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condition profiles is essential. However, new or retrofitted buildings lack sufficient operation data
to develop precise data-driven models. This study investigates transfer learning techniques to
enhance the forecasting performance of black-box models under limited data conditions. Spe-
cifically, we leverage synthetic data from an open-source EnergyPlus building model to pre-train
three neural network models, which are then transferred to a real building and fine-tuned with
limited measurements. The results indicate that incorporating synthetic data into the pre-training
phase significantly enhances the forecasting accuracy for building and HVAC energy, as well as
indoor air temperature profiles, over a 12-h horizon with 15-min intervals. The study underscores
the potential of combining transfer learning with synthetic data to address data limitations,
extending the applicability of learning-based MPC in real-world buildings.

1. Introduction

Buildings account for a significant portion of energy consumption worldwide, while in Canada, the building sector represents about
30 % of national energy use [1]. In the context of grid-interactive efficient buildings, building energy demand predictions are an
essential step in bringing that vision into fruition, for example, when integrating smart technologies into buildings, such as Model
Predictive Control (MPC), data analytics, and automatic fault detection and diagnostics for energy efficiency and demand flexibility [2,
3]. In the case of applying MPC on HVAC systems, accurate forecasting of indoor air conditions is also critical as it ensures that the MPC
controller can achieve optimal energy performance without compromising thermal comfort for the occupants [4-8]. However,
accurately forecasting short-term profiles of building and HVAC system energy demand or indoor air conditions remains challenging
due to continuous external and internal disturbances in buildings, such as changing weather conditions, occupancy, plug loads, etc. [9,
10].

Recent advancements in the domain of machine learning and artificial intelligence have facilitated the application of black-box
models in building-related forecasting or predictions. Despite their potential, these types of models generally require a substantial
number of datasets for training and calibration to achieve acceptable precision. In a real-world setting, the Building Automation
System (BAS) in existing buildings is typically a valuable data resource for model development. However, security or privacy concerns
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could limit access to or usage of the data. Even if all BAS data were accessible, it was likely that the available data could not be directly
used for the modelling purpose, as it is quite common that the BAS data contains noise, errors, or gaps. More commonly, necessary
variables required for the specific project objective may not be measured. When the project is a new or retrofitted building, or newly
equipped with a BAS system, the operation data is lacking.

To tackle the problem of little, poor or no historical data as discussed above, various methods have been utilized to augment
datasets. One such method involves integrating sophisticated mathematical models, such as convolutional neural network models [11,
12]. However, the data generated by these methods might be less representative of real-world situations and difficult to extrapolate,
compared with synthetic data generated by physics-based models.

Another promising approach is Transfer Learning (TL), which involves transferring knowledge from a source domain with
abundant data to a target domain with limited data through machine learning models. In other words, TL allows models to leverage
knowledge gained from one domain (a building in our case) to improve performance in another, making it particularly useful in cases
where data from the target environment is scarce. Many studies have focused on transfer learning to transfer knowledge from a source
building to improve forecasting performance in a target building, typically assuming that both buildings share the same type of data.
However, the question remains: how does transfer learning perform when the source building uses synthetic data while the target
building relies on measured data? In this research, we utilize synthetic data generated from an open-source EnergyPlus [13] (a
physics-based building energy simulation program) model from the U.S. Department of Energy (DOE) prototype buildings [14] to
pre-train neural network models. These pre-trained models are then fine-tuned using a limited set of real measurements from an actual
building, i.e., the target building. The real and virtual buildings, though sharing the same architectural type (i.e., the large commercial
building), are located in different cities, each subject to unique weather and environmental conditions.

We then explore two distinct TL strategies and evaluate their effectiveness using three neural network models. By comparing the
results, we aim to determine how well TL techniques can improve the accuracy of the forecasting models. Specifically, we investigate
how well the models forecast building and HVAC energy demand and indoor air temperature profiles over a 12-h horizon at 15-min
intervals, as these three variables are crucial when implementing MPC on HVAC systems. The performance of these models is then
evaluated in two dimensions: the absolute performance according to the Coefficient of Variation of the Root Mean Squared Errors
(CVRMSE), and the relative performance against a baseline, in which the TL techniques are not used, and neural network models are
generated using the limited data from the target building. With the verified forecasting performance of the models, we envision their
future integration into a supervisory MPC controller. Such a controller could send optimal indoor air temperature setpoints to ther-
mostats to achieve defined project goals, such as activating building energy flexibility.

The paper is structured as follows: Section 2 presents the literature review, research gaps and contributions of this paper. Section 3
details the methodology of the TL strategies, the three neural network models and the performance indicators used to evaluate the
models. Section 4 presents details of the case study buildings: the source and target buildings. Section 5 discusses and analyzes the
simulation results, followed by the conclusion and recommendations in Section 6.

2. Background and contribution
2.1. Related works

TL enables the transfer of knowledge from one domain to another, allowing models to extrapolate beyond their original scope. It
involves two primary components: feature and marginal space [15]. The feature space refers to the input variables used for learning (e.
g., indoor air temperature, outdoor air temperature, or HVAC loads), while the marginal space refers to the distribution of these
features (i.e., how frequently or in what patterns different values appear). These two spaces can differ between the source and target
domains, either in terms of their feature spaces, marginal spaces, or both. Another key component of TL is the task, which consists of a
label space and a function used to estimate unseen instances. Typically, the source task represents the learning task within the source
domain, while the target task represents the learning task within the target domain. Yang et al. [15] formally defined TL as:

“Given a source domain and a learning task, and a target domain and a learning task, the transfer learning aims to help improve
the learning of the target predictive function fi(-) for the target domain using the knowledge in the source domain and the source
task, where the source domain does not equal to the target domain or the source task does not equal to the target task.”

TL can be categorized as either homogeneous or heterogeneous, depending on the similarity of the feature spaces and target spaces
between the source and the target domain [16,17]. Click or tap here to enter text. When the features or labels differ between a source
domain and a target domain, it constitutes heterogeneous TL; otherwise, it is considered homogeneous TL.

TL has been successfully applied in various fields, such as improving the deep learning model accuracy and stability of the
photovoltaic power system [18], the fault diagnosis of the oil-gas treatment station [19], and imagine classification [20] etc. In the
field of building energy forecasting or prediction, TL was usually used to transfer Building Automation System (BAS) data from source
buildings to target buildings that also have BAS data. When both source buildings and target buildings have measurement data for TL
tasks, they benefit from more relevant and similar data distributions. Thus, this application scenario leverages the real-world data for
both training and fine-tuning, improving overall model performance. A few examples are listed herein for such scenarios.

In a study focusing on 1-h ahead forecasting of building energy consumption, both the source and target buildings utilized real
measurement data [21]. Among the 40 buildings with diverse functions, ranging from office and residential to commercial, four source
buildings were selected based on their similar data distributions to the target building. These 4 source buildings were divided into two
source domains for the TL task. Two Long Short-Term Memory (LSTM) models were trained on each source domain, and their
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forecasting results for the target building were averaged after fine-tuning. This strategy resulted in a significant improvement in
forecasting accuracy, enhancing predictions by 6.88 %-15.37 %.

