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Abstract

To fully leverage Google Analytics and derive actionable insights, web analytics practi-
tioners must go beyond standard implementation and customize the setup for specific
functional requirements, which involves additional web development efforts. Previous
studies have not provided solutions for estimating web analytics development efforts,
and practitioners must rely on ad hoc practices for time and budget estimation. This
study presents a COSMIC-based measurement framework to measure the functional size of
Google Analytics implementations, including two examples. Next, a set of 50 web analytics
projects were sized in COSMIC Function Points and used as inputs to various machine
learning (ML) effort estimation models. A comparison of predicted effort values with actual
values indicated that Linear Regression, Extra Trees, and Random Forest ML models per-
formed well in terms of low Root Mean Square Error (RMSE), high Testing Accuracy, and
strong Standard Accuracy (SA) scores. These results demonstrate the feasibility of applying
functional size for web analytics and its usefulness in predicting web analytics project
efforts. This study contributes to enhancing rigor in web analytics project management,
thereby enabling more effective resource planning and allocation.

Keywords: web analytics; common software measurement international consortium (COSMIC);
machine learning; google analytics; google tag manager; software effort estimation

1. Introduction
Originally rooted in computer science, web analytics has developed into a multi-

disciplinary field, bridging technology and user behavior analysis. It involves collecting,
measuring, analyzing, and reporting digital data to gain insight into the behavior of website
visitors. These insights allow organizations to enhance online presence by improving web-
site usability, engagement, and conversion rates through data-driven recommendations to
optimize website performance [1,2]. Web analytics plays a vital role in business intelligence,
competitive analysis, website benchmarking, and digital marketing strategies, including

Future Internet 2025, 17, 280 https://doi.org/10.3390/fi17070280

https://doi.org/10.3390/fi17070280
https://doi.org/10.3390/fi17070280
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-2670-9061
https://orcid.org/0000-0003-1303-4501
https://doi.org/10.3390/fi17070280
https://www.mdpi.com/article/10.3390/fi17070280?type=check_update&version=1


Future Internet 2025, 17, 280 2 of 31

online advertising, and facilitates the measurement and optimization of a website through
“the collection, measurement, analysis, and reporting of user behavior data” [3,4].

Google Analytics is a leading web analytics software that provides detailed insights
into website traffic, user behavior, and marketing effectiveness [5]. For several years, Google
Analytics has dominated the web analytics market [3], and it is used by 83.4% of all websites
whose web analytics software is identified, equating to 50.9% of all websites globally [6].
This dominance highlights its widespread adoption in tracking and analyzing website
traffic and user behavior. Additionally, Google Analytics and Google Tag Manager offer
the concept of “events” to capture interactions beyond a simple pageview. These events,
displayed in existing or custom variables, allow for more granular analysis. However,
setting up events and custom variables requires additional effort from web analytics
practitioners [3].

Implementing Google Analytics requires both standard and custom implementations:

• Standard implementation is performed by adding JavaScript snippet code to a website
to track basic metrics such as pageviews. This is often insufficient for decision makers,
as they typically measure only basic metrics, such as pageviews, number of users,
sessions, and events.

• To fully leverage Google Analytics and derive actionable insights, web analytics
practitioners must go beyond standard implementation and customize the setup for
specific functional requirements.

This customization involves additional web development efforts that require a staff
budget and time, as it involves adjusting settings using custom JavaScript, tags, triggers,
custom variables in Google Tag Manager, the dataLayer, and possibly seeking professional
assistance from web developers, web analysts, and practitioners to ensure accurate and useful
data analysis [3]. Therefore, accurately estimating the effort required for web development,
including the implementation of Google Analytics, is important for assisting web analytics
practitioners, project managers, and web developers in meeting stakeholder requirements on
time and within a reasonable staff budget [7]. Furthermore, Software effort estimation ensures
financial sustainability by keeping projects within budget and helps to maintain a balanced
workload for the development team, leading to better productivity [8–10].

The COSMIC FSM, developed by the Common Software Measurement International
Consortium (COSMIC) as the 2nd generation of functional size measurement (FSM) meth-
ods, is based on the principles of software engineering and measurement theory and
supports effort estimation by providing a standardized measure of software functionality
that is independent of technology and programming languages. COSMIC facilitates the
comparison and analysis of productivity across different projects and organizations [8]. Fur-
thermore, it quantifies the functional size of software based on the functional requirements
delivered to users, which is directly correlated to the effort required for its development.
In addition, COSMIC complies with the ISO/IEC14143/1 standard for functional size
measurement [11] and has been recognized for its effectiveness in business, real-time
applications, and web development effort estimation [12–14].

While several studies [7,14–17] have explored the application of FSM for sizing web
applications and estimating development efforts through COSMIC, a significant gap re-
mains in the literature regarding the applicability of functional size measurement to web
analytics implementations. To date, no research has specifically addressed the application
of a measurement framework for web analytics implementations, nor has any study pro-
posed the use of the COSMIC method to quantify such implementations. Web analytics
implementations can be complex, particularly because of custom user requirements, and
when there is no use of a standardized measurement method for web analytics implemen-



Future Internet 2025, 17, 280 3 of 31

tation, practitioners are left to rely mostly on highly subjective opinions, which is a very
weak and unreliable basis for effort estimation and project planning and monitoring.

The objective of this study is to fill this gap by introducing a COSMIC-based measure-
ment framework tailored specifically for measuring the functional size of Google Analytics
implementations and its use in development effort estimation. The proposed framework
is designed to equip project managers and web analytics practitioners with a reliable and
precise tool for quantifying the size of Google Analytics implementation. This measure-
ment serves as a foundation for more accurate time and budget estimates for implementing
Google Analytics in various projects.

The structure of this paper is as follows: Section 2 presents a background on the techni-
cal fundamentals of web analytics and related work; Section 3 presents the development of
COSMIC measurement for web analytics implementation; Section 4 presents two examples
of the application of COSMIC measurement on web analytics, followed by an empirical
study in Section 5, a discussion in Section 6, and the conclusion in Section 7.

2. Background
2.1. Technical Fundamentals of Web Analytics

Google introduced Google Tag Manager (GTM) to simplify the implementation of
website tracking tags [18]. GTM allows website owners to embed a single JavaScript code
(gtm.js), create multiple tags, and trigger and manage them through a user-friendly inter-
face, thereby reducing the need for developer involvement. GTM also introduced autoevent
tracking, such as link clicks, to further simplify user interaction tracking. Although GTM
reduces technical barriers, setting up custom events and managing tag triggers still require
technical knowledge and effort.

Using GTM to implement Google Analytics tags offers an efficient solution for captur-
ing essential website data, without the need for manual coding. The Pageview Tracking
tag, a key feature of Google Analytics, facilitates basic reporting of user interactions. GTM
allows developers to deploy and configure the Google Analytics tag via a user interface, re-
ducing dependency on technical teams and accelerating the tracking setup process [19–21].
However, while GTM simplifies many aspects of tag management, it still requires users
to define functional requirements (e.g., Pageview Tracking, Event Tracking, E-commerce
Tracking), setup appropriate triggers, and manage additional data collection needs. Estab-
lishing custom tags and triggers for various user interactions requires careful planning,
effort, and time to ensure an accurate digital data collection. Thus, although GTM reduces
reliance on technical teams, its initial setup and ongoing management requires careful
execution to meet specific web analytics requirements.

Figure 1 illustrates the components and flow of data in a web analytics implementation
using Google Tag Manager (GTM).

• Client Side (Website): User interactions (e.g., page views, clicks, and other actions) on
the website generate data. These data are passed to the dataLayer, which is an array
that organizes and manages data before sending them to other systems.

• Google Tag Manager (GTM): This acts as an intermediate system that collects data
from the website through the dataLayer and sends the data to analytics systems such
as Google Analytics and other third-party analytics systems.

• Tags, Triggers, and Variables: Tags are snippets of the JavaScript code that GTM fires
based on certain events or conditions to send data to analytics platforms, known as
triggers. Triggers define when and under what conditions tags should fire (e.g., a
page view or specific user action such as a click). The variables store dynamic data
that collects custom information (e.g., user click details) and can be retrieved by tags
and triggers.
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Figure 1. Data flow in a web analytics implementation using Google Tag Manager (GTM).

2.2. Recent Studies on Web Size Metrics and Effort Estimation

The literature on web size metrics, such as the authors in [22–25], often focuses on
counting elements, such as the number of web pages, number of web objects, JavaScript
files, HTML files or lines of code, number of graphics media used on a page, number of
links per page, and media files within a web application. Such web size metrics can be
deceptive because they lack standardization and are highly dependent on programming
languages, making it difficult to consistently apply them across different projects or to make
meaningful comparisons. Consequently, these metrics do not offer objective, replicable,
and reproducible measurements of the actual size of software web applications, thereby
supporting the need for more advanced and function-based measurement approaches, such
as COSMIC.

Early studies using COSMIC on web software applications have demonstrated its use-
fulness in measuring functional size and estimating the development efforts for dynamic
web applications [12,13,26–28]. The authors in [29] evaluated the use of the Web-COBRA
method in conjunction with COSMIC to estimate the development effort of web applica-
tions. This study examined web applications on e-government, e-banking, web portals,
and intranet applications and investigated the effectiveness of Web-COBRA when com-
bined with COSMIC. These findings confirm that using Web-COBRA in combination with
COSMIC provides more accurate predictions for effort estimation than simpler methods.

The authors in [30] investigated the impact of individual COSMIC Base Functional
Components (BFCs) on estimating web application development efforts. The findings sug-
gest that when quick estimates are needed, relying on the size of a single BFC type might
be sufficient. The authors in [31] introduced a procedure for measuring the COSMIC func-
tional size of web applications developed using the Object-Oriented Hypermedia (OO-H)
method and UML class diagrams to capture the structural aspects of web applications.
COSMIC concepts were mapped to OO-H models, and the results showed the potential
for improving effort estimation in model-driven web development. Similarly, the authors
in [32] explored the possibility of using COSMIC in combination with a UML-based Web
Engineering (UWE) approach to estimate the functional size of web applications and found
it useful. In addition, the authors in [15] discussed a method for estimating the effort re-
quired to develop web applications using COSMIC in combination with conceptual models
created using UML-based Web Engineering (UWE). The proposed algorithm calculates the
data movement within a web application and indicates that COSMIC is effective for early
effort estimation in web application development.
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The authors in [33] assessed the usefulness of COSMIC in estimating the effort re-
quired to create web applications during the early stages of a development project. The
study compared two early sizing techniques, the COSMIC Functional Processes (CFunP)
technique and the Average Functional Process (AFP), to determine their ability to predict
development effort in comparison to the standard COSMIC method and baseline bench-
marks. The findings show that the standard COSMIC method provides more precise sizing
and effort estimations, indicating that although early sizing is valuable for early predic-
tions, the standard method should be employed for more accurate effort estimations as the
project advances.

Other studies on web size metrics and effort estimation reported the following:

• The authors in [7] posit that COSMIC surpassed IFPUG Function Points (ISO 20926)
in providing significantly better estimations when combined with Simple Linear
Regression (SLR) and Case-Based Reasoning (CBR) as estimation techniques.

• The authors in [16] investigated the effectiveness of IFPUG Function Points (FPAs) and
web objects (WOs) in measuring web application size and subsequently web effort
estimation. The WO is an extended version of the FPA with four more web-specific
components: multimedia files, web building blocks, scripts, and links [25]. The results
indicate that the WO was more accurate than the FPA.

• The authors in [17] proposed Web Points to measure the functional size of web appli-
cations by adapting FPA and including components such as multimedia files, scripts,
links, and web building blocks. The results showed that Web Points could be valuable
tools for project management.

Despite this growing body of work on web size metrics and effort estimation, a notable
gap remains: all of these studies are limited to web application development projects and
have not addressed the sizing of web analytics implementation-related development efforts.
For example, most studies on web analytics focus on exploring its applications across
diverse fields, including healthcare, finance, marketing, business, and social sciences [34,35],
online gaming [36], social media and multi-channel marketing [37], online shopping [38],
prediction of online purchases, and behavior analysis [39–45].

Additionally, studies on web analytics have focused on mobile app usage [46], website
trust, and privacy [47–49]. Other studies have explored website design [50–52], ranking,
and popularity [53].

Other studies have addressed web analytics in various contexts, including e-
commerce [54], analytics maturity [3], tool adoption [55] and business-oriented reviews [56].
Others have explored tool comparisons [57,58], developing tracking tools [59], weblog pre-
processing [60], and privacy-focused open-source solutions [61].

In particular, no study to date has proposed the use of a formal functional size mea-
surement method, such as COSMIC, to measure size and estimate the effort associated with
web analytics implementation.

Table 1 presents the key insights from the literature in the context of web development
and web analytics implementation.

• limitations of traditional metrics in these contexts;
• emergence of the usage of FSM in these contexts;
• adaptation and refinements in these contexts to date.

How the FSM has been used in web development can be adapted and applied to the
measurement of web analytics implementation, highlighting the limitations and benefits of
a more refined approach.
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Table 1. Key insights from the literature on web development and web analytics implementation.

Application in Web Development Application in Web Analytics
Implementation

Limitations of
Traditional

Metrics

The traditional metrics for estimating web
application size, such as the number of web pages,

lines of code, and media files, are widely
recognized as insufficient for accurately predicting
development effort. These fail to account for the

functional complexity and variability in web
applications, leading to unreliable estimates. This

highlights the need for more sophisticated
approaches that can better capture the true scope

and functionality of web projects.

Web analytics involve complex
interactions; data flows and user behavior
tracking are not adequately captured by

basic counting metrics such as the number
of pages, lines of code, or media files;

applying similar simplistic metrics to web
analytics implementation would likely

lead to inaccurate and
unreliable assessments.

Emergence of
Functional Size
Measurement

(FSM)

The literature demonstrates the emergence of more
advanced functional size measurement techniques,
particularly using the COSMIC method. COSMIC
has been shown to be more adaptable and effective

in measuring the functional size of web
applications, offering a more reliable basis for

estimating development effort.

There is no reported usage yet of COSMIC
FSM in the context of web analytics

implementation projects.
Web analytics implementation should be
sized using function-based measurement
approaches, similar to how COSMIC is

applied to web applications.

Adaptation and
Refinement of

FSM

Researchers have worked on adapting and refining
the COSMIC method to specific types of web

applications such as the Object-Oriented
Hypermedia (OO-H) method or the UML-based

Web Engineering (UWE) approach. These
adaptations ensure the accurate application of
FSM in the unique context of web applications.

Research is needed to explore how to
measure web analytics implementations

effectively with functional size
measurement (FSM) approaches

such as COSMIC.

2.3. Sizing Software with COSMIC—ISO 19761

The measurement of software size based on Functional User Requirements (FURs)
provides a quantitative, standardized, and rigorous approach to software size measurement.
This approach aligns with broader engineering principles, where measurement is not just
about counting, but involves a deeper understanding of the attributes being measured
and their relationships [62]. There are five internationally recognized standards based
on Functional User Requirements: COSMIC [63], IFPUG [64], MKII [65], NESMA [66],
and FISMA [67]. These standards represent a significant advancement in the field by
providing a framework for measuring software size that is both rigorous and applicable
across different contexts. Additionally, it can be applied at any stage of the development
life cycle because it does not require a software design to be fully developed [68].

COSMIC outlines the necessary steps for measuring software project size using COS-
MIC Function Points (CFPs). Numerous studies have demonstrated the advantages of
COSMIC as a functional size measurement method. For instance, it has been used to
size enterprise architectures [69], Agile Development [70], mobile applications [71], X86
Assembly Programs [71], quantum software functional requirements [72], IoT Devices [73],
and web development, as discussed in the related work section.

The COSMIC method includes a set of principles and rules applied to the Functional
User Requirements (FURs) of a given piece of software. The FURs describe what the
software does or should do for functional users. Functional users may be humans or
application software that communicate through data. The COSMIC FSM process consists
of three phases as follows:

1. Measurement Strategy Phase: The purpose (e.g., estimate the size as an input to a
project effort estimation) of the measurement and the scope (e.g., single software
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application) of the software to be measured are identified.
The outcome of this phase is the Software Context Model, which includes components
such as functional users (e.g., software or hardware devices), the software being
measured, and persistent storage.

2. Mapping Phase: This is the process that translates each Functional User Requirement
(FUR) into the format required by the COSMIC Generic Model of Software using
concepts, such as the following.

• A Triggering Event is the action of a functional user of software that initiates one
or more functional processes.

• A Data Group is a distinct, non-empty, and unordered set of data attributes, with
each attribute describing a complementary aspect of the same object of interest.

• A Data Attribute is the smallest piece of information within an identified data
group that carries meaning from the perspective of a relevant FUR.

As shown in Figure 2, COSMIC data movements are defined as follows:

• Entry (E) transfers a data group from a functional user across the boundary into
a functional process, where it is needed.

• An Exit (X) transfers a data group from a functional process across the boundary
to the functional user that requires it.

• A Read (R) retrieves a data group from persistent storage within a functional
process that requires it.

• Write (W) stores a data group from within a functional process into persistent storage.

Figure 2. Data movements in the COSMIC generic model of software [63].

3. Measurement Phase: This involves identifying and counting the data movements
within each functional process. Each data movement is counted as one COSMIC
Function Point (CFP). Therefore, the total size of software within a defined scope
is determined by summing the sizes of all the functional processes included in that
scope, as follows:

Size(functional processes) = Σ size(Entries) + Σ size(Exits)
+Σ size(Reads) + Σ size(Writes)

(1)

Software applications are typically structured into layers, with each layer containing
one or more distinct pieces of software defined by Functional User Requirements (FURs).
Therefore, the size of each piece of software to be measured within a layer is obtained by
aggregating the sizes of the functional processes within the identified FUR for each piece
of software.
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3. Research Methodology: The Application of COSMIC for the
Measurement of Web Analytics Implementation

The research methodology employs the COSMIC measurement process (see Figure 3)
to determine the size of Google Analytics implementation. It distinctly integrates web
analytics with COSMIC across all phases, namely, measurement strategy, mapping, and
measurement. Additionally, it provides two examples demonstrating the application of
this mapping to measure the functional size of web analytics implementation.

Figure 3. COSMIC method measurement process [63].

3.1. Measurement Strategy Phase

In this phase, the purpose and scope of the functional size measurement of Google
Analytics were identified, including Functional User Requirements, software layers, and
functional users.

(1) Purpose and Scope of FSM for Google Analytics Implementation

The purpose of measuring the functional size of Google Analytics implementation is
to use the measured size as follows:

• Estimate the effort required to implement, maintain, or extend a Google Analytics
setup, particularly in terms of tracking user interactions (e.g., page views and button
clicks) and event-based data collection.

• Estimate Resources and Costs: Estimate the resources, time, and costs associated
with deploying and managing analytics tags, triggers, and variables on a website
or application.

• Provide Benchmarking for Optimization: benchmark different implementations
(e.g., different websites) for optimization and improve analytics accuracy and efficiency.

The scope of measuring the functional size of Google Analytics implementation defines
the boundaries of what will be measured in Google Analytics implementation. This ensures
that the measurement is focused and only includes the necessary elements. The scope of
Google Analytics includes the following.

• Software Being Measured: The software being measured is Google Tag Manager (GTM)
and consists of the following components:

1. Tags: These are code snippets or tracking scripts that collect data and send them
to various platforms (e.g., Google Analytics). Tags are essential components of
GTM that define what data are collected and where they are sent. However, they
do not constitute a functional process in the COSMIC context. Instead, tags are
invoked (i.e., fired) as part of a functional process when certain conditions are
met, such as user interactions including button clicks or page views.
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2. Triggers: These conditions specify when a tag is fired. For example, a trigger can
specify that a tag should fire when a user clicks a button or visits a page. Triggers
are also considered components of GTM, as they define the conditions under
which functional processes are activated (e.g., user interactions such as button
clicks or page views).

3. Persistent Storage: Persistent storage in GTM in the COSMIC sense is defined
as follows:

• dataLayer: This is a structured JavaScript object that holds information on
user interactions and website data. It serves as storage that transfers infor-
mation between the website and GTM.

• Variables: Variables in GTM are dynamic placeholders that store values (such
as page URLs, button names, and form field values) and pass them to tags
and triggers during the data collection process. Variables are components
that provide the necessary data to tags and triggers, but do not execute the
functional processes themselves. Variables help define the conditions for
when a trigger should fire or what data a tag should send.

(2) Identification of the Functional User Requirements (FURs)

In the context of Google Tag Manager (GTM) and Google Analytics, Functional User
Requirements (FURs) are defined as the interactions and expectations of functional users
(both human users and other systems) that the GTM system must satisfy. These FURs
correspond to specific actions or events on a website that need to be tracked and analyzed
using Google Analytics. Accurate identification of these FURs is essential for establishing
boundaries and processes for COSMIC sizing. The descriptions of Google Analytics FURs
are presented in Table 2.

Table 2. Description of Google Analytics Functional User Requirements (FURs).

Functional User Requirement (FURs) Description

Page View
Tracking

The system must track when
a user visits a page on

the website.

Every time a user loads a new page,
the page view event must be

recorded in Google Analytics.

Button Click
Tracking

The system must track when
a user clicks specific buttons

on the website.

Button click events (e.g., “Submit”
buttons, “Add to Cart” buttons)
need to be captured and sent to

Google Analytics.

Form Submission
Tracking

The system must track when
a user submits a form on

the website.

Every time a form is submitted
(e.g., contact forms, checkout

forms), the event must be recorded
and sent to Google Analytics.

Custom Event
Tracking

The system must track
custom events such as video

plays, file downloads, or
other unique user

interactions.

Specific interactions, such as
playing a video or downloading a
file, must be captured and sent to

Google Analytics for analysis.

E-commerce
Tracking

The system must track
e-commerce transactions
such as product views,

add-to-cart actions, and
completed purchases.

E-commerce interactions, such as
product purchases, must be tracked

and sent to Google Analytics for
revenue and conversion analysis.
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(3) Identification of the Software Architecture Layers

GTM can be logically split into two main layers (see Figure 4) that reflect how data are
collected from user interactions and processed before being sent to Google Analytics.

Layer 1: Data Collection Layer
The data collection layer handles all user events and data collected from websites and

applications. It is responsible for capturing user interactions, such as page views, button
clicks, and form submissions, and passes these data to the processