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ABSTRACT The Open Radio Access Network (O-RAN) architecture, enhanced by its AI-enabled Radio
Intelligent Controllers (RIC), offers a more flexible and intelligent solution to optimize next generation
networks compared to traditional mobile network architectures. By leveraging its distributed structure, which
aligns seamlessly with O-RAN’s disaggregated design, Federated Learning (FL), particularly Hierarchical
FL, facilitates decentralized AI model training, improving network performance, reducing resource costs,
and safeguarding user privacy. However, the dynamic nature of mobile networks, particularly the frequent
handovers of User Equipment (UE) between base stations, poses significant challenges for FL model
training. These challenges include managing continuously changing device sets and mitigating the impact
of handover delays on global model convergence. To address these challenges, we propose MHORANFed,
a novel optimization algorithm tailored to minimize learning time and resource usage costs while preserving
model performance within a mobility-aware hierarchical FL framework for O-RAN. Firstly, MHORANFed
simplifies the upper layer of the HFL training at edge aggregate servers, which reduces the model complexity
and thereby improves the learning time and the resource usage cost. Secondly, it uses jointly optimized
bandwidth resource allocation and handed over local trainers’ participation to mitigate the UE handover
delay in each global round. Through a rigorous convergence analysis and extensive simulation results,
this work demonstrates its superiority over existing state-of-the-art methods. Furthermore, our findings
underscore significant improvements in FL training efficiency, paving the way for advanced applications
such as autonomous driving and augmented reality in 5G and next-generation O-RAN networks.

INDEX TERMS Hierarchical federated learning, FL, open RAN, O-RAN intelligent controllers, handover,
mobility, B5G.

I. INTRODUCTION

THE next generation of wireless communication—5G
and beyond—is expected to support cutting-edge,

low-latency applications such as autonomous vehicles,
immersive augmented reality (AR), and remote medical
surgeries [1], [2]. The effective delivery of these services
heavily depends on the ability of radio access net-
works (RANs) to ensure consistent Quality of Service (QoS)
while efficiently managing radio spectrum and energy
resources [3]. To meet these demands, 5G-compatible radio
and baseband processing units, commonly referred to as
gNBs, are increasingly embeddingArtificial Intelligence (AI)
models that enable dynamic traffic handling and intelligent

resource allocation. Leveraging the extensive data generated
by edge devices, RANs can refine operations using adaptive
learning mechanisms [4].

The Open Radio Access Network (O-RAN) architec-
ture has emerged as a transformative approach, offering
flexibility, intelligence, and efficiency to fully unlock the
potential of 5G New Radio (NR), as outlined by 3GPP
and 5GPPP standards [5]. A pivotal component of this
architecture is the Radio Intelligent Controller (RIC),
which incorporates advanced machine learning tech-
niques through standardized interfaces and the Radio
Network Information Base (RNIB) to optimize network
performance [2].
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One of the most promising machine learning techniques
in this architecture is Federated Learning (FL), a decen-
tralized approach that enables training machine learning
models across distributed devices or servers without trans-
ferring raw data [6]. A hierarchical variant of FL, known
as Hierarchical FL (HFL), is particularly well-suited for
the mobile-edge-cloud ecosystem [7], [8], [9]. When inte-
grated with the layered structure of O-RAN, HFL enhances
network performance, reduces resource consumption, and
improves the QoS of user equipment (UE) while pre-
serving data privacy [8]. Unlike traditional approaches,
FL minimizes communication overhead by eliminating
the need to centralize UE data, thus safeguarding user
privacy. Advanced techniques such as MCORANFed [10]
and ORANFed [11] have further optimized learning effi-
ciency and resource utilization for single-layer FL in
latency-sensitive O-RAN applications. However, these meth-
ods do not account for the mobility of local model
trainers.

Deploying HFL in O-RAN is further complicated by
the dynamic nature of mobile networks. Frequent han-
dovers of UEs between base stations challenge the ability
of rApps (applications running on the Non-Real-Time RIC)
to manage an ever-changing set of devices during FL model
training [4], [12]. Although restarting FL training for a UE
post-handover may enhance overall model convergence and
efficiency, it introduces delays due to handover execution,
potentially increasing the time required to train the global
model [13]. This challenge is particularly acute in scenar-
ios involving autonomous vehicles, where wireless resources
must be allocated efficiently under stringent latency and
mobility constraints [7]. High mobility, interference dur-
ing handovers, fragmented spectrum, and the increasing
number of communication devices further exacerbate these
issues [14].

Unlike static networks, managing HFL in O-RAN, as illus-
trated in Fig. 1, requires addressing unique challenges
associated with handover (HO) management [15]. These
include: (i) dynamically selecting local trainers for each
global round, (ii) deciding whether UEs transitioning to new
base stations should continue participating in FL training,
(iii) handling UEs that prematurely exit the training process,
and (iv) incorporating HO-induced delays into the aggrega-
tion algorithm to synchronize local model updates effectively.
Retaining all UEs throughout training may enhance model
accuracy but significantly prolongs learning time, especially
in environments with frequent handovers, such as UAVs or
public transit systems. Delays introduced by resuming train-
ing at new base stations further slow the overall learning
process.

Although recent works [10], [11] propose Non-Real-Time
RIC-based frameworks to reduce communication costs and
enhance data privacy by localizing information within Near-
RT RICs, they do not address the extended learning delays
caused by UE handovers across gNB-DUs in hierarchi-
cal training. Optimizing HFL training time and resource

FIGURE 1. Federated Learning model with UE-BS handover and
hierarchical aggregation at BS and Non-RT-RIC in O-RAN.

efficiency in the presence of dynamic UE mobility remains
a critical and unresolved challenge.

To bridge this gap, this paper presents MHORANFed,
an innovative HFL framework that mitigates overall training
delay and communication resource costs through the joint
optimization of local trainer selection and training resource
allocation. Our key contributions are:

• A mathematical formulation of the optimization prob-
lem to jointly minimize training time and resource
cost in a mobility-aware hierarchical FL framework
for O-RAN;

• The development of MHORANFed, a novel algorithm
designed to accommodate UE mobility within a hierar-
chical learning paradigm;

• A thorough convergence analysis of the proposed
method, providing insights into solving the underlying
non-convex optimization problem;

• Comprehensive simulations that demonstrate the effec-
tiveness of MHORANFed compared to state-of-the-art
approaches.

To the best of our knowledge, this is the first work to
address the impact of soft inter-gNB-DU handovers on local
trainers during HFL training. The remainder of this paper
is organized as follows: Section II reviews related work,
Section III presents the system model, Section IV describes
the proposed approach, SectionV provides simulation results,
and Section VI concludes with directions for future research.

II. RELATED WORKS
Prior studies [20], [21] have highlighted the unique char-
acteristics and challenges of Federated Learning (FL)
architectures, offering comprehensive overviews of existing
approaches. The deployment of FL in O-RAN has been
explored in works such as [22] and [23], with particular
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TABLE 1. Comparison with related literature on FL.

attention to the open, software-defined, virtualized, and intel-
ligent design of the architecture.

The challenge of imbalanced data distributions and learn-
ing latency in Hierarchical FL (HFL) across wireless multi-
cell networks is addressed in [18]. This work proposes joint
user association and wireless resource allocation algorithms
for both IID and non-IID data, demonstrating improvements
in convergence rates and learning accuracy. In contrast, [17]
investigates FL deployment in decoupled O-RAN architec-
tures to enhance computing capabilities. By enabling collab-
oration among Mobile Virtual Network Operators (MVNOs)
for FL model training, it reduces the cost of data collection
while boosting performance.

A robust HFL framework tailored to the Internet of
Vehicles (IoV) is presented in [7], which counters poison-
ing attacks through a reputation-based aggregation strategy
and logarithmic normalization, offering enhanced robustness.
Similarly, [8] optimizes worker aggregator placement and
User Equipment (UE) assignment in Mobile Edge Comput-
ing (MEC) networks. Its proposed optimization framework
and approximation algorithm substantially reduce FL imple-
mentation costs, as demonstrated through simulations and
real-world testbeds.

To address communication delays between edge and
cloud servers, [16] introduces a delay-aware HFL method
that applies multiple stochastic gradient descent itera-
tions alongside an adaptive control algorithm, achieving
faster global model convergence and reduced resource
consumption. In addressing mobility-related performance
degradation, [19] proposes a cluster-based HFL approach.

More recently, [24] introduced a Reinforcement Learning
(RL)-based client selection mechanism that adapts FL train-
ing to dynamic environments.

Collectively, these studies tackle key challenges of FL
implementation in 5G and beyond Radio Access Net-
work (RAN) environments. Their use cases span resource
optimization, hierarchical architectures, and resilience
against adversarial threats. However, none of these works
address the critical challenge of training HFL models under
dynamic handover (HO) conditions—an increasingly com-
mon scenario in mobile networks. This gap is especially
pressing for high-mobility applications spanning terrestrial,
aerial, and underwater domains, where rapid and reliable
decision-making is vital.

To fill this gap, we propose MHORANFed, a novel frame-
work that explicitly incorporates HO dynamics into the HFL
training process. Table 1 presents a detailed comparison
between MHORANFed and existing state-of-the-art HFL
and FL frameworks implemented in O-RAN and edge-cloud
systems.

III. SYSTEM MODEL
We consider a hierarchical O-RAN system disaggregated
into Open Radio Unit (O-RU) at BS, Open Distributed Unit
(O-DU) provided close to BS as gNB-DU, and Open Control
Unit (O-CU) that controls multiple O-RUs andO-DUs. O-CU
control plane (O-CUCP), as a separate entity fromO-CU user
plane (O-CUUP), monitors the performance KPIs of each
UEs via their corresponding BSs. An r-App placed in Non-
RT-RIC layer of O-RAN executes the FL training globally
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FIGURE 2. System components and standard interfaces in
O-RAN.

across the multiple BSs as illustrated in Fig. 2. In each time
slot, four operations are implemented to train an FL model:
(1) At the UE level, locally collected raw data by the UEs are
processed, (2) the model update parameters such as gradients
are uploaded at respective BSs for local aggregation, (3) some
of the UEs are handed over from one BS to another, and
(4) global model update parameters from all the BSs are
aggregated at the Non-RT-RIC.

The system consists of a setN = {1, 2, ...,N } of Base Sta-
tions (BS) each of which is associated with a gNB-DU. Please
note that in this paper, the term BS is used interchangeably
with gNB-DU since they are positioned together as depicted
in Fig. 1. These gNB-DUs have limited processing power.
Let M = {1, 2, ...,M} be the set of UEs in this network.
The mobility of these devices results in frequent change of
its associated BS invoking several HOs. However, a UE is
allowed to be connected to a single BS in one time slot.
Let Mt

n be the set of UEs connected with the BS n in the
time slot t . The association between an instance of BS and
the UEs follow O-RAN hierarchical definition, which can
be modeled as

∑
n∈N ζnm ≤ 1 ; ∀m ∈ M. All the UEs

participate in model training through FL using their available
computational power on a pay per usage cost basis. In this
model, we consider a generalized notion of cost that can be
specified for a particular type of cost such as energy, battery
consumption, etc. Further, all the BSs are connected with
an instance of Non-RT-RIC in the Service and Management
Orchestration (SMO) layer of O-RAN via a fiber link serving
as the E2 interface of O-RAN. This dedicated link is separated
from the data plane of Open Control Unit (O-CU). The Non-
RT-RIC is hosted on a VM on pay per usage cost basis.

A. HIERARCHICAL FEDERATED LEARNING IN O-RAN
In such a hierarchical federated learning model, the UEs
are local trainers, the BSs are the edge model aggregators,
and the Non-RT-RIC is the global model aggregator. Model
update parameters are exchanged between the UEs and its
associated BS periodically during the FL model training as
in the traditional FL structure named FedAvg [6]. For the
sake of distinction, we call the model trained at the UEs as
local FL models, at the BSs as edge FL models, and at the

TABLE 2. Summary of key notations.

Non-RT-RIC as the global FL model. The aggregated model
update parameters from each BS is sent to the Non-RT-RIC
after every edge FL model aggregation.

Let F(w) be the loss function of the global FL model.
To obtain the optimized model w∗, we perform iterative
gradient descent method to minimize F(w) over the model
vector w. At each BS, the loss function value of an edge FL
model is calculated by aggregating its local model updates.
Let fmt (w) be the loss function of the local FL model asso-
ciated with UE m and fnt (w) be the loss function of the edge
FL model associated with BS n at time slot t . Then,

F t (w) =
1
N

N∑
n=1

f tn (w), (1)

where

f tn (w) =
1
M

M∑
m=1

f tm(w). (2)

1) UE-BS EDGE MODEL
At time slot t , the UEs serving as local trainers, process their
individual raw data. Let Dm represent the dataset of UE m.
To reduce communication overhead, instead of uploading the
local model after every local iteration, the model parameters
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are uploaded to the associated BS only after every L rounds
of local iterations. Let wLm denotes local FL model of mth UE
at L local iterations. Then the model update equation is:

wLm = wL−1
m − η∇fm(wL−1

m ); ∀m ∈ M, (3)

where η is the learning rate. The model update aggregation in
each time slot at the nth BS is performed as:

wLn =
|Dm|

D

∑
m∈Mn

wLm; ∀n ∈ N , (4)

where D =
∑

m∈Mn
|Dm|.