In [22], the authors used measurement data of one source building from the open-source Building Genome Project [23] to support
the energy prediction for two target buildings, also equipped with measurements through feature-based TL. All buildings involved are
office buildings with comparable operational periods, ensuring that the datasets share similar distributions. This setup led to a notable
improvement in model performance, with the accuracy increasing by over 15 % compared to a model that did not utilize TL.

Another study utilized the comprehensive dataset from the same Building Genome Project [23] to predict building energy con-
sumption using TL integrated with a Multiple Layer Perceptron (MLP) model. This study analyzed a total of 8080 cases, selecting
information-poor buildings as source buildings to enhance the forecasting accuracy for target buildings. The results demonstrated
significant improvements in model performance attributable to the application of TL [24].

In [25], a TL framework was proposed for forecasting 12-h-ahead building energy consumption, leveraging pre-trained models for
weight initialization in a combined convolutional neural network and LSTM architecture. All buildings involved were office buildings
with measurement data. The results demonstrated an average improvement in model performance, as measured by the CVRMSE, of 19
%, with the best performance achieving a 23.64 % enhancement.

Three office buildings with the same operational schedule, located in close proximity across two cities, were selected for forecasting
building electric energy consumption using TL [26]. TL was performed by fine-tuning model parameters, with certain neural network
layers frozen. This paper utilized a LSTM-based model and achieved an average CVRMSE improvement of 31.18 %. The results
concluded that pretraining a model on different buildings in the source domain can significantly enhance the accuracy of building
energy predictions to a notable degree.

TL with a MLP model was utilized to predict energy consumption for four school buildings with measurement data [27]. The four
schools had similar seasonal energy consumption patterns but varied in size and location across eastern Canada. Each school’s dataset
contained 17 features, which were used as inputs to a MLP model for energy forecasting. Integrating data from the source schools
improved prediction accuracy by up to 11.2 %, compared to using only the target school’s data for training.

Three TL strategies were used in Ref. [28] to improve the energy prediction performance across two building categories: office and
institutional buildings. In each category, five buildings were designated as source buildings, while one building was selected as the
target building. The datasets of measurements for all buildings were sourced from the Open-source Building Genome Project [23], and
a LSTM model was used for prediction. Results demonstrated that using TL improved prediction accuracy by 75 % compared to models
trained without TL.

The study by Yuan et al. [29] focused on predicting the one-day-ahead energy demand of a large-scale shopping mall, using
measurement data from three other malls located in different climate zones as the source domain. The parameters from models trained
on the source buildings were transferred to the target building model as the initialized parameters. The results indicated that, with
careful selection of source domain data, TL significantly improved the performance of energy demand prediction compared to models
without TL.

Another study [30] used TL to forecast the building energy use by integrating a multi-source buildings method. The similarity
between the target building and multiple source buildings, extracted from the Open-source Building Genome Project [23], was
assessed to guide the selection of source-building data for the TL task. The results verified the effectiveness of the multi-source TL
method, improving model performance by 15 % compared to models that were derived solely from the target building data.

Table 1
Summary of the literature review of transfer learning for building energy forecasting.
Ref. Building Type Time Time Forecast Method Accuracy
Source building Target building step lag horizon
[21] Commercial, Office, Office 1h 24 h 1h LSTM CVRMSE of 25.37 % for the residential building;
and Industrial CVRMSE of 16.05 % for the office building.
[22]  Office Office 1h 24 h 1h LSTM CVRMSE of 8.11 %
[24] Institutional Institutional 1h 24 h 1h MLP MAPE of about 10 % on average
[25] Office Office 1h 2000 h 24 h CNN and CVRMSE of 23.64 % on average
LSTM
[26]  Office Office 1 day 1 1 day CNN and CVRMSE of 17.43 % on average
month LSTM
[27]1  School School 1 day NA 1 month MLP MAPE of 21.49 % on average
[28]  Office and Office and 1h 24 h 1h LSTM CVRMSE of 22.40 % on average for the office
institutional institutional building; CVRMSE of 19.00 % on average for the
institutional building;
[29] Shopping mall Shopping mall 1h NA 24h ARNN and CVRMSE of 22.40 %
LSTM
[30]  Office Office 1h 24 h 1h LSTM and CVRMSE of 11.47 %
DANN

Note: NA means Not Available, MAPE is the Mean Absolute Percentage Error, CNN is the Convolutional Neural Network, ARNN is the Auto-regression
Neural Network, and DANN is the domain adversarial neural network.
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2.2. Research gaps and contribution

Table 1 summarizes the reviewed studies [21,22,24-30] that primarily focused on transferring knowledge from source buildings
with measurements to target buildings with also measurements, aiming to improve energy consumption forecasting. The literature
review was conducted based on several criteria, such as publications within the past five years and a focus on building energy fore-
casting using neural network models combined with transfer learning techniques. Though significant efforts have been made to be
comprehensive, it is acknowledged that not all relevant publications on this topic may have been included. Few studies explore the use
of synthetic data from source buildings in TL tasks with real measurement data from target buildings. This limited application might be
due to the difficulty in addressing gaps between the source and the target building, the discrepancies of input features between the two
buildings (e.g., one necessary feature may not exist in another building), and differences in data quality between the synthetic and
measured data. The literature review identifies only one paper [10] that used the DesignBuilder program [31] to simulate a building
and used the simulated results as auxiliary training data to enhance energy forecasting for the same building with insufficient mea-
surement data. This approach can be regarded as an application of data augmentation. Moreover, calibrating a DesignBuilder case or
similar building performance simulation tools is a time-intensive and resource-demanding process.

Although synthetic data from Building Performance Simulation (BPS) tools is getting more easily accessible, its application to TL
tasks has not been thoroughly investigated. This paper bridges the gap by applying TL from the source building with synthetic data to
the target building with measurement data.

Three target variables are investigated in this paper: (1) the electrical power of the whole building (Pprpg), (2) the electrical power
of the whole HVAC system (Pyyac), and (3) the average indoor air temperature (Tj,). Pgrpg and Pyyac typically have large values and
significant variance, whereas Tj, generally has smaller but more stable values. Estimating the three variables using a single model poses
a challenge not only due to their distinct scales and variances, but also due to differences in modelling focus across disciplines. While
normalization can mitigate scale-related issues in machine learning (ML) models, this challenge is more pronounced for non-ML
models. Moreover, different perspectives lead to distinct research objectives: building engineers often focus on forecasting indoor
air temperature to support thermal comfort and control strategies, whereas electrical engineers are more concerned with predicting
total building energy consumption for load management and optimization. For instance, a study focusing on optimizing HVAC control
using a transfer learning strategy considered only indoor air condition forecasting as the primary objective [32], while another study
[21] proposed a multi-source-model approach for forecasting the building load, without including indoor air temperature as a model
output. This paper addresses this challenge by developing a unified model capable of accurately forecasting all three variables.
Furthermore, the proposed models are designed for direct integration into BAS for control purposes, extending beyond the prediction
or forecasting capabilities emphasized in most studies. Combining the proposed models with advanced MPC strategies is expected to
deliver benefits such as improved energy efficiency and reduced peak power demand [33]. While MPC has demonstrated strong
potential in real-world building applications, its effectiveness depends heavily on the accuracy and robustness of the underlying
predictive models. The work presented in this paper contributes to enhancing predictive accuracy, thereby supporting more effective
implementation of MPC.

3. Methodology
3.1. Transfer learning strategies

Fig. 1 illustrates, at a high level, the TL concept adopted in this work. The working mechanism of this TL strategy is to transfer
knowledge between the source building and the target building.

(a) From a source building that has synthetic data to pre-train neural network models,

Source Building Target Building
|
|
=] Opcration data from the | Operation data from the
H source building | target building (BAS)
(EnergyPlus simulation) [
Pre-training Knowledge
transfer

Initial models Final models

Fig. 1. Schematic of the studied transfer learning concept.
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(b) to a target building that has measurement data to re-train (fine-tune) the neural network models and to validate the updated
models.

Specifically, the TL strategy transfers the model parameters derived from the source building to serve as the initial model pa-
rameters for the target building. After fine-tuning with the target building data, these models are established and used to forecast the
three variables of the target building.

This paper evaluates two TL strategies applied to the case study.

1. DirectTL: The neural network models are pre-trained and tested with the source building dataset, and then they are used directly
with the dataset of the target building without changing the initial model weights. The performance of the neural network models is
evaluated with the testing dataset of the target building.

2. RefinedTL: The neural network models are first pre-trained and tested with the dataset of source building, and then updated using
the dataset of target building. The weights of all neural network model layers are fine-tuned with the training dataset of the target
building. The updated neural network models are evaluated with the testing dataset of the target building.

3.2. Forecasting models

3.2.1. Available variables of datasets

The proposed neural network models are developed based on the available data of the source building (synthetic data from
EnergyPlus simulation) and the target building (measurement data from BAS). These variables are used to formulate the neural
network models and are selected as the model inputs and outputs.

The variables used in this paper for developing models are listed in Table 2 and are available in both the synthetic dataset of the
source building and the BAS measurements of the target building. These variables are classified into four groups, including (1) building
outdoor conditions, (2) building indoor environment, (3) building power demand, and (4) extracted variables. The first three groups
(building outdoor conditions, building indoor environment, and building power demand) are directly from the datasets of the source
building and target building, and are referred to as primary variables; while extracted variables are created as proxies and derived from
the primary variables.

1. Solar air temperature Tg, is defined as the outdoor air temperature which, in the absence of solar radiation, would give the same
temperature distribution and rate of heat transfer through a wall (or roof) as exists due to the combined effects of the actual outdoor
temperature distribution plus the incidence solar radiation [34]. Thus, it is a crucial factor influencing building cooling load,
affecting both Pyyac and Pppg. It is described by Equation (1).

AySR
ho

T =T, + (€})

Where Ag; is the solar surface absorptivity, h, is the coefficient of heat transfer by long-wave radiation and convection on an exterior
surface, and SR is the solar radiation. In this study, As; = 0.63 and h, = 18 W/m?K [35].

2. Another extracted variable AT, ; represents the temperature difference between indoor air and outdoor air, as defined in Equation
(2). This variable represents the driving force of heat transfer between the indoor and outdoor environments, leading to the heat
entering the building and consequently raising the HVAC system output. Therefore, AT, ; directly affects building cooling load and,
in turn, influences both Pyyac and Pgrpg [36].

ATlt).i = Tfm - TlFa (2)

3. The time of the dataset is modified into a sine-wave-based variable as a regressor input, which is described in Equation (3) and
Fig. 2. Occ here represents the modified time as a model input variable.

Table 2
Variables used for the modelling and transfer learning tasks.
Variable groups Variables Descriptions Unit
Primary variables Building outdoor conditions Toa Outdoor air temperature °C
RH,, Relative humidity of outdoor air %
SR Solar radiation W/m?
Building indoor environment Tia Indoor air temperature °C
Tiosp Setpoint temperature of indoor air °C
Energy consumption Pyvac Electric power of the whole HVAC system (HVAC power) kw
Pxipc Electric power of the whole building (Total building power) kW
Extracted variables Occ Modified time as a proxy for occupancy 1
AT, Temperature difference between outdoor and indoor air °C
Tsa Solar air temperature °C
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Occ = abs(sin(Time)) 3

The absolute operation is used in Equation (3) to avoid negative values with a period of 24 h. Thus, daily time is modified into the
variable Occ. During business hours (from 8:00 a.m. to 5:00 p.m.), buildings are typically occupied, with occupancy levels often
peaking gradually around noon. Fig. 2 begins at 7:00 a.m., reflecting the typical early start of the HVAC system to precondition the
indoor environment and ensure the temperature reaches the desired comfort level before occupants arrive. Therefore, the values of Occ
during business hours can be represented by sine wave values, while those during unoccupied hours (before 7:00 a.m. and after 5:00 p.
m. daily) are set to zero, as depicted in Fig. 2. As for the daily patterns of building energy consumption, it is typically case-dependent
and time-dependent. For instance, Ppipg in an office building usually rises at 9:00 a.m. and peaks around 4:00 p.m. [37]. Thus, it is
expected that this extracted variable Occ can represent, to some extent, both building occupancy and energy-related patterns.

The variables introduced in this section undergo a selection process based on Pearson coefficient analysis to identify the most
relevant input variables for enhancing model performance. Further details are discussed in Section 5.1.

3.2.2. Neural network models

This paper uses three neural network models to forecast the target variables. Neural network models are computational frameworks
composed of interconnected neurons arranged in layers. Each neuron computes a weighted sum of its inputs and applies an activation
function to introduce non-linearity. This structure enables neural networks to model complex, non-linear relationships between inputs
and outputs. They can automatically learn feature representations from raw data, making them suitable for a diverse range of ap-
plications [38].

The three neural network models utilized in this paper are multiple-layer perceptron (MLP), Long-and-short term memory (LSTM),
and gated recurrent unit (GRU). These three models are selected due to their high performance as reported in Refs. [39,40]. MLP works
in a feed-forward way, and it contains one or more hidden layers, where each layer has one or more neurons [41]. The MLP model can
achieve the best performance with (i) two hidden layers, (ii) the number of neurons of the first hidden layer equalling 2 x (2 x n+1),
where n is the number of neurons of the input layer, and (iii) the number of neurons of the second hidden layer equalling (2 x n +1)
[42]. The governing function and the definition of the hidden layer of a MLP are presented in Ref. [17]. The LSTM model and GRU
model are two recurrent neural network models excelling in time-series tasks, and their governing equations are presented in Ref. [43].
For the LSTM model focusing on the regression task of forecasting HVAC energy consumption, its structure with (i) one single LSTM lay
with 4 neurons and (ii) hyperbolic tangent sigmoid activation function (Tanh, Equation (4)) performs best [44]; therefore, this paper
utilized this architecture to build the LSTM model. The optimum architecture of the GRU model used in this paper consists of one single
GRU layer with 5 neurons and tanh activation function (Equation (4)) referring to Ref. [45]. The optimum structure of each neural
network model is summarized in Table 3.

exp(x) — exp(—x)

tanh (x) =———F——-—"~ 4)

)= explo0) + exp(—)
3.2.3. Modelling

This paper builds forecasting models using neural network techniques, as illustrated in Fig. 3. The objective is to evaluate the 12-h-

ahead forecasting of the electric power of the whole HVAC system (Pyyac) and the whole building (Pgipg) during the cooling season.

Additionally, to ensure the building’s indoor thermal comfort, the average indoor air temperature Tj, is also considered as a model

Occ ]

0.79

7N 2> ‘s G Time

<@,
. 00 . 00 . 00 . 00

%

Fig. 2. Daily pattern of the extracted variable of Occ.
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Table 3
Optimum architecture of neural network models.
Neural network models Description of the optimum structure
MLP Assume n neurons on the input layer. i. 2 x (2 x n+1) neurons on the first hidden layer.
ii. 2 x n 41 neurons on the second hidden layer.
LSTM i. one single LSTM layer with 4 neurons.
ii. activation function: tanh.
GRU i. one single GRU layer with 5 neurons

ii. activation function: tanh.

Inputs Models Outputs

Group 1: Outdoor conditions
Toa Toa ' Toa %, -+ Toa™
RHE,, RHEZY, RHEZ?, -+ RHSZ™
SRY, SR*™%, SR*"% ..., SRt™™

Group 2: Indoor conditions

t t-1 pt=2  pt-m Forecasted variables
Tia,sp' Tia,spl Tia,spr ’ Tia,sp

t pt-1 mt-2 t— Neural network: t t+1 t+2 . pt+4s
W T 0 Mg 000 Ui, Puvac, Pavac, Pavac, =+ Prvac

LST™M
; ; t t+1 t+2 ... pt+48

Group 3: Derived variables MLP Pgp6, Peine, Perbe: = PipG
IS o AIEEEE N2 oo, N0 Ry t mt+l mt+2 t+48

0,i’ o,i ol 0" 0@ Tial Tia ’ Tia ’ Tia

& {e=4l, (=72 t—-m
Tsar Tsa , Tsa 0 %D Tsa

Occt,0cct=1,0cct=2, -+, 0cct™™

Group 4: Electrical power

t =l t=2 (B=T11
PHVAC' PHVAC' PHVACI 00 PHVAC

t t—1 t—2 t—m
PBLDGI Pgrpe, PBLDE: -+, PErpg

Fig. 3. The architectures of three neural network models used in the transfer learning with a 12-h forecasting horizon and a 15-min interval.

output. Energy of the whole HVAC system includes the electrical energy of the primary cooling plant (chillers, pumps, cooling towers,
etc.) and secondary cooling systems (air-handling units, fan coils, pumps, fans, etc.). The total building power (Pg;pg) represents the
electrical energy of the whole building.

Two types of strategies are commonly used for solving multi-step-ahead forecasting problems: (i) iterative strategy and (ii) direct
strategy [46,47]. The iterative strategy employs the same forecasting model to predict the target variable one time step ahead
repeatedly and sequentially until the desired forecast horizon is reached. As a result, forecasting errors accumulate iteratively and
potentially diminish model performance over longer horizons. In contrast, the direct strategy trains a single model to forecast multiple
time steps ahead simultaneously. By avoiding error propagation, this approach is typically more accurate and efficient for
multi-step-ahead forecasting [44]. This paper uses the direct strategy to forecast 12-h ahead building energy consumption. The outputs
of forecasting models (energy consumption of the whole HVAC system, energy consumption of the whole building, and Tj,) extend
from the current time step t to the desired forecast horizon (12 h), for each target variable. As the time step of the case study in this
work is 15 min, the output variables expand from t to t+48 (12 h) in Fig. 3. The historical measurements are represented by m in Fig. 3,
indicating the number of time lags a model considers.

The model inputs are classified into four groups as depicted in Fig. 3, they are historical measurements of (1) building outdoor
conditions, (2) building indoor environment, (3) extracted variables, and (4) energy consumption.

Input Group 1 is building outdoor conditions, including three variables: Ty,, RHy,, and SR. They represent the historical mete-
orological effects on the space cooling demand and operation of the HVAC system (e.g., building operators may take T,, as the
indicator to turn on/off the HVAC system).

Input Group 2 consists of Tj, sp and Tj,, and they represent the impacts of historical indoor conditions and control actions on future
building energy and indoor environment.
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Input Group 3 comprises three extracted variables AT, ;, Ts,, and Occ. They represent the historical combined effects of various
factors on the model targets. For instance, the historical values of AT, ; (see Equation (1)) reflect the integrated impacts of factors
such as heat transfer driving force, building envelope heat capacity, etc., on building energy and indoor thermal comfort.

Input Group 4 consists of the historical measurements of Pyyac and Pppg. Since this paper evaluates the future behaviour of these
two variables, their historical measurements are expected to significantly influence their future values.

As the scale of model input and output variables in source building and target building differs a lot, the min-max normalization
method is used in this paper to adjust variable values to a range of 0 and 1. The equation for the min-max normalization of each
variable is presented in Equation (5):

Xi — Ximin

Xi,ma.x - Xi,min (5)

Xi,norm =

Where X; is a variable of source and target buildings, X; norm is the normalized value of X;, Xpip is the minimum value, and Xyax is the
maximum value.

These neural network models are developed using Python (version 3.9.12) [48]with open-source libraries like Tensorflow (version
2.10.0) [49].

3.3. Performance evaluation
Two performance metrics, Root-Mean Square Error (RMSE) and Coefficient of Variation of Root-Mean Square Error (CVRMSE), are

defined in Equations (6) and (7), which are used to evaluate the model performance. Here, y; is the measured value, y; is the forecasted
value, ¥ is the mean value of measurements, and n is the sample size.

(6)

CV(RMSE) :#" x 100% 7)

To evaluate the relative performance of the two TL strategies, other neural network models are developed by using the so-called
self-learning (SelfL) strategy. Specifically, three neural network models (LSTM, MLP, and GRU) are trained and tested only with the
target building dataset. The SelfL strategy is to assess what performance a neural network model can achieve using only the limited
dataset of the target building. In this case, it helps to evaluate if the TL strategies are necessary by incorporating datasets from the
source building. Thus, models developed with the SelfL strategy serve as the baseline models to be compared with other neural network
models derived from the DirectTL and RefinedTL strategies.

