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ABSTRACT Fine-tuning Large Language Models (LLMs) for clinical Natural Language Processing (NLP)
poses significant challenges due to domain gap, limited data, and stringent hardware constraints. In this
study, we evaluate four adapter techniques—Adapter, Lightweight, TinyAttention, and Gated Residual
Network (GRN) - equivalent to Low-Rank Adaptation (LoRA), for clinical note classification under real-
world, resource-constrained conditions. All experiments were conducted on a single NVIDIA Quadro P620
GPU (2 GB VRAM, 512 CUDA cores, 1.386 TFLOPS FP32), limiting batch sizes to ≤ 8 sequences and
maximum sequence length to 256 tokens. Our clinical corpus comprises only 580 000 tokens, several
orders of magnitude smaller than standard LLM pre-training datasets. We fine-tuned three biomedical
pre-trained LLMs (CamemBERT-bio, AliBERT, DrBERT) and two lightweight Transformer models trained
from scratch. Results show that 1) adapter structures provide no consistent gains when fine-tuning biomedical
LLMs under these constraints, and 2) simpler Transformers, with minimal parameter counts and training
times under six hours, outperform adapter-augmented LLMs, which required over 1000 GPU-hours. Among
adapters, GRN achieved the best metrics (accuracy, precision, recall, F1 = 0.88). These findings demonstrate
that, in low-resource clinical settings with limited data and compute, lightweight Transformers trained from
scratch offer a more practical and efficient solution than large LLMs, while GRN remains a viable adapter
choice when minimal adaptation is needed.

INDEX TERMS Low-rank adaptation (LoRA), adapters, LLM, clinical NLP, cardiac failure, text
classification.

I. INTRODUCTION
Currently, LLMs in natural language processing (NLP) have
achieved remarkable advancements, evolving significantly
over recent years. Before 2017, Long Short-Term Memory
Networks (LSTMs) were the state-of-the-art in language
modeling, reaching impressive scales of up to a billion
parameters [1]. The introduction of the Transformer model
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in 2017 marked a paradigm shift, leveraging the attention
mechanism to set new benchmarks in NLP [2]. This
innovation laid the groundwork for models such as GPT-2
[3] and GPT-3 [4], and further studies into the scaling laws
for neural language models [5]. Today, Transformer-based
architectures with self-attention mechanisms, exemplified by
models like GPT-4, Claude 3, and Gemini, have become the
standard for LLMs [6].
In the clinical domain, the decision support system

(CDSS) at CHU Sainte-Justine (CHUSJ) aims to enhance
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FIGURE 1. The visualized workflow for the experiment set-up with
Transformer-based LLM [7] structure, and learnable layers from a LoRA
Adapter, which is a lightweight auxiliary network that runs alongside the
transformer layer, transforming their activations into a structured,
hierarchical feature representation.

the diagnosis and management of acute respiratory distress
syndrome (ARDS) in real-time by automatically analyzing
data from electronic medical records, chest X-rays, and other
sources. Previous research has highlighted that ARDS is
often diagnosed late or missed in many patients, underscoring
the need for more effective diagnostic tools [8]. Diag-
nosing ARDS requires identifying three main conditions:
hypoxemia, chest X-ray infiltrates, and the absence of
cardiac failure [9]. Furthermore, ARDS and cardiac failure
frequently present with similar symptoms, making early and
accurate diagnosis crucial for effective treatment strategies,
particularly in critical care units like the Pediatric Intensive
Care Unit (PICU). Accurately distinguishing between these
conditions can significantly influence patient outcomes,
potentially saving lives.

The research team at CHUSJ has developed advanced
algorithms to detect hypoxemia [10], analyze chest X-
rays [11], [12], and identify the absence of cardiac failure.
Our research group has also extensively analyzed machine
learning algorithms for detecting cardiac failure from clinical
narratives using NLP techniques [13], [14]. Recent studies
have demonstrated the superior performance of LLMs in
handling complex tasks, such as understanding numerical
attributes within clinical notes that contribute to cardiac
failure, compared to traditional word embedding and deep
learning methods [15], [16]. Implementing these advanced
algorithms has the potential to significantly increase ARDS
diagnosis rates and improve patient outcomes at CHUSJ.

