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Corrosion type identification in flanged
joints using recurrent neural networks on
electrochemical noise measurements
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Bolted flanged joints are essential for connecting piping and process equipment but are vulnerable to
localized corrosion that leads to sudden, unpredictable leaks. Electrochemical noise (EN)
measurements can detect such corrosion, yet processing EN data is time-consuming and requires
expertise. This study applies recurrent neural networks (RNNs) to automate corrosion type
identification on flange surfaces using raw EN signals from spontaneous electrochemical reactions. In
this work, supervised, hybrid, and unsupervised ML approaches are evaluated using experimentally
obtained EN data. Among supervised models, the long short-term memory (LSTM) model achieves
93.62% accuracy. A hybrid method combining LSTM autoencoder features with a random forest
classifier improves accuracy to 97.85%. An unsupervisedmethod using LSTMautoencoder, principal
component analysis, and k-means clustering also shows strong potential for real-time corrosion
monitoring. Automated identification of corrosion types on flanged joints supports more effective
material protection strategies, reducing the risk of failure in critical infrastructure.

Bolted flanged joints are extensively used to connect pipelines,
pressure vessels, and different structural components in seawater
desalination equipment, hydrocarbon processing, nuclear industries,
and wind turbine industries. This type of connection allows dis-
assembly of pipelines for maintenance or cleaning, but poses a risk of
leakage failure especially when exposed to aggressive media and
environments while operating at high pressures and temperatures1.
Flange face corrosion is one of the most repeatable cause of leakage
failure according to the literature2. Corrosion on flange faces arises
when fluids penetrate gaps and leak paths formed at the gasket and
flange interface. These gaps result from material degradation due to
corrosion and aging and are further widened by joint loosening due
to creep-relaxation effects1,3,4, rotation of the flange5,6, and flange face
irregularities7. Localized corrosion, such as pitting and crevice cor-
rosion, at the interface of the flange and gasket is a major cause of
leakage failure in flanged gasketed joints2,8–11. Crevice corrosion is not
easily detectable or visible at the flange-gasket interface, and due to
its localized nature, it exhibits a higher corrosion rate compared to
general corrosion by several orders of magnitude12. Corrosion of the
flange surface becomes detectable only when a leak already occurs,
necessitating pipeline shutdowns and resulting in the loss of revenue
and costly resources. Therefore, detection and monitoring of the
early stages of localized corrosion are critical to prevent extensive
damage on such systems.

Electrochemical noise measurement (ENM) is a method that gains
increasing attention in the field of electrochemical monitoring
methods13,14. The spontaneous fluctuations in potential and current are
stemming from the corrosion processes on the metal surface that can be
measured by ENM15. This method is suitable for in situ corrosion mon-
itoring without applying an external potential, and it can also be used to
detect the type of corrosion16. ENMs are typically conducted using a zero-
resistance ammeter (ZRA) mode, where the electrochemical potential
noise (EPN) is recorded between a working and reference electrode. The
electrochemical current noise (ECN) is measured as the galvanic current
between two nominally identical working electrodes. Care is taken to
minimize aliasing and instrument noise through appropriate filtering and
sampling strategies17. Characterization of localized corrosion through
current and potential signal monitoring is the most interesting application
of ENM18. EN was shown to be effective in identifying localized corrosion
mechanisms, as transient features in the signal can reflect the amplitude
and frequency of corrosion events associated with specific forms such as
pitting or crevice corrosion19. This technique is also a valuable tool in
assessing the performance of protective coatings and corrosion
inhibitors20,21. Indeed, ENM shows great potential as a non-destructive
monitoring tool; however, distinguishing between localized and general
corrosion remains challenging because EN data is dependent on factors
such as the electrode system type, electrode surface area, and the mea-
surement technique used22.
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In the literature, data analysis methods are typically categorized
according to their operational domain, including time23, frequency, and
time-frequency domain24. Obtaining appropriate feature variables and
analytical approaches from the measured EN data to distinguish between
different forms of corrosion during the monitoring is the main difficulty of
this method25. Xia et al.26 demonstrated the use of EN for atmospheric
corrosion monitoring by applying discrete wavelet transform (DWT) to
extract time–frequency features related to corrosion forms. Their approach
requires complex signal preprocessing such as DC component removal and
careful interpretation of wavelet energy levels. The paper highlights the
challenges associated with traditional EN signal analysis methods. In
another study by Xia et al.27, combined EN analysis with Thevenin
equivalent circuit modeling and fast Fourier transform (FFT) to investigate
localized corrosion under dynamic seawater/air interface conditions.
However, accurate interpretation can be challenging due to overlapping
transient events and signal fluctuations, particularly when using large
electrode surfaces. EN analysis has also been applied to monitor stress
corrosion cracking (SCC)using advanced techniques such aswavelet energy
distribution and chaos theory. The use of signal interpretation involves
complex steps likeDC removal, phase space reconstruction, and calculation
of correlation dimension to characterize crack initiation and propagation
stages28.

Recently, machine learning (ML) techniques, including deep
learning (DL) approaches, have been increasingly utilized in the field of
corrosion to analyze EN data for prediction or classification. Homborg
et al.29 investigated the application of convolutional neural networks
(CNN) for DL-based classification of images of the electrochemical noise
time-frequency transient information from two types of pitting corrosion
data. In this approach, two methods including continuous wavelet
transform (CWT) spectra and modulus maxima (MM) are used to train
the CNN. Their results show that training the CNN with the CWT and
MM combination has a higher classification accuracy compared to using
each method separately. In another study, Hou et al.30 extracted twelve
features from the EN signals using a recurrent quantification analysis and
they then classified the corrosion behavior to general, passive, and pitting
corrosion using random forests (RF) and linear discriminant analysis
(LDA). Nazarnezhad et al.31 used EN analysis parameters obtained from
time domain, frequency domain, and time-frequency domain analysis
methods as inputs in an artificial neural network (ANN)model and using
galvanostatic electrochemical impedance spectroscopy as target values to
determine the pitting stage in stainless steel 321. Furthermore, Alves

et al.32 extracted features from EN data using wavelet transform and
recurrence quantification analysis to train several ML techniques
including the ANN type multilayer perceptron (MLP), probabilistic
neural network (PNN), support vector machine (SVM), k-nearest
neighbor (kNN), and decision tree (DT). Abdulmutaali et al.33 developed
an unsupervised framework to monitor corrosion using EN measure-
ments. They converted EN time-series signals into wavelet spectrogram
images, extracted features using DL models (e.g., CNNs), and applied
principal component analysis (PCA) for multivariate statistical process
monitoring. Their method identified deviations from uniform corrosion
without requiring labeled data, relying on image-based feature repre-
sentations. Finally, Jian et al.34 deployed a feature vector of 10 elements
obtained from the EN datasets as an input for training ANN and SVM
models to distinguish the type of corrosion. Table 1 summarizes all ML
and DL techniques that are used to analyze EN data for corrosion type
classification.

It can be concluded from the reviewed literature that ML and DL
approaches used so far are promising, but require substantial amounts of
labeled data to achieve accurate classification. This presents a major barrier
for practical use in industrial applications, because collecting extensive labeled
datasets in real-world corrosion environments is challenging. Additionally,
these techniques are often limited by their dependence on feature vectors
based on static signal characteristics, like noise resistance or frequency con-
tent, whichmay not adapt well to dynamic conditions in corrosion processes.
While recent work by Abdulmutaali et al.33 has demonstrated the potential of
unsupervised learning using image-based representations of EN signals, their
approach still depends on transforming time-series signals into images and
applying predefined segmentation, highlighting the need for alternative
sequence-based unsupervised approaches that eliminate the need for pre-
defined features or signal-to-image conversion.