To describe the model performance improvement, we adopt the Ratio of Relative Performance Improvement (RRPI) as defined in
Equation (8). RMSEgs, is the root mean squared error over the testing dataset of the target building using the SelfL strategy, while
RMSErTy, is the root mean squared error over the testing dataset of the target building using the TL strategies. Thus, RRPI serves as an

Fig. 4. The source building from an open-source building prototype.
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indicator to evaluate the effect of knowledge transfer on the model enhancements. Larger positive values of RRPI indicate a more
significant effect of TL.

RMSEsqn — RMSE;

RRPI =
RMSEg.y

x 100% ®
Table A1 outlines the pseudocode for the transfer learning-based forecasting workflow used in this paper.

4. Case study

4.1. Datasets of source and target buildings

The selected source building data encompasses three months (June, July and August) at 15-min time intervals, while the target
building data encompasses two months (July and August) of 2020 at 15-min time intervals. Weekends and holidays in both the source
building data and the target building data are removed for model training and testing.

The source building (see Fig. 4) has 12 floors with a total floor area of 46,320 m?. The model is the large office archetype from the U.
S. Department of Energy (DOE) prototype buildings [14]. The vintage of the selected model is based on the 2022 version of the
ASHRAE Standard 90.1 [50], while the location is Rochester, Minnesota, U.S. The HVAC system in the source building consists pri-
marily of variable air volume boxes with reheat and two chillers connected to two variable-speed cooling towers, serving 23 condi-
tioned zones. The simulation results from EnergyPlus, using weather data from the typical meteorological year, serve as the dataset for
the source building. This approach is effort-efficient to provide essential data to support forecasting for a target building. The setpoint
temperatures and indoor air temperatures from all thermal zones in the source building are averaged to represent the whole-building
setpoint and indoor air temperature. All model input data are then normalized before being fed into the model, using the method
described in Section 3.2.

The target building is a commercial building with a floor area of 36,000 m? and 12 floors, located in downtown Montreal, Canada. It
was first built in 1913 with a new extension built in 2016. The cooling plant of the target building consists of three chillers (one
centrifugal chiller and two screw chillers) connected to four cooling towers. The airside system comprises two fresh air pre-treatment
units as the primary Air Handling Unit (AHU) system and 22 cooling coils as the secondary AHU system. The BAS data used in this work
were from 2020. A detailed description of the target building and its HVAC systems is presented in Ref. [51]. The weather data,
including solar radiation for the target building, comes from publicly available measurements [52]. The target building data is first
pre-processed by filling up recording errors using linear interpolation with the Pandas library [53].

Note that the source building is intentionally selected to differ from the target building, except for the building type. The significant
differences between the source building and the target building provide an opportunity to evaluate the transferability of neural
network models when substantial differences exist between the source and target domains.

4.2. Model development

As introduced above, the data over both the source and target buildings covers only two or three months. To ensure the neural
network models are exposed to a comprehensive range of conditions, the models are first pre-trained using the entire dataset of the
source building. By doing so, the pre-trained model gains exposure to August conditions, which can contribute valuable knowledge
when transferred to the target building, potentially enhancing forecasting performance. The August data from the target building is
reserved for testing the models, ensuring an unbiased evaluation of their forecasting performance. To prevent over-fitting, the neural
network models are only trained for a maximum of 20 epochs on source building. Given the discrepancy between the source and target
buildings, pre-training these neural network models with a larger loss function may help capture the underlying energy patterns of the
building while allowing the models to be more easily adjusted with the target building data.

For the target building, the dataset is divided into a set of training, validation, and testing subsets, as listed in Table 4. Periods 1

Table 4
Period of training dataset, validation dataset, and testing dataset over the source building dataset and the target building dataset.
Datasets Data type Dataset division Duration Number of days Dataset size
Source building Synthetic / / 06/01-08/31 64 6144
Target building Measured Period 1 Training dataset 07/01-07/10 7 768
Validation dataset 07/11-07/18 5 488
Testing dataset 07/19-08/31 31 2976
Period 2 Training dataset 07/01-07/13 8 864
Validation dataset 07/14-07/25 9 864
Testing dataset 07/26-08/31 26 2496
Period 3 Training dataset 07/01-07/14 9 960
Validation dataset 07/15-07/25 8 768
Testing dataset 07/26-08/31 26 2496
Period 4 Training dataset 07/01-7/15 10 1056
Validation dataset 07/16-07/25 7 672
Testing dataset 07/26-08/31 26 2496
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through 4 progressively increase the training dataset by one day each. For example, Period 1 has a sample size of 768 (covering 8 days),
while Period 2 includes 9 days of data. This method of data division is designed to simulate scenarios where a building is newly
constructed or recently retrofitted, resulting in very limited data availability.

5. Results and discussion
5.1. Analysis of source and target buildings

The Pearson coefficient [54] between the three target variables and a group of regressor variables is calculated. Table 5 presents the
absolute values of the Pearson coefficient, indicating the correlation levels between the target variables and the regressor variables.
Overall, Tj, has relatively weak correlations with regressor variables compared to Pyyac and Pgipg. This could be due to T;, being more
stable with less variance. Pearson coefficients with absolute values greater than 0.5 are typically associated with accurate time-series
modelling [55], and this threshold is used in this paper to select regressor variables. Therefore, all regressor variables in Table 5 are
chosen as model inputs because their Pearson coefficient with at least one of the three target variables exceeds 0.57. For example, while
the Pearson coefficients of RH,, with Tj, and P pg are 0.12 and 0.48, respectively, its correlation with Pyyac is 0.57 (greater than 0.5),
making RH,, a selected input variable for the model.

Table 6 presents the statistical indicators, including the average values and standard deviations, of all primary and extracted
variables across the entire datasets of source and target buildings. Overall, variables of Tyq, RHoq, Tig,sp» Tsa, and Occ show very close
similarities between source and target buildings in terms of both average values and standard deviations. The mean values of AT, ; over
source building show a negative value, indicating that during most times, particularly at night, the outdoor air temperature in summer
is lower than Tj, in Rochester. Although the mean value of AT, ; over the target building is slightly positive at 0.19 °C, this is likely
because the target building data does not cover June, a month when T,, in Montreal are relatively cool compared with July and August,
especially at night. For the target variables, Tj; and Pyyac show similar values across the source building and target building, indicating
similar patterns in terms of indoor thermal conditions and electric power consumption of the HVAC system. However, Pg;pg shows a
significant difference with Ppipg in the source building being more than twice that in the target building. In particular, the source
building simulated in EnergyPlus outputs a higher share of non-HVAC power (68 % vs. 17 %) due to the use of default power densities
and fixed operation schedules for non-HVAC equipment such as lighting, appliances, and plug loads. On the other hand, the target
building, a real building, is subject to human interventions from building managers and occupants, particularly their behaviour on the
use of lights, appliances and plug loads.

Fig. 5 provides an example of five executive days to illustrate the patterns of Pyyac and Pgypg, along with the outdoor conditions of
Toa and solar radiation of the source and target buildings. The data presents some similar trends of the source building and the target
building, with both Pyyac and Pgrpg peaking around noon and reaching their lower level at midnight. However, some differences are
also noticed: (1) the higher-level Pyyac and Pppg in the target building usually persist longer than those in the source building, and (2)
Puvac in the target building tends to align more closely with Pg;pg compared to the source building. The variance of HVAC power and
total building power is noticed in Fig. 5(a), especially during the night.

The outdoor air temperature T,, and solar radiation show a significant impact on the HVAC power and total building power of the
source and target buildings, as indicated in Fig. 5(a) and (b). For instance, statistical analysis indicates, on average, Pg pg increases by
85 kW for the whole building and by 95 kW for Pyyac per 5 °C of increase in outdoor air temperature over the training and validation
dataset of the target building. This indicates the HVAC power is more sensitive to the outdoor air temperature compared with the total
building power. This characteristic aligns well with the fact that the building typically integrates multiple systems that are not affected
by outdoor conditions, such as the lighting system.

5.2. Results of transfer learning

5.2.1. Overall performance of transfer learning

Each of the three neural network models (LSTM, MLP, and GRU) is configured with the optimum structure (Table 3) and pre-trained
using source building with the synthetic data generated from EnergyPlus simulations (Table 4). Then, those models are fine-tuned and
tested on four periods of target building (Table 4) using different TL strategies. Specifically, this paper evaluates two TL strategies and

Table 5

Pearson correlation between target variables and regressor variables on source building data.
Regressor variables Target variables

Tia Phvac Peipg

Toa 0.17 0.84 0.68
RH,, 0.12 0.57 0.48
SR 0.34 0.68 0.66
Tia,sp 0.72 0.62 0.64
Tea 0.21 0.81 0.74
ATy 0.08 0.87 0.71
Occ 0.33 0.69 0.72

10
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Table 6
Statistical summary of primary variables and extracted variables over the entire dataset of the source and target buildings.
Variables Source building Target building
Mean Standard deviation Mean Standard deviation
Toa (°C) 20.01 4.95 23.31 4.26
RHog (%) 75.25 15.95 70.80 20.39
SR (W/m?) 314.87 345.95 240.54 293.17
Tia (°C) 24.85 0.45 23.12 0.26
Tiasp (°C) 25.37 1.01 24.11 1.35
Tsa °C) 25.6 9.71 53.62 39.08
AT, ; (°C) —4.84 4.89 0.19 4.23
Occ (-) 0.42 0.46 0.40 0.46
Prvac (kW) 296.71 177.71 345.09 124.26
Ppipg (KW) 938.65 322.33 418.92 117.84
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Fig. 5. Example of HVAC power and total building power in five consecutive days. (a) source building; (b) target building.

one SelfL strategy applied across three neural networks with four periods of target building, resulting in a total of thirty-six cases. The
results of those cases are presented in Table 7. As the analysis in this paper finds time lags do not significantly affect the model
performance, the results focus specifically on cases with a 24-h time lag. Overall, as more data becomes available for model re-training
(Table 4), the model’s performance tends to increase (see Table 7). Table 7 also indicates the CVRMSE for total building power in each
case is lower compared to the corresponding CVRMSE for HVAC power. This difference is attributed to the target building’s integration
of additional systems, such as internal lighting loads, which maintain relatively steady power demands. As a result, the overall
variation in total building power is reduced.

According to ASHRAE Guideline 14 [56], the calibration of a computer model of a single building use is considered acceptable if the

11
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Table 7
Results of RMSE and CVRMSE for the three target variables over the testing dataset of the target building.
Datasets Transfer learning strategies LSTM MLP GRU
RMSE (°C) CVRMSE (-) RMSE (°C) CVRMSE (-) RMSE (°C) CVRMSE (-)
Tia Puvac Pgipg Tia Puvac Pgipg Tia Puvac Pging
Period 1 SelfL 0.25 0.33 0.27 0.22 0.22 0.18 0.26 0.34 0.28
DirectTL 0.37 0.54 0.29 0.33 0.33 0.19 0.37 0.47 0.24
RefinedTL 0.22 0.22 0.17 0.20 0.20 0.16 0.24 0.23 0.18
Period 2 SelfL 0.27 0.39 0.32 0.21 0.22 0.17 0.26 0.35 0.29
DirectTL 0.41 0.55 0.30 0.37 0.31 0.19 0.41 0.49 0.24
RefinedTL 0.30 0.26 0.21 0.20 0.20 0.15 0.19 0.23 0.19
Period 3 SelfL 0.26 0.26 0.22 0.21 0.21 0.17 0.26 0.33 0.27
DirectTL 0.41 0.55 0.30 0.37 0.31 0.19 0.41 0.49 0.24
RefinedTL 0.23 0.21 0.16 0.20 0.19 0.15 0.18 0.22 0.17
Period 4 SelfL 0.24 0.23 0.19 0.20 0.20 0.16 0.25 0.30 0.25
DirectTL 0.41 0.55 0.30 0.37 0.31 0.19 0.41 0.49 0.24
RefinedTL 0.23 0.21 0.16 0.19 0.19 0.14 0.18 0.21 0.15

CVRMSE between the measurements and predictions of building energy is smaller than 30 % when using hourly data. Despite the use of
a 15-min dataset, where greater variance is expected compared to hourly data, this paper achieves better results, with the CVRMSE of
Pprpg remaining below 21 % for all the investigated cases using the Refined TL strategy. The best performance is achieved with the
MLP model, achieving a CVRMSE of 14 %. These findings demonstrate that the transfer learning strategy, supported by neural network
models, is effective for accurately forecasting building energy.

RRPI is calculated with respect to SelfL. and RefinedTL and presented in Table 8. The discussion of the comparison of SelfL. and
DirectTL is presented in Section 5.2.2. Positive RRPI values affirm the effectiveness of RefinedTL, though varying trends are observed
with the accumulation of the training dataset on target building across the three neural network models. For instance, LSTM presents a
declining trend in effectiveness for both Pyyac and Pprpg, which aligns with the findings of [24]. Whereas GRU shows an increasing
trend for Pgrpg. The MLP model, in contrast, maintains relatively steady effectiveness for Pyyac and Ppipg. Those characteristics
indicate that the knowledge extracted from the synthetic dataset (source building), despite differences in Pyyac and Pgipg patterns,
enhances the forecasting performance for the target building with measurements. The TL strategy proves more effective with LSTM
when the training dataset on the target building is small, while it performs better with GRU as the training dataset on the target
building accumulates. The highest RRPI, noticed in Period 4, is 41 % using the GRU model, indicating the strongest improvement
through TL. The average RRPI in Table 8 shows that TL integrating GRU results in the most significant improvement in the TL effect.

Fig. 6 presents the RMSE of Ti, using RefinedTL and SelfL strategies across three neural network models. Overall, the RefinedTL
strategy performs slightly better than the SelfL strategy, regardless of the neural network model used. However, the RMSE differences
between the two strategies are minor, as Fig. 6 indicates RMSE values of all investigated cases are small. These values even fall within
the accuracy range of common temperature sensors used in most buildings [57], indicating that the forecasting of Tj, in this paper is
accurate. The forecasted Tj, can serve as a key indicator for evaluating indoor thermal comfort when implementing actions (e.g.,
control strategies) aimed at enhancing building energy efficiency while having to consider thermal comfort.

