
USING MATLAB AND SIMULINK IN A SYSTEMC VERIFICATION
ENVIRONMENT

Jean-François Boland, McGill University, QC, Canada, jfboland@macs.ece.mcgill.ca

Claude Thibeault, École de Technologie Supérieure, QC, Canada, thibeault@ele.etsmtl.ca
Zeljko Zilic, McGill University, QC, Canada, zeljko@macs.ece.mcgill.ca

Abstract- Verification is a major bottleneck in today’s
design flow. As the functional verification is time consuming, it
is constantly being reconsidered. We propose a new
verification framework based on the SystemC verification
standard that uses MATLAB and Simulink to accelerate
testbench development. Our major contributions are first a
cosimulation interface between SystemC and MATLAB and
Simulink, and next to enable the verification of multi-
abstraction level designs. This paper presents the verification
framework proposed and the cosimulation interface. A case
study shows how we used this verification framework in one of
our projects.

Introduction

The verification task of today’s multi-million gates
designs has become the primary bottleneck in the design
flow. Industry estimates are that functional verification
takes approximately 70% of the total effort on a project.
Rising gate count combined with greater design complexity
has lead to much longer verification times. Time-to-market
schedules are much harder to meet while project costs
increase. According to a survey conducted by Collett
International Research Inc. in 2002 [9], 60% of all tapeouts,
that requires silicon re-spin, contained logic or functional
flaws. Among those faulty integrated circuits, 82% had
design errors. Incorrect or incomplete specifications,
corner cases simply not covered during verification or
changes in design specifications are a few causes of these
flaws.

New verification techniques and methodologies are
required to cut verification time and improve the quality of
verification. Hopefully, hardware verification languages
(HVL) come to the rescue, raising the testbench to a higher
abstraction level. With specific verification syntax and
faster simulation speed, HVLs improve performance and
quality compared to RTL testbenches, thus reducing the
time spent in verification.

In this work we focus our efforts toward the
verification of digital signal processing (DSP) applications.
Most signal processing designs begin with algorithmic
modeling in the MATLAB and Simulink environment.
Therefore, we believe that hardware verification could be
significantly improved and accelerated by reusing these
high level golden references models.

This paper presents a verification framework based on
a novel cosimulation interface between SystemC and the
MATLAB and Simulink environment to improve the
hardware verification bottleneck. Our contribution tends to
help hardware verification of DSP designs.

The paper is organized as follows. The next section
discusses related work followed by a section that present
the context of this research. The proposed verification
framework is presented in the fourth section, followed by a
detailed description of the cosimulation interface. A case
study will highlight the verification framework in the last
section. Concluding remarks complete the paper.

Related Work

The MATLAB environment is a high-level technical
computing language for algorithm development, data
visualization, data analysis and numerical computing. One
of the key features of this tool is its ability to integrate well
with other languages and third-party applications.
MATLAB also included the Simulink graphical
environment used for multi-domain simulation and model-
based design. Signal processing designers take advantage of
Simulink as it offers a good platform for preliminary
algorithmic exploration and optimization.

The next step in the design flow, after algorithmic
development in MATLAB and
Simulink, is the implementation phase.
Typical DSP design flows, like the one
shown in Figure 1, suggest that
intermediate system level design take
place to bridge the gap between high
level modeling and low level RTL
implementation. For this research work,
the SystemC language has been chosen
for system level modeling. The Open
SystemC Initiative (OSCI) is dedicated
to supporting and advancing SystemC as
an open source industry standard for
system-level design. After several years
of improvements, SystemC has become
a concrete system level design and
verification language.

To facilitate the transition

between algorithmic modeling and
system level design, an efficient

interface is required between modeling tools. For the DSP
design flow depicted in Figure 1, we need a cosimulation
interface between the MATLAB and Simulink environment
and SystemC simulation kernel.

Figure 1. Simplify
DSP design flow [1]

Authors in [1] propose a solution to integrate SystemC
models in Simulink. A wrapper is created using S-

Functions to combine SystemC modules with Simulink.
This wrapper initializes the SystemC kernel and converts
Simulink data type to SystemC signals and vice versa.
Simulation control is entirely handled by Simulink. Some
extensions of the SystemC kernel are required for
initialization and simulation tasks.

In [2], SystemC calls MATLAB using the engine
library. MATLAB provides interfaces to external routines
written in other programming languages. Using the C
engine library, it is possible to share data between SystemC
models and MATLAB. This simple working demo shows
how to use the library to send and retrieve data from
MATLAB workspace and plot some results. The main
difference with [1] is with the simulation control: SystemC
is now the master of the simulation and MATLAB operates
as a slave process. Also, Simulink is not supported is this
example.

In a similar way, MathWorks provides a commercial
solution to close the gap between algorithmic domain and
hardware design. Link for ModelSim [3] is a cosimulation
interface that integrates MATLAB and Simulink into the
hardware design flow. It provides a link between MATLAB
and Simulink and Model Technology’s HDL simulator,
ModelSim. This interface makes possible the verification
and cosimulation of RTL-level models from within
MATLAB and Simulink. As opposed to the two previous
techniques, there is no support for system level languages
like SystemC.

These approaches [1, 3] all try to reduce the barrier that
exist between higher level modeling and existing hardware
design flow. While [3] is a fully functional commercial tool
for RTL verification, [1, 2] suffer from their embryonic
stage (i.e. incomplete solution for hardware design and
verification).

Our project tries to push the idea a step further than just
a cosimulation interface; it is a complete verification
platform. This one uses MATLAB external interfaces,
similar to the example describe in [2], to exchange data
between SystemC and Simulink. Once this link is
established, it opens up a wide range of additional
capability to SystemC, like stimulus generation and data
visualization.

The first advantage of our technique is to use the right
tool for the right task. Complex stimulus generation and
signal processing visualization are carried out with
MATLAB and Simulink while hardware verification is
performed with SystemC verification standard. The second
advantage is to have a SystemC centric approach allowing
greater flexibility and configurability.

The main contribution of this work is to propose a
cosimulation interface for SystemC and the MATLAB and
Simulink environment. The following sections will show
how this interface can speed up DSP hardware verification
while preserving verification quality.

Context of Work

The proposed verification framework integrates
seamlessly in any DSP design flow, which uses
MATLAB/Simulink and SystemC, like the one shown in
Figure 2. This flow is actually used by our design team for
one of our software defined radio project. We will go
quickly through this flow to clearly identify the verification
requirements and how we can build an efficient verification
platform from this.

 The design under consideration targets an FPGA and
CPU based implementation. First, system specifications are
written with the unified modeling language (UML) and
text-based documents. Next, the designers begin the
algorithmic modeling phase with MATLAB and Simulink
to explore and optimize a variety of algorithms for the DSP
design. The result of this design step is a golden reference
model of the system that will be used later by the
verification team. Then, system level modeling begins with
SystemC and C++ languages. The golden reference is used
at this stage to validate that the system level model still
meets initial specifications (i.e., did we build the right
product?). This validated model is taken through the
partitioning process to generate hardware and software
specifications. After that, regular hardware and software
design flows are used to produce the final FPGA bit stream
and CPU assembly program.

To ensure that the system has been correctly
implemented into hardware (i.e., did we build the product
right?) functional verification will be performed throughout
the hardware design flow. Using the SystemC verification
standard (presented in the next section), a verification
platform has been created. The main novelty with this
platform is to use MATLAB and Simulink to assist the
testbench for the verification of the design at different
levels of abstraction. In other words, the golden reference
model, previously created with Simulink, is used to produce
a data generator and data analysis sub-modules. Then,
through a cosimulation interface, these Simulink models
will be used by the SystemC testbench to verify the
hardware design. It is also important to note that as the
design is refined down to bit-true representation, the golden
reference in Simulink will also be updated to reflect fixed
bit depth quantisation. The following section presents the
proposed verification framework.

Proposed Verification Framework

DSP applications frequently require a complex
environment to efficiently simulate and verify the design.
For example, to completely verify our multi-equalizer
architecture, real world telecommunication stimuli are
needed to truly exercise the design. In addition, the criteria
used to evaluate performances are quantitative measures
such as least-mean-square, bit-error rate, and others. It is
very cumbersome and time consuming to implement theses
criteria directly into HDL or C++ testbenches. The
verification framework showed in Figure 3 answers those
issues. There are three main components:

• SystemC verification standard

• Transaction based verification

• MATLAB and Simulink

The core element of the verification platform is
SystemC. It is important to understand at this point that
SystemC language can be used for both design and
verification. Test code is written with SystemC (and the
verification library SCV) to produce scalable and intelligent
testbenches. Since the design under verification (DUV) can
be represented at multiple levels of abstraction, transactors
(TR) are used to bridge the abstraction gap. Creating and
maintaining testbenches in a higher abstraction level is
inherently faster than HDL simulator (SystemC is compiled
and run much faster than interpreted HDL) and can be
reused across abstraction levels.