2) BS – NON-RT-RIC GLOBAL MODEL
After each edge model aggregation, the BS sends its updated
model to the Non-RT-RIC. The Non-RT-RIC receives the
updated model from each BS and then aggregates as per the
following rule:

wG =
1
N

∑
n∈N

wLn ; ∀n ∈ N , (5)

The global model is aggregated after every L local iterations
and then communicated back to all the BS nodes. This process
is called global round of FL model training.

B. BASE STATION ASSOCIATION AND BANDWIDTH
ASSIGNMENT
The channel gain (Ck

m,n(t)) between a UE m and BS n in a
particular time slot t for the radio Resource Block (RB) k
is determined by two factors: large scale fading component
(lm,n(t)) and small scale fading component (hkm,n(t)). While
the large scale fading is regulated by the distance between a
UE and the corresponding BS it is connected to during one
time slot and remains unchanged within this time slot, the
small scale fading component is regulated by the variation
between two contiguous time-slots. These time-varying com-
ponents are related as:

Ck
m,n(t) = lm,n(t)|hkm,n(t)|

2. (6)

Co-channel interference may also occur when the same RB
is allocated to multiple UEs. Therefore, as calculated in [22],
let δm, nk (t) be the SINR at UE m from BS n in RB k then its
uplink spectrum efficiency for time slot t can be given by

rm,n(t) = log2(1 + δkm,n(t)). (7)

We define a binary variable anm to denote the association of
user m with BS n.

anm =

{
1 if UE m is associated with BS n,
0 , otherwise.

Let Bn be the available bandwidth for communicating the
FL model training tasks of the associated UEs at the BS n.
We define a decision variable bnm(t) ∈ (0, 1) ⊂ R to denote
the fraction of bandwidth of BS n allocated to theUEmwithin
time slot t . Therefore, the instantaneous data rate between UE
m and BS n in time slot t can be given as:

Rnm(t) = anm.bnm(t).Bn.r
n
m(t) (8)

FIGURE 3. Sequence of steps among the HFL training nodes in
every communication round.

C. INTER gNB-DU HANDOVER
We consider a soft handover in which the source and des-
tination cells are associated with different gNB-DUs while
the 5G core (5GC), which makes the HO decision, remains
the same as illustrated in Fig. 2. This definition follows the
technical specification of [25] which is also analysed by [26]
and [27]. In terms of physical deployment, the User Plane
Function (UPF) of the 5GC can either be moved within
the same UPF instance (intra-UPF) or across different UPF
instances (inter-UPF). Although there is a dedicated m-Plane
(defined in the O-RAN specifications) for such network
management operations, this conditional inter-gNB-DUs
handover results in change of associated UEs temporarily.
In turn, this leads to fluctuations in channel gains and the
BS throughput. Consequently, the bandwidth allocation of
the updated UEs changes. A binary handover parameter
Hmn→n′

indicates whether UE m is handed over from BS n
to BS n′.

Hmn→n′

=

{
1 if HO occurs from BS n to BS n′,

0 , otherwise (No HO).

Following the HO, the resulting association of a UEwith a BS
will also change and hence the effective data transmission rate
changes. So, the updated subset of the UEs becomesMn′ (t)
instead ofMn(t). Moreover, since the HO occurs during an
ongoing model training, an overhead of handover time also
needs to be accounted in the total FL training time. The FL
rApp (located in the O-RAN SMO) records this HO event
and calculates the time elapsed in rejoining the UE back into
the FL model training. Let THOm be the time elapsed in the
handover execution of UE m. THOm consists of internal delay
caused by measurement reports exchange, TTT (Time-To-
Trigger) parameters, etc. It should be noted that THOm also
includes delay arising from channel interference caused by
high mobility of UEs in the adjacent BS.
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D. HFL RESOURCE MODEL
The FL model training incurs compute and communication
resources consumption. In the first layer of HFL, training
local FL model requires UE’s compute resource, and band-
width is required between the UEs and the corresponding BS
for transmitting the model parameters.

1) COMPUTE RESOURCE
Let s(Dm) be the size of the raw dataset to be processed atmth

UE, pm be its processing power in cycles/sec, and cm be the
CPU cycles per bit to process the data. Then, the resource
usage cost for one local iteration is given by:

Rm = s(Dm).cm.(pm)2 (9)

So, for L local iterations, the computation cost for UE m
is L.Rm. Now, at the BS level, model parameters’ aggregation
is performed after every L local iterations (i.e., or a global
round G). Naturally, G.k = L, meaning the total number of
local rounds is always awhole numbermultiple of the number
of global iterations. Therefore, the total resource cost of the
HFL required for the local processing at all UEs is given by:

Rlc = G.
∑
m∈M

L.Rm (10)

Further, let s(dm) be the size of the model parameters from
the mth UE. Then, at the BS level, the resource usage cost
required for processing the local FL model aggregation is:

Rbs =

∑
m∈M,n∈N

G.s(dm).pn (11)

The compute resource usage cost at the Non-RT-RIC is neg-
ligible as the processing power there is not scarce. So, we do
not model that part.

2) COMMUNICATION RESOURCE
Wireless resources are consumed for transmitting the model
updates from UEs to their associated BS. Therefore, the
communication resource usage cost incurred by the local FL
model is given by:

Rlf = G.
∑
m∈M

∑
n∈N

anm.bnm.Bn.rnm.ptr (12)

where, ptr ∈ R+ is the uniform per unit bit transmission cost.
The communication resource usage cost between BS and the
Non-RT-RIC is comparatively negligible as it is provided
by the non-scarce backhaul fiber link. Hence, the overall
resource usage cost of this HFL can be summed up as;

Rcost = Rlc + Rbs + Rlf (13)

E. LEARNING TIME MODEL
Due to the limited resources in UE-BS layer, both compute
and transmission latency are the main performance factors.
These latency occur at both the layers of HFL.

1) UE-BS EDGE LAYER
In this layer, the latency consists of local model processing at
each participating UE and model parameters uploading by all
of them to the respective BSs. The local compute latency can
be modelled as:

T lcm =
s(Dm).cm

pm
. (14)

Since a BS will have to wait for all its participating UEs to
receive the model update before it can start the aggregation,
the effective compute latency at BS n over all its UEs in time
slot t is given by:

max
m∈Mn(t)

{T lcm }. (15)

Further, the delay in its model parameters’ transmission to the
corresponding temporal BS n can be modelled as:

T nm =
s(dm)
Rnm(t)

. (16)

2) BS–NON-RT-RIC LAYER
In this layer, the local FL model aggregation at BS and
the global FL model aggregation at the Non-RT-RIC incur
compute delays whereas themodel parameters exchange adds
transmission delay. A wired backhaul, i.e., a dedicated fiber
link can be used for this communication, which offers a much
higher speed than the wireless links between BSs and UEs.
However, due to the straggler effect of FL training, the syn-
chronousmodel aggregationmay become a significant part of
the learning time. Because of the model integrity, the size of
the model parameters remain the same after the aggregation.
Let s(d) be the size of this model update and pn be the
processing power in bit per sec of the VM associated with the
nth BS. Then, the time required for processing the model is:

T ecn =
s(d)
pn

. (17)

The delay of transmitting the model from the nth BS to the
Non-RT-RIC is:

T gn =
s(d)

Rgn
, (18)

where Rgn is the backhaul data rate from the nth BS to the
Non-RT-RIC. Since the Non-RT-RIC aggregates the model
in the core network where compute resource is not scarce,
the corresponding compute delay is negligible. Therefore, the
overall learning time of this HFL can be summed up as:

Tcost = max
m∈Mn

{
Hn→n′

m .THOm + T lcm + T nm
}

+ max
n∈N

{
T ecn + T gn

}
(19)

F. PROBLEM FORMULATION
We define xgm a binary variable that decides whether the mth

UE which has been handed over from one BS to another will
continue to take part in the gth global round of HFL training
or it will be dropped out of this particular round.

xgm =

{
1 ; if mth UE takes part in gth global round,

0 ; otherwise .
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While a handed over UE may contribute to the global model
in terms of accuracy, data heterogeneity, and convergence,
it also increases the overall model learning time because of
the time elapsed in handover and resuming the model update.
In our proposed architecture, a rApp running in the Non-
RT-RIC monitors the accuracy of the in-training model and
the elapsed learning time following the completion of every
global round to make the decision of accepting such UEs in
the FL training as depicted in Fig. 3. The objective of this
system is to minimize the compute and communication costs
and the training latency of all the participating UEs over the
required global rounds, which is modeled as follows:

cost(t) =

∑
m∈M

xgm
{ ∑
n′∈N

∑
m∈Mn′ (t)

Hn→n′

m .THOm

+

∑
n∈N

∑
m∈Mm(t)

(ρ.Tcost + (1 − ρ).Rcost)
}

(20)

The first term of this cost function represents the delay
incurred solely due to HO execution, while the second term
captures the training delay along with the associated resource
usage cost. Notably, the impact of HO execution delay also
extends to the second term, resulting in a compounded
effect on the overall cost function. This function serves
as the objective function for the subsequent optimization
problem.

min
x, a, b

G∑
t=1

cost(t) (21)

subject to:∑
m∈Mn

anm(t).b
n
m(t) ≤ 1; ∀n ∈ N , t = {1, 2, ...,G}, (21a)

M∑
m∈Mn

bnm(t) = 1; ∀n ∈ N , (21b)

∑
n∈N

anm(t) = 1; ∀m ∈ Mn, (21c)∑
n,n′∈N

anm(t).H
n→n′

m ≤ 1 ; ∀m ∈ M, (21d)

∑
m∈M ,n∈N

Rnm(t).x
g
m ≤ rm,n(t) ; ∀g ≤ G, (21e)∑

n∈N
ζnm ≤ 1 ; ∀m ∈ M, (21f)

anm, xgm ∈ {0, 1}, (21g)

bnm(t) ∈ (0, 1) (21h)

Constraint (21a) guarantees that the sum of bandwidth
fractions allocated to all the local trainers does not exceed
the available bandwidth at each BS. Constraint (21b)
defines the integrity of bandwidth allocation for each BS.
Constraint (21c) ensures that a UE is associated with a single
BS in each time slot. Constraint (21d) states that a UE can
be handed over to a maximum one BS in each time slot.
Constraint (21e) denotes that the sum of selected UEs’ data
rates obtained through the bandwidth allocation must not

exceed the spectrum uplink efficiency in any global round.
(21f) reflects the association constraint of O-RAN hierarchy.
(21g and 21h) are the defining conditions on the decision
variables.

Algorithm 1 Recovering Feasible Integer Solution using
PCA
1: Input: Relaxed SDP solutionWm (positive semi-definite

matrix)
2: Output: Approximate integer solution x̂, â, b̂
3: Step 1: Compute Principal Components
4: Compute the eigenvalue decomposition:Wm = U3UT

5: Select the top principal component: v1 = U [:, 1] (corre-
sponding to the largest eigenvalue)

6: Step 2: Extract Initial Integer Approximation
7: for each element v1(i) do
8: Assign x̃gm = sign(v1(i)) (Convert to binary by thresh-

olding at 0)
9: end for
10: Step 3: Randomized Rounding
11: for each m, n do
12: Compute probability pnm =

|v1(m,n)|∑
m′ |v1(m′,n)|

13: Set ânm as a Bernoulli random variable with probabil-
ity pnm

14: end for
15: Step 4: Feasibility Refinement
16: for each constraint in (21) do
17: Project the solution onto the feasible set
18: Adjust â, b̂, x̂ using constraint enforcement
19: end for
20: Step 5: Return Recovered Integer Solution
21: return x̂, â, b̂.

IV. PROPOSED SOLUTION: MHORANFed
The problem (21) is a mixed-integer non-linear programming
(MINLP) model. The objective function is non-convex and
the constraint (21a) contains bilinear terms (product of deci-
sion variables a and b). Obtaining the exact optimal solution
of this NP-Hard problem is intractable with existing math-
ematical solvers. Nonetheless, Semi Definite Programming
(SDP) [28] relaxation is known to provide tight bounds.
Therefore, we relax the constraints and the objectives to a
convex semi-definite form.

Fig. 4 outlines our proposed solution approach to the
joint optimization problem (21) aimed at minimizing the
total HFL training cost under bandwidth and handover-
aware local trainers’ selection constraints. The problem
is first reformulated as a SDP problem (22), which is
then approximately solved using Algorithm 1 to obtain a
feasible solution. Following this, the system performs post-
handover local trainer selection and allocates bandwidth
among the selected devices. Finally, Algorithm 2 resumes
to continue with the learning rounds based on the optimized
configuration.
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To relax the bilinear term (anm · bnm), we introduce a new
variableWm defined as:

Wm =

[
1 anm
anm bnm

]
, Wm ⪰ 0.

So, the constraint (21b) transforms to∑
m∈Mn

Wm ≤ 1, ∀n ∈ N , t = {1, 2, . . . ,G}

We also relax the binary decision variables into continuous
real variables as: xgm ∈ [0, 1], anm ∈ [0, 1], bnm ∈ [0, 1] to
make it solvable through a mathematical solver [29]. Then,
a rounding technique is applied to obtain the binary values of
these variables. In particular, we performed principal compo-
nent analysis (PCA) on the obtained matrixWm solution and
iteratively adjusted its feasibility as shown in Algorithm 1.
The PCA based rounding is preferred over other rounding
methods as it offers a principled and computationally efficient
way to project high-dimensional approximated solutions onto
a lower-dimensional feasible space [30].

A. OPTIMALITY GAP ANALYSIS
The SDP based relaxation leads to a sub-optimal approxima-
tion which is a lower bound on the exact solution as can be
directly inferred from its definition as follows:

The non-convex bilinear inequality constraint (21a):

anm(t) · bnm(t) ≤ 1

is relaxed using a positive semidefinite matrix:

W n
m(t) =

 1 anm(t) bnm(t)
anm(t) a

n
m(t)

2 θnm(t)
bnm(t) θnm(t) bnm(t)

2

 , W n
m(t) ⪰ 0

FIGURE 4. Proposed solution schema.

where θnm(t) serves as a convex surrogate for the product
anm(t) · bnm(t).

We replace the rank-1 matrix constraint

W n
m(t) = vnm(t)v

n
m(t)

⊤, with vnm(t) =

 1
anm(t)
bnm(t)



by a relaxed convex constraint W n
m(t) ⪰ vnm(t)v

n
m(t)

⊤, allow-
ing W n

m(t) to lie in the convex hull of rank-1 matrices. This
enlargement of the feasible region leads to the SDP:

min
x,a,b,W

G∑
t=1

cost(t) (22)

s.t. W n
m(t) ⪰ 0, ∀m, n, t (22a)

(plus relaxed versions of other constraints from (21))

The optimal value f ∗

sdp of this convex relaxation satisfies:

f ∗

sdp ≤ f ∗

where f ∗ is the optimal value of the original non-convex
problem. This is because the relaxed SDP includes all fea-
sible integer points and additional fractional ones, resulting
in a lower bound on the true optimum. The gap between
f ∗ and f ∗

sdp is the optimality gap.
In Lemma 1 of our convergence analysis, we show that

under a set of conditions on the model loss functions and its
learning rate, this optimality gap lies within the controllable
range of convergence.
Using this approximated solution, we design an algorithm

called Mobility Aware Hierarchical Federating Learning
for O-RAN (MHORANFed). The global training loop iter-
ates until the global model accuracy (ϵ ∈ (0, 1)) reaches
a predefined threshold ϵ∗ as outlined in Algorithm (2).
By considering the mobility of UEs and the hierarchical
structure of O-RAN, MHORANFed aims to achieve effi-
cient and accurate federated learning in dynamic network
environments.
By utilizing the optimal set of local trainers associated with

a BS and the handed-off UEs allowed back in the model
training in each global round, MHORANFed mitigate the
bias caused by handover and in favour of the BS having
a relatively higher number of local trainers. Moreover, the
synchronous communication resulting in the delay calculated
as modeled by (15), ensures that the optimal solution has
the total learning time with ρ times Pareto importance as
defined in (20).

B. COMPLEXITY ANALYSIS
Algorithm 1 consists of two main loops. The outer-loop
depends on the number of global rounds (G) having a
time complexity of O(G). According to [31], the MHO-
RANFed performance will be unaffected as long as the
convergence time of FL global iterations is upper-bounded
by O(log(1/ϵ∗), where ϵ∗ is the model accuracy. The inner-
loop has the complexity of O(L), where L is the number of
local iterations. Let KSDP be the approximated iterations of
SDP then O(KSDP) [28] is the computational complexity
of the optimization problem in (21), as drawn in the line 2
of Algorithm 1. Therefore, the overall complexity of MHO-
RANFed is {M .O(L) + N .O(KSDP)}.O(log(1/ϵ∗)). Here,
M = |M| is the number of UEs and N = |N | is the
number of BSs.
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Algorithm 2 Mobility-aware Hierarchical FL for O-RAN
(MHORANFed)
1: Input:
2: Untrained global FL model w;
3: Set of participating UEsM and BS-gNB servers N ;
4: HO occurrence at concerned UEs Hn→n′

m ;
5: Stopping criteria ϵ∗

6: Output: Trained global HFL model w∗

7: for each global round g ≤ G do ▷Global rounds
8: Non-RT-RIC rApp solves (22)
9: Non-RT-RIC assigns bandwidth b̂ to UEs x̂, â.

10: for Local iteration:1 to Ldo ▷ Local training at UEs
11: UEm downloads the edgemodelwL−1

m from its
associated BS-gNB.

12: UE trains local model wLm using Equation (3).
13: BS n aggregates local models to get wLn via

Equation (4).
14: end for
15: BS-gNB servers upload aggregated models to the Non-

RT-RIC.
16: Non-RT-RIC aggregates models to get wG using

Equation (5).
17: Non-RT-RIC updates global model accuracy.
18: rApp utilizes Hn→n′

m to update current UE associa-
tions.

19: while ϵ ≥ ϵ∗ do ▷Convergence check

C. CONVERGENCE ANALYSIS
Lemma 1 (Boundary of Convergence): If F(w∗) and

F(wG) be the final loss function values corresponding to f ∗

and f ∗

sdp i.e. the optimal and the approximated solutions
respectively, then

f ∗
− f ∗

sdp ≥ E[F(wG) − F(w∗)]

provided the following conditions hold:
• η < 1

R ,

• ηµ > 1 −
L
√

1
4M .

Proof:AfterG global rounds of communication between
the Non-RT-RIC and the set of BSs, the expected optimality
gap is bounded by:

E[F(wG) − F(w∗)] ≤ β[F(w0) − F(w∗)] + (1 − β)
Lηp
4γ

where γ = (1 − ηµ)L , and β =

(
2Mγ
L

)G
.

In each round, the left-hand side of the above inequality
is governed by two key terms from the SDP-based approxi-
mated solution of (21):

• the geometric decay term: β[F(w0) − F(w∗)],
• and the residual error floor: (1 − β)Lηp

4γ .

The term β =

(
2Mγ
L

)G
depends exponentially on the num-

ber of global rounds G, and shrinks rapidly as G increases,
provided that:

γ = (1 − ηµ)L < 1

This holds true when the learning rate η and the local smooth-
ness constant µ satisfy:

ηµ > 1 −
L

√
1
4M

Together, these conditions ensure that:
• the geometric decay dominates initially, reducing the
gap quickly,

• the residual floor becomes small with careful tuning of η,
• and the SDP relaxation of the original problem provides
a tight lower bound on F(w∗), enabling estimation of the
gap:

E[F(wG) − F(w∗)] ≤ f ∗
− f ∗

sdp

Hence, this theoretical bound directly connects the choice
of algorithmic parameters to the rate of convergence and the
quality of the approximate solution.
Theorem 1 (UE-BS Edge Layer): Assuming the global

loss function F(w) to be R-smooth and µ-strongly convex
(true for the standard FL convergence analysis [32], and
that each UE performs L local updates before uploading
its updated model weights to the corresponding BS, if the
following conditions are satisfied:

• η < 1
R ,

• η.µ > 1 −
L
√

1
4M ,

• F(wo) − F(w∗) >
L.M .p

4.(1−η.µ)L ,
then we have:

2M
L

(1 − η · µ)L ∈ (0, 1),

E[F(wL) − F(w∗)] ≤ (1 − η · µ)L[F(w0) − F(w∗)]

+
L · η · p

2
(23)

where wL denotes the model weights after L rounds of local
updates and wo denotes the initial weight parameter.

Proof: We derive the convergence of L local updates
first. By utilising the assumptions of strong convexity and
smoothness for each local update l ∈ 1, 2, . . .L, we have:

E[F(wl) − F(w∗)]

≤ F(wl−1) − F(w∗)

− ηE[< ∇F(wl−1), ∇f (wl−1
; ql) >]

+
Lη2

2
E[||∇f (wl−1

; ql)||2]

≤ F(wl−1) − F(w∗) −
η

2
||∇F(wl−1)||2

+
η

2
E[||∇F(wl−1) − ∇f (wl−1

; ql)||2]

≤ F(wl−1) − F(w∗) −
η

2
||∇F(wl−1)||2

+
ηp
2

(using the graded variance)

≤ F(wl−1) − F(w∗) − ηµ[F(wl−1) − F(w)] +
ηp
2

≤ (1 − ηµ)[F(wl−1) − F(w∗)] +
ηp
2

(24)
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This gives us a convergence bound for each local iteration
l ∈ 1, 2, ...,L. By extending this for all the local updates and
telescoping, we have after L local updates:

E[F(wL) − F(w∗)]

≤ (1 − ηµ)[F(wL−1) − F(w∗)] +
ηp
2

≤ (1 − ηµ)[(1 − ηµ)[F(wL−2) − F(w∗)]

+
ηp
2
] +

ηp
2

. . . . . . . by telescoping with eq. (24)

≤ (1 − ηµ)L[F(w0) − F(w∗)]+

ηp
2

L∑
l=1

(1 − ηµ)l−1

≤ (1 − ηµ)L[F(w0) − F(w∗)]+

ηp
2

1 − (1 − ηµ)L

1 − (1 − ηµ)
≤ (1 − ηµ)L[F(w0) − F(w∗)]+
ηp
2

Lηµ

1 − (1 − ηµ)

≤ (1 − ηµ)L[F(w0) − F(w∗)] +
Lηp
2

(25)

At the Non-RT-RIC, the concerned FL Manager rApp per-
forms global model aggregation after every m updated model
weights at time-slot t .

Following it we have:wt =
L
M

∑M
L
i=1 w

L
i , wherew

L
i denotes

the local model update in the ith UE after L local iterations.
Theorem 2 (BS-Non-RT-RIC Layer): After G global rou-

nds between the Non-RT-RIC and the set of BSs, the conver-
gence bound of MHORANFed is:

E[F(wT ) − F(w∗)] ≤ β[F(w0) − F(w∗)] + (1 − β)
Lηp
4γ
(26)

where γ = (1 − ηµ)L , and β = ( 2Mγ
L )G.

Proof: Following the definition of the weight update rule
of wt for every global round, we have:

E[F(wt ) − F(w∗)]

≤
L
M

M/L∑
i=1

[F(wi)L − F(w∗)]

≤
L
M

M/L∑
i=1

[(1 − ηµ)L(F(wi) − F(w∗)) +
LMp
2

]

≤
M
L
[(1 − ηµ)L(F(w0) − F(w∗)) +

Lηp
2

]

≤
M
L
[(1 − ηµ)L(F(w0) − F(wt−1)

+ F(wt−1) + F(w∗)) +
Lηp
2

]

≤
M
L
(1 − ηµ)L(F(w0) − F(wt−1))

+
M
L
(1 − ηµ)L(F(wt−1) − F(w∗)) +

MLηp
2

≤
M
L
(1 − ηµ)L(F(wt−1) − F(w∗))

+
M
L
(1 − ηµ)L(F(wt−1) − F(w∗)) +

MLηp
2

≤ (
2M
L

(1 − ηµ)L)[F(wt−1) − F(w∗)] +
MLηp
2

(27)

Therefore, the after G global rounds, the convergence
bound comes down to:

E[F(wG) − F(w∗)]

≤ (
2M
L

(1 − ηµ)L))[F(wG−1) − F(w∗)] +
MLηp
2

. . . . . . telescoping by eq.(27)

≤ (
2M
L

(1 − ηµ)L))G[F(w0) − F(w∗)]

+
(1 −

2M
L (1 − ηµ)L)GMLηp

2(1 −
2M
L (1 − ηµ)L)

≤ (
2M
L

(1 − ηµ)L)G[F(w0) − F(w∗)]

+
(1 −

2M
L (1 − ηµ)L)GMLηp
4M
L (1 − ηµ)L)

≤ (
2M
L

(1 − ηµ)L)G[F(w0) − F(w∗)]

+
Lηp

4(1 − ηµ)L
.(1 − (

2η
L
(1 − ηµ)L)G) (28)

To simplify eq. (28), replacing γ = (1 − ηµ)L and β =

( 2Mγ
L )G. Then, we have:

E[F(wT ) − F(w∗)] ≤ β[F(w0) − F(w∗)] +
Lηp
4γ

(1 − β)

(29)

V. NUMERICAL RESULTS AND ANALYSIS
A. SIMULATION SETTINGS
We simulate 5 BSs and 100 UEs randomly in a distributed
coverage region. At the beginning, a random subset of 20 UEs
are connected to each BS such that the load of all BSs are
balanced in terms of the bandwidth required for model update
parameters’ transmission. After the completion of 20, 40, and
70 global rounds, a subset of 5, 3, and 6 UEs respectively
opt for HO to their nearest BS. A similar occurrence of
HO is set in the experiment for a total of 10 times and the
average performance of MHORANFed is plotted to counter
the randomness bias. A wireless channel model between the
UEs and the respective BSs is considered with both small
and large scale fading components. We set the path loss
model of 128.1 + 37.6log10(d) for the large scale fading
and set Rayleigh distribution for the small scale fading. The
processing power of UEs is set uniformly in the range from
1.0 GHz to 2.5 GHz and that of BSs is in the range from
2.0 GHz to 3 GHz. Uplink bandwidth capacity is 50 MHz
for each BS. For the second layer of the HFL, the available
fiber bandwidth is 20 MHz.
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TABLE 3. Simulation parameters.

The standard CIFAR-10 dataset [33] consisting of
50, 000 training images and 10, 000 train images and
the MNIST dataset [34] containing 60, 000 training and
10, 000 test images are adopted for the multi-class classifica-
tion problem. These datasets are distributed onto all 100 UEs
with skewed class labels to represent non-IID scenario and
uniformly using stratified sampling method to represent IID
scenario at the FL training initialization. The stopping cri-
teria for MNIST, defined as the model accuracy ϵ∗, is set
as 93% which is obtained through centralized ML model
training with a 2 layer CNN model and 91% model accuracy
with SVM. The ϵ∗ for CIFAR-10 is 78%, as obtained through
centralized CNN model with 2 layers and 81% with SVM.
A time series dataset taken from [35] is also processed for
predicting network traffic. The categorical cross-entropy is
the loss function for the classification problem while the
Mean Square Error (MSE) is the loss function for the traffic
prediction problem.

We trained the models under two different dataset dis-
tributions to incorporate the impact of data heterogeneity.
(i) IID case: the whole train and test dataset as described
above us uniformly distributed across the associated local
trainers. We also employ stratified sampling to maintain
a proportional class label distribution for the MNIST and
CIFAR-10 dataset. Similarly, we maintain the same time
duration for the traffic volume dataset. (ii) Non-IID case: we
utilized skewed class distribution for the image classification
task and non-uniform time-span distribution for the traffic
prediction task.

B. BASELINES
The following baseline schemes are implemented for this
comparative performance analysis:

• ‘All-Dropped’:This scheme excludes all the UEswhich
undergo HO in HFL.

• ‘MHORANFed’: The near optimal solution obtained
through our proposed algorithm in this paper.

TABLE 4. Number of global communication rounds to achieve
the target accuracy with different pareto Trade-offs and learning
rates.

• ‘Random’: In this scheme, a random set of UEs are
selected consisting of one or more handed over UEs and
dropped UEs.

• ‘HFL-0’: This is the algorithm derived from [18]
and adapted to suit the comparable framework in this
paper. In this variant of HFL, UEs’ handovers are not
considered.

• ‘DFL’:This is a delay aware HFL [16] having sub-linear
convergence rate and no consideration of handovers.

• ‘MACFL’: Taking into account the impact of users’
mobility on the FL training in wireless networks,
MACFL (Mobility-Aware Cluster FL) [19] serves as the
closest baseline.

• ‘FedPPO’: We trained a reinforcement learning (RL)
based client selection strategy for the hierarchical FL
by utilizing Federated Proximal Policy Optimization
(FedPPO) [24].

C. KEY METRICS
The main metrics used for comparison are as follows.

• Convergence: This fundamental property assesses an
FL method’s ability to attain the threshold performance
over the number of global rounds. A higher convergence
rate results in a smaller number of global rounds as it
directly translates to lower training time. We compare
the convergence rate of all the baselines for both types
of learning tasks over the IID and non-IID cases.

• Training Cost: As defined in (21), there are two main
components of the training cost: i) learning time shich
is the total time taken to train the final global model,
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FIGURE 5. Comparison of convergence rate under IID [(a), (c)] and Non-IID [(b), (d)] data distributions for two learning tasks with
convex [(c), (d)] and non-convex [(a), (b)] loss functions for the traffic prediction and the image classification respectively.

and ii) total cost which is calculated based on compute
and bandwidth resources in both the layers of HFL.
A lower training cost is preferred as it reduces the burden
on already constrained edge system with O-RAN’s tight
closed loop timescale.

D. PERFORMANCE EVALUATION
Now, we examine the performance of MHORANFed in
light of the defined metrics, the relevant baselines, learning
tasks, and data distributions under the described experimental
settings.

1) IMPACT OF LOCAL TRAINERS’ PARTICIPATION
METHOD
Keeping the value of ρ = 0.5 (implying a balanced trade-off
between learning time and resource usage costs) for MHO-
RANFed, we compared the performance of the baselines in
terms of training costs (Fig. 6) and convergence rate (Fig. 5).
The key differentiator is their local trainers’ selectionmethod.
We can also observe the exact number of global rounds
required by eachmethod in Table 4. In generalMHORANFed
outperforms clustering basedMACFL and RL based FedPPO
among other HFL variants, advocating the importance of our
proposed joint optimization based selection.

2) IMPACT OF LOSS FUNCTION TYPE
The convergence in the non-convex case (CIFAR-10) appears
to be more sensitive to the non-IID data distribution, as seen
by the more pronounced differences in the convergence
patterns between the IID and Non-IID CIFAR-10 plots
in Fig. 5a and 5b.

In contrast, the RMAE curves for the Traffic dataset show
a generally smoother and more rapid decrease, particularly
in the IID setting as can be seen in Fig. 5d. MHORAN-
Fed effectively handles the non-convex loss function in the
CIFAR datasets, achieving high accuracy in both IID and
Non-IID settings. However, like other methods, its conver-
gence is somewhat affected by the non-IID distribution,
showing amore gradual increase in accuracy.With the convex
loss function in the Traffic datasets, Fig. 5c validates that
MHORANFed shows a rapid convergence and achieves the
lowest RMAE.