However, while efforts have been made to adapt LLMs
in these studies, the results have been limited, indicating

the need for further research and optimization to leverage
LLM capabilities fully. Applying LLMs in clinical NLP
remains challenging due to limited data availability and
strict privacy regulations. Training must often be confined
to protected environments within hospital servers, especially
in CDSS environments that operate under constrained
computational resources and inflexible data privacy policies.
Despite promising results, these significant limitations per-
sist. Consequently, this study empirically analyzes LLMs’
adaptability within the CDSS framework at CHUSJ, aiming
to enhance clinical decision-making and patient outcomes
while navigating the challenges of data privacy and resource
constraints.

In summary, as shown in Fig. 1, this study addresses
the challenge of adapting LLMs for clinical note clas-
sification within the strict data, privacy, and compute
constraints of the CHUSJ CDSS. Our primary objectives
are to (i) empirically evaluate lightweight adapter structures
(Adapter, Lightweight, TinyAttention, GRN) for fine-tuning
pre-trained biomedical LLMs under these constraints, (ii)
benchmark their performance against Transformer models
trained from scratch on a limited 580 000-token corpus,
and (iii) derive practical recommendations for deploying
NLP models in resource-limited clinical settings. The main
contributions of this work are:

• We conduct the first head-to-head comparison of four
LoRA-equivalent adapter techniques on three biomed-
ical LLMs (CamemBERT-bio, AliBERT, DrBERT)
versus lightweight Transformers trained from scratch.

• We identify GRN as the top-performing adapter (F1 =
0.88) and demonstrate that simpler Transformers reach
superior accuracy in under 6 GPU-hours.

The remainder of the paper is organized as follows. Sec-
tion II reviews related work on adapter methods and clinical
NLP. Section III describes our dataset, experimental setup,
and adapter architectures. Section IV presents quantitative
results and analysis. Section V discusses limitations and
implications for CDSS integration and deployment. Finally,
Section VI concludes and outlines future directions.

II. RELATED WORKS
One of the critical challenges with Transformer-based
LLMs in clinical text classification is their difficulty in
accurately interpreting short texts and their tendency to rely
heavily on keywords [13]. In our recent research, we have
explored various strategies to improve LLM performance in
this domain. These strategies include utilizing Mixture of
Experts (MoE) Transformers [17] and integrating adapters as
intermediate layers to filter out irrelevant information [18].
Despite these efforts, these approaches did not surpass the
performance of a simple MLP combined with a dense feature
representation from an autoencoder [14]. This underperfor-
mance is attributed to a generalization gap between training
and validation, especially with large models trained on small
datasets. Additionally, other findings indicate that LLMsmay
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not consistently deliver superior results, particularly when
considering accuracy, cost, and safety factors. As models
become more complex and expensive, issues related to cost
and accessibility becomemore pronounced, which are critical
factors in the CDSS environment [19], [20].

Several potential approaches can be employed to address
the challenges of using LLMs in clinical NLP with small,
limited datasets. One effective strategy is instruction tuning,
a parameter-efficient method that optimizes LLMs to follow
specific instructions better, thereby aligning them to new
domains [21]. Additionally, fine-tuning techniques can help
unlock the capabilities of LLMs for various downstream
applications, ensuring robust performance even with con-
strained data [22]. These strategies can significantly enhance
the adaptability and effectiveness of LLMs in clinical settings
where data availability is limited, ultimately improving their
utility.

Two primary approaches are commonly employed
in fine-tuning LLMs: full-model tuning (FMT) and
parameter-efficient tuning (PET). PET includes methods
such as prompt tuning and LoRA, which are especially
relevant when the size of the LLM far exceeds the
available fine-tuning data, a common scenario in data-
limited environments [23]. Among these methods, LoRA
is particularly notable due to its adaptability and ability
to facilitate end-to-end customization during fine-tuning.
LoRA freezes the pre-trained model weights and introduces
trainable rank decomposition matrices into each layer of
the Transformer architecture. This significantly reduces the
number of trainable parameters required for downstream
tasks. For example, compared to GPT-3 175B fine-tuned with
Adam, LoRA can reduce the number of trainable parameters
by 10,000 times and the GPU memory requirement by three
times. LoRA performs as well as or better than traditional
fine-tuning in terms of model quality on models such as
RoBERTa, DeBERTa, GPT-2, and GPT-3, despite having
fewer trainable parameters, higher training throughput, and
no additional inference latency [24].

Adapter modules [25], [26] represent a form of LoRA
efficient tuning, integrating small, newly initialized param-
eter modules at each transformer layer of pre-trained LLMs.
These modules typically comprise a two-layer feed-forward
neural network with a bottleneck structure. Specifically,
the adapter structure includes (1) a down-projection layer
with weights Wdown ∈ Rd×r that reduces the input hi
to a lower-dimensional space defined by the bottleneck
dimension r ; and (2) an up-projection layer with weights
Wup ∈ Rr×d that projects the reduced input back to its
original size. Mathematically, the adapter operation can be
expressed as:

ha = W T
upf

(
W T
downhi

)
(1)

where ha is the output and f (·) represents the activation
function. This configuration allows for efficient parameter
updates during fine-tuning while maintaining the overall

structure and performance of the pre-trained LLMs. There-
fore, this study aims to analyze the impact of different
adapter structures, which offer minimal complexity and rapid
adaptation to LLMs, for clinical NLP narrative classifi-
cation. This implementation is designed to operate within
constrained computational capacities, making it suitable for
environments with limited computational resources. The
choice of NVIDIA Quadro P620, with its significantly
limited computational capabilities (512 CUDA cores and
only 1.386 TFLOPS FP32 performance), imposes substantial
computational constraints compared to high-performance
GPUs such as the NVIDIA A100, as shown in Table 1. This
selection reflects deliberate experimental conditions intended
to replicate scenarios typical of resource-constrained envi-
ronments, ensuring that developed models are robust and
efficient under strict hardware limitations for fine-tuning
LLMs directly on clinical texts.

III. MATERIALS AND METHODS
A. CLINICAL NOTES DATA AT CHUSJ
This study was conducted following ethical approval from
the research ethics board at CHUSJ (protocol number: 2020-
2253), and the study’s design focused on identifying cardiac
failure in patients within the first 24 hours of admission
by analyzing admission and evolution notes during this
initial period. The dataset consisted of 580,000 unigrams
extracted from 5,444 single lines of short clinical narratives.
Of these, 1,941 cases were positive (36% of the total), and
3,503 cases were negative. While the longest n-gram was
over 400 words, most n-grams had a length distribution
between 50 and 125 words. The average length of the number
of characters was 601 and 704, and the average size of
the number of digits was 25 and 26 for the positive and
negative cases, respectively. We pre-processed the data by
removing stop-words and accounting for negation in medical
expressions. Numeric values for vital signs (heart rate, blood
pressure, etc.) were also included and decoded to account
for nearly 4% of the notes containing these values. All notes
are short narratives; detailed characteristics for the notes at
CHUSJ can be found in the Supplementary Materials from
the study [13], [14].

In summarization, we apply the ScatterText [31] for the
note visualization. In total, we have over 580000 unigrams
(n-gram) shown in Fig. 3. The figure shows the most frequent
words for the positive case in the upper right corner; the
most frequent words for the negative cases in the lower-
left corner; and, all less frequent words for both cases are
in the center. Besides, the top terms from the positive and
negative cases are presented on the right-hand side. In positive
cases, we quickly see that most of these terms are positively
related to cardiacmalfunction: milrinone or milri (milrinone),
aorte or aortique valve (aortic valve). In contrast, terms such
as respiratoire (respiratory), and IVRS (Infection des voies
respiratoires supérieures - Virus responsible for respiratory
distress) indicate respiratory syndromes.
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FIGURE 2. Different adapter structure, including AdaptFormer [27], Lightweight [28], TinyAttention [29], GRN [18], [30].

