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Accurate mapping of the built asset information to various data classification systems and taxonomies 
is crucial for effective asset management, whether for compliance at project handover or ad-hoc data 
integration scenarios. Due to the complex nature of built asset data, which predominantly comprises 
technical text elements, this process remains largely manual and reliant on domain expert input. 
Recent breakthroughs in contextual text representation learning (text embedding), particularly 
through pre-trained large language models, offer promising approaches that can facilitate the 
automation of cross-mapping of the built asset data. However, no comprehensive evaluation has 
yet been conducted to assess these models’ ability to effectively represent the complex semantics 
specific to built asset technical terminology. This study presents a comparative benchmark of state-
of-the-art text embedding models to evaluate their effectiveness in aligning built asset information 
with domain-specific technical concepts. Our proposed datasets are derived from two renowned built 
asset data classification dictionaries. The results of our benchmarking across six proposed datasets, 
covering clustering, retrieval, and reranking tasks, showed performance variations among models, 
deviating from the common trend of larger models achieving higher scores. Our results underscore the 
importance of domain-specific evaluations and future research into domain adaptation techniques, 
with instruction-tuning as a promising direction. The benchmarking resources are published as an 
open-source library, which will be maintained and extended to support future evaluations in this field.
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Asset management plays a pivotal role in ensuring optimal performance and extended life span of the built 
environment through a systematic process of monitoring and maintaining various facilities and equipment. The 
rapid advancement of digital technologies has led asset owners to increasingly demand enriched digital twins 
at project handover to support real-time operations and maintenance of the built assets1. Simultaneously, the 
growing awareness of the benefits of digitized asset management highlights the essential need for federated access 
to built asset data2. This requires aligning extensive data sources and their underlying schema with established 
data models, classification systems, or taxonomies to facilitate data accessibility for diverse stakeholders and 
improve interoperability across various software environments. In the context of the present study, “alignment” 
specifically refers to the task of accurately associating textual descriptions of built asset entities (e.g., building 
components, materials, equipment) with corresponding concepts or classes within an established target 
classification system. Such alignment involves capturing semantic equivalences or near-equivalences between 
descriptions across different terminologies and taxonomies, ensuring that textual data can be reliably mapped 
to ad-hoc or standardized domain-specific categories. However, aligning built asset data with pre-defined 
classification systems poses significant challenges in practice. A key challenge stems from the multi-source 
and multi-disciplinary nature of built asset data, which leads to the use of diverse formats and terminologies 
across different projects and stakeholders. For example, the terminology that architects utilize to describe the 
specifications for a particular building component or system can vastly differ from those used by structural 
engineers or subcontractors. Moreover, the structures of domain-specific classifications used in different 
disciplines often vary in granularity. For instance, the detailed engineering descriptions of an HVAC (Heating, 
Ventilation, and Air Conditioning) system provided by mechanical engineers may be far more comprehensive 
than those required and used by operations and maintenance teams. Finally, variations in local regulations and 
standards can further complicate the alignment process, particularly for large-scale or international projects. 
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These issues, combined with the dynamic and evolving nature of built asset data throughout an asset’s lifecycle, 
lead to potential inconsistencies when integrating this data into a unified digital asset management environment.

In response, there have been several initiatives aimed at facilitating the digital delivery of built asset information 
while ensuring its conformity with predefined or standardized descriptions (data models, taxonomies, etc.). 
One major initiative is buildingSMART Data Dictionary (bSDD)3, an international and ongoing effort whose 
main objective is to create shared definitions for describing the built environment. This is achieved through a 
collection of interconnected data dictionaries that are both human-readable and machine-readable3. Although 
making various data dictionaries programmatically accessible will facilitate access to agreed and consistent 
terms, the complexity and dynamic diversity of the built asset terminology necessitate robust data mapping 
strategies to accommodate various data descriptions and updates4. As a result, the asset information alignment 
process remains predominantly manual, relying heavily on the expertise of domain specialists to accurately map 
complex technical data5. The significant challenges associated with the manual alignment process, including 
high costs, time consumption, and potential for human error, highlight the need for more automated and reliable 
data mapping solutions.

The central thesis of our research builds upon the argument that recent advancements in natural language 
processing/understanding research can significantly enhance automated data mapping processes. In particular, 
the rich and contextualized representation of textual inputs as numeric vectors, commonly known as text 
embedding6,7, provides advanced capabilities for machines to understand the semantics of the intricate 
terminologies. The numerical encoding of language understanding can then be leveraged to support various 
applications such as information retrieval, semantic similarity assessment, or clustering of textual data8. The 
enhanced capabilities of state-of-the-art text embedding models have motivated researchers and practitioners 
across diverse fields to leverage the power of contextual text embeddings to drive advancements in their 
respective domains9–13. However, the extensive and increasing availability of pre-trained language models has 
led to the proliferation of potential text embedding models, creating confusion regarding model selection for 
different use cases14.

In this work, we present a comprehensive benchmark of pre-trained text embedding models to evaluate their 
effectiveness in capturing and representing the semantics of textual descriptions related to built assets. Through 
this evaluation, we aim to identify the strengths and limitations of existing language models in enhancing data 
alignment practices within the built asset domain. Key contributions include: the public release of six novel 
datasets derived from two industry-renowned information classification systems (see Methods section), the 
benchmarking of 24 state-of-the-art models, and the public release of the benchmarking software. The developed 
datasets, encompassing architectural, structural, mechanical, and electrical subdomains, amount to a total of 
more than ten thousand data entries across six tasks within clustering, retrieval, and reranking categories. This 
diversity of the developed datasets enabled us to perform the most comprehensive evaluation in this specialized 
field, to date. In addition to public availability, our proposed datasets and software resources adhere to the 
evaluation protocols established by the MTEB14 framework. This alignment (see Benchmark section) is meant 
to facilitate future research endeavors and continuous improvements, given MTEB’s recognized robustness and 
utility in both academic and practical applications.

Related work
Earlier text embedding methods such as word2vec15 and GloVe6 relied on static word embeddings, i.e., tokenizing 
text input at word level and assigning each word a single, context-independent numerical representation derived 
from word co-occurrence statistics in large corpora. Subsequent breakthroughs in deep learning and natural 
language processing research, particularly with the advent of the transformer architecture16, significantly 
expanded text embedding capabilities. Modern language models, pre-trained on variants of the transformer 
architecture, such as BERT (Bidirectional Encoder Representations from Transformers)17 and GPT (Generative 
Pre-trained Transformer)18, generate embeddings that adapt to surrounding text, providing context-aware 
interpretations of language7. Leveraging pre-trained transformer-based language models, researchers have 
investigated diverse techniques to improve text representation. From earlier contributions on adapting encoder-
based architectures (e.g., BERT) to generate embeddings at sentence19,20 or paragraph21 level, to later works on 
model fine-tuning with novel objectives (e.g., contrastive learning22), adapting decoder-based architectures for 
text embedding8, or instruction-based fine-tuning23,24, researchers have been investigating novel ways to refine 
how linguistic context and domain-specific nuances are incorporated into text representations.

Recently, an increasing volume of research has been conducted to study text embeddings for diverse 
applications such as database integration10, biomedicine information management9, public figure perceptions in 
social science studies12, and many others in various specialized domains11,13,25,26. Similarly, given that built asset 
data predominantly exists in the textual form27, the built environment literature has witnessed an increasing 
interest in studying pre-trained language models. In particular, an emerging research direction focuses on utilizing 
these models for information alignment, addressing a key challenge in advancing workflow automation in the 
built asset information management28. Recent studies in this area include the extraction of built asset entities 
from unstructured sources29,30, alignment across construction schedules and entity classification taxonomies28, 
automated mapping of building information metamodels31, and the matching of building material information4. 
However, given the novelty of the topic, two important gaps can be observed in the existing literature. First, 
many of the related studies have been significantly limited in scope, primarily focusing on ad-hoc downstream 
tasks with small evaluation datasets, which can result in a potentially skewed perspective on the overall domain-
specific text understanding of these models29. Second, scarce public access to the datasets used in previous 
works, which undermines the transparency and reproducibility of the reported results.

In addition to the gaps highlighted above, recent research indicates that general-purpose text embedding 
models often struggle to maintain consistent performance across diverse tasks and domains7. In this light, 

Scientific Reports |        (2025) 15:23866 2| https://doi.org/10.1038/s41598-025-09052-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


researchers have increasingly studied rigorous methodologies for text embedding evaluation. While initial 
efforts focused on general-purpose assessments which predominantly covered high-resource languages such 
as English14,32, there has been a growing emphasis on the creation of evaluations tailored to more diverse and 
inclusive linguistic contexts33–36. Moreover, studies in specialized domains such as biomedicine9,25 or chemistry36 
have highlighted the need for domain-specific text embedding evaluations. This trend, alongside the established 
robustness of existing evaluation frameworks such as Massive Text Embedding Benchmark (MTEB)14, motivates 
us to examine the effectiveness of the state-of-the-art language models in delivering contextually-accurate 
mappings of domain-specific terminology within the context of built asset information management.

Methods
Data sources
Given the built environment’s multidisciplinary nature, the datasets included in the benchmark must encompass 
an expansive spectrum of sub-domain subjects, including architectural, structural, mechanical, and electrical 
systems. To ensure a diverse coverage of built products in our benchmark, we carefully examined the selection of 
data sources used for creating task-specific datasets. A detailed description of the corpus development and data 
extraction processes is provided below.

The initial step in creating the benchmark’s task-specific datasets is the development of a consistent corpus of 
built products. Based on the requirements of the tasks within our benchmark, the core corpus needed to include 
the following key information for each product: name or title, description, and corresponding labels (group 
categories). The two primary sources used to develop the built product corpora are as follows:

Industry Foundation Classes (IFC). Published and maintained by buildingSMART International37, IFC is 
an open international data model offering comprehensive digital descriptions of various aspects of building 
and infrastructure projects. Originally designed to facilitate interoperability and information exchange among 
different software applications and stakeholders, IFC provides a comprehensive representation of various aspects 
of built asset entities. We utilize IFC version 4.3.2.038, recently approved as an ISO standard (ISO 16739-1:2024).

Uniclass. Developed and maintained by the National Building Specification (NBS)39, Uniclass is a unified 
classification system for the built environment. We utilize version 1.33 of the Uniclass Pr Product Table40. 
Uniclass has extensive coverage, encompassing over 8,000 product types, making it one of the most recognized 
and widely adopted classification systems in the built asset industry.