Next we have MATLAB and Simulink in the
verification flow. The primary strength of MATLAB and
Simulink is not hardware verification. As mentioned, this
tool is intended for algorithm development, numerical
computing and data visualization. The verification
framework takes this into consideration and uses

Mathworks’ tool to assist the SystemC testbench. This way
the tools and languages are used for their intended purpose.

Figure 2. Complete DSP Design Flow

Figure 3. Verification Framework

SystemC Verification Standard

A working group within the OSCI, which consists of
several EDA companies, semiconductors developers, and
academic institutions, recently launched the SystemC
Verification standard. The goal was to define a set of
classes within SystemC that would provide a basis for
developing various verification methodologies. The result is
a verification library called SCV [6] which is freely
available from the SystemC web site.

The verification library is composed of the following
features:

 Data introspection: manipulation of arbitrary data
types.

 Randomization: generation of random values
through the 'scv_random' class that support
advanced seed management and generation
algorithm selection.

 Constraints for randomization: creation of
constraint expressions, with the
'scv_constraint_base' class, to specify the range of
legal values.

 Weight for randomization: possibility to bias the
random values generation process, with the
'scv_bag' class, so that some values are generated
more often than others.

 Transaction-based verification: modeling style
for test bench with transactors and transaction
recording through 'scv_tr_db', 'scv_tr_stream', and
'scv_tr_stream'.

Using SystemC for hardware verification allow the
verification of designs written at any abstraction level.
Transactors and transaction based verification make this
possible.

Transaction-based Verification

Transaction based verification [7] raises the level of
abstraction from signals to transactions, thus easing the
development of reusable test benches. Figure 4 shows a
typical transaction based verification architecture. The
testbench is separated into two layers: the test code and the
transactor. The test code is written at a higher level of
abstraction than the DUV and the transactor is the
mechanism that translates the test from transaction to
signals activity.

The verification framework proposed in Figure 3 takes
advantage of transaction based verification. Transactors are
implemented with SystemC to verify the DUV. The test
code is thus easier to reuse and run faster than traditional
HDL testbenches.

Figure 4. Transaction based verification

MATLAB and Simulink for Verification

Since MATLAB and Simulink are used early in a DSP
design flow, it makes sense to reuse as much as possible

some components of these high level models to improve
lower level hardware verification. The first objective here is
to simulate at lower abstraction level only those portions of
the system that are actually going to be synthesized into
hardware. This results in faster simulation execution
because the rest of the system can run at a higher
abstraction level. The second objective is to provide
additional flexibility and robustness to the SystemC
testbench with pre-validated data generator and data
analysis modules. Real life data can be quickly generated
with the Simulink models using the various Blocksets
available in the Simulink environment. Moreover, output
data from the DUV can be forwarded by the testbench to
Simulink. The verification engineer can now use graphical
tools, like scopes, X-Y graphs or other mathematical
operations of Simulink to further analyze the response of
the system. One last benefit of using Matlab and Simulink
in the verification flow is for a golden reference. A
Simulink golden model can be used as a reference model by
the verification system to compare the expected to the
actual behaviours.

Cosimulation Interface

Using MATLAB and Simulink to assist the SystemC
verification framework relies on cosimulating the two
environments. The cosimulation interface must provide
adequate capabilities and reasonable simulation speeds. Our
solution is based on the MATLAB engine external
interface. Data is exchanged directly through shared
memory to obtain the optimal speed while keeping the
interface and the protocol as simple as possible. This
section presents the implementation details of this interface.

SystemC calls MATLAB

The foundation of our interface is the data transfer
between SystemC and MATLAB. For that purpose, we use
the ‘engine’ library available with MATLAB. The work
described in [2] uses a similar interface. The difference is
that we employ this interface in a verification context. In
addition, we will see in the next section how we
significantly improved the interface to communicate with
Simulink.