5.2.2. Performance of neural network models

Fig. 7 displays the CVRMSE of HVAC power and total building power across the four periods of testing datasets of the target
building resulting from the LSTM model. Overall, RefinedTL performs better than the DirectTL and SelfL strategies. The results of
CVRMSE of the total building power indicate the performance of the SelfL strategy gradually increases and exceeds DirectTL as the
training datasets accumulate. The best model performance is achieved with a CVRMSE of 21 % for Pgyac and 16 % for Pg;pg, when 11
days’ data (Period 4) is available for model re-training.

Fig. 8 illustrates the CVRMSE of HVAC power and total building power across the testing datasets of four periods of the target
building using MLP models. Overall, the RefinedTL strategy outperforms the DirectTL strategy and SelfL strategy. In contrast, the
DirectTL strategy shows the poorest performance for both HVAC power and total building power, indicating MLP models trained solely

Table 8
RRPI values in % resulting from RefinedTL over the target building.
Datasets Neural network models
LSTM MLP GRU
Puvac Pging Pruvac Pging Prvac Pging
Period 1 34 36 9 10 33 34
Period 2 32 35 9 11 34 35
Period 3 21 27 8 12 35 39
Period 4 8 18 6 12 29 41
Average 24 29 8 11 33 37
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Fig. 6. RMSE of indoor air temperature over the testing dataset of four periods of the target building.
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Fig. 7. CVRMSE of the HVAC power and total building power across the four periods of testing datasets of the target building using the
LSTM model.
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Fig. 8. CVRMSE of the HVAC power and total building power across the four periods of testing datasets of the target building using the MLP model.

on the data from the source building are inadequate for the accurate forecasting of the target building. A similar characteristic is
noticed in the cases of the SelfL strategy across the four periods, which utilizes very limited datasets that include only the target
building. The performance of the MLP model remains relatively stable as the amount of training data increases. The best performance is
achieved in Period 4, with CVRMSE of 19 % and 14 % for HVAC power and total building power (Table 7) using the RefinedTL strategy.

Fig. 9 illustrates the CVRMSE of HVAC power and total building power across the four periods of testing datasets of the target
building by using the GRU model. Overall, the RefinedTL strategy demonstrates the best performance, achieving CVRMSE of 21 % and
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Fig. 9. CVRMSE of the HVAC power and total building power across the four periods of testing datasets of the target building using the GRU model.

15 % for HVAC power and total building power in the case of Period 4. For the cases with RefinedTL strategy, a significant model
performance improvement with CVRMSE reaching 21 % is noticed for HVAC power when 11 days’ data (Period 4) is used for model re-
training. In contrast, the CVRMSE remains above 22 % for the other three cases of Periods 1-3, despite they have 8-10 days of data
available for the model re-training. The addition of just one extra day of data makes a notable difference in model performance.

5.2.3. Temporal performance

Table 9 presents the computation times of the LSTM, MLP, and GRU models with respect to Period 4 of the target building as an
instance. Overall, the RefinedTL strategy requires the most computation time compared to the DirectTL and SelfL strategies for each
model. However, considering the performance improvements achieved with the RefinedTL strategy, the differences in computation
times of the three strategies (DirectTL, SelfL, and RefinedTL) are not significant for preventing the use of the RefinedTL strategy instead
of the DirectTL and SelfL strategies in practice.

Fig. 10 compares the measured and forecasted values of three target variables (Tj,, Puvac, and Ppipg), resulting from the RefinedTL
strategy using a LSTM model for an example week from 2020/07/27 to 2020/07/31, within the testing dataset of Period 4. The
learning curve resulting from this case is presented in the Appendix (Figure A1). The large variance of HVAC power and total building
power occurs in the morning when the HVAC system operates from the low-load level to the high-load level.

A visual inspection of Fig. 10 indicates the LSTM model supported by TL can forecast well the overall trends of total building power
and HVAC power 12-h in advance, maintaining a reasonable accuracy. The forecasting of indoor air temperature is accurate with a
RMSE of 0.23 °C (Table 7). However, some deviations are observed during periods of high and low power demand for both total
building power and HVAC power. Table 7 indicates the overall accuracy of LSTM models as measured by CVRMSE are 16 % and 21 %
for total building power and HVAC power, respectively, across the whole testing dataset of Period 4. These variations in accuracy can
be attributed to several factors, including unpredictable human behaviour, occasional disturbances or malfunctions in HVAC opera-
tions, and the complex interactions between different building systems such as HVAC, lighting, and appliances.

Fig. 11 displays the comparison of measured and forecasted values of three target variables (Ti,, Puyac, and Pgpg) using a MLP
model with the RefinedTL strategy, covering an example week from July 27 to July 31, 2020, within the testing dataset of Period 4. The
learning curve associated with this case is detailed in the Appendix (Figure A2). Overall, the forecasted values closely align with the
measured values for Tj,, Pyyac, and Pprpg. While some deviations are noticed for HVAC power, the CVRMSE for the testing dataset of
Period 4 is a low 19 % (Table 7). The forecasted indoor air temperature also tracks well with measured values, achieving a RMSE of
only 0.19 °C (Table 7).

Fig. 12 compares the measured and forecasted values of three target variables (Ti,, Pyyvac, and Pprpg), which are obtained using the
RefinedTL strategy with a GRU model for an example week from July 27 to July 31, 2020, within the testing dataset of Period 4. The
learning curve resulting from this case is presented in the Appendix (Figure A3). Fig. 12 indicates both the measured total building
power and HVAC power show greater variability compared to the forecasted values. While the forecasted total building power and
HVAC power generally follow the measured trends, some deviations are observed, particularly during peak hours in the daytime. The
best performance is noticed in the case of Period 4 with CVRMSE of 21 % and 15 % for Pyyac and Ppjpg, respectively. In this case, the
RMSE of Tj, is 0.18 °C.

The best performance observed in our case study was a CVRMSE of 14 % for Pp;pg using the MLP model during Period 4. In
comparison, another study employed transfer learning to forecast 1-h-ahead energy consumption for five office buildings, using
measurement data from both source and target buildings. That study reported an average CVRMSE of 22.40 % [28], which is slightly
less accurate than the results achieved in our case.

6. Conclusion

When applying data-driven models to building-related predictions or forecasting, a major challenge lies in the lack of sufficient
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Table 9

Computation time for each model for Period 4.
Models DirectTL SelfL. RefinedTL
LSTM 15.38s 4.38s 23.83s
MLP 21.97s 7.63s 41.01s
GRU 17.71s 4.29s 45.09s
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Fig. 10. Comparison of measured and forecasted total building power, HVAC power and indoor air temperature, resulting from the LSTM model
using RefinedTL strategy for an example week in the testing dataset of Period 4 of the target building.

operation data, particularly for new or retrofitted buildings. This is especially true for models based on machine learning or artificial
intelligence methods, which typically require large volumes of training and validation data to learn and generalize effectively. As a
result, the absence of rich datasets makes it difficult to directly apply data-driven methods, e.g., for the controller model within MPC.