Therefore, themain objective of this study is to investigate the potential
of utilizing recurrent neural networks (RNN) for classifying EN data and to
compare its accuracy with traditional ML techniques such as RF. RNNs are
well-suited for time-series or sequential data as they can detect hidden
patterns or recurring trends in nonlinear and dynamic datasets35. One of the
key strengths of RNNs is their ability to retain information from previous
hidden states, enabling the prediction of future outcomes36. This char-
acteristic has made them widely adopted in fields like natural language
processing and speech recognition37,38. Due to their recurrent structure,
RNNs have the potential to be more flexible in handling variability within
EN data compared to static classifiers.

Table 1 | Summary of the ML and DL techniques used in analyzing EN data for corrosion type classification

Input features Types of corrosion ML or DL methods Number of features Reference

Images of the CWT spectrum and MM including transient
locations

Pitting CNN Image size: 201 × 99 pixels, no manual
feature vector

29

Recurrence quantification variables General
Pitting
Passivation

LDA
RF

12 30

Recurrence quantification variables General
Pitting
Passivation

MLP 4 43

Time domain, frequency domain, time-frequency domain
parameters

Pitting ANN 26 31

Rn, q, fn, energy of 7-level wavelet crystal General
Pitting
Passivation

ANN
SVM

10 34

Wavelet transformand recurrence quantificationparameters Crevice
Passivation
Pitting
Watermark

MLP
PNN
kNN
DT
SVM

35 32

Wavelet spectrogram images of EN signals General
Pitting
Passivation

LBP
CNN
PCA

59 (LBP)
2048 (CNN)

33
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This paper introduces three novel approaches using RNN models to
classify corrosion types based on two input features; current and potential
signals from EN data. In these developed approaches, firstly, labeled data
obtained through controlled laboratory experiments, are used to train RNN
models. Then, using these labeleddata, a hybrid approach is used to improve
the model’s performance. Finally, an unsupervised approach is proposed
that is trained using unlabeled data, as mostly occurs in real-time corrosion
monitoring.

To evaluate the classification performance of these models, different
techniques including confusionmatrix and other classificationmetrics, e.g.,
F1-score, precision, and recall are calculated. Indeed, the effectiveness of the
different RNN-based methods for EN data analysis are validated by
experimental corrosion data using an in-house developed bolted joint test
rig39, highlighting their potential for real-time corrosion monitoring.

Results and discussion
Surface morphology and the corresponding noise signals
The current (blue lines) and potential (black lines) noise signals
obtained from the EN tests are presented in Fig. 1a–d. Figure 1a
displays the transient signals associated with pitting corrosion on the
flange sample plate. In pitting corrosion, the distinct current tran-
sients signify the initiation and progression of localized pits40. In the
passive state (Fig. 1b), potential and current fluctuate steadily
between −0.1 and 0.1 μA, except for the initial 10 ks, where fluc-
tuations range from −0.3 to 0.3 μA. For crevice corrosion (Fig. 1c),
noticeable transients in both current and potential signals indicate
the initiation and propagation of crevice corrosion41. These transients
are typically observed as rapid increases or decreases in the signals,
depending on which W.E. is undergoing corrosion. In the case of
general corrosion (Fig. 1d), the current fluctuations range between
−3 and 2 μA, exceeding those of the passive state. The current and
potential signals for pitting corrosion, general corrosion, and the
passive state are detrended; however, the signals for crevice corrosion
are not detrended to preserve the detection of transient events in the
current and potential signals.

Microscopic analysis of the flange sample plate surfaces after EN tests
confirmed the presence of four distinct corrosion types on theflange sample
plates. Figure 2a illustrates pitting corrosion, observed on plates that are
passivated before exposure to the 0.5M NaHCO3+ 0.1M NaCl solution.
Figure 2b shows a passivated flange sample with no visible signs of

corrosion. InFig. 2c, crevice corrosionmorphology is evident at the interface
between the gasket and flange, consistent with literature reports that crevice
corrosion typically occurs in this area of flanged gasketed joints42. As shown
in Fig. 2c, the boundary line between the area under the gasket and the area
freely exposed to the solution, where crevice corrosion initiates and pro-
pagates. Figure 2d shows that general corrosion occurs uniformly across the
flange sample plate surface.

Supervised learning techniques
Hyperparameter tuning for the RNN models focuses on optimizing three
key parameters: the number of layers (num_layers), the number of neurons
per layer (units), and the sequence length (seq_length). The sequence length
in RNN models is determined based on the dependency length present in
the data, with the optimal sequence length being the one that best captures
thepatternswithin the signals. Figure 3provides an exampleof a rawcurrent
signal and demonstrates how it is divided into sequences (X1 to Xt) used by
the RNN models.

To optimize the model configurations, Keras Tuner with Bayesian
Optimization is employed. The optimal values obtain after tuning are then
used to evaluate themodels on the test dataset, with the results summarized
in Table 2. For the RF model, the hyperparameter tuning targeted para-
meters including thenumberof trees in the forest (n_estimators),maximum
tree depth (max_depth), minimum samples required for a split (min_-
samples_split), minimum samples required at a leaf node (min_sam-
ples_leaf), and whether to use bootstrapping (bootstrap). This tuning is
performed using the GridSearchCV method from the sklearn.model_se-
lection library,which automates the search for the optimal hyperparameters
by exploring the specified parameter grid, using cross-validation to assess
different combinations. Table 2 presents the search space and optimized
hyperparameter values for eachmodel, highlighting the effectiveness of the
tuning approach in improving model performance.

Figure 4 shows the confusionmatrices for all the trainedmodels, and it
indicates the performance of the models in classification and identification
of the types of corrosion. The vertical axis in these images shows the True
label of the test data and the horizontal axis shows thePredicted labels by the
models. The diagonal of the confusion matrix shows the correctly detected
types of corrosion. As shown in this figure, crevice corrosion is the most
challenging type of corrosion to be detected. There is misidentification
between crevice corrosion and passive state by all models but this mis-
classification is significantly observed with the RF model.

Fig. 1 | Measured EN signals. Electrochemical
current and potential noise signals corresponding to
the different types of corrosion occurred on the
flange surface. a Pitting corrosion; (b) passive state;
(c) crevice corrosion; (d) general corrosion.

https://doi.org/10.1038/s41529-025-00638-y Article

npj Materials Degradation |            (2025) 9:88 3

www.nature.com/npjmatdeg


The LSTMmodel shows high accuracy for most corrosion types, with
perfect classification for “General” and “Pitting” corrosion (1529 and 1466
correct predictions, respectively). There is, however, some misclassification
of “Crevice” and “Passive” categories. Specifically, 232 instances that belong
to the “Crevice” category are misclassified as “Passive,” while 167 “Passive”
samples are identified as “Crevice.”Thesemisclassifications suggest that the
LSTMmodel struggles to differentiate between these two types of corrosion,
potentially due to similarities in the EN signals during testing.

The Simple RNN model demonstrates lower performance compared
to the LSTM model, particularly with the “Crevice” category, where 552
instances aremisclassified as “Passive.”Thismodel identifies a high number
of FNs of crevice corrosion.Despite these issues, the SimpleRNNmodel still
performs well for general and pitting corrosion, with perfect classification
for both categories.

The GRU model performance is relatively similar to LSTM, with
slightly higher misclassifications of “Crevice” and “Passive” categories. For
example, 374 “Passive” instances are classified as “Crevice,” indicating some
overlap in how these two categories are interpreted by themodel. The GRU
model effectively identifies general and pitting corrosion without any mis-
classifications, except one instance of misclassification of pitting corrosion,
suggesting its strength in handling distinct corrosion signals.