TABLE 1. Comparison between NVIDIA Quadro P620 and NVIDIA A100 80GB PCIe.

B. BIOMEDICAL PRETRAINED LLM
In recent years, the development of biomedical pre-trained
BERT-based models has significantly advanced the pro-
cessing and understanding of biomedical text, particularly
within the French language domain. As confirmed in [17],
three notable among these models are CamemBERT-bio [32],
DrBERT [33], and AliBERT [34], each tailored to address the
unique challenges of biomedical text analysis. CamemBERT-
bio, for instance, is designed explicitly for French biomedical
data, leveraging the robust architecture of CamemBERT to
deliver superior performance in this field. Similarly, DrBERT
andAliBERT enhance the landscape of specializedmodels by
offering high accuracy and efficiency in various biomedical
NLP tasks. These models are exceptionally well-suited for
classifying French clinical notes, having been trained on
extensive French biomedical corpora. These models are
particularly adept at classifying French clinical notes due
to their training in extensive French biomedical corpora,
which enables them to accurately capture the nuances and
specialized terminology unique to French medical practice.

C. TRANSFORMER-BASED MODELS
Training Transformer models effectively with small datasets
presents a significant challenge. Transformers often exhibit
limitations such as a generalization gap and sharp minima
when applied to small datasets [13]. Furthermore, their
performance degrades on imbalanced and small clinical
datasets [35]. Our recent study indicates that the Mixture-

of-Experts (MoE) Transformer [17] can mitigate some of
these limitations by enhancing model performance with
limited data. In this study, we will experiment with the
standard Transformer and the MoE-Transformer for clinical
text classification tasks to evaluate their effectiveness in
handling small and imbalanced datasets.

D. ADAPTERS STRUCTURES
Employing limited computational constraints and limited
data, this study limited the experiment to the follow-
ing adapter structure, which is simple and scalable for
effectively fine-tuning the pre-trained model as the LoRA
technique [36], as shown in Fig. 2. Below we present the
formal derivations for each adapter, specifying how an input
token embedding x ∈ Rd is transformed into an output
y ∈ Rd .

1) ADAPTFORMER [27]
AdaptFormer is a parameter-efficient tuning module for
Transformer architectures that enhances adaptability by
incorporating a feedforward down-projection layer, a ReLU
activation, and an up-projection layer to restore input size.
It includes a residual connection to preserve the original
input, improving learning without significantly increasing
model complexity. By updating only the adapter modules’
parameters, AdaptFormer enables effective fine-tuning while
keeping the pre-trained model fixed.

h↓ = W↓ x, W↓ ∈ Rr×d , (2)
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FIGURE 3. Overview of word distribution in clinical notes at CHUSJ [13].
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TABLE 2. Comparison of adapters for transformer with computational complexity.

hact = φ(h↓), φ ∈ {ReLU,GELU}, (3)

h↑ = W↑ hact, W↑ ∈ Rd×r , (4)

y = x + h↑. (5)

2) LIGHTWEIGHT [28]
The Lightweight adapter structure integrates a linear
down-projection layer followed by a ReLU activation, a sec-
ond linear layer, and a final LayerNorm for normalization.
This configuration is enhanced with a residual connection to
maintain the original input alongside the processed output.
By focusing on linear transformations and normalization,
this adapter efficiently fine-tunes the model with minimal
additional parameters, ensuring lightweight adaptability.

y = x +Wℓ x, Wℓ ∈ Rd×r (6)

3) TINYATTENTION [29]
The TinyAttention adapter structure incorporates scaled dot-
product attention, where the primary input is split into query
(Q), key (K), and value (V) components. The attention
mechanism calculates attention weights and produces a
weighted sum of the values, which are then concatenated
and passed through a projection layer. This structure
allows the model to focus on relevant input parts effi-
ciently, enhancing the representation with minimal additional
parameters.