To address this challenge, this study investigated the application of transfer learning techniques to enhance the forecasting per-
formance of black-box models under conditions of limited data availability. Transfer learning allows models to leverage knowledge
gained from one domain or dataset to improve performance in another, making it particularly useful in cases where data from the
target environment is scarce.

In this research, we utilized an effort-efficient approach to develop the source building and generate synthetic data using the
EnergyPlus program to pre-train neural network models. These pre-trained models were then fine-tuned using a limited set of real
measurements from an actual building. The real and synthetic buildings, though sharing the same architectural archetype, are located
in different cities, each subject to unique weather and environmental conditions.

This study explored two distinct transfer learning strategies and evaluated their effectiveness using three different neural network
models. By comparing the results, we aimed to determine how well transfer learning techniques can improve the accuracy of the
forecasting models. The simulation results revealed that while the performance of the models varies depending on the transfer learning
approach and the specific neural network architecture employed, the incorporation of synthetic data in the pre-training phase
consistently leads to significant improvements in forecasting accuracy. Specifically, the models exhibit enhanced predictions for both
building energy demand and indoor air temperature profiles over a 12-h forecast horizon at 15-min intervals.

The findings highlight the significant potential of transfer learning applications, particularly in scenarios involving new buildings
or recently retrofitted buildings where data is limited, yet an accurate model of building energy consumption is essential. The outcomes
of this case study led to the following conclusions.

Despite the differences in electric energy profiles of the whole HVAC system and of the whole building between the source and
target buildings, TL still enhances model performance, as evidenced by the positive RRPI values across all thirty-two cases investigated.
The performance of the three neural network models (LSTM, MLP, and GRU) improves as more data becomes available for model re-
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Fig. 11. Comparison of measured and forecasted total building power, HVAC power and indoor air temperature, resulting from the MLP model
using the RefinedTL strategy for an example week in the testing dataset of Period 4 of the target building.
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Fig. 12. Comparison of measured and forecasted total building power, HVAC power and indoor air temperature, resulting from the GRU model
using RefinedTL strategy for an example week in the testing dataset of Period 4 of the target building.
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training, with the best results observed in the MLP model, achieving a CVRMSE of 19 % for Pyyac and 14 % for Pp;pg. However, the
sensitivity of TL effectiveness varies depending on the selected neural network model, with trends in effectiveness increasing, rela-
tively stabilizing, or decreasing as more data is used for the model re-training on target building. As the training dataset of target
building accumulates, the performance of the SelfL strategy gradually improves, eventually surpassing that of DirectTL. In some cases,
the addition of just one extra day of data leads to significant improvements in model performance.

This study provides an alternative way to tackle the challenge of data scarcity, which can arise due to limited building operation
time, availability of quality data, user privacy concerns, etc., by demonstrating that machine learning models, which typically require
large datasets to achieve acceptable accuracy, can benefit from synthetic data. Synthetic data generated from open-source models is
often easier to obtain and can significantly enhance model accuracy.

The authors acknowledge several limitations of this work. For instance, the evaluation of thermal comfort could be addressed in
greater depth. Future modelling work could focus on a more detailed analysis of thermal comfort, incorporating advanced metrics to
evaluate occupant satisfaction. Future work should explore a greater variety of target buildings across different archetypes and climate
zones to further evaluate the effectiveness of transferability. Additionally, the control part of the supervisory MPC controller needs to
be implemented and tested to evaluate the usefulness of the TL models, and their ability to achieve specific project goals such as
enabling precise control of building systems, or activating building energy flexibility. Finally, future work should explore the impact of
forecast errors on control performance when the MPC framework is implemented. Since forecast accuracy directly influences the
quality of MPC decisions, suboptimal control actions (e.g., overcooling, inefficient equipment scheduling) may be triggered by
inaccurate forecasting. These issues could lead to increased energy consumption or reduced occupant comfort.
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Appendix

The learning curves represented by the variation of mean square error with the number of epochs on both the training dataset and
validation dataset of Period 4 using the LSTM model are presented in Figure A1. The optimal number of epochs, determined through a
trial-and-error approach, is identified as 50. The discrepancy in mean squared error between the training and validation datasets can
be attributed to several factors. First, the model is tasked with forecasting three target variables with distinct scales and variances.
Second, there are differences in the data distributions: the training dataset includes data from early July, characterized by relatively
lower outside temperatures and building loads, while the validation dataset spans mid-July and end-July when outside temperatures
and building loads are higher. These factors contribute to the observed divergence in mean squared error between the two datasets.
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Fig. Al. Learning curve for the training dataset and the validation dataset of Period 4 for the LSTM model.
Figure A2 displays the learning curves for the MLP model, illustrating mean squared error variation with the number of epochs for
both the training and validation datasets of Period 4. It indicates the corresponding MLP model is well trained with both training and
validation errors decreasing over time and maintaining close proximity.
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Fig. A2. Learning curve for the training dataset and the validation dataset of Period 4 for the MLP model.

Figure A3 displays the learning curves for the GRU model, illustrating mean squared error variation with the number of epochs for
both the training and validation datasets of Period 4. The optimal epoch count, identified through the trial-and-error method, is 300.
As training progresses, some differences in mean squared error between the training and validation datasets are observed. However, as
discussed above, considering the model’s task of forecasting three target variables with varying scales and variances, and the fact that
the datasets cover different periods with distinct temperature and building load conditions, these differences should not be interpreted
as signs of model overfitting.
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Fig. A3. Learning curve for the training dataset and the validation dataset of Period 4 for the GRU model.

Table A1
Pseudocode outline for transfer learning-based forecasting workflow

Step 1: Preprocess source and target building data
- Handle missing values (e.g., using linear interpolation)
- Apply time alignment and resampling
- Normalize all input features
Step 2: Pre-train models (MLP, LSTM, GRU) on source building data
- Train each model using the training dataset of the source building
Step 3: Train baseline models on target building data (SelfL strategy)
- Train each model from scratch using the training dataset of the target building
Step 4: Fine-tune pre-trained source models on target building data (RefinedTL strategy)
- Load each model from Step 2
- Retrain using the training dataset of the target building
Step 5: Evaluate Direct Transfer Learning (DirectTL)
- Use models from Step 2
- Test on the testing dataset of the target building
- Record performance metrics (RMSE, CVRMSE)
Step 6: Evaluate Self Learning (SelfL)
- Use models from Step 3
- Test on the testing dataset of the target building
- Record performance metrics (RMSE, CVRMSE)
Step 7: Evaluate Refined Transfer Learning (RefinedTL)
- Use models from Step 4
- Test on the testing dataset of the target building
- Record performance metrics (RMSE, CVRMSE)
Step 8: Compute the Ratio of Relative Performance Improvement (RRPI) using Equation (8).

Data availability

The data that has been used is confidential.
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