
is used as an activation function in the hidden layer and
𝜑 = [𝜑1, · · · , 𝜑k]T , X = [x1, … , xn] represents the input
vector which contains the measured joint positions and
velocities in our case X = [𝜃T

,
.
𝜃

T], c𝑗 represents the center
value of each Gaussian function, 𝜎𝑗 is the base width of the
function, W denotes the network weights, while er is the
neural network approximation error. Moreover, ||X − c𝑗||
could be expressed as

||X − c𝑗|| =
√

(x1 − c𝑗1 )2 + · · · + (xn − c𝑗n)2. (35)

The aim of using an RBF is to estimate the nonlinear
function N̂(𝜃,

.
𝜃). This estimation will replace the usage

of the mathematical expression N(𝜃,
.
𝜃) which is a (7 × 1)

non-numerical vector. The reproduction of N̂(𝜃,
.
𝜃) using

RBF will result in having a numerical matrix that has less
computational time and less storage space when the con-
troller is applied in real time. N̂(𝜃,

.
𝜃), which is the output

of the RBF could be expressed as

N̂(𝜃,
.
𝜃) = Ŵ T

𝜑, (36)

where Ŵ is the estimated neural network weights and 𝜑
is the output of the Gaussian function. After estimating
N̂(𝜃,

.
𝜃), the following control action will be added to the

computed law in (21) such as

𝜏 =𝜏eq + 𝜏rl + 𝜏nn,

𝜏nn = − N̂(𝜃,
.
𝜃).

(37)

Theorem 2. Consider the robot dynamics in (3) and the
designed RBF-based fixed-time sliding mode controller
with prescribed performance in (37), if the matrix 𝛽3 is
designed to meet the following condition:

𝛽3i ≥ |𝜏pi + eri|. (38)

Then, a fixed-time reaching phase is ensured, and the
maximal time is given by:

T1i ≤
1

𝛽1i(1 − 𝜐∗2i)
ln
(

1 + 𝛽1i

𝛽2i

)

+ 1
𝛽2i(𝜐∗1i − 1)

ln
(

1 + 𝛽2i

𝛽1i

)

.

(39)

Proof. First of all, let us compute the closed-loop error
dynamics by substituting (37) in (3):

.s = 𝜏p+Ñ(𝜃,
.
𝜃)− 𝛽1sig𝜐1(s)− 𝛽2sig𝜐2(s)− 𝛽3sign(s), (40)

where Ñ(𝜃,
.
𝜃) is the estimation error such as

Ñ(𝜃,
.
𝜃) =N(𝜃,

.
𝜃) − N̂(𝜃,

.
𝜃)

=W T
𝜑 + er − Ŵ T

𝜑 = W̃ T
𝜑 + er.

(41)

Now, let us choose the Lyapunov function:

V3 = 0.5
(

sTs + tr
(

W̃ TLW̃
))
, (42)

where L is a positive diagonal matrix. By taking the
time derivative of V3 and using (40) and (41):

.
V 3 =sT .s + tr

(

W̃ TL
.

W̃
)

=sT (
𝜏p + er − 𝛽1sig𝜐1(s) − 𝛽2sig𝜐2(s) − 𝛽3sign(s)

)

+ sTW̃ T
𝜑 − tr

(

W̃ TL
.

Ŵ
)

=sT (
𝜏p + er − 𝛽1sig𝜐1(s) − 𝛽2sig𝜐2(s) − 𝛽3sign(s)

)

− tr
(

W̃ T
(

L
.

Ŵ − 𝜑sT
))

.

(43)

By selecting the following adaptive rule:

.
Ŵ = L−1

𝜑sT
. (44)

The derivative of the Lyapunov function
.