TheRFmodel shows lowerperformance across all categories, with very
high misclassification rates, especially for “Crevice” and “Passive” cate-
gories. For instance, nearly all “Crevice” instances (25,688) are misclassified
as “Passive”. This indicates that the RF model struggles to capture the

temporal dependencies in the data, which are crucial for distinguishing
between different corrosion types. The inability of RF to handle sequential
patterns as effectively asRNN-basedmodels could be the primary reason for
its poor performance. Overall, the RNN-based models (LSTM, Simple
RNN, and GRU) outperform the RF model in classifying corrosion types.

Table 3 indicates an evaluation of theDLmodels andRF for classifying
corrosion types using EN data. The performance metrics include precision,
recall, F1-score, and best test accuracy for crevice corrosion, general cor-
rosion, passive state, and pitting corrosion.

The LSTM model exhibits strong performance across all corrosion
types,with anoverall best test accuracyof 93.62%.TheLSTM’s performance
is notable for general and pitting corrosion, achieving perfect precision,
recall, and F1-scores (1.00), indicating that the model correctly identifies
these corrosion types with no FPs or FNs. For the passive state, the model
maintains high precision (0.89) and recall (0.92), resulting in a F1-score of
0.90. However, crevice corrosion shows lower metrics, with a precision of
0.87, recall of 0.82, and an F1-score of 0.84, reflecting somemisclassification
issues.

The Simple RNN model achieved a lower overall accuracy (90.08%)
compared toLSTM.While it alsoperformedperfectly ongeneral andpitting
corrosion (precision, recall, and F1-score of 1.00), the performance drops
significantly for crevice corrosion, with an F1-score of 0.72. The precision-
recall difference for crevice corrosion (0.89 precision vs. 0.60 recall) suggests
that while themodel can correctly identify some crevice cases, it struggles to
detect all instances, leading to a higher rate of FNs. The performance on

Fig. 3 | Sequencing of raw data. Example of the
transformation of the raw current signal to the
sequences of data that are used directly in the RNN
models including LSTM, Simple RNN, and GRU.

Fig. 2 | Micrographs of corroded surfaces.Micro-
scopic images of the corroded areas on the flange
sample plates, illustrating various types of corrosion
after EN tests: (a) Pitting corrosion; (b) passive state;
(c) crevice corrosion; (d) general corrosion.
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passive state (F1-score of 0.86) indicates that the simple RNN is effective in
identifying this type of corrosion, although it lags behind the LSTM’s
accuracy.

The GRU model shows performance with an overall accuracy of
90.46%. The results for general and pitting corrosion remain perfect (1.00
for all metrics), similar to the other models. However, for crevice corrosion,
the GRU achieves an F1-score of 0.78, which is better than the Simple RNN

but still lower than the LSTM performance. This suggests that the GRU
ability to retain temporal dependencies helps to some extent, but themodel
may still struggle with distinguishing features of crevice corrosion. For the
passive state, the GRU model shows slightly lower precision (0.88) com-
pared to the LSTM, resulting in an F1-score of 0.84. This indicates that the
GRU model, may not generalize as well as the LSTM for some corro-
sion types.

TheRF classifier has the lowest overall test accuracy at 79.52%.While it
performs perfectly on general and pitting corrosion, the metrics for crevice
corrosion are poor, with precision, recall, and F1-scores all at 0.00. This
indicates that the model fails to identify any instances of crevice corrosion,
which could be due to the complexity of electrochemical noise data that
requires capturing sequential dependencies, which cannot be achieved by
theRF algorithm. For the passive state, theRFmodel achieves a recall of 1.00
but has a lower precision (0.61), leading to an F1-score of 0.76. This suggests
that while the model is able to detect all instances of passive state, it also
misclassifies other corrosion types as passive, resulting in a high num-
ber of FPs.

TheLSTMmodel outperforms the others, achieving the highest overall
accuracy and consistently high F1-scores across all corrosion types. All
models struggle with accurately identifying crevice corrosion. This indicates
that crevice corrosion may have features that overlap with other corrosion
types, making classification difficult for non-sequential models like RF, or
even simpler sequential models, such as Simple RNN. All models achieve
perfect scores for general and pitting corrosion, suggesting that the distin-
guishing features for these corrosion categories are well-represented in the
dataset. Although all models perform relatively well, there is still room for
improvement in handling crevice corrosion and the passive state. Indeed,
the results indicate that recurrent models are well-suited for analyzing EN
data to classify different types of corrosion. The sequential nature of these
models allows them to capture temporal dependencies in the data that
traditional algorithms, such as RF cannot identify.

As shown in Table 3, the LSTM model achieves the highest test
accuracy amongall the evaluatedmodels. This performance is reachedwhen
using a sequence length of 30 and a two-layer LSTM architecture, as
depicted in Fig. 5. The architecture includes 32 units in the first LSTM layer
and 64 units in the second layer. Themodel input is a matrix of dimensions

Table 2 | Hyperparameters, search spaces explored,
optimised values, and best test accuracy for eachmodel used
for training

Model Hyperparameters Search space Optimised
value

LSTM Sequence length
(seq_length)

10 to 100 in
steps of 10

30

number of hidden layers
(num_layers)

1 to 3 2

number of units (units) 32 to 128 32, 64

Simple
RNN

sequence length
(seq_length)

10 to 100 in
steps of 10

80

number of hidden layers
(num_layers)

1 to 3 2

number of units (units) 32 to 128 96, 64

GRU sequence length
(seq_length)

10 to 100 in
steps of 10

30

number of hidden layers
(num_layers)

1 to 3 2

number of units (units) 32 to 128 128, 64

RF n_estimators 10, 50, 100 50

max_depth None, 10,
20, 30

10

min_samples_split 2, 5, 10 2

min_samples_leaf 1, 2, 4 1

bootstrap True, False False

Fig. 4 | Confusionmatrices for supervisedmodels.
Confusion matrices for the classification perfor-
mance of models trained with optimized hyper-
parameters: (a) LSTM; (b) Simple RNN; (c) GRU;
(d) RF.
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T × l, where l represents the length of the sequences and T denotes the
number of sequences. Each input is first passed through a tanh activation
function, which facilitates the non-linear transformation of the data before
entering the LSTM layers. In this architecture, the final Dense layer, com-
bined with a softmax activation function, is responsible for classifying the
input into the target categories. This softmax layer outputs a probability
distribution over the possible classes, and then the predicted label is the one
that has the highest probability.

Compared with previous studies, which focus on extensive feature
engineering to enhance classification, the present study demonstrates that
RNNmodels - particularly LSTM - can perform well using only two input
features: current and potential noise.While RFmodels in the literature have
often required numerous input features to classify corrosion types, they
typically showed lower performance and struggled with differentiating
between passivation and pitting corrosion43. This limitation in previous RF
models may come from the lack of hyperparameter tuning, which is
addressed in this study, contributing to the improved performance of the
RF model.

As discussed in this section, the RNN models perform well in differ-
entiating various types of corrosion using EN data, surpassing the

performance of the RF model. A key accomplishment of the developed
supervised learning approach employed in this study is the use of only two
input features, current and potential, in the RNNmodels. As highlighted in
the introduction, it is common in the literature to engineer a largenumber of
features derived from current and potential signals to classify different types
of corrosion.However, the results of the present study indicate that only two
features, current and potential, are sufficient for capturing the sequential
dependencies and recurring patterns in EN data using RNN models. This
leads to a significant reduction in computational costs, which is particularly
important for real-world corrosion monitoring applications, where large
datasets are typically generated.

Although the RF model shows lower performance compared to the
RNN models, it detects all instances of general and pitting corrosion. This
represents a notable improvement over previously reported results in the
literature for identifying these corrosion types. The enhanced performance
of the RF model in distinguishing general and pitting corrosion can be
attributed to the hyperparameter tuning applied in this study, an aspect not
extensively explored in prior research.

Hybrid learning
Asdiscussed in the literature review section, previous studies have employed
various feature extraction techniques to generate predictors forMLmodels.
In the previous section, it is demonstrated that RNNmodels can effectively
classify different types of corrosionusing labeleddatasets andonly two input
features: the obtained current and potential signals by ENM. In this section,
a hybrid approach combining supervised and unsupervised learning tech-
niques is applied to train the RNN and RF models. The aim of this hybrid
approach is to improve the classification performance of the models by
automating the feature selection process through the use of an LSTM
autoencoder. Hyperparameter tuning is employed to optimize the para-
meters of the LSTM autoencoder, and the resulting values are presented in
Table 4.

The extracted features from the LSTMautoencoder are directly used in
the supervised models discussed in the previous section. The LSTM auto-
encoder is anunsupervisedDL techniquewhichextracts themost important
features from data without labeling the data. The confusion matrices
obtained after training the models are shown in Fig. 6. The LSTM model
exhibits robust performance across various corrosion types. For example,
the model correctly classifies 1058 crevice corrosion instances, with a rela-
tively small number of misclassifications (245 samples) categorized as
“Passive.” Both general and pitting corrosion types are perfectly classified,
which indicates that the LSTMmodel effectively handles these categories. In
comparison, the Simple RNNmodel shows a slightly lower accuracy.While
1028 crevice corrosion instances are classified correctly, 275 crevice corro-
sion instances are misclassified as passive state, highlighting the model
challenge in distinguishing between these two types of corrosion. This
suggests that the LSTM model, with its memory retention capabilities,
performs better than Simple RNN for temporal data patterns. However,
similar to the LSTMmodel, the Simple RNN correctly classifies all general
and pitting corrosion instances. The GRU model demonstrates robust
performance, with 1071 correct classifications for crevice corrosion and
fewer FPs (232) compared to the LSTM model. However, the GRU model
hasmore FPs for passive state than the LSTMmodel. For general corrosion,
all 1529 instances are classified correctly, and similarly, all 1466 pitting
corrosion instances are accurately identified. This shows thatwhile theGRU
efficiently handles sequential data, the LSTM architecture slightly outper-
forms it in distinguishingbetween corrosion forms.TheRFmodel displays a
significant improvement in detecting crevice corrosion, with 1,214 correct
classifications - higher than the other models - and only 89 FPs, which is
lower compared to other models. Moreover, the RF model excels in
detecting and differentiating the passive state from crevice corrosion, with
1926 correct classifications and only 46 misclassifications. Similar to the
other models, RF correctly classifies all general and pitting corrosion
instances. The performance improvement, particularly in the RF model, is
attributed to the automatic feature extraction capability of the LSTM

Table 3 | Classification report showing precision, recall, and
F1-score for different corrosion types using supervised
learning models

Model Type of
corrosion

Precision Recall F1-score Best test
accuracy (%)

LSTM Crevice 0.87 0.82 0.84 93.62

General 1.00 1.00 1.00

Passive 0.89 0.92 0.90

Pitting 1.00 1.00 1.00

Simple
RNN

Crevice 0.89 0.60 0.72 90.08

General 1.00 1.00 1.00

Passive 0.78 0.95 0.86

Pitting 1.00 1.00 1.00

GRU Crevice 0.74 0.83 0.78 90.46

General 1.00 1.00 1.00

Passive 0.88 0.81 0.84

Pitting 1.00 1.00 1.00

RF Crevice 0.00 0.00 0.00 79.52

General 1.00 1.00 1.00

Passive 0.61 1.00 0.76

Pitting 1.00 1.00 1.00

Fig. 5 | LSTM model structure. Structure of the tuned LSTM model with 2 layers
and tanh as activation function.
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autoencoder, which selects the most critical features for training the sub-
sequent supervised model.

Table 5 compares the performance of the four models - LSTM, Simple
RNN,GRU, andRF - in identifying different types of corrosion, as indicated
by precision, recall, F1-score, and test accuracy.

LSTMshows solid performance for crevice corrosiondetectionwith an
F1-score of 0.85, though it slightly underperforms in recall (0.81), indicating
that the model occasionally misses some crevice corrosion instances. The
LSTM model achieves a perfect score (Precision, Recall, and F1-score of
1.00) for both general and pitting corrosion. This suggests that the LSTM
captures the characteristics of these corrosion types. Thismodel achieves an
F1-scoreof 0.91 for thepassive state, reflecting awell-balancedperformance.
Its recall is higher than precision (0.94 vs. 0.88), showing that while it
correctly identifies most passive state cases, a few FPs are included. With a
best test accuracy of 94.15%, the LSTM model is highly reliable overall,
particularly for identifying corrosion types like pitting and general
corrosion.

The Simple RNN achieves similar results as the LSTM for crevice
corrosion, with an F1-score of 0.85 and slightly higher precision (0.92),
which indicates better identification of crevice corrosion instances com-
pared to LSTM. Like the LSTM, Simple RNN achieves perfect scores (1.00)
in both general and pitting corrosion, demonstrating the model ability to
handle clear and distinct patterns in these types of corrosion. The model
achieves an F1-score of 0.91 for passive state, similar to LSTM, but it has
slightly better recall (0.95 vs. 0.87 precision). This suggests that the model
excels at capturing true passive state cases, though it might include some
misclassifications. The Simple RNN achieves an overall test accuracy of
94.12%, which is roughly equal to the test accuracy of LSTM model. Its

Table 4 | Hyperparameters, search spaces, and optimized values for the LSTM autoencoder model

Model Hyperparameters Search space Optimized value

LSTM autoencoder Sequence length (seq_length) 10–100 20

number of hidden layers (num_layers) 1 to 3 2

number of units (units) 32–128 50, 50

Fig. 6 | Confusion matrices for hybrid models.
Confusion matrices obtained after training the
hybrid model including the LSTM autoencoder and
then supervised learning models (a) LSTM; (b)
Simple RNN; (c) GRU; (d) RF.

Table 5 | Classification report showing precision, recall, and
F1-score for different corrosion types using unsupervised
LSTM autoencoder and supervised learning models

Model Type of
corrosion

Precision Recall F1-score Best test
accuracy (%)

LSTM Crevice 0.9 0.81 0.85 94.15

General 1.00 1.00 1.00

Passive 0.88 0.94 0.91

Pitting 1.00 1.00 1.00

Simple
RNN

Crevice 0.92 0.79 0.85 94.12

General 1.00 1.00 1.00

Passive 0.87 0.95 0.91

Pitting 1.00 1.00 1.00

GRU Crevice 0.87 0.82 0.85 93.83

General 1.00 1.00 1.00

Passive 0.89 0.92 0.90

Pitting 1.00 1.00 1.00

RF Crevice 0.96 0.93 0.95 97.85

General 1.00 1.00 1.00

Passive 0.96 0.98 0.97

Pitting 1.00 1.00 1.00
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performance on crevice corrosion is notable, as it demonstrates higher
precision than LSTM.

The GRU model has an F1-score of 0.85 for crevice corrosion, with
balanced precision (0.87) and recall (0.82). This is slightly below the per-
formance of both LSTMand Simple RNNbut remains a good result overall.
Like the other RNN-based models, the GRU achieves perfect scores (1.00)
for general and pitting corrosion, suggesting that it can handle clearly dis-
tinguishable corrosion patterns well. With an F1-score of 0.90, GRU per-
forms slightly below the LSTM for passive state but still exhibits a strong
balance between precision (0.89) and recall (0.92).With a best test accuracy
of 93.83%, the GRU model performs slightly below the LSTM and Simple
RNN models but remains a competitive option. Its performance on all
corrosion types is strong, though it appears to face similar challenges in
differentiating crevice corrosion and passive state.

The RF model excels in detecting crevice corrosion, achieving an F1-
score of 0.95 with a high recall (0.93) and precision (0.96). This indicates a
superior ability to correctly identify and classify crevice corrosion compared
to the RNNmodels. Like the RNNmodels, RF achieves perfect scores (1.00)
for general and pitting corrosion, meaning it effectively handles these cor-
rosion types. RF demonstrates outstanding performance for passive state
detection, with an F1-score of 0.97. Its recall (0.98) is higher than precision
(0.96), meaning that while it detects almost all instances of passive state, it
may occasionallymisclassify other types as passive.With a best test accuracy
of 97.85%, the RF model outperforms the RNN-based models in terms of
overall accuracy. This indicates that RF is particularly robust when trained
on features extracted by the LSTM autoencoder and can differentiate
between corrosion types more effectively than the sequential models.

The structure of the hybridmodel is illustrated in Fig. 7. The input data
is first passed through the LSTM autoencoder, where critical features are
automatically extracted from the raw electrochemical current and potential
signals during the encoding phase. These extracted features formamatrix of
dimensions T × N, where T represents the number of sequences and N

denotes the number of extracted features. In the subsequent decoding step,
the LSTM autoencoder attempts to reconstruct the input data from the
extracted features, and the reconstructed data is compared with the original
input to assess the autoencoder’s performance in capturing essential fea-
tures. TheLSTMautoencoder architecture consists of twoLSTM layerswith
tanh activation for encoding and one LSTM layer for decoding. The latent
representations generated by the LSTM autoencoder are then fed into DL
andMLmodels for classification of different corrosion types. For simplicity,
Fig. 7 only illustrates the LSTMmodel, though other DLmodels are used as
well. The first step of the hybrid model is unsupervised, as the LSTM
autoencoder evaluates the extracted features by reconstructing the input
data without the need for labeled data. The second step is a supervised
learning process, in which labeled datasets are used to classify the corrosion
types through DL and ML models.

The hybrid learning approach, underscores the LSTM autoencoder
ability to capture complex patterns and dependencies of EN data, which
enhances the classification accuracy of both RNN-based models and, par-
ticularly, theRFmodel. TheRFmodel, traditionally less effective inhandling
sequential data, benefits fromthe autoencoder learned features,which retain
key temporal dependencies. Consequently, the LSTM autoencoder proves
to be a powerful tool in reducing the need for extensive feature engineering,
allowing the models to focus on essential patterns within current and
potential noise as input features, thereby improving classification accuracy
and efficiency in corrosion monitoring applications.

Unsupervised learning
Since real-world corrosion monitoring scenarios often involve obtaining
unlabeled data from EN tests, an unsupervised learning technique to dif-
ferentiate between various types of corrosion on flange surfaces using
unlabeleddata isfinally proposed. This approach consists of twomain steps.
In the first step, critical features are automatically extracted using an LSTM
autoencoder, and in the second step, these features are used as inputs for

Fig. 7 | Autoencoder and LSTM model structure.
Architecture of the hybrid approach, incorporating
feature extraction using a two-layer LSTM auto-
encoder (unsupervised technique) with 50 units per
layer, followed by classification using a two-layer
LSTM model (supervised technique) with 32 and
64 units.
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clustering via the k-means algorithm. The hyperparameters utilized in the
LSTMautoencoder are shown inTable 6 and are optimizedwithin a defined
search space. Two sequence lengths, 20 and 700, are tested with this
approach to evaluate themodel differentiation performance across different
types of corrosion, as variations in sequence length affect the model clas-
sification capabilities for specific corrosion types.

Figure 8 presents the confusion matrices for the hybrid learning
technique at twodifferent sequence lengths. In Fig. 8a,which corresponds to
a sequence length of 20, themodel successfully distinguishes all instances of
crevice corrosion, demonstrating complete accuracy in identifying this type
of corrosion. Similarly, general corrosion cases are entirely classified cor-
rectly. However, the model misclassifies all instances of the passive state as
crevice corrosion. For pitting corrosion, the model accurately identifies 919
instances, but 548 instances are erroneously categorized as the passive state.
Thus, with a sequence length of 20, the hybrid model effectively differ-
entiates crevice and general corrosion, though it struggles with the passive
state and pitting corrosion. In contrast, when the sequence length is
increased to 700, as shown in Fig. 8b, the model exhibits an improved
performance for all corrosion types except crevice corrosion. In this case, all
instances of crevice corrosion are misclassified as the passive state. Despite
this limitation, the model correctly classifies all cases of general corrosion
and thepassive state. For pitting corrosion, 27 cases are accurately identified,
while 11 cases are misclassified as crevice corrosion. This comparison

indicates that, while a sequence length of 700 enhances the model ability to
differentiate most corrosion types, it introduces challenges in correctly
identifying crevice corrosion.

The evaluation metrics for measuring model performance are pre-
sented inTable 7. For a sequence lengthof 20, themodel achieves a precision
of 0.40, a recall of 1.00, and an F1-score of 0.57 for detecting crevice cor-
rosion. In contrast, for general corrosion, all threemetrics—precision, recall,
and F1-score—are 1.00, indicating perfect classification performance. The
model performance for the passive state is notably poor, with all metrics
recorded as 0.00. For pitting corrosion, the model achieves a precision of
1.00, a recall of 0.71, and an F1-score of 0.83. The overall test accuracy of the
hybridmodel for a sequence length of 20 is 59.82%.When using a sequence
length of 700, the model performance changes notably. For crevice corro-
sion, all evaluationmetrics are 0.00, indicating a complete misclassification.
For general corrosion, all metrics remain at 1.00, showing consistent
accuracy. For thepassive state, themodel achieves aprecisionof 0.60, a recall
of 1.00, and an F1-score of 0.75. For pitting corrosion, the precision remains
at 1.00,while recall is 0.71, and the F1-score is 0.83. Thehighest test accuracy
observed for the model with a sequence length of 700 is 70.39%.

ThePCAvisualizationof the encoded features illustrates the separation
between different types of corrosion in the latent space. In Fig. 9, each color
in the scatter plot corresponds to a specific type of corrosion: crevice, gen-
eral, passive state, and pitting. PCA is used here to project the high-

Fig. 8 | Confusion matrices for unsupervised
models. Confusion matrices obtained after training
the LSTM autoencoder and then k-means algorithm
in the (a) sequence length of 20; (b) sequence length
of 700.

Table 7 | Classification report showing precision, recall, and F1-score for different corrosion types using unsupervised LSTM
autoencoder with clustering in different sequence lengths

Sequence length Model Type of corrosion Precision Recall F1-score Best test accuracy (%)

20 LSTM autoencoder with k-means Crevice 0.40 1.00 0.57 59.82

General 1.00 1.00 1.00

Passive 0.00 0.00 0.00

Pitting 1.00 0.63 0.77

700 LSTM autoencoder with k-means Crevice 0.00 0.00 0.00 70.39

General 1.00 1.00 1.00

Passive 0.60 1.00 0.75

Pitting 1.00 0.71 0.83

Table 6 | Hyperparameters, search spaces, and optimized values for the LSTM autoencoder model for unsupervised learning

Model Hyperparameters Search space Optimized value

LSTM autoencoder Sequence length (seq_length) 10–1500 20, 700

number of hidden layers (num_layers) 1 to 3 2

number of units (units) 32 to 128 50, 50
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dimensional latent features extracted by the LSTM autoencoder into two
principal components, making it easier to visualize the distinction of cor-
rosion types. As shown in Fig. 9a, which is related to the sequence length of
20, the clusters for crevice corrosion (in blue) and general corrosion (in red)
are distinctly isolated from the other types. This suggests that, on the one
hand, the encoded features corresponding to these corrosion types are
unique enough to be reliably distinguished. On the other hand, there
appears to be a slight overlap between the clusters for pitting (in yellow) and
passive states (in green). This overlap could indicate some similarities in the
features between these two corrosion types.

In Fig. 9b, which corresponds to a sequence length of 700, the general
corrosion and passive states are clearly distinguished from the other cor-
rosion types. This clear isolation indicates that the extracted features
effectively capture the differences between these types and the rest. How-
ever, there is a slight overlap between the clusters representing pitting and
crevice corrosion, suggesting that the extracted features from inputs with a
sequence length of 700 learned the dependencies in the datamore effectively
for distinguishing general corrosion and passive states.

After transforming the extracted features into a lower-dimensional
space using PCA, k-means clustering is used to group similar data points,
where each cluster represents a specific corrosion type.Within each cluster,
the distance of each point to its centroid is calculated. The centroid, iden-
tified by a black cross in Fig. 9 represents the typical behavior for a given
corrosion type. The 95% threshold or control limit is set based on the 95th

percentile of these distances (shown by a black dashed line in Fig. 9a, b),
defining a boundary within which data is considered to be typical for the
corrosion type associated with the cluster.

The unsupervised approach can be applied in real-time corrosion
monitoring. For example, if the normal operating condition is general
corrosion or passive state, the measured EN data will be located inside the
control limits (dashed lines inFig. 13) of these types of corrosion. If the input
data is located outside of the control limits of general corrosion or passive
state, it can be concluded that crevice corrosion or pitting corrosion is
initiated in the flanged joint.

Although confusion matrices and classification metrics show lower
performance for the unsupervised approach than the supervised and hybrid
approaches, after applying PCA the types of corrosion could be distinctly
identified and then clustered using k-means, specifically in the sequence
length of 700 and for general andpassive corrosion.Unsupervised approach
has higher applicability in real-time corrosion monitoring than the other
proposed approaches in this study as the corrosion monitoring data are
mostly unlabeled.

To sum up, this study demonstrates the potential of RNN models
including simple RNN, LSTM, GRU and particularly LSTM networks and
autoencoders in distinguishing the types of corrosion by analyzing EN data
obtained from flange sample plate surfaces under different experimental
conditions. The findings and analyses reveal that:
• Among the supervised models, the LSTM achieved the highest test

accuracy of 93.62%, effectively uncovering hidden patterns in the EN
data, which enabled robust classification of corrosion types.

• To enhance themodels’ accuracies, a hybrid approach is implemented,
resulting in improved performance across all models. The RF model
achieved the highest test accuracy of 97.85% in distinguishing corro-
sion types, demonstrating the effectiveness of feature extraction
through LSTM autoencoders for pattern recognition.

• The supervised and hybrid approaches, leveraging labeled data, suc-
cessfully distinguish between general corrosion, pitting, crevice cor-
rosion, and passive states. However, the performance of the
unsupervised technique, which operates without labeled data—amore
typical scenario in real-world corrosionmonitoring—is less effective in
comparison.

• In the unsupervised approach, PCA assists in clustering based on
features extracted by the LSTM autoencoder, improving its ability to
detect transitions between corrosion types. In real-time monitoring
scenarios, this system can continuously classify incoming EN data and
detect shifts from passive states to aggressive forms of corrosion, such
as pitting or crevice corrosion, based on the cluster assignments.

This study is the first in the literature that proposes the use of RNN
models for processing EN data in corrosion monitoring. It was demon-
strated that using the developed RNN approach the identification of loca-
lized corrosion initiation (pitting or crevice) can be automated, without the
need for disassembly of bolted joints in pipelines that causes shutdowns and
significant losses.

In future research, the developed approaches can be improved by
adding more corrosion types to the database and increasing the range
and type of service conditions. Then, the presented RNN-based model
can be applied in corrosion monitoring to reassess the effectiveness of
coatings and inhibitors, as data from ineffective coatings or inhibitors
will be mapped to distinct clusters, enabling early detection of reduced
performance. Using databases related to coatings and inhibitors, the
model’s ability for detecting and evaluating the effectiveness of these
protective measures can be validated and enhanced, and as such create
a novel powerful tool for enhanced corrosion management and pre-
dictive maintenance in industrial environments. Furthermore, since
the approach developed in this study is designed for use with raw EN
signals without relying on system-specific features, it holds promise for
generalization across various corrosion systems, including different
materials and environments. Future validation studies could focus on
applying this approach to datasets collected frommarine, atmospheric,
or sour service conditions to further demonstrate its adaptability to
real-world use cases.

Fig. 9 | PCA visualization of unsupervised models. Visualization of the extracted
features from the LSTM autoencoders using PCAmethod in two dimensions for the
(a) sequence length of 20; (b) sequence length of 700.
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Methods
The overview of the methodology used in this study is shown in Fig. 10. In
order to study the applicability of RNNmodels to process EN data, in a first
step, experimental tests are performed to collect data for model training.
Then, collected data are preprocessed and prepared by removing outliers,
labeling the dataset, and encoding categorical data, to feed the models.
Subsequently, different learningmodels, as shown in Fig. 10, are trained and
their performances are evaluated and compared with each other, using
confusion matrices and other typical DL and ML performance metrics.
Three approaches are considered, namely supervised learning, hybrid
learning, and unsupervised learning. The supervised and hybrid learning
models need labeled data to train and predict labels, but the unsupervised
learning models are used in cases where data are not labeled, which is
typically the case in uncontrolled, real-world environments. Hyperpara-
meter tuning is conducted for each model to identify the parameter values
that yield the highest accuracy. Confusion matrices are also used in the
evaluation step to visualize the predicted corrosion types versus true cor-
rosion types.AllMLmodels are built usingPython in Jupyter notebook.The
details of each step in Fig. 10 is discussed in the following sections.

Materials
Thematerials of the sample plates are ASTMA105 carbon steel, andASTM
A182F321 stainless steel (SS)which arewidely used in themanufacturing of
flanges. The chemical compositions of the flange materials are provided in
Table 8. The flange sample plates have an outside diameter OD of 2.95 in.
(74.93mm), an insidediameter IDof 1.31 in. (33.27mm), and a thickness of
0.25 in. (6.35mm) (as shown in Fig. 11a). Virgin polytetrafluoroethylene
(PTFE) gaskets are used between the sample plates, following the

specifications ofASMEB16.2144 for non-metallicflat gaskets used inflanges.
The thickness of the gasket is 3.17mm with the ID and OD of 48.26 and
71.12mm, respectively (as shown in Fig. 11a). The surface area of the flange
that is exposed to the solution is equal to 9.73 cm2 for each sample plate. The
roughness of the sample plates ismeasured using aMitutoyo Surftest SJ-410
mechanical profilometer following the ISO 21920-2:2021 standard, as
commonly used in the literature45. A cut-off length of 0.8mm and a short
wavelength cut-off filter λs of 2.5 µm are used, resulting in an arithmetic
mean of absolute height values Ra= 1.006 ± 0.05 µm after three measure-
ments on three different samples.

Electrochemical tests
In order to perform electrochemical tests in conditions close to real-world
flanged gasketed joints, the gasket is sandwiched between two flange sample
plates as shown in Fig. 11a, and then placed in the fixture (Fig. 11b) of an in-
house developed test rig10,11. Since flanged gasketed joints are secured using
hydraulic tensioners that apply high initial compressive stress46, the fixture
illustrated in Fig. 11b is positioned on a stand with a hydraulic tensioner to
compress the gasket to an initial average stress level of 15MPa. This contact
stress is calculatedbasedon themeasurementof the central bolt forceusing a
fullWheatstone bridgewith strain gauges attached to the central stud before
testing.

The fixture is composed of nuts for fastening the joints after applying
the compressive load, plain washers to increase the contact area, com-
pression plates that have entrance and exit ports for the solution, electrical
insulators to avoid electrical short circuits between the flange sample plates,
which are also used as working electrodes (W.E.1 andW.E.2), compression
plates and Belleville washers to maintain the preload during the

Fig. 10 | Methodology overview. Schematic over-
view of the methodology used for the classification
of the type of corrosion.

Table 8 | Chemical composition of flange sample plates (wt. %)

Elements C N Si P S Cr Mn Ni Mo Cu

321 SS 0.049 0.024 0.54 0.03 0.001 17.45 1.57 9 0.37 0.48

A 105 0.19 0.01 0.22 0.01 0.02 0.17 1.09 0.09 0.03 0.24
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electrochemical tests. The O-rings are placed between the central stud and
the compression plates to seal the solution chamber and avoid electrical
short circuits between the central stud and the compression plates.

After mounting the fixture, the tubes and electric wires are connected as
shown in Fig. 12. The electrolytic solution passes through a water-jacketed
glass cell used to control and maintain the temperature to ±1 oC. The water
jacket surrounds the solution inside the glass cell and acts as a temperature
buffer. The heated circulating bath system (Polystat Cole-Parmer
CR500WU) controls and maintains the temperature of the water in the
jacket side of the glass cell by a heating and cooling system. The electrolyte
solution in the glass cell flows into the tubes (identified by the dark blue lines
in Fig. 12) through the peristaltic pump (BRL Life Technologies CP-600).
The solution flow rate is adjusted by the peristatic pump and measured by
the flow sensor (Digiten FL-402B). The conductivity, pH, and temperature of
the solution are measured by the conductivity and pH electrodes connected
to a benchtop multiparameter meter (Thermo Fisher STARA2150 series).
For the EN tests, a Metrohm Autolab PGSTAT302N High-Performance
potentiostat/galvanostat, including a dedicated ECN module (Metrohm
ECN.S X19-6), is employed to capture both current and potential data. A
Pine Research single-junction, saturated Ag/AgCl reference electrode,
equipped with a porous ceramic tip and filled with a 3MKCl solution, serves
as the reference electrode (R.E.), and all potentials are measured relative to
this Ag/AgCl electrode. To minimize the effect of the ohmic drop between
the reference and working electrodes, a salt bridge is used to connect the test
solution in the fixture to the reference electrode. Sensor-generated analog
signals are transmitted to a custom-designed printed circuit board (PCB) and
digitized by a National Instruments data acquisition (DAQ) card. The DAQ,

potentiostat, and multiparameter meter interface directly with the computer
via USB, managed through a LabVIEW program.

The EN data are collected from four different experimental conditions
(C1-C4). Hence, four test solutions are prepared using the analytical grades
which are 0.1M sodium chloride (NaCl) (C1), 0.5M sodium hydrogen
carbonate (NaHCO3) (C2), 0.45M sodium hydrogen carbonate + 0.1M
sodium chloride (0.45MNaHCO3+ 0.1MNaCl) (C3), and 0.6M sodium
chloride (NaCl) (C4). These solutions are used to induce general corrosion,
passivation, pitting, and crevice corrosion, respectively. To induce pitting
corrosion, the sample plates are passivated in the 0.5M NaHCO3 solution
for 1 h before placing in the fixture for testing. The EN measurements are
performed by connecting the upper flange sample plate as W.E. 1 and the
lower one as W.E. 2 (as shown in Fig. 11b) in the test rig, which are
nominally identical samples and parallel to each other.

The current between the two electrodes is measured using the ZRA
modeof theAutolabpotentiostat, and thepotential of theW.E.s ismeasured
relative to the R.E. using the high-resolution Metrohm ECN module. The
EN data is collected with a frequency of 2Hz. Table 9 indicates the
experimental conditions to build the dataset for training and testing the
classification ability of RNNmodels.

The sample plates are degreased in an ultrasonic bath with ethanol for
20min, followed by air drying before subjected to EN testing. The EN tests
start two hours after letting the electrolyte solution circulate within the
fixture, ensuring sufficient time for the surfaces of the sample plates and the
interface with the gasket to soak. Each EN test is replicated three times to
verify repeatability and reproducibility of the corrosion type occurring on
the flange faces. The corrosion type is confirmed during post-test

Fig. 11 | Illustration of flange, gasket, and fixture.
The schematic illustration of the (a) flange sample
plate including the sizes and the exposed area to the
solution; and (b) the test fixture including the labels
of each item in the fixture.

Fig. 12 | Test rig illustration. The schematic of the
test rig including all the sensors and equipment for
measurements and monitoring.
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microscopic examination. However, only one representative dataset per
condition is used in themodel to avoidover-representationof similar signals
and reduce the risk of overfitting.

Flange surface analysis
Following each experiment, the flange sample plates are first rinsed with
distilled water, then further cleaned with ethanol. The samples are subse-
quently air-dried at room temperature. The corroded surfaces are observed
using a digital microscope (Keyence VHX-7000) with a VHX E20 lens with
the tilt angle of 0 degree to characterize and determine the type of corrosion
that took place on them.

Data preprocessing
The potential and current signals obtained from the EN tests are labeled
during the data preprocessing stage. These labels correspond to the type of
corrosion observed in the signals and microscopic images: “General,”
“Passive,” “Pitting,” and “Crevice.” The number of data entries associated
with each corrosion type is as follows: “General” = 154,817; “Passive” =
226,454; “Pitting”=144,493; and “Crevice”=101,130, as detailed in Table 3.
The categorical labels are then converted into numerical values using the
LabelEncoder from the sklearn.preprocessing47 module, allowing the
models to process the data. Linear detrending was applied to the current
signal using scipy.signal.detrend48 to remove baseline offsets and slow drifts.

Recurrent Neural Network (RNN)
RNNs are a type of neural network architecture featuring recurrent con-
nections, primarily used to identify patterns within sequential data. This
data can include handwriting, genetic sequences, speech, or numerical time
series, commonly generated in industrial settings (e.g., by sensors)49. RNNs
contain high-dimensional hidden states characterized by non-linear
dynamics. This hidden state structure acts as memory for the network,
with each hidden layer state at a given moment influenced by its preceding
state50. This allows the network to maintain and update contextual infor-
mation as it processes a sequence of data. The hidden state update is
represented as Eq. 1,whereht is the current hidden state,h(t-1) is the previous
hidden state, xt is the current input,Wh andWx are weight matrices, b is a
bias term, and f is an activation function51. The output yt of the RNN
network is obtainedbyEq. 2 at each time step t. The size of thehidden state is
a hyperparameter that can be tuned. Larger hidden states can potentially
capture more information but also require more computational resources.

ht ¼ f ðWh ×ht�1 þWx × xt þ bhÞ ð1Þ

yt ¼ Wy ×ht þ by ð2Þ

Figure 13 depicts the architecture and operation of a RNN across
multiple time steps. The inputs at different time steps (xt-1, xt, xt+1,…, xt+n)
are represented by the blue circles on the left. Each input is processed
through several hidden layers (h1, h2, h3) at each time step t. The hidden
layers are shown by the gray circles. The states at time t (ht) depend on the
current input and the hidden state from the previous time step, showing
how information is passed through time. The weights from input to hidden
layers are represented as wx, w1, and w2. The hidden-to-hidden weights are
shown aswh,1,wh,2, andwh,3, indicating how the hidden state from one time

step influences the next. The output weights are shown as wy. The network
produces outputs at each time step (yt-1, yt, yt+1,…, yt+n), represented by the
yellow circles on the right. RNNs are a class of DLmodels, made of artificial
neurons with one or more feedback loops. They can be trained on labeled
sequential data, where the network learns to predict an output sequence
given an input sequence50.

One of the limitations with the RNN is the vanishing gradient issue,
which affects the effectiveness of this method52. To overcome this problem
long short-term memory (LSTM)53 and gated recurrent units (GRUs)54

which are popular RNN architectures and also used to compare their
classification accuracies. In this study, TensorFlow libraries55 are used to
train RNN models.