Q′
= WQ x, WQ ∈ Rr×d , (7)

K ′
= WK x, WK ∈ Rr×d , (8)

V ′
= WV x, WV ∈ Rr×d , (9)

A = softmax
(
Q′K ′⊤/

√
r
)
V ′, (10)

y = x +WO A, WO ∈ Rd×r (11)

4) GATED RESIDUAL NETWORKS (GRN) [18], [30]
The GRN adapter structure includes a series of dense
layers. The primary input is first processed through an
ELU activation function and a dense layer. The output then
passes through a dropout layer and another dense layer
before being gated by a gated linear unit (GLU), ⊙ is the
element-wise Hadamard product. Finally, the gated output
is added to the original input via a residual connection,
followed by normalization (Add & Norm), enhancing the
model’s ability to learn complex representations efficiently
while maintaining stability.

u = ELU
(
W1 x

)
, W1 ∈ Rr×d , (12)

v = W2 u, W2 ∈ Rd×r , (13)

g = σ
(
Wg v

)
, Wg ∈ Rd×d , (14)

h = g⊙ v, (15)

y = LayerNorm(x + h) (16)

For the complexity of each adapter structure, Table 2
compares the computational complexity of different adapter
structures for Transformers. AdaptFormer, with its simple
feedforward layers and ReLU activation, has the least
complexity when the bottleneck dimension D is significantly
smaller than the model dimension M . The Lightweight
adapter adds LayerNorm and utilizes linear transformations,
resulting in a complexity dominated by 4·M ·D. TinyAttention
introduces attention mechanisms, making its complexity
highly dependent on the number of heads h and sequence
length N . The GRN includes dense layers, ELU activation,
dropout, and a gated linear unit, leading to a complexity
similar to the Lightweight adapter but with slightly higher
additional terms. These approaches are particularly suitable
for fine-tuning a pre-trained LLM on a limited dataset and
under constrained computational capacity.
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FIGURE 4. Experiment setup.

IV. EXPERIMENTAL RESULTS
We employed two fine-tuning approaches for the experimen-
tal setup, as illustrated in Figure 4. In Fine-tuning Setup 1,
the entire pre-trained language model (LLM) is fine-tuned
using labeled data, where both the pre-trained LLM and the
additional layers are trained simultaneously. This method
allows themodel to fully adapt to the specific task by updating
all parameters, potentially leading to better performance, but
it is computationally intensive. In Fine-tuning Setup 2, the
pre-trained LLM is frozen, meaning its parameters are not
updated during fine-tuning, and only the additional layers
appended to the LLM are trained using labeled data. This
approach reduces computational requirements and mitigates
the risk of overfitting, making it more suitable for scenarios
with limited data and computational resources. By comparing
these setups, we aim to evaluate the effectiveness and effi-
ciency of fine-tuning strategies for clinical text classification
tasks.

Table 3 compares four models: AdaptFormer, Lightweight,
GRN, and TinyAttention. For each model, it outlines its
specifications and the total number of parameters, including
the memory footprint in megabytes (MB). AdaptFormer uses
a down projection dimension of 512 and an up projection
dimension of 1024, totaling 1,839,618 parameters (7.02MB).
The Lightweight model has an input dimension of 1024 with
2,890,754 parameters (11.03 MB). GRN features an input
dimension 1024 with a drop-out rate of 0.5, amounting to
3,940,354 parameters (15.03 MB). Finally, TinyAttention,
which includes an input dimension of 1024, four heads, and
a drop-out rate of 0.25, has the highest number of parameters
at 9,188,354 (35.05 MB).

All experiments were conducted on the Intel(R) Xeon(R)
CPU E3-1225, 3.30GHz, 16GB RAM, and Nvidia Quadro
P620 GPU, 2GB. For the implementation, experiments
were implemented using the scikit-learn library [37], and
Keras [38]. The data was divided into 70% training and 30%
testing. Moreover, training and fine-tuning the Transformer-
based model is complex. As reported by [39], model size,
learning rate, batch size, and maximum sequence length are
the four critical hyperparameters that significantly influence
the training process of the Transformer model. In addition,
we also applied dropout [40] (p=0.25) and GlorotNormal

kernel initializer [41], batch normalization [42], [43] are
employed for models’ stability. Additionally, we also apply
early stopping based on the validation loss. Consequently,
these hyperparameters were carefully chosen to achieve
optimal performance and prevent overfitting.