V 3 becomes

.
V 3 =sT (

𝜏p + er − 𝛽1sig𝜐1(s) − 𝛽2sig𝜐2(s) − 𝛽3sign(s)
)

≤

7∑

i=1
−𝛽1i|si|

𝜐1i+1 − 𝛽2i|si|
𝜐2i+1 −

(
𝛽3i − |𝜏pi + eri|

)
|si|.

(45)
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ABDALLAH ET AL. 9

FIGURE 4 Joint tracking comparison. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Tracking error comparison for Joints 1 and 2. [Color figure can be viewed at wileyonlinelibrary.com]

It can be noticed that
.

V 3 is negative definite if the
condition in (38) is verified. Moreover, Equation (45)
can be rewritten as

.
V 3 ≤

7∑

i=1
−𝛽1i|si|

𝜐1i+1 − 𝛽2i|si|
𝜐2i+1

,

.
V 3i ≤ − 𝛽1i(2V3i)0.5(𝜐1i+1) − 𝛽2i(2V3i)0.5(𝜐2i+1)

.

(46)

The above result is similar to the one for the slid-
ing phase in (17). Hence, following the same steps,
the fixed-time convergence can be proved, and the
maximal convergence time is given in (39).

This completes the proof. □

Remark 3. It is important to note that for minor
estimation error and perturbations 𝜏p+er and large val-
ues for the gain 𝛽3, the estimated reaching fixed-time
upper bound in Equation (17) may be conservative.

4 CASE STUDIES

In this section, we will demonstrate the validation pro-
cess for the proposed controller. Two demonstrations will

be presented to show the controller's effectiveness. The
first one will involve a simulation comparison between
the proposed controller, FTSMC, and fast FTSMC on a
2-DoF serial-link RBF's estimation and the proposed con-
troller's effectiveness and the effectiveness of the proposed
controller. The second demonstration will be a real-time
experiment on the 7-DoF wearable ETS-MARSE, aimed at
examining the proposed controller.

4.1 Numerical simulations
To demonstrate the effectiveness of the proposed con-
troller, it is necessary to compare it with other controllers
based on SMC. This comparison will highlight the success
of the main objective stated in the introduction, which is to
reduce the chattering of the control signals. The compar-
ison will be conducted using simulation and a simplified
dynamic model of a 2-DoF robot for clarity. The robot
structure and figure can be found in [54]. The dynamic
model of the studied robot is as follows:

[
D11 D12
D21 D22

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

D(𝜃)

𝜃̈ +
[

C1
C2

]

⏟⏟⏟

C(𝜃,
.
𝜃)

.
𝜃

+
[

G1
G2

]

⏟⏟⏟

G(𝜃)

=
[
𝜏1
𝜏2

]

⏟⏟⏟

𝜏

, (47)
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10 ABDALLAH ET AL.

FIGURE 6 Sliding surface comparison for Joints 1 and 2. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Torque comparison for Joints 1 and 2. [Color figure can be viewed at wileyonlinelibrary.com]

where

D11 = 2.96 + 1.6 cos(𝜃2), D12 = D21 = 0.96 + 1.2 cos(𝜃2),

D22 = 0.96,

C1 = −1.2 sin(𝜃2)
.
𝜃

2
2 − 2.4 sin(𝜃2)

.
𝜃1

.
𝜃2,C2 = 1.2 sin(𝜃2)

.
𝜃

2
2,

G1 = 11.772 cos(𝜃1 + 𝜃2) + 19.62 cos(𝜃1),

G2 = 11.772 cos(𝜃1 + 𝜃2).
(48)

The proposed controller has been compared with two
other FTSMC-based controllers:

• Controller 1: the non-singular fixed-time TSMC 𝜏c1 [55];
• Controller 2: a fixed-time technique based on the result

presented in Theorem 1 in [56].