3) IMPACT OF DATA HETEROGENEITY
The Non-IID settings significantly impact the convergence
behavior and performance of all methods. As illustrated
in Fig. 5, the results across the CIFAR and Traffic datasets
reveal a consistent trend: data heterogeneity, as repre-
sented by the non-IID settings, significantly impacts the
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FIGURE 6. Comparison of Training Costs in terms of total Learning Time [(a), (b)] and Resource Usage [(c), (d)] under IID and Non-IID
data distributions.

convergence and final performance of all federated learning
methods compared to the IID scenarios. In both the CIFAR
and Traffic tasks, the convergence curves for all methods
are generally slower and sometimes more erratic under non-
IID conditions. Furthermore, the final performance metrics
(Train Accuracy for CIFAR and RMAE for Traffic) achieved
by the methods are typically worse in the non-IID settings
than in their IID counterparts. Nonetheless, MHORANFed
consistently outperforms other methods across both IID and
Non-IID settings and for both CIFAR and Traffic datasets.

On the other hand, Fig. 6 shows that the presence of
heterogeneous data distribution leads to higher training costs.
WhileMHORANFed incurs significantly lower learning time
and resource usage costs, other baselines show a relatively
higher costs with fluctuating performance. This suggests that
MHORANFed is more robust and effective in various hierar-
chical federated learning scenarios.

4) IMPACT OF KEY HYPERPARAMETERS SETTING
(SENSITIVITY)
Fig. 7 shows a comparative behaviour of MHORANFed on
how well it performs with respect to the centralized training
benchmark and multiple combinations of ρ and η. We can

see that varying the Pareto trade-off (ρ) affects convergence
and higher values don’t always guarantee the best outcome.
On the other hand, lower values of ρ (e.g., 0.01) can lead
to slower convergence. Another key observation is that the
performance gap between MHORANFed and the centralized
benchmark is often wider in Non-IID scenarios. We can infer
through Fig. 7a, 7c, 7b, and 7d that the best performance
corresponds to ρ = 0.5 and η = 0.01.

5) IMPACT OF THE NUMBER OF UEs and BSs
(SCALABILITY)
We applied two scenarios corresponding to small (2 BSs
and 20 UEs) and medium (5 BSs and 100 UEs) scale connec-
tions to bring out the impact of scalability. The result is shown
in Fig. 8. While the methods converge in both the cases,
they are affected by the presence of heterogeneity (non-IID).
Nonetheless, MHORANFed requires less number of global
rounds to attain the threshold model performance for both the
learning tasks.

E. ANALYSIS
The superior performance of MHORANFed is due to its
optimal selection of participating UEs in each global FL
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FIGURE 7. Performance of MHORANFed under different data distributions, learning tasks, and system hyper-parameters.
(a) and (b) are with a Non-Convex Loss Function, while (c) and (d) are with a Convex Loss Function.

round and the corresponding bandwidth resource allocation
to only the contributing UEs in the ongoing model training.
MHORANFed converges faster because it is biased towards
those temporally associated set of local trainers that require
less processing time. So, the UEs with higher compute tends
to be favoured over increasing global rounds. On the other
hand, the other baselines do not employ any such technique.
DFL while reduces the training time in each global round
by fixing a deadline for the local trainers, it also requires
more number of global rounds to converge. This results
in overall a higher learning time. In terms of the resource
cost, MHORANFed critically assigns the bandwidth for the
communication channel between a BS and its associated
UEs for uploading the updated model parameters. Therefore,
it minimizes the total resource usage cost. By outperforming
clustering-based MACFL and RL-based FedPPO, MHO-
RANFed’s HO delay aware optimization based selection of
local trainers proves to be more effective, highlighting the
importance of this proposed approach. Despite the increased
training costs associated with heterogeneous data for all
methods, MHORANFed incurs significantly lower learning
time and resource usage costs compared to the baselines.
MHORANFed effectively handles both non-convex (CIFAR)

and convex (Traffic) loss functions, achieving high accuracy
and rapid convergence, respectively. While its convergence is
somewhat affected by non-IID distribution in the non-convex
case, it still maintains superior performance. MHORAN-
Fed requires fewer global rounds to reach the performance
threshold in both small and medium-scale network settings,
indicating better scalability compared to other methods, espe-
cially in the presence of data heterogeneity. MHORANFed
consistently achieves better final performance metrics (Train
Accuracy for CIFAR and RMAE for Traffic) compared to
other methods across both IID and Non-IID data distributions
and for both the CIFAR and Traffic datasets. Based on the
evaluation outcome, we can infer that MHORANFed demon-
strates superior performance and robustness in hierarchical
federated learning scenarios, particularly under challenging
conditions such as data heterogeneity. These results can be
extrapolated to infer the generalization ability of our proposed
method as it solves the optimization problem (21) in every
global round to get an approximated near-optimal solution.
So, it should work for real world use cases where the models
are required to be executed with UEs’ dynamically changing
data. Moreover, since the model is trained on such large
datasets, it also has the potential to be scaled over a large
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FIGURE 8. Comparison of scalability with two settings: (i) small scale (2 BSs and 20 UEs), (ii) medium scale (100 UEs and 5 BSs)
under IID and Non-IID data distributions, convex and non-convex loss functions for the image classification and traffic prediction
learning tasks respectively.

number of UEs with smaller dataset sizes. Applications such
as fulfilling the QoS of connected cars, the key network
traffic indicators can be used to predict the required radio
resource using MHORANFed exploiting its fast and reliable
convergence property.

VI. CONCLUSION
In this paper, we have introduced MHORANFed, a novel
optimization algorithm tailored for HFL within the O-RAN
architecture. By addressing the dynamic nature of mobile
networks, particularly UE handovers, our proposed MHO-
RANFed algorithm minimizes FL model training time and
resource usage costs while maintaining high model accuracy.
By addressing mobility-related challenges in FL for O-RAN,
this research not only enhances the practicality and effi-
ciency of HFL models but also lays the foundation for
enabling a broad range of next-generation use cases. This
work bridges a critical gap, pushing the boundaries of what
intelligent, privacy-preserving, and resource-efficient net-
works can achieve in highly dynamic environments. These
improvements are critical for enabling advanced 5G appli-
cations, such as autonomous driving and augmented reality,

which demand both high performance and stringent privacy
standards. By effectively managing the challenges posed by
UE handovers and the dynamic sets of associated devices,
MHORANFed paves the way for more flexible, intelligent,
and efficient 5G network optimization. Future research will
delve into further refining our algorithm and exploring its
application in other evolving network paradigms, ensuring
that the potential of FL in enhancing O-RAN architectures
is fully realized.
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