To effectively assess the performance of our method,
metrics including accuracy, precision, recall (or sensitivity),
and F1 score were used [44]. These metrics are defined as
follows:

Accuracy (acc) =
TP + TN

TP + TN + FP + FN
(17)

Precision (pre) =
TP

TP + FP
(18)

Recall/Sensitivity (rec) =
TP

TP + FN
(19)

F1-Score (f1) =
2⋆Precision⋆Recall
Precision + Recall

(20)

where TN and TP stand for true negative and true positive,
respectively, and they are the number of negative and positive
patients that are classified correctly. Whereas FP and FN
represent false positive and false negative, respectively, and
they represent the number of positive and negative patients
that were wrongly predicted.

As shown in Fig. 5, both the GRN-Transformer and
the GRN-MoE Transformer, trained from scratch, converge
rapidly, exceeding 80% accuracy by the 5th epoch, and
maintain a narrow train-validation gap throughout. The MoE
variant achieves a higher peak training accuracy (≈ 91.5% vs.
89%) and reaches ≈ 88% validation accuracy by epoch 24,
indicating that expert routing effectively regularizes training.
These results demonstrate that both architectures deliver
strong predictive performance with minimal overfitting,
making them well-suited for resource-constrained clinical
tasks.

First of all, the experimental results compare the
performance of various adapters applied to biomedical
pre-trained LLMs (CamemBERT-bio, AliBERT, DrBERT)
and Transformer-based models trained from scratch, eval-
uated on accuracy, precision, recall, F1 score, training
time, and inference time as summarized in Table 4 to 8,
respectively. In Setup 1, where full fine-tuning was applied,
the baseline models achieved the highest performance
across most metrics, with the GRN adapter showing
competitive results. However, in Setup 2, where pre-trained
weights were frozen, and only the adapters were fine-
tuned, there was a significant performance decline across
all adapters, demonstrating lower accuracy, precision, recall,
and F1 scores. Notably, each experiment with biomedical
pre-trained LLMs required extensive training times ranging
from 30 to 50 hours, whereas Transformer-based models
trained from scratch completed training in under an hour.
This stark contrast highlights the practicality of simpler
Transformer-basedmodels for clinical NLP tasks in resource-
constrained environments. While adapters like GRN can
enhance performance, their benefits are diminished by the
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TABLE 3. Model specifications and total parameters for adapter structures.

TABLE 4. Performance comparison of CamemBERT-bio with different adapters.

TABLE 5. Performance comparison of AliBERT with different adapters.

TABLE 6. Performance comparison of DrBERT with different adapters.

TABLE 7. Performance comparison of transformer with different adapters.
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TABLE 8. Performance comparison of MoE-Transformer with different adapters.

FIGURE 5. Learning curve performance of Transformer and
MoE-Transformer with the GRN adapter.

substantial training times and limited improvements observed
in scenarios with frozen weights and limited data.

As summarized in Table 4, 5, 6, the experimental results
compare different adapters for various biomedical pre-trained
models (CamemBERT-bio, AliBERT, and DrBERT, respec-
tively) based on accuracy, precision, recall, and F1 score,
with full fine-tuning as the baseline. For CamemBERT-bio,
the baseline achieved high performance across all metrics,

FIGURE 6. Performance comparison between biomedical pre-trained
LLMs vs. Transformer-based models with different adapters.