Long Short-Term Memory (LSTM)
To address the vanishing gradient issue in Simple RNN models, LSTM
networks updatehidden stateswith extra learning parameters, including the
forget gate ft, input gate it, output gate ot, and cell state ct. These values can be
calculated using the following equations56:

f t ¼ σ Wif xt þ bif þWhf ht�1 þ bhf
� �

ð3Þ

it ¼ σ Wiixt þ bii þWhiht�1 þ bhi
� � ð4Þ

gt ¼ tanh Wigxt þ big þWhght�1 þ bhg
� �

ð5Þ

ot ¼ σ Wioxt þ bio þWhoht�1 þ bho
� � ð6Þ

ct ¼ f t � ct�1 þ it � gt ð7Þ

ht ¼ ot � tanhðctÞ ð8Þ

Where ht represents the hidden state at time t, ctdenotes the cell state at time
t, and xt is the input at time t. Similarly, ht-1 refers to the hidden state at the
previous time step t-1 or the initial hidden state at time 0. The symbols it, ft,
gt, and ot correspond to the input, forget, cell, and output gates, respectively.
Here, σ is the sigmoid activation function, and ʘ represents the element-
wise Hadamard product56.

Gated Recurrent Unit (GRU)
The GRU model also addresses the vanishing gradient problem, offering
performance similar to LSTMby utilizing a gated structure. However, GRU
requires fewer variables and applies amulti-layer gated recurrent unit RNN
toprocess an input sequence. For each item in the input sequence, each layer
performs the following function57:

rt ¼ σ Wirxt þ bir þWhrht�1 þ bhr
� � ð9Þ

zt ¼ σ Wizxt þ biz þWhzht�1 þ bhz
� � ð10Þ

nt ¼ tanh ðWinxt þ bin þ rt � ðWhnht�1 þ bhnÞÞ ð11Þ

Table 9 | Experimental conditions to make a dataset to test the classification ability of the RNN model

Condition Rows of data Material Solution Temperature (oC) Type of corrosion Time (h)

C1 154817 Carbon steel A105 0.1 M NaCl 22 General corrosion 21

C2 172712 Carbon steel A105 0.5M NaHCO3 22 Passive 24

C3 144493 Carbon steel A105 0.5M NaHCO3+ 0.1M NaCl 22 Pitting corrosion 20

C4 53742 321 SS 0.6M NaCl 50 Passive 7.5

C4 101130 321 SS 0.6M NaCl 50 Crevice corrosion 14
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ht ¼ ð1� ztÞ � nt þ zt � hðt�1Þ ð12Þ

Where the terms rt, zt, and nt correspond to the reset, update, and newgates,
respectively.

Long Short-Term Memory (LSTM) autoencoder
Autoencoders are unsupervised representation learning techniques that
define non-linear encoder and decoder functions to compress and recon-
struct data58. LSTM networks can be used in autoencoders to capture
temporal dependencies or early anomaly detection in sequential data. LSTM
autoencoder extracts the features from the database by reducing the
dimensions in the encoding layers. This model is trained by reducing the
difference between the original input and the reconstructed data in the
decoding layers.

Random forest (RF)
RF method is an ensemble learning approach that combines predictions
from several decision trees by aggregating their outputs59. This technique
generally shows strong performance in generalizing to unseen data. In this
paper, this method is used to compare its performance as a classical ML
model with RNNmodels, as it has a wide application in classification tasks.
It is implemented using scikit-learn47, and some key hyperparameters are
tuned, including the number of trees in the forest (n_estimators), the
maximum tree depth (max_depth), the minimum number of samples
required to split an internal node (min_samples_split), the minimum
number of samples required to be at a leaf node (min_samples_leaf), and the
bootstrapping is used (bootstrap). The optimized values of these hyper-
parameters are reported in the results and discussion section.

K-means clustering
K-means clustering is an unsupervised technique that classifies the
data based on their similarities60. This technique associates each input
with a label from 1 to k, and it introduces centroids (µ1, …, µk), then

adjusts both the centroids and the cluster assignments until each input
is close to its assigned centroid61. In this study, the output features
extracted by the LSTMautoencoder are further reduced using PCA and
then clustered using the K-means algorithm. The number of clusters is
set to k = 4, which reflects the predefined classification structure. The
K-means model was implemented using scikit-learn’s K-means class
with a fixed random state (random_state=0) to ensure reproducibility.
After fitting the model on the PCA-transformed training data, cluster
assignments are predicted and the corresponding centroids are
extracted.

Hyperparameter tuning
Hyperparameter tuning refers to the process of optimizing the performance
of a ML model by selecting the best values for hyperparameters. Unlike
parameters that the model learns during training, hyperparameters are set
prior to training and determine the overall behavior of the model62. In the
present study, two techniques are used for hyperparameter tuningwhich are
Bayesian hyperparameter optimization and grid search.

The grid search technique searches through a predefined grid of
hyperparameter combinations63. Each combination is tested by training the
model and evaluating its performance, using cross validation. Grid search is
deployed for tuning the depth and number of estimators in the RF model.

Bayesian optimization builds a probabilistic model of the objective
function, such as validationaccuracy, anduses thatmodel todecidewhere to
evaluate the next set of hyperparameters64. Such Bayesian based approach
aims to find the optimal hyperparameters with fewer evaluations compared
to grid search, making it faster and more computationally feasible65. This
method is useful when tuning DL models or models with many hyper-
parameters, such as the number of layers and units in RNN. Bayesian
optimization reduces the number of trials by focusing the search on pro-
mising regions of the hyperparameter space based on previous evaluations,
making it suitable for scenarios where model training is computationally
expensive.

Fig. 13 | RNN architecture. Schematic of the
detailed RNNworkflow indicating how each hidden
state (highlighted in gray) depends on the previous
hidden state, capturing the temporal dependencies
in the data.
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Evaluation of the learning models
To evaluate model performance, k-fold cross-validation with three folds is
employed using the KFold method from sklearn.model_selection. This pro-
cess is done to ensure that overfitting is not occurred to a single training set66.
Toevaluate the classificationperformanceof themodels, theconfusionmatrix,
accuracy score, F1-score, precision, and recall are typically calculated for each
model67. All these metrics are therefore adopted in the present study and are
computed using the test data that the models have not seen during training.

The accuracy represents the proportion of correctly predicted labels
out of the total number of predictions and is calculated using Eq. 1368.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð13Þ

WhereTPdenotes the truepositives, i.e., correctlypredictedpositive instances,
TNrepresents the truenegatives, i.e., correctlypredictednegative instances, FP
denotes the false positives, i.e., incorrectly predicted positive instances, andFN
presents the false negatives, i.e., incorrectly predicted negative instances.

Precision is the proportion of the TP predictions out of all positive
predictions made by the model as shown in Eq. 1468. As such, a high
precision indicates that the model makes only few false positive errors.

Precision ¼ TP
TP þ FP

ð14Þ

Recall measures the proportion of actual positives that are correctly
identified as calculated in Eq. 1568, and high recallmeans themodel captures
most of the positive instances, but it might also includemore false positives.

Recall ¼ TP
TP þ FN

ð15Þ

The F1-score is the harmonic mean of precision and recall and is
calculated using Eq. 1668. It balances the two metrics and is particularly
useful when dealing with unbalanced classes. A high F1-score indicates that
the model has both good precision and recall, making it an effective overall
measure of model performance.

F1� Score ¼ 2 ×
Precision×Recall
Precisionþ Recall

ð16Þ

A confusion matrix is a table used to evaluate the performance of a
classification model on a test dataset with known true values. It has two
dimensions: one indexed by the actual class and the other by the predicted
class provided by the classifier69. It provides the counts of TPs, FPs, TNs,
and FNs.

Data availability
Theused rawdata anddeveloped codes required to reproduce thesefindings
are available to download from the following Github repository: https://
github.com/Soroosh-HKN/ECN-RNN.
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