The ‘engine’ library contains nine routines for
controlling the MATLAB computation engine from a C
program. On Microsoft Windows, the engine library
communicates with MATLAB using a Component Object
Model (COM) interface (UNIX uses pipes). Table 1
summarizes these routines.

Table 1. MATLAB ‘engine’ library
C Routines Description

eng{open|close} Start/Close MATLAB engine
eng{get|put}Variable Get/Put a MATLAB array from/to

the engine

engEvalString Execute a MATLAB command
engOutputBuffer Create a buffer to store MATLAB

text output
engOpenSingleUse Start a MATLAB engine session
eng{get|set}Visible Show or hide MATLAB engine

session

A SystemC module employs these routines to remotely

control MATLAB and exchange data back and forth
between SystemC and MATLAB workspace. Figure 5
shows a code snippet of the matlab sc_module that we uses
for the cosimulation interface.

Figure 5. Code fragment of the SystemC module that calls
MATLAB

SystemC calls Simulink

To exchange data between a Simulink model and a
SystemC module, the cosimulation interface must integrate
a bridge between MATLAB and Simulink. This bridge is
built with two Simulink S-Functions. An S-Function is a
computer language description of a Simulink block. It uses
a special calling syntax so we can interact with Simulink
solvers. For the needs of our bridge, we created two C++ S-
Functions. Figure 6 gives an overview of how a Simulink
model and S-Functions are connected together.

Figure 6. Simulink model with n-input source and m-
output sink S-Functions blocks

 The ‘source’ S-Function reads data from MATLAB
workspace (previously written by SystemC) and drives the
corresponding signals in Simulink. On the other side, the
‘sink’ S-Function reads its inputs and updates the
corresponding variables in MATLAB workspace so it can
be read back by SystemC. Both S-Functions include a
configurable burst mode option to support variable width
data burst transfers. The addition of these two S-Functions
to the SystemC to MATLAB bridge, presented in the
previous section, creates a complete cosimulation interface
between SystemC and Simulink.

Simulator Synchronization

The representation of simulation time differs
significantly between SystemC and Simulink. SystemC is a
cycle-based simulator and simulation occurs at multiples of
the SystemC resolution limit. The default time resolution is
1 picosecond; this can be changed with function
sc_set_time_resolution. Simulink maintains simulation time
as a double-precision value scaled to seconds. This time
representation accommodates continuous and discrete
models. Our cosimulation interface uses a one-to-one
correspondence between simulation time in Simulink and
SystemC. The Simulink solver is set to discrete fixed-step
type, so one time step in Simulink correspond to one tick in
SystemC.

As mention previously, SystemC is the master of the
simulation. Simulink is controlled from SystemC through
the cosimulation interface. Using MATLAB commands
set_param and get_param (with the appropriate argument)
it is possible to have complete external control over
Simulink. SystemC uses set_param to start, stop, and
continue Simulink execution. Simulation is suspended at
each time step by the S-Function. For that purpose, the
same command (set_param) is used at the end of the S-
Function, but with the ‘pause’ argument. On the other hand,
SystemC requests Simulink status with the command
get_param to synchronize both simulators. Figure 7
provides the SystemC code snippet of the command
get_param.

Figure 7. SystemC check if Simulink simulation is running

Data Type Converstion
The MATLAB language works with only a single

object type: MATLAB array. These arrays are manipulated
in SystemC using the ‘mx’ prefixed application
programming interface (API) routines included in the
MATLAB engine. This API consists of over 60 routines to
create, access, manipulate, and destroy mxArrays.

Case Study

The verification framework is currently used in one of
our projects for the verification of a multi-equalizer
architecture; one of the key components in a software
defined radio receiver [11]. Simulink is used to model the
external environment required to exercise the multi-
equalizer design. Figure 8 shows the Simulink model that
drives a SystemC representation of this multi-equalizer
design. Although the left part of the figure is difficult to
read, we clearly see the main components of the Simulink
model. Instead of creating time consuming stimuli in
SystemC, the data generator, the transmitter and five
different telecommunication channels are modeled with
Simulink using the Communications Blockset. Via existing
communication channel models and Matlab build-in
mathematical functions, we were able to set up a complete
real-word stimulus generator in less than a day; while it can
take over a week to manually program the same models in
C++. In addition, Matlab/Simulink Blocksets have already
been validated making data generation less error prone. As
a result, the overall quality of our functional verification is
improved.

Conclusion

In this paper a verification framework based on a novel

cosimulation interface between SystemC and the MATLAB
and Simulink environment has been presented. This
platform is intended to help hardware verification of DSP
designs. Using MALTAB and Simulink to assist a SystemC
verification environment we are able to significantly
improve the hardware verification bottleneck. A more
complete testbench can be build up in a shorter period of
time than with traditional HDL. Also, by means of
transactors, the verification environment can be connected
to the design at multiple levels of abstraction. This way
verification does not start anymore at the end of the
development cycle where bugs found at this late stage are
extremely difficult and expensive to resolve.

The next steps of the ongoing project include the
encapsulation of the two S-Functions into dynamic link
library (DLL) files. A Simulink graphical user interface
(GUI) will be added on top of these files to facilitate the
manipulation and the integration of the cosimulation
interface for other projects.

Acknowledgements

The authors wish to thank PROMPT Québec and the
Regroupement Stratégique en Microélectronique du Québec
(ReSMiQ) for their financial support. Special thanks go to
the MAME project team for testing the cosimulation
interface.

References

1. F. Czerner, J. Zellmann, “Modeling Cycle-Accurate

Hardware with Matlab/Simulink using SystemC”, 6th
European SystemC Users Group Meeting (ESCUG),
October 2002

2. C. Warwick, “SystemC calls MATLAB”, MATLAB
Central, March 2003,
http://www.mathworks.com/matlabcentral/

3. “Link for ModelSim 1.2; Cosimulate and verify VHDL
and Verilog using ModelSim”, The MathWorks, 2003

4. J.F. Boland, C. Thibeault, Z. Zilic, “Efficient Multi-
Abstraction Level Functional Verification
Methodology for DSP Applications”, in Proc. of
Global Signal Processing Expo and Conference, Santa
Clara, California, September 2004

 Figure 8. Example of Simulink used as a data generator for
a SystemC design

Figure 9 shows the development environment used to

create the cosimulation interface. SystemC and S-Function
programming is done with Microsoft Visual C++. With the
built-in debugger it is possible to attach the MATLAB
process to the current SystemC simulation. This allows
breakpoints to be easily inserted in the S-Function and
SystemC programs to trace the execution. The same
environment is employed to create the SystemC testbench
and transactors.

5. Arun Mulpur, “System-Level Verification of Signal
Processing Applications on ASICs and FPGAs”, in
Proc. of Global Signal Processing Expo and
Conference, Santa Clara, California, September 2004

6. "SystemC Verification Standard Specification version
1.0e", May 2003, http://www.systemc.org

7. Dhananjay S. Brahme, Steven Cox, Jim Gallo, Mark
Glasser, William Grundmann, C. Norris Ip, William
Paulsen, John L. Pierce, John Rose, Dean Shea, Karl
Whiting, “The Transaction-Based Verification
Methodology”, Cadence Berkeley Labs, Technical
Report #CDNL-TR-2000-0825, Cadence Design
Systems, August 2000

http://www.mathworks.com/matlabcentral/
http://www.systemc.org/

8. J.F. Boland, A. Chureau, C. Thibeault, Y. Savaria, F.
Gagnon, Z. Zilic, "An Efficient Methodology for
Design and Verification of an Equalizer for a Software
Defined Radio", in Proc. of 2nd Northeast Workshop on
Circuits and Systems, Montreal, Quebec, June 2004,
pp. 73-76.

9. Collett International Research Inc., "2002 IC/ASIC
Functional Verification Study", 2002.

10. The Open SystemC Initiative (OSCI)
http://www.systemc.org

11. J. Mitola, “The Software Radio Architecture”, IEEE
Communications Magazine, Vol. 44, No. 5, pp. 26-38,
May 1995

12. Grant Martin, “SystemC's Role in a Multilingual
World”, 8th European SystemC Users Group, Stuttgart,
November 2003

http://www.systemc.org/

 Microsoft Visual C++

SystemC
source files

S-Function
source file

MATLAB
SystemC

output window
Simulink

Figure 9. Development environment used to create the cosimulation interface