while TinyAttention closely matched the baseline, and
AdaptFormer and Lightweight showed slight reductions in
recall. GRN achieved slightly higher recall than Lightweight.
For AliBERT, the baseline exhibited strong performance,
especially in precision. AdaptFormer and Lightweight had
noticeable drops in recall but maintained high precision
and accuracy. GRN provided balanced performance, and
TinyAttention closely matched the baseline in accuracy and
precision. For DrBERT, the baseline again delivered strong
results. AdaptFormer and Lightweight showed decreased
recall and F1 scores, while GRN demonstrated higher recall
and comparable precision to the other adapters. TinyAttention
matched the baseline in accuracy and precision with a slight
decrease in recall. While full fine-tuning (baseline) provided
the best performance, GRN adapters balanced performance
and computational efficiency, making them suitable for
scenarios with limited computational resources. However,
there were no significant improvements when adapters were
used to fine-tune the pre-trained model with limited data.
In some cases, it degraded performance, as seen with the
AdaptFormer and Lightweight adapters in AliBERT and
DrBERT, respectively.

The experimental results compare the performance
of Transformers and MoE-Transformers using different
adapters evaluated based on accuracy, precision, recall,
and F1 score, as shown in Table 7, and 8, respectively.
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FIGURE 7. Training time comparison between biomedical pre-trained
LLMs vs. Transformer-based models with different adapters.

The baseline models, trained from scratch without any
adapters, provide a reference point against which the
other models, also trained from scratch but with different
adapters, are compared. These setups differ from using
biomedical pre-trained models. From the results, two key
points emerge. First, adapters help the Transformer, as all
the adapters outperform the Transformer baseline. Second,
with the more complex MoE-Transformer, adapters do
not continually improve the MoE-Transformer baseline
model; for instance, AdaptFormer and Lightweight show
no significant improvement. However, both GRN and
TinyAttention improve the MoE-Transformer compared to
the baseline. Overall, GRN is the most effective technique,
as it enhances the performance of both the Transformer and
MoE-Transformer models.

Based on the results for biomedical pre-trained mod-
els and Transformer-based models trained from scratch,
we compared the best performance of pre-trained models
with GRN adapters to that of Transformer-based models
with GRN adapters, as illustrated in Fig. 6. The results
indicate no significant difference between fine-tuning the
pre-trained models with adapters and applying adapters
to Transformer-based models trained from scratch. This
suggests that the advantage of using adapters for fine-tuning
pre-trained models is unclear in scenarios with limited data.
While adapters like GRN can improve model performance,
their impact cannot distinguish between pre-trained models
and those trained from scratch under data constraints. Overall,
the benefit of employing adapters to fine-tune the pretrained
LLM in limited data scenarios remains ambiguous.

The GRN is designed to enhance neural networks’
capabilities by integrating sophisticated gating mechanisms.
At its core is the Gated Linear Unit, which combines a linear
transformation with a sigmoid gated transformation, achieved
through dense layers, and performs an element-wise multi-
plication of the linear and gated outputs. This mechanism
ensures the network can dynamically control the information

FIGURE 8. Pseudocode for lightweight adapter.

FIGURE 9. Pseudocode for GRN LoRA adapter.

flow, enhancing its learning capabilities. Building upon
this, the GatedResidualNetwork incorporates several key
components: an ELU-activated dense layer that introduces
non-linearity, a linear dense layer for further transformation,
and a dropout layer to prevent overfitting. The gated linear
unit is central to the GRN’s function, which applies the gating
mechanism to the residual connections. Additionally, layer
normalization stabilizes and accelerates the training process,
while a projection layer ensures that the input dimensionality
matches the required units. Together, these elements form
a robust architecture capable of effectively managing and
transforming complex input data.

In contrast, the experimental results comparing training
times for biomedical pre-trained models and Transformer-
based models trained from scratch reveal significant differ-
ences. As shown in Fig. 7, fine-tuning pre-trained models
like CamemBERT-bio, AliBERT, and DrBERT with adapters
takes substantially longer, ranging from 30 to 50 hours per
experiment. In contrast, training transformer-based models

109374 VOLUME 13, 2025



T.-D. Le et al.: Impact of LoRA Adapters on LLMs for Clinical Text Classification

with GRN adapters from scratch takes less than an hour.
This highlights a crucial limitation of employing adapters
for pre-trained models: the extensive computational capac-
ity and training time required. Despite the adapters not
showing significant performance improvements over train-
ing Transformer-based models from scratch, they demand
significantly more computational resources and time. This
makes using adapters in pre-trained models less appealing,
especially in scenarios with limited computational resources
and time constraints.

Our extensive experiments underscore the importance of
carefully designing and implementing LoRA adapters when
fine-tuning LLMs with limited data. These findings are
consistent with recent research in other domains, such as
programming and mathematics, as reported by [45]. Their
study shows that LoRA often underperforms full fine-tuning
across various settings. Nonetheless, LoRA provides benefi-
cial regularization, preserving the base model’s performance
on tasks outside the target domain more effectively than full
fine-tuning. Moreover, LoRA offers stronger regularization
compared to techniques like weight decay and dropout and
supports maintaining more diverse outputs. Full fine-tuning
tends to learn perturbations with a significantly higher
rank (10)-100 times) than typical LoRA configurations,
which likely contributes to the performance differences
observed. Consequently, it is crucial to exercise caution when
applying LoRA adapters and fine-tuning pre-trained LLMs,
particularly in sensitive domains like clinical NLP, where data
privacy, limited data availability, and computational resource
constraints are significant concerns. As McCoy et al. [46]
caution, inserting LLM-generated text directly into medical
records could undermine communication, transparency, and
the quality of healthcare, underscoring the need for caution
in fine-tuning LLMs in clinical settings.

V. LIMITATIONS AND FUTURE WORKS
While our study systematically evaluates adapter techniques
under stringent compute (single Quadro P620) and data
constraints (580,000 tokens), several limitations remain.
First, due to our reliance on a singleGPU,we lacked themem-
ory capacity and compute throughput required to fine-tune
large proprietary models like Deepseek and Grok [47].
Replicating those experiments would have exceeded our
hardware limits, both in terms of GPU memory and
acceptable training time, making such evaluations infeasible
within our study’s resource constraints. Second, we only
compared fully trainable versus fully frozen backbones with
adapters; intermediate freezing ratios (e.g., 40-80% of layers
frozen) may affect convergence speed and generalization, but
were not explored. Third, our performance analysis focused
primarily on accuracy and training time; other metrics such
as memory footprint, latency, and energy consumption in
diverse hospital server environments were not measured.
Finally, we did not benchmark against the latest state-
of-the-art clinical NLP models (e.g., Mamba state-space

architectures [48]) or other recent LoRA variants [49],
limiting our comparisons.

To address these gaps, future research should:

• Investigate hybrid fine-tuning schemes that freeze
varying ratios of the LLM layers while training the
rest with adapters, evaluating how varying freeze ratios
influence performance, convergence, and overfitting.

• Measure GPU memory, inference latency, and energy
consumption on diverse hardware (e.g., A100) to quan-
tify adapter trade-offs, and broaden our benchmarks to
include cutting-edge LLMs for a full-spectrum clinical
NLP evaluation.

• Benchmark our adapter and scratch-trained Transformer
models against emerging state-space architectures such
as Mamba and novel LoRA variants to position our
findings within the current clinical NLP landscape.

VI. CONCLUSION
Based on our comprehensive evaluation, this study concludes
that employing adapter structures for fine-tuning biomedical
pre-trained LLMs does not yield significant improvements
in clinical NLP tasks under resource constraints. We found
that simpler Transformer-based models trained from scratch
perform comparably or better, especially in environments
with limited computational resources and data availability.
Among the adapter structures evaluated, the GRN demon-
strated superior accuracy, precision, recall, and F1 score,
making it the most effective adapter for enhancing clinical
note classification. Furthermore, the stark contrast in training
times - over 1000 hours for pre-trained LLMs versus under
6 hours for Transformer-based models - underscores the
practicality of using simpler models in resource-constrained
settings. This study contributes to the field by providing
a viable solution for clinical NLP tasks in low-resource
environments and identifying the GRN adapter as a practical
approach to improve model performance without requiring
extensive computational resources. Lastly, implementing the
adapters with different algorithms is straightforward for
reproducibility, as demonstrated by the pseudocode examples
provided by Fig. 8 and 9.
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