The expression of these controllers is given by

𝜏c1 = − D(𝜃)(𝜆2𝛼2)−1⌊
.
𝜃⌋I−𝛼2

( .
𝜃 + 𝜆1𝛼1⌊𝜃⌋

𝛼1−I
.
𝜃

)

− D(𝜃)(𝜆2𝛼2)−1⌊
.
𝜃⌋I−𝛼2

(
K1sig0.5(s̄) + K2sig1.5(s̄)

)

+ D(𝜃)
(
𝜃̈d − K3sign(s̄)

)
+ C(𝜃,

.
𝜃)

.
𝜃 + G(𝜃),

(49)

FIGURE 8 ETS-MARSE experimental setup. [Color figure can be
viewed at wileyonlinelibrary.com]

where s̄ = 𝜃+𝜆1sig𝛼1 (𝜃)+𝜆2sig𝛼2(
.
𝜃)with 𝛼1 = 𝛼∗1 I, 𝛼2 = 𝛼∗2 I

such as 1 < 𝛼∗2 < 2 and 𝛼∗2 < 𝛼
∗
1 .

𝜏c2 = − D(𝜃)
(
𝜆1𝛿1⌊𝜃⌋

𝛿1−I + 𝜆2𝛿2⌊𝜃⌋
𝛿2−I + 𝜆3

) .
𝜃

− D(𝜃)
(

K1sig0.5 (s
)
+ K2sig1.5 (s

)
+ K3s

)

+ D(𝜃)𝜃̈d + C(𝜃,
.
𝜃)

.
𝜃 + G(𝜃),

(50)

 19346093, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asjc.3741 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [08/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


ABDALLAH ET AL. 11

FIGURE 9 Joint space trajectory
tracking. [Color figure can be viewed at
wileyonlinelibrary.com]

where s =
.
𝜃 + 𝜆1sig𝛿1(𝜃) + 𝜆2sig𝛿2(𝜃) + 𝜆3𝜃 with 𝛿1 =

𝛿
∗
1 I, 𝛿2 = 𝛿∗2 I such as 0 < 𝛿∗1 < 1 and 1 < 𝛿∗2 .
Using MATLAB/Simulink software, the dynamic model

in (47) has been simulated for 5 s and with a step time of
1 ms. The ode3 that is used for the simulation, also known
as Bogacki–Shampine solver, is a third-order Runge–Kutta
method that offers an efficient trade-off between compu-
tational speed and accuracy, making it ideal for real-time
control simulations. Its fixed-step approach is particularly
suited for complex systems like the ETS-MARSE exoskele-
ton, where rapid execution is crucial without compro-
mising the stability of the control system. This makes
ode3 well suited for hardware-in-the-loop simulations or
scenarios requiring moderate accuracy with minimal com-
putational overhead. The first joint has been given a tra-
jectory of an increasing smooth step function. The second
joint has been simulated with a decreasing smooth step
function.

𝜃
d
1 = 0.35 exp (−4t) − 1.4 exp (−t) + 1.25, (51)

𝜃
d
2 = −0.25 exp (−4t) + exp (−t) + 1.25. (52)

In Figure 4, a comparison of the tracking control of
a 2-DoF serial-link manipulator using the proposed con-
troller and two other controllers (49) and (50) is shown.
The proposed controller achieves faster and more accurate
tracking of the desired trajectory for both joints compared
to the other controllers.

Figures 5–7 show the tracking error, sliding surface (the
first second of the 5 s for clarity), and torque signals,
respectively. Based on the tracking error figures for both
joints, the proposed controller tracks the error more accu-
rately and converges to zero much faster than the other
two controllers. Moreover, the sliding surface of the pro-
posed controller reaches the equilibrium point quicker
than its comparatives. The significant difference between
the controllers can be observed in Figure 7. The proposed
controller shows less chattering in the control signals
for both joints, which is not the case for the other two
controllers. These controllers require high-torque signals
(almost 200N.m) to maintain a stable steady-state phase,
which can lead to hardware damage for the joints and their
corresponding motors. Therefore, it is recommended not
to apply the FTSMC and the FFTSMC experimentally for
our rehabilitation process.
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12 ABDALLAH ET AL.

FIGURE 10 Joint space tracking error.
[Color figure can be viewed at
wileyonlinelibrary.com]

4.2 Real-time experiment on the 7-DoF
exoskeleton robot
This section applies the proposed controller to the
ETS-MARSE robot. The robot was tested using a passive
rehabilitation mode in which it was assigned to follow a
predefined trajectory in Cartesian space (see Figure 12).

4.2.1 Real-time system
The real-time setup for the experiment comprises four
pieces of equipment, depicted in Figure 8: a real-time
PC (NI PXI-8108), an FPGA (NI PXI-7813R), a host PC,
and the ETS-MARSE robot. The real-time PC features an
Intel dual-core processor running at 2.53 GHz and 8 GB
of RAM, which is used to execute the proposed controller
and the dynamics of the 7-DoF exoskeleton ETS-MARSE.
The PXI-7813R FPGA handles both the analog and digi-
tal I/O for the actuators and sensors, which include a Hall
effect position sensor and a current sensor. The host PC
features an Intel Core i7-4770 CPU operating at 3.4 GHz
and is equipped with 16 GB of RAM. This setup is utilized
for RBF training and to handle the mathematical devel-
opment of the proposed controller on LabView software.
Furthermore, the host PC serves as the user interface dur-
ing real-time tests, storing and showcasing the results of
the trials.

4.2.2 Adjusting the parameters
and conducting the experiment
After conducting trial-and-error tests without the need for
further tuning and considering various scenarios with dif-
ferent conditions, the gains for the proposed controller
were finally determined to be

K = diag(100,100, 100,150, 500,400, 600),

Λ = diag(45,45, 45,35, 20,20, 10),

𝜙
0
i = 0.1, 𝜙𝑓i = 0.01, 𝜇i = 0.3, 𝛼i = 2,

𝛾
∗
1i = 1.2, 𝛾∗2i = 0.6, 𝜐∗1i = 1.7, 𝜐∗2i = 0.7,

𝛽1 = 𝛽2 = 𝛽3 = 1 ∗ I7×7, 𝛽4 = 0.3 ∗ I7×7.

The robot was given a trajectory to track within 16 s. Three
controllers have been tested under the same condition: the
proposed controller, FTSMC with PP (prescribed perfor-
mance), and FTSMC. Figure 9 displays the joint tracking
performance of ETS-MARSE. The tracking is clearly better
using the proposed controller, even when multiple joints
are operating simultaneously to achieve the workspace tra-
jectory. Figure 10 shows the tracking error of each joint in
radians. The tracking error of all joints is better using the
proposed controller. Figure 11 shows the control torque
signal for each joint. The chattering of the signals and the
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FIGURE 11 Applied computed joint
torques. [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 12 3D workspace trajectory tracking. [Color figure can
be viewed at wileyonlinelibrary.com]

oscillations are not noticeable when using the proposed
controller while running the robot in the real-time sce-
nario. Thus, these signals are safe on the robot hardware.

Figure 12 shows both tracking performance and track-
ing error in the workspace. The predefined trajectory is a
square shape in the 3D space.

Expanded discussion
Figures 9–12 provide a deeper understanding of the con-
troller's performance.

• Figure 9 (joint space trajectory tracking): The tracking
results reveal that the proposed controller ensures accu-
rate joint movements across all seven joint. This result
is significant as it indicates that the controller can han-
dle the complexities of multi-joint operations typical in
rehabilitation tasks.

• Figure 10 (joint space tracking error): The tracking
errors demonstrate that the proposed controller is
highly effective in minimizing deviation. This is espe-
cially important for rehabilitation robotics, where pre-
cision is critical to ensure patient safety and the efficacy
of exercises.

• Figure 11 (control torque signals): The smooth and sta-
ble torque signals indicate that the controller success-
fully mitigates the chattering commonly associated with
SMC. This improvement not only extends the lifespan of
the robot hardware but also ensures smoother operation
during patient interaction.
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TABLE 3 Comparison of IAE,
ITAE, and ISE for the seven joints.

Joint
1 2 3 4 5 6 7

IAE
Proposed controller 0.248 0.192 0.212 0.0706 0.0628 0.421 0.290
FTSMC with PP 0.803 0.599 0.682 0.734 0.323 1.003 2.331
FTSMC 1.148 0.818 1.176 1.010 0.472 1.623 2.388

ITAE
Proposed controller 2.104 1.533 1.851 0.408 0.474 4.044 2.277
FTSMC with PP 6.657 5.434 6.314 6.661 2.961 8.826 20.107
FTSMC 9.665 7.404 11.455 9.392 4.761 15.023 18.533

ISE
Proposed controller 0.00519 0.00378 0.00413 0.000555 0.0003555 0.01784 0.00783
FTSMC with PP 0.0641 0.0342 0.0450 0.0513 0.00985 0.0905 0.486
FTSMC 0.127 0.0739 0.128 0.108 0.0230 0.261 0.632

• Figure 12 (3D workspace trajectory tracking): The
workspace tracking performance is equally impressive,
with a Euclidean distance error of less than 1.5 cm, con-
firming that the controller can maintain high accuracy
even in more complex, three-dimensional movements.

Table 3 presents a comparative analysis of the IAE, ITAE,
and ISE performance metrics for seven joints under three
different control strategies: proposed controller, FTSMC
with PP, and FTSMC. The proposed controller consis-
tently demonstrates superior performance across all joints,
achieving significantly lower values in all three metrics.
For IAE, the proposed controller shows an improvement
of 69.4% on average compared to FTSMC and 53.7% com-
pared to FTSMC with PP. Similarly, for ITAE, the proposed
controller achieves an average reduction of 77.8% com-
pared to FTSMC and 64.3% compared to FTSMC with PP.
Finally, in ISE, the proposed controller exhibits an impres-
sive reduction of 93.1% on average compared to FTSMC
and 84.5% compared to FTSMC with PP. These improve-
ments indicate the effectiveness of the proposed controller
in reducing errors and enhancing system performance,
making it the most efficient method among the three.

5 CONCLUSION

This study presented a robust and effective TSMC with pre-
scribed performance for the ETS-MARSE robot deployed
in rehabilitation. By integrating an RBF for nonlinear
dynamics estimation and incorporating prescribed per-
formance criteria, the controller ensures precise trajec-
tory tracking and rejects the effects of unknown dynam-
ics, human–robot interaction forces, and matched distur-
bances. The prescribed performance function efficiently
reduces tracking errors to a user-defined threshold. In
addition, the torques shown in the comparison simula-
tion confirm that the proposed controller has less chat-

tering in the stead-state phase. We proposed a sliding
surface incorporating the prescribed performance effect
where a new fixed-time stability proof based on Lyapunov
theory is provided. The numerical simulation showed
the effectiveness of the developed method compared to
other recent FTSMCs. Also, the torques shown in the
comparison simulation show that the proposed controller
has less chattering in the steady-state phase. The exper-
imental validation conducted on the ETS-MARSE robot
underscores the efficacy of our controller. To provide a
quantitative comparison, the IAE, ITAE, and ISE metrics
have been presented for the proposed controller, FTSMC
with a prescribed performance function, and standard
FTSMC across seven joints. The results demonstrate that
our approach significantly outperforms existing methods
in tracking accuracy, disturbance rejection, and chatter-
ing reduction, highlighting the effectiveness of our control
strategy in rehabilitation robotics. In the future, we will
try to use other machine-learning approaches such as rein-
forcement learning to estimate nonlinearities. In addition,
we are working on testing the proposed controller in differ-
ent rehabilitation modes such as active rehabilitation and
assistive rehabilitation.
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