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Abstract- Verification is a major bottleneck in today’s 
design flow. As the functional verification is time consuming, it 
is constantly being reconsidered. We propose a new 
verification framework based on the SystemC verification 
standard that uses MATLAB and Simulink to accelerate 
testbench development. Our major contributions are first a 
cosimulation interface between SystemC and MATLAB and 
Simulink, and next to enable the verification of multi-
abstraction level designs. This paper presents the verification 
framework proposed and the cosimulation interface. A case 
study shows how we used this verification framework in one of 
our projects. 
 

Introduction 
 

The verification task of today’s multi-million gates 
designs has become the primary bottleneck in the design 
flow. Industry estimates are that functional verification 
takes approximately 70% of the total effort on a project. 
Rising gate count combined with greater design complexity 
has lead to much longer verification times. Time-to-market 
schedules are much harder to meet while project costs 
increase. According to a survey conducted by Collett 
International Research Inc. in 2002 [9], 60% of all tapeouts, 
that requires silicon re-spin, contained logic or functional 
flaws. Among those faulty integrated circuits, 82% had 
design errors.  Incorrect or incomplete specifications, 
corner cases simply not covered during verification or 
changes in design specifications are a few causes of these 
flaws.  

New verification techniques and methodologies are 
required to cut verification time and improve the quality of 
verification. Hopefully, hardware verification languages 
(HVL) come to the rescue, raising the testbench to a higher 
abstraction level. With specific verification syntax and 
faster simulation speed, HVLs improve performance and 
quality compared to RTL testbenches, thus reducing the 
time spent in verification. 

In this work we focus our efforts toward the 
verification of digital signal processing (DSP) applications. 
Most signal processing designs begin with algorithmic 
modeling in the MATLAB and Simulink environment. 
Therefore, we believe that hardware verification could be 
significantly improved and accelerated by reusing these 
high level golden references models. 

This paper presents a verification framework based on 
a novel cosimulation interface between SystemC and the 
MATLAB and Simulink environment to improve the 
hardware verification bottleneck. Our contribution tends to 
help hardware verification of DSP designs. 

The paper is organized as follows. The next section 
discusses related work followed by a section that present 
the context of this research. The proposed verification 
framework is presented in the fourth section, followed by a 
detailed description of the cosimulation interface. A case 
study will highlight the verification framework in the last 
section.  Concluding remarks complete the paper. 
 

Related Work 
 

The MATLAB environment is a high-level technical 
computing language for algorithm development, data 
visualization, data analysis and numerical computing. One 
of the key features of this tool is its ability to integrate well 
with other languages and third-party applications. 
MATLAB also included the Simulink graphical 
environment used for multi-domain simulation and model-
based design. Signal processing designers take advantage of 
Simulink as it offers a good platform for preliminary 
algorithmic exploration and optimization. 

The next step in the design flow, after algorithmic 
development in MATLAB and 
Simulink, is the implementation phase. 
Typical DSP design flows, like the one 
shown in Figure 1, suggest that 
intermediate system level design take 
place to bridge the gap between high 
level modeling and low level RTL 
implementation. For this research work, 
the SystemC language has been chosen 
for system level modeling. The Open 
SystemC Initiative (OSCI) is dedicated 
to supporting and advancing SystemC as 
an open source industry standard for 
system-level design. After several years 
of improvements, SystemC has become 
a concrete system level design and 
verification language. 

 
To facilitate the transition 

between algorithmic modeling and 
system level design, an efficient 

interface is required between modeling tools. For the DSP 
design flow depicted in Figure 1, we need a cosimulation 
interface between the MATLAB and Simulink environment 
and SystemC simulation kernel. 

Figure 1. Simplify 
DSP design flow [1] 

Authors in [1] propose a solution to integrate SystemC 
models in Simulink. A wrapper is created using S-

  



Functions to combine SystemC modules with Simulink. 
This wrapper initializes the SystemC kernel and converts 
Simulink data type to SystemC signals and vice versa. 
Simulation control is entirely handled by Simulink. Some 
extensions of the SystemC kernel are required for 
initialization and simulation tasks. 

In [2], SystemC calls MATLAB using the engine 
library. MATLAB provides interfaces to external routines 
written in other programming languages. Using the C 
engine library, it is possible to share data between SystemC 
models and MATLAB. This simple working demo shows 
how to use the library to send and retrieve data from 
MATLAB workspace and plot some results. The main 
difference with [1] is with the simulation control: SystemC 
is now the master of the simulation and MATLAB operates 
as a slave process. Also, Simulink is not supported is this 
example. 

In a similar way, MathWorks provides a commercial 
solution to close the gap between algorithmic domain and 
hardware design. Link for ModelSim [3] is a cosimulation 
interface that integrates MATLAB and Simulink into the 
hardware design flow. It provides a link between MATLAB 
and Simulink and Model Technology’s HDL simulator, 
ModelSim. This interface makes possible the verification 
and cosimulation of RTL-level models from within 
MATLAB and Simulink. As opposed to the two previous 
techniques, there is no support for system level languages 
like SystemC. 

These approaches [1, 3] all try to reduce the barrier that 
exist between higher level modeling and existing hardware 
design flow. While [3] is a fully functional commercial tool 
for RTL verification, [1, 2] suffer from their embryonic 
stage (i.e. incomplete solution for hardware design and 
verification). 

Our project tries to push the idea a step further than just 
a cosimulation interface; it is a complete verification 
platform. This one uses MATLAB external interfaces, 
similar to the example describe in [2], to exchange data 
between SystemC and Simulink. Once this link is 
established, it opens up a wide range of additional 
capability to SystemC, like stimulus generation and data 
visualization. 

The first advantage of our technique is to use the right 
tool for the right task. Complex stimulus generation and 
signal processing visualization are carried out with 
MATLAB and Simulink while hardware verification is 
performed with SystemC verification standard. The second 
advantage is to have a SystemC centric approach allowing 
greater flexibility and configurability.  

The main contribution of this work is to propose a 
cosimulation interface for SystemC and the MATLAB and 
Simulink environment. The following sections will show 
how this interface can speed up DSP hardware verification 
while preserving verification quality. 
 
 
 

Context of Work 
 

The proposed verification framework integrates 
seamlessly in any DSP design flow, which uses 
MATLAB/Simulink and SystemC, like the one shown in 
Figure 2. This flow is actually used by our design team for 
one of our software defined radio project. We will go 
quickly through this flow to clearly identify the verification 
requirements and how we can build an efficient verification 
platform from this. 

 The design under consideration targets an FPGA and 
CPU based implementation. First, system specifications are 
written with the unified modeling language (UML) and 
text-based documents. Next, the designers begin the 
algorithmic modeling phase with MATLAB and Simulink 
to explore and optimize a variety of algorithms for the DSP 
design. The result of this design step is a golden reference 
model of the system that will be used later by the 
verification team. Then, system level modeling begins with 
SystemC and C++ languages. The golden reference is used 
at this stage to validate that the system level model still 
meets initial specifications (i.e., did we build the right 
product?). This validated model is taken through the 
partitioning process to generate hardware and software 
specifications. After that, regular hardware and software 
design flows are used to produce the final FPGA bit stream 
and CPU assembly program. 

To ensure that the system has been correctly 
implemented into hardware (i.e., did we build the product 
right?) functional verification will be performed throughout 
the hardware design flow. Using the SystemC verification 
standard (presented in the next section), a verification 
platform has been created. The main novelty with this 
platform is to use MATLAB and Simulink to assist the 
testbench for the verification of the design at different 
levels of abstraction. In other words, the golden reference 
model, previously created with Simulink, is used to produce 
a data generator and data analysis sub-modules. Then, 
through a cosimulation interface, these Simulink models 
will be used by the SystemC testbench to verify the 
hardware design. It is also important to note that as the 
design is refined down to bit-true representation, the golden 
reference in Simulink will also be updated to reflect fixed 
bit depth quantisation. The following section presents the 
proposed verification framework. 

  



 

 
 

Proposed Verification Framework 
 

DSP applications frequently require a complex 
environment to efficiently simulate and verify the design. 
For example, to completely verify our multi-equalizer 
architecture, real world telecommunication stimuli are 
needed to truly exercise the design. In addition, the criteria 
used to evaluate performances are quantitative measures 
such as least-mean-square, bit-error rate, and others. It is 
very cumbersome and time consuming to implement theses 
criteria directly into HDL or C++ testbenches. The 
verification framework showed in Figure 3 answers those 
issues. There are three main components: 

• SystemC verification standard 

• Transaction based verification 

• MATLAB and Simulink 

The core element of the verification platform is 
SystemC. It is important to understand at this point that 
SystemC language can be used for both design and 
verification. Test code is written with SystemC (and the 
verification library SCV) to produce scalable and intelligent 
testbenches. Since the design under verification (DUV) can 
be represented at multiple levels of abstraction, transactors 
(TR) are used to bridge the abstraction gap. Creating and 
maintaining testbenches in a higher abstraction level is 
inherently faster than HDL simulator (SystemC is compiled 
and run much faster than interpreted HDL) and can be 
reused across abstraction levels. 

Next we have MATLAB and Simulink in the 
verification flow. The primary strength of MATLAB and 
Simulink is not hardware verification. As mentioned, this 
tool is intended for algorithm development, numerical 
computing and data visualization. The verification 
framework takes this into consideration and uses 

Mathworks’ tool to assist the SystemC testbench. This way 
the tools and languages are used for their intended purpose. 

 

 

Figure 2. Complete DSP Design Flow 

Figure 3. Verification Framework 
 
SystemC Verification Standard 

A working group within the OSCI, which consists of 
several EDA companies, semiconductors developers, and 
academic institutions, recently launched the SystemC 
Verification standard. The goal was to define a set of 
classes within SystemC that would provide a basis for 
developing various verification methodologies. The result is 
a verification library called SCV [6] which is freely 
available from the SystemC web site. 

  



The verification library is composed of the following 
features: 

 Data introspection: manipulation of arbitrary data 
types. 

 Randomization: generation of random values 
through the 'scv_random' class that support 
advanced seed management and generation 
algorithm selection. 

 Constraints for randomization: creation of 
constraint expressions, with the 
'scv_constraint_base' class, to specify the range of 
legal values. 

 Weight for randomization: possibility to bias the 
random values generation process, with the 
'scv_bag' class, so that some values are generated 
more often than others. 

 Transaction-based verification: modeling style 
for test bench with transactors and transaction 
recording through 'scv_tr_db', 'scv_tr_stream', and 
'scv_tr_stream'. 

Using SystemC for hardware verification allow the 
verification of designs written at any abstraction level. 
Transactors and transaction based verification make this 
possible. 
 
Transaction-based Verification 

Transaction based verification [7] raises the level of 
abstraction from signals to transactions, thus easing the 
development of reusable test benches. Figure 4 shows a 
typical transaction based verification architecture. The 
testbench is separated into two layers: the test code and the 
transactor. The test code is written at a higher level of 
abstraction than the DUV and the transactor is the 
mechanism that translates the test from transaction to 
signals activity. 

The verification framework proposed in Figure 3 takes 
advantage of transaction based verification. Transactors are 
implemented with SystemC to verify the DUV. The test 
code is thus easier to reuse and run faster than traditional 
HDL testbenches. 

 

 
Figure 4. Transaction based verification 

 
MATLAB and Simulink for Verification 

Since MATLAB and Simulink are used early in a DSP 
design flow, it makes sense to reuse as much as possible 

some components of these high level models to improve 
lower level hardware verification. The first objective here is 
to simulate at lower abstraction level only those portions of 
the system that are actually going to be synthesized into 
hardware. This results in faster simulation execution 
because the rest of the system can run at a higher 
abstraction level. The second objective is to provide 
additional flexibility and robustness to the SystemC 
testbench with pre-validated data generator and data 
analysis modules. Real life data can be quickly generated 
with the Simulink models using the various Blocksets 
available in the Simulink environment. Moreover, output 
data from the DUV can be forwarded by the testbench to 
Simulink. The verification engineer can now use graphical 
tools, like scopes, X-Y graphs or other mathematical 
operations of Simulink to further analyze the response of 
the system. One last benefit of using Matlab and Simulink 
in the verification flow is for a golden reference. A 
Simulink golden model can be used as a reference model by 
the verification system to compare the expected to the 
actual behaviours. 
 

Cosimulation Interface 
 

Using MATLAB and Simulink to assist the SystemC 
verification framework relies on cosimulating the two 
environments. The cosimulation interface must provide 
adequate capabilities and reasonable simulation speeds. Our 
solution is based on the MATLAB engine external 
interface. Data is exchanged directly through shared 
memory to obtain the optimal speed while keeping the 
interface and the protocol as simple as possible. This 
section presents the implementation details of this interface. 
 
SystemC calls MATLAB 

The foundation of our interface is the data transfer 
between SystemC and MATLAB. For that purpose, we use 
the ‘engine’ library available with MATLAB. The work 
described in [2] uses a similar interface. The difference is 
that we employ this interface in a verification context. In 
addition, we will see in the next section how we 
significantly improved the interface to communicate with 
Simulink. 

The ‘engine’ library contains nine routines for 
controlling the MATLAB computation engine from a C 
program. On Microsoft Windows, the engine library 
communicates with MATLAB using a Component Object 
Model (COM) interface (UNIX uses pipes). Table 1 
summarizes these routines. 
 
 

Table 1. MATLAB ‘engine’ library 
C Routines Description 

eng{open|close} Start/Close MATLAB engine 
eng{get|put}Variable Get/Put a MATLAB array from/to 

the engine 

  



engEvalString Execute a MATLAB command 
engOutputBuffer Create a buffer to store MATLAB 

text output 
engOpenSingleUse Start a MATLAB engine session 
eng{get|set}Visible Show or hide MATLAB engine 

session 
 
A SystemC module employs these routines to remotely 

control MATLAB and exchange data back and forth 
between SystemC and MATLAB workspace. Figure 5 
shows a code snippet of the matlab sc_module that we uses 
for the cosimulation interface. 

 

Figure 5. Code fragment of the SystemC module that calls 
MATLAB 

 
SystemC calls Simulink 

To exchange data between a Simulink model and a 
SystemC module, the cosimulation interface must integrate 
a bridge between MATLAB and Simulink. This bridge is 
built with two Simulink S-Functions. An S-Function is a 
computer language description of a Simulink block. It uses 
a special calling syntax so we can interact with Simulink 
solvers. For the needs of our bridge, we created two C++ S-
Functions. Figure 6 gives an overview of how a Simulink 
model and S-Functions are connected together. 

 
Figure 6. Simulink model with n-input source and m-
output sink S-Functions blocks 
 

 The ‘source’ S-Function reads data from MATLAB 
workspace (previously written by SystemC) and drives the 
corresponding signals in Simulink. On the other side, the 
‘sink’ S-Function reads its inputs and updates the 
corresponding variables in MATLAB workspace so it can 
be read back by SystemC. Both S-Functions include a 
configurable burst mode option to support variable width 
data burst transfers. The addition of these two S-Functions 
to the SystemC to MATLAB bridge, presented in the 
previous section, creates a complete cosimulation interface 
between SystemC and Simulink. 
 
Simulator Synchronization 

The representation of simulation time differs 
significantly between SystemC and Simulink. SystemC is a 
cycle-based simulator and simulation occurs at multiples of 
the SystemC resolution limit. The default time resolution is 
1 picosecond; this can be changed with function 
sc_set_time_resolution. Simulink maintains simulation time 
as a double-precision value scaled to seconds. This time 
representation accommodates continuous and discrete 
models. Our cosimulation interface uses a one-to-one 
correspondence between simulation time in Simulink and 
SystemC. The Simulink solver is set to discrete fixed-step 
type, so one time step in Simulink correspond to one tick in 
SystemC. 

As mention previously, SystemC is the master of the 
simulation. Simulink is controlled from SystemC through 
the cosimulation interface. Using MATLAB commands 
set_param and get_param (with the appropriate argument) 
it is possible to have complete external control over 
Simulink. SystemC uses set_param to start, stop, and 
continue Simulink execution. Simulation is suspended at 
each time step by the S-Function. For that purpose, the 
same command (set_param) is used at the end of the S-
Function, but with the ‘pause’ argument. On the other hand, 
SystemC requests Simulink status with the command 
get_param to synchronize both simulators. Figure 7 
provides the SystemC code snippet of the command 
get_param. 

Figure 7. SystemC check if Simulink simulation is running 

 

  



Data Type Converstion 
The MATLAB language works with only a single 

object type: MATLAB array. These arrays are manipulated 
in SystemC using the ‘mx’ prefixed application 
programming interface (API) routines included in the 
MATLAB engine. This API consists of over 60 routines to 
create, access, manipulate, and destroy mxArrays. 
 

Case Study 
 

The verification framework is currently used in one of 
our projects for the verification of a multi-equalizer 
architecture; one of the key components in a software 
defined radio receiver [11]. Simulink is used to model the 
external environment required to exercise the multi-
equalizer design. Figure 8 shows the Simulink model that 
drives a SystemC representation of this multi-equalizer 
design. Although the left part of the figure is difficult to 
read, we clearly see the main components of the Simulink 
model. Instead of creating time consuming stimuli in 
SystemC, the data generator, the transmitter and five 
different telecommunication channels are modeled with 
Simulink using the Communications Blockset. Via existing 
communication channel models and Matlab build-in 
mathematical functions, we were able to set up a complete 
real-word stimulus generator in less than a day; while it can 
take over a week to manually program the same models in 
C++. In addition, Matlab/Simulink Blocksets have already 
been validated making data generation less error prone. As 
a result, the overall quality of our functional verification is 
improved.  

 

 
Conclusion 

 
In this paper a verification framework based on a novel 

cosimulation interface between SystemC and the MATLAB 
and Simulink environment has been presented. This 
platform is intended to help hardware verification of DSP 
designs. Using MALTAB and Simulink to assist a SystemC 
verification environment we are able to significantly 
improve the hardware verification bottleneck. A more 
complete testbench can be build up in a shorter period of 
time than with traditional HDL. Also, by means of 
transactors, the verification environment can be connected 
to the design at multiple levels of abstraction. This way 
verification does not start anymore at the end of the 
development cycle where bugs found at this late stage are 
extremely difficult and expensive to resolve. 

The next steps of the ongoing project include the 
encapsulation of the two S-Functions into dynamic link 
library (DLL) files. A Simulink graphical user interface 
(GUI) will be added on top of these files to facilitate the 
manipulation and the integration of the cosimulation 
interface for other projects.   
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Figure 9. Development environment used to create the cosimulation interface 

  