Data extraction
To create a corpus of products with corresponding names, descriptions, and labels, we undertook the following 
steps: For Uniclass, we utilize the publicly-available CSV format of the products table40. This table originally 
contained product names and numerical identifiers representing hierarchical product classifications, extending 
up to three ancestral levels. For example, as depicted in Fig. 1a, the identifier “Pr_20_29_03” (Anchors and 
components) denotes a fine-grained classification within the “Pr_20_29” (Fastener Products) class, which 
itself is a subclass of the “Pr_20” (Structure and General Products) primary class. Hence, for each Uniclass 
record, explicit product categories were required to be inferred from the corresponding numeric identifiers. To 
automatically extract the explicit textual labels for each product, we developed a script to retrieve and process the 
table data programmatically and recursively traverse each record and infer the product’s membership across the 
three levels of the parent-child taxonomic hierarchy. Moreover, since the original table does not include product 
descriptions, we propose a method (detailed in the subsequent subsection) to synthesize a description for 
each product. We retained only those products that have labels for all three classification levels. After applying 
this filtering process, the Uniclass corpus comprises 4,234 instances, which remains sufficiently large for our 
benchmarking purposes.

Regarding the IFC schema, we parse the official schema content by utilizing resources from an open-source 
Python library41 that enables programmatic access to IFC entities. Initially, we extracted entities of interest 
from a JSON-formatted file42 containing the exhaustive list of IFC entities, their type enumeration, and their 
definition (derived from IFC’s official documentation). After excluding IFC entities with missing descriptions 
(less than 1% of total “IfcElement” entities), we developed a script to extract each entity’s top three parent classes 
to serve as the product category labels. An analysis of the “IfcProduct” class within the IFC schema indicated that 
a significant majority of product entities are classified under the “IfcElement” class. Based on this observation, 
subclasses of “IfcElement” were designated as the highest-level valid label instances. For example, as illustrated 
in Fig. 1c, enumerations of sensor types (e.g., CO2 sensor) are labeled as “sensor” at the immediate categorical 
level, with “Distribution Control” and “Distribution” as higher-order product categories. This three-level 
categorization facilitates a unified structural framework for integrating both IFC and Uniclass records within 
a single built asset product corpus. In the case of the IFC corpus, in addition to the hierarchical groupings of 
the entities, we use the domain-specific schemas (e.g., structural, HVAC, building control) derived from IFC’s 
official documentations38 as an auxiliary source for entity label assignment. These labels were incorporated into 
the IFC’s corpus dataset under the “tag” field. The resulting IFC corpus comprises 977 entities (total of parent 
entities and type enumerations).

Data augmentation and curation
The process of generating textual descriptions for Uniclass entities is depicted in Fig. 1a. Initial entity descriptions 
are synthesized by sequentially concatenating the entity’s category titles, progressing from the most specific 
to the most general. An example of the synthesized descriptions is provided in Fig. 1a. These concatenated 
descriptions are then paraphrased using a generative language model to create more nuanced and natural 
descriptions, relaxing the text from the rigid template initially employed. We generated paraphrased descriptions 
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using the most advanced version of the GPT-4 model available at the time of conducting the experiments (gpt-
4-turbo-2024-04-09).

Following the official documentation of the GPT-4 model API, two prompt templates were employed. As 
it can be seen from Fig. 2, the system prompt explains the main task and key instructions to follow during the 
text generation, and the user prompt template is populated for each record with the product title and initially 
synthesized description. The system prompt explicitly specifies for the model to act as an expert in Uniclass 
product classification and emphasizes the preservation of contextual information and technical accuracy during 
the paraphrasing process.

Although the instructions included within the system prompt were designed to prevent the alteration or 
addition of facts, it was essential to manually review all generated descriptions due to known potential inaccuracies 
of generative language models, and the risk of model hallucinations. The review was carried out by two domain 
experts, each with over ten years of experience in the field. Each expert cross-checked the issues identified 
by the other, and the final decisions were made based on mutual agreement. Of the total 4,234 paraphrased 
descriptions, only 16 cases required adjustment by the two reviewers. The low edit rate was expected, given the 
simplicity of the task (paraphrasing short, well-written English definitions extracted from established industry 
standards).

To ensure the semantic integrity and syntactic uniformity of the extracted product names and descriptions, 
a multi-step preprocessing pipeline was implemented. Since the entity names in the IFC schema are originally 
represented in camel case format, a string normalization procedure was executed to convert them into concrete 
product names by delimiting constituent words and removing the ‘Ifc’ prefix (e.g., “IfcHeatExchanger” is 
converted to “Heat Exchanger”; see examples in Fig. 1b, c). For IFC class enumeration types, where the 
enumeration name alone might be ambiguous, we append the parent class type in parentheses. For example, the 
enumeration “WATER”, a subclass of “IfcBoilerTypeEnum”, is represented as “Water (Boiler Type)” (see examples 

Figure 1.  Overview of the main steps in developing the built product corpus: (a) Example of extracting 
categories and synthesizing entity descriptions from raw Uniclass entries; (b) Example of hierarchical relation 
extraction for main entities and their enumerated types from the IFC schema; (c) Sample records from the 
developed corpus, containing product titles, descriptions, and categories with three levels of granularity.
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in Fig. 1c). Following the same logic, we enrich the product descriptions by concatenating the product’s name at 
the beginning of the description for both Unicalss and IFC entities. This step reinforces contextual clarity, as the 
natural entity names carry significant semantic information. A comprehensive text normalization process was 
subsequently applied, utilizing Python’s regular expression library to identify and rectify syntactic irregularities. 
This included the detection and removal of special characters (excluding essential punctuation), the normalization 
of inconsistent whitespace, and the resolution of uppercase words (excluding valid abbreviations). Additionally, 
a rigorous manual inspection was undertaken. This involved the review and modification of entity descriptions 
to eliminate inconsistencies, such as notes related to the schema version history or future deprecation notices, 
thereby ensuring the production of a semantically coherent product corpus.

Sampling
To ensure a robust entity selection when creating task-specific datasets, we employed positive and negative 
sampling strategies as follows:

Positive sampling. For positive sampling, we adopt a semantic diversity approach with the main objective of 
selecting samples that belong to the same class (e.g., fastener products) but are semantically diverse. Given a 
targetted subset of built products, we generate text embeddings for all corresponding text inputs, i.e., product 
names and descriptions. Embeddings are generated using a state-of-the-art text embedding model (“mxbai-
embed-large-v1”43). From this set of embeddings, we randomly choose an initial sample as a starting point. 
Subsequently, we iteratively select additional samples by identifying those that exhibit the lowest similarity to the 
most recently selected sample, as determined by cosine similarity scores, i.e., the cosine of the angle between two 
embedding vectors. This process repeats until the desired number of samples is achieved. This method ensures 
that the samples selected for a particular subset (e.g., products of the same category) yield diverse representations 
within the embedding space by selecting inputs that are semantically dissimilar to the ones already chosen.

Negative sampling. In negative sampling, i.e., selecting samples from different classes (e.g., products not 
belonging to the fastener category), the objective was to select negative samples that, while belonging to a 
distinct class (e.g., furnishing product), yielded closer semantic similarity to a given query (a product name 
or description). We compute the cosine similarities between the query and negative samples using the same 
embedding model used in the semantic diversity sampling and select samples with the highest similarity scores. 
By selecting more similar candidates as negative samples, the dataset can better benchmark the model’s capability 
to capture the subtle differences between closely related classes. This method, commonly known as hard negative 
sampling, is particularly effective for evaluations involving fine-grained classifications, such as differentiating 
between closely related categories in IFC and Uniclass classification hierarchies.

Lastly, irrespective of the sampling method (positive, negative, or plain random selection) being performed, 
we maximize the coverage of the entire data pool by ensuring that once a sample is selected, it is re-used in 
another subset only when all samples in the pool have been exhausted. This prevents repeated oversampling of 
any particular record and helps maintain diversity across the benchmark datasets.

Benchmark
Tasks overview
Evaluating text embeddings across different tasks is crucial for assessing the transferability of their capabilities to 
various downstream applications. Hence, our proposed benchmark covers three main tasks: clustering, retrieval, 
and reranking. In addition to domain coverage and cross-task adaptability, evaluating text embedding models 
requires careful consideration of input text length. To ensure the coverage for varying input lengths, the text 
entities included in our datasets fall into two categories: (a) sentences, which are derived from product titles/

Figure 2.  Contents of the system and user prompts employed to paraphrase synthesized Uniclass product 
descriptions. For each record of the Uniclass corpus dataset, the user prompt template was populated with the 
record’s product title and initial synthesized description.
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names, and (b) paragraphs, which are derived from product descriptions/definitions. Accordingly, each task-
specific dataset in our benchmark is grouped into one of the following categories:

•	 Sentence to Sentence (S2S): These tasks involve matching or comparing short-form text inputs. The current 
version of the benchmark uses product titles as sentence input. Examples of real-world scenarios include 
grouping products based on their titles (clustering-s2s) or retrieving the tiles of similar items based on com-
pact keyword-focused queries (retrieval-s2s).

•	 Paragraph to Paragraph (P2P): These tasks involve matching or comparing long-form text inputs, i.e., product 
descriptions (which can be concatenated with the product name). P2P evaluations are critical for real-world 
scenarios that necessitate the processing of longer textual data, which often encompass more complex defini-
tions and detailed specifications, e.g., retrieving similar products from detailed product catalogs.

•	 Sentence to Paragraph (S2P): These tasks involve comparing a short text input (product title) against a longer, 
more detailed text (product description). S2P tasks examine how well embeddings handle cross-length com-
parisons, such as ranking the most relevant comprehensive product details based on concise user queries.

Our proposed benchmark follows the MTEB14 framework for reporting text embedding performance evaluations. 
In particular, we adhere to MTEB’s core rationale and guidelines for defining tasks, preparing datasets for each 
task, and selecting evaluation metrics. This alignment significantly improves the consistency and comparability 
of our results with state-of-the-art text embedding evaluation studies across diverse domains. Moreover, the 
maturity and comprehensiveness of MTEB’s software provide flexibility for specialized experimental setups, 
such as tuning clustering granularity or retrieval depths. The current version of our benchmark covers three 
types of tasks that are included in MTEB: clustering, retrieval, and reranking. The selection of these tasks is 
motivated by their correspondence to the practical, multi-stage challenges of data alignment in built asset 
information management workflows. For example, the clustering task can evaluate an embedding model’s ability 
to perform semantic harmonization. A common related scenario is where practitioners must first group and 
reconcile inconsistent, informal terminology from various sources before this data can be mapped to a formal 
classification system (e.g., grouping “Air Handling Unit”, “Air Handler”, “AHU”, and “Rooftop Unit” within 
subcontractor schedules). Retrieval tasks correspond to common scenarios where asset managers, facility 
operators, or engineers must reliably find relevant product information or specifications from extensive digital 
product catalogs. Finally, reranking tasks address the practical need for precision and efficiency. Given a set 
of potential matches from a retrieval system, a model’s ability to prioritize the top most relevant documents is 
crucial for minimizing the manual verification effort required from domain experts. Each task is described in 
detail below.

Clustering
Clustering tasks involve grouping similar built products into consistent clusters based on their similarities 
in textual representation. Our proposed tasks include S2S and P2P categories, where product names and 
descriptions act as input text for each dataset type, respectively. Each clustering task dataset is comprised of 
various subsets, covering diverse subdomain subjects and different levels of granularity. For each subset, we 
use product labels derived from the source classification hierarchies (i.e., IFC and Uniclass) as the ground truth 
category assignments. To create the subsets within each clustering dataset, we first select a subset of product 
labels (e.g., equipment, signage, furnishings, fittings) from one of the three levels of product hierarchy, either 
from one specific corpus or across both IFC and Uniclass corpora. We then apply the previously described 
diversity-based sampling method to sample product names (for S2S datasets) or descriptions (for P2P datasets) 
for selected labels.

To ensure the quality of the subsets, we evaluate the baseline scores using two embedding models, one for 
the upper threshold (“mxbai-embed-large-v1”43) and one for the lower threshold (“paraphrase-multilingual-
MiniLM-L12-v2”19). A subset is included in the dataset only if its score with the upper threshold model is 
below 0.8 and greater than 1/N with the baseline model, where N is the number of unique labels. The upper and 
lower thresholds are set to maintain task difficulty and ensure the task performs better than random guessing, 
respectively. Subsets meeting these criteria are shuffled to eliminate order bias before being added to the dataset.

We compute V-measure scores44 by training a mini-batch k-means model using vector embeddings, with k set 
to the number of unique labels in each clustering subset. The V-measure, ranging from 0 to 1 (higher is better), 
represents the harmonic mean of two distinct metrics: homogeneity and completeness. Here, homogeneity 
measures the extent to which clusters contain only products from a single category, while completeness indicates 
how well all products from a given category are grouped into the same cluster. More details regarding the 
calculation of V-measure can be found in44.

Retrieval
Retrieval tasks aim to identify relevant documents, i.e., product textual descriptions, in response to a given 
query. Our proposed retrieval datasets are framed as S2P and P2P tasks, where built asset descriptions serve 
as the corpus (the documents to be retrieved), and product titles and descriptions act as queries for the S2P 
and P2P tasks, respectively. In both retrieval and reranking tasks, we use the Uniclass corpus as the searchable 
dataset, while IFC product titles or descriptions serve as queries. This decision is driven by the observation that 
the Uniclass corpus contains significantly more records than the IFC one and often includes multiple records 
mapping to a single IFC entity. Accordingly, the cross-classification mappings between IFC and Uniclass define 
the ground truth for relevancy. In particular, the query-document relevancy is derived from existing mappings 
that identify the alignment between IFC and Unicalss entities. Specifically, each Uniclass product record 
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originally includes a field referencing its equivalent IFC entity. These mappings are validated and published by 
NBS39 and can be found in the official Unicalss table release40.

First, we encode all queries and product descriptions into corresponding embedding vectors. These 
embeddings are then used to calculate the pairwise similarity between a given query and all product descriptions 
using cosine similarity. Subsequently, product descriptions included in each retrieval dataset are ranked 
according to descending cosine similarity scores. Finally, we compute nDCG@10 (Normalized Discounted 
Cumulative Gain45 at rank 10) as the primary metric. This score, which can range between 0 and 1 (higher is 
better), reflects the relevancy of the ranked products based on their positions within the top 10 ranks by applying 
a logarithmic discount factor to penalize results that appear lower.

Reranking
In our reranking tasks, the aim is to rank a set of product descriptions with reference to their relevance to 
a product query. Similar to retrieval tasks, reranking tasks are framed as S2P and P2P types, and pairwise 
similarity between query and product description embeddings is computed based on cosine similarity. Given 
the structural similarity between reranking and retrieval tasks, the ground truth rationale follows the same 
approach, i.e., using cross-classification mappings to establish which Uniclass records are relevant to a given 
IFC-originated query.

The primary distinction between retrieval and reranking tasks lies in their scope and focus. While our 
retrieval tasks involve ranking the entire product corpus, reranking narrows the focus to a smaller set of positive 
and negative subsets, which are selected using the methods outlined in the previous section to ensure diversity 
and difficulty (avoiding very high scores from overfitting) within the dataset. Positive and negative samples are 
selected using the sampling methods described in the previous section, thereby preserving both dataset diversity 
and the inherent difficulty of the evaluation task. By concentrating on a smaller and more challenging group of 
product descriptions, our reranking tasks aim to provide a more fine-grained evaluation of the model’s ability to 
rank relevant items accurately.

Similar to retrieval tasks, we use cosine similarity to compute pairwise similarity between a given query 
and product descriptions included in corresponding positive and negative sets. Subsequent to ranking the 
descriptions based on the cosine similarity scores, we compute MAP (Mean Average Precision) as our primary 
metric. MAP provides an averaged measure of precision across all relevant products, ranging between 0 and 1, 
with higher values indicating better performance. It is worth noting that retrieval metrics reflect overall ranking 
quality while reranking metrics focus on how early relevant products appear in the list.

Results
Table 1 provides a comprehensive summary of the dataset statistics across the three main tasks in our benchmark. 
The unique number of sample entries in our clustering datasets shows that more than half of the samples available 
from the combined product corpora could pass the quality thresholds explained in the methods section. In the 
retrieval and reranking task, the same retrieval and reranking document corpus is shared between the subtasks 
of each task category. This design enables a comparative analysis of model performance on different query types, 
with S2P focusing on shorter product names and P2P targeting longer product descriptions. We applied a 1:3 
positive-to-negative sampling ratio to create a balanced yet challenging evaluation set, ensuring that models 
must distinguish effectively between relevant and irrelevant documents.

To outline the distinctions between our newly constructed datasets and existing ones, we conducted a 
thematic semantic similarity comparison between our clustering datasets and those from MTEB benchmark. 
Using the “stella-en-400M-v5” model, which is the most performant small-sized model in our evaluations 
(see Table 2), we generated embeddings for 200 randomly selected samples and averaged them within each 
dataset. Figure 3 depicts the cosine similarity matrix as a heatmap, where darker shades indicate higher content 
similarity. The high similarity scores between our proposed subtasks confirm strong internal consistency within 
our benchmark. Moreover, moderate to high similarities with StackExchange, Reddit, and Arxiv datasets reflect 
thematic overlaps with broader domain content. A discussion of the observed similarities is provided in the next 
section.

The software used to conduct our benchmarking experiments relied on MTEB46 (version 1.14.5) and 
sentence-transformers47 (version 3.0.1). In our experiments, we evaluated models across a broad range of sizes, 

Clustering tasks No. of subsets Unique/total samples Avg. sample length Total no. of unique labels Avg. unique label per subset

Clustering-s2s 18 2545/3815 28.04 31 5

Clustering-p2p 20 3067/4577 207.91 35 5

 Retrieval tasks No. of queries Avg. query length No. of documents Avg. document length
No. of document per query 
(Avg.)

Retrieval-s2p 977 30.35 2761 312.75 8

Retrieval-p2p 977 128.5 2761 312.75 8

 Reranking 
tasks No. of queries Avg. query length

No. of positives 
(unique/total)

No. of negatives (unique/
total) Avg. samples length

Reranking-s2p 179 27.89 1253/1253 2281/3759 310.15

Reranking-p2p 179 140.44 1253/1253 2241/3759 309.66

Table 1.  Summary of dataset statistics per benchmark task.
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from relatively small models with 33 million parameters to significantly larger models exceeding seven billion 
parameters. However, due to computational constraints, the majority of models tested have less than one billion 
parameters. The selected models span various positions on the most recent record of MTEB leaderboard (as 
of September 21, 2024), ranging from first place (i.e., “NV-Embed-v2”24) to 136th place (i.e., “paraphrase-
multilingual-MiniLM-L12-v2”). For models that are pre-trained with instruction-based data, we used built-in 
or recommended prompts as provided in the model card’s official web page or associated research papers, when 
available. For example, “mxbai-embed-large-v1” requires custom prompts only for retrieval and reranking tasks, 
while “NV-Embed-v2” needs specific task-based prompts for clustering tasks as well. For models without built-
in task instructions, we applied a general set of prompts to ensure consistency across tasks (prompts are available 
at the project’s public GitHub repository48).

The top-ranked model in our benchmark, “NV-Embed-v2”, also holds first place on the latest MTEB 
leaderboard. However, it does not consistently outperform all other models across all tasks. In fact, a closer 
examination reveals variability in model size and performance relationship. For example, “gte-small”, the 
smallest model in our evaluation with 33 million parameters, delivers competitive scores, nearly matching the 
average scores of models ten times its size and even outperforming larger models in specific tasks. Despite 
the previously reported strong correlation between model size and performance14, our experiments show that 
superior performance associated with larger models is only evident at the extreme upper end of the parameter 
scale. This observation supports the growing emphasis on developing and deploying smaller, more efficient 
models for both research and real-world applications in this specialized field, particularly for low-latency or edge 
deployments, and importantly for reducing environmental impacts due to less energy consumption.

Motivated by the hypothesis that existing datasets with similar thematic content would yield comparable 
performance evaluations, we examined the consistency of relative model performances as follows: Given 
the observed thematic similarity between our clustering datasets and specific MTEB datasets, particularly 
“StackExchange” and “Reddit” (see Fig. 3), we compared the rankings of model performance across both our 
datasets and the selected MTEB datasets. As it can be seen from Table 3, the comparative evaluation of the 
relative rankings indicates a notable variation in model performances, notably in the case of “multilingual-
e5-large-instruct”, “gte-small”, “stella_en_1.5B_v5”, and “text-embedding-3-small”. These observed variabilities 

Tasks (→) Clustering Retrieval Reranking Avg. Param. MTEB

Models (↓) s2s p2p s2p p2p s2p p2p - (mil) Rank

Pre-trained without task instructions

 gte-base-en-v1.5 48.38 51.83 79.98 59.42 66.54 66.73 62.15 137 39

 gte-large-en-v1.5 43.42 51.05 83.32 63.27 72.76 70.15 64.00 434 24

 bge-base-en-v1.5 43.00 51.78 82.56 61.65 67.01 63.38 61.56 109 43

 bge-large-en-v1.5 46.69 52.41 82.60 64.86 68.44 65.47 63.41 335 35

 UAE-Large-V1 45.45 49.53 83.32 66.42 70.04 68.53 63.88 335 29

 GIST-Embedding-v0 46.43 49.96 82.82 62.78 68.81 65.75 62.76 109 41

 GIST-large-Embedding-v0 47.97 47.91 84.01 67.06 69.53 68.03 64.08 335 34

 e5-base-v2 42.59 50.24 80.83 61.46 69.11 62.91 61.19 109 64

 e5-large-v2 42.11 49.45 81.95 64.63 68.61 64.58 61.89 335 55

 multilingual-e5-large-instruct 48.01 52.82 80.35 64.55 67.85 65.90 63.25 560 42

 multilingual-e5-small 42.98 48.16 76.38 55.03 64.78 62.34 58.28 118 112

 all-MiniLM-L12-v2 42.00 46.52 79.97 58.81 66.20 63.97 59.58 33 117

 paraphrase-multilingual-MiniLM-L12-v2 37.60 45.70 69.01 49.90 61.23 59.15 53.77 118 136

 gte-base 45.96 51.55 82.91 62.95 68.97 66.26 63.10 109 51

 gte-large 48.54 55.24 84.32 66.08 70.94 69.25 65.73 335 47

 gte-small 44.31 55.55 82.37 60.55 68.82 65.23 62.80 33 70

Pre-trained with task instructions

 gte-Qwen2-7B-instruct 50.19 62.39 86.28 73.20 69.47 67.51 68.17 7069 6

 mxbai-embed-large-v1 47.49 52.45 83.51 66.60 70.10 69.66 64.97 335 28

 multilingual-e5-large-instruct 48.10 59.43 82.91 64.42 70.53 69.23 65.77 560 42

 NV-Embed-v2 58.61 67.34 85.23 77.02 66.67 70.34 70.87 7851 1

 stella-en-1.5B-v5 53.60 54.57 84.18 71.21 71.57 71.77 67.82 1545 3

 stella-en-400M-v5 53.39 55.78 84.60 70.00 69.58 69.36 67.12 435 7

Proprietary embedding APIs

 text-embedding-3-small 49.72 49.72 79.97 65.68 65.33 66.99 62.90 - 58

 text-embedding-3-large 49.75 55.48 84.99 75.38 71.93 72.46 68.33 - 30

Table 2.  Average scores of benchmarked models per task, based on the task-specific metrics mentioned in 
the task descriptions. The first and second highest scores for each task are highlighted in bold and underlined, 
respectively. MTEB ranks are sourced from records as of September 21, 2024.
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further highlight the limitations of relying on general-purpose benchmark datasets, even when relatively high 
thematic similarities are present, underscoring the importance of domain-specific evaluations.

While our benchmarking experiments primarily focused on open-source models, we also included the 
proprietary text embedding models from OpenAI, both the small and large versions. The inclusion of the 
proprietary models is motivated by a recent study where closed-source models tend to achieve relatively 
higher performance when embedding text in underrepresented languages34. We hypothesize that built asset 
text, as an underexplored domain, might be similarly better represented by proprietary models. Notably, text-
embedding-3-large ranks second in our benchmark, performing nearly on par with the top-ranked model. In 
contrast, the smaller model performed more moderately, ranking in the middle of our benchmark. While the 
former observation aligns with the findings of34, the latter is in line with the latest MTEB leaderboard results 
where closed-source commercial embedding APIs generally underperform compared to their open-source 
counterparts. These observations raise questions about the underlying factors. However, the lack of knowledge 
about the key characteristics of proprietary models, such as their size and diversity in training data, prevents us 
from offering a detailed, conclusive account of their relative performance.

Our benchmarking results reveal a notable difference in performance between shorter and longer text 
inputs in different tasks. In particular, across the board, models consistently show lower performance in the S2S 
clustering task compared to the P2P one. This observation can be attributed to the limited presence of contextual 
clues given the significantly short length of the input text in the S2S clustering task (see Table 1). On the other 
hand, in reranking and retrieval tasks, the majority of the models yield moderately higher scores in S2P tasks. 

Figure 3.  Thematic similarity heatmap between our proposed clustering tasks and those from MTEB. Average 
embeddings are derived from 200 random samples per dataset, encoded using the “mxbai-embed-large-v1” 
model43. Datasets from our proposed benchmark are highlighted in red.
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The likely explanation for the latter observation is that the shorter length of the sentences (product names) in 
S2P tasks can lead to a lower amount of irrelevant information (noise) in the input query. Since product names 
tend only to encapsulate the critical information about the target product, they can yield more precise and 
discriminative text (query) representations for similarity matching.

Discussion
Our benchmarking results offer critical insights into the effectiveness of state-of-the-art pre-trained text 
embedding models in aligning built asset information. One of the key findings of our study is the variability 
in performance across tasks, even among top-performing models. Our results suggest that model effectiveness 
is not strongly correlated across model sizes, emphasizing that size alone is not a reliable predictor of model 
performance in the specialized domain of built asset information management. The interpretation of the 
relationship between model size and embedding effectiveness is further complicated by the performance 
gap observed when comparing models pre-trained with and without instruction tuning. Instruction-tuned 
models showed higher performance in the majority of our benchmark tasks. Considering the larger size of the 
instruction-tuned models included in our experiments, the latter observation raises an important question for 
future research: To what extent can instruction-tuning help smaller models adapt to the specialized domain 
of the built environment? This opens a promising line of investigation into how task-specific training with 
instruction-based data can better align a model’s understanding with the intricate semantics of built asset 
data, particularly for models with smaller sizes. Finally, in addition to the variability in model performance 
across different tasks and text input lengths, the results of our comparative examinations highlight the limited 
transferability of evaluations based on general benchmarks. Our experiments indicate that, even with relatively 
high thematic similarity, general-purpose benchmarks remain inadequate in capturing the unique semantic 
complexity and contextual dependencies present in the textual descriptions of the built asset.

The above-mentioned points highlight the critical need for tailored benchmarking datasets to examine the 
effectiveness of various domain adaptation strategies in this field of research. Our work contributes to the body 
of research by laying a robust foundation for future evaluations and providing a benchmark that is carefully 
constructed to reflect the complexities of built asset data. Our proposed datasets cover diverse subdomains and 
exhibit varying levels of granularity, mirroring real-world scenarios where built products are required to be 
mapped across various data dictionaries. The datasets can be used not only for evaluating new or fine-tuned text 
embedding models for cross-mapping built asset data but also as a contextually rich text corpus to support the 
training of task-specific language models for other downstream tasks, such as information extraction. Finally, 
this work contributes to the broader discourse on the transferability of the general-purpose language models’ 
capabilities by focusing on built asset data as a representative example of niche and underexplored domains.

Given the following limitations, our findings should be interpreted with caution. One key limitation of our 
study can be attributed to the data sources that were utilized for corpus development. In particular, identifying 
sources that were both of high quality and could be redistributed as public datasets was significantly challenging. 
Although the two sources used in this study, i.e., IFC and Uniclass, are authoritative and collectively cover a 
broad range of built asset products, they only represent a subset of the extensive classification systems used across 
the industry, which can potentially restrict the breadth and complexity of the domain captured in our datasets. 
Moreover, the textual elements extracted from these sources are notably compact and dense with technical 
descriptions, which differs from the more varied, lengthier, and often noisy nature of real-world data. Notably, 
the average character lengths of our datasets (see Table 1) are comparatively shorter than those found in large-
scale benchmarks (see MTEB14 and MMTEB33), which may limit the interpretability of model performance 
for longer text inputs. Additionally, despite the manual review of the synthesized descriptions, the developed 
Uniclass corpus may contain subtle semantic shifts due to paraphrasing. Finally, the text sources used in our 
work are exclusively in English, limiting the generalizability of our findings to other languages. In this light, 
the proposed benchmark can benefit from future works attempted at adding large-scale datasets that prioritize 
diverse text sources across sub-domains, languages, and lengths. Expanding the dataset size would facilitate the 
creation of training and validation splits, thereby enabling the inclusion of additional benchmark tasks that rely 
on supervised learning methods.

Conclusion
This study presents a comprehensive evaluation of pre-trained text embedding models for built asset information 
alignment, proposing six tailored datasets across clustering, retrieval, and reranking tasks. The benchmarking 
of state-of-the-art models revealed performance variability, underscoring the complexity of domain-specific 
evaluations and the limitations of relying solely on general benchmarks. Notably, the reported observations 
showed that smaller models occasionally matched or outperformed larger counterparts, highlighting the 
importance of training strategy and data quality over model size. A key finding of the study is the limited 
transferability of general-purpose benchmark evaluations to the built asset domain, even when high thematic 
similarities exist with texts from other domains. Additionally, the results highlight the promising potential 
of instruction-tuned models in representing domain-specific terminology. Future research should extend 
these findings by incorporating larger and more diverse multilingual datasets, study the underlying causes of 
variations observed against general benchmarks, and further investigate the comparative effectiveness of the 
state-of-the-art domain adaptation strategies. Moreover, evaluating embeddings alongside non-text modalities 
that are ubiquitous in built asset documentation (e.g., 2D drawings, images, 3D models) remains a promising 
area for future studies. Our published datasets and software aim to facilitate future research, supporting ongoing 
advancements in the automated alignment of built asset information.
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Data availability
The developed datasets and codes are openly accessible at the following GitHub repository: ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​
m​e​h​r​z​a​d​s​h​m​/​b​u​i​l​t​-​b​e​n​c​h​-​p​a​p​e​r​​​​ and Hugging Face page: https://huggingface.co/mehrzad-shahin. All materials 
are licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License (CC BY-ND 
4.0). Any future updates, including references to additional data and relevant resources, will be incorporated into 
the designated GitHub repository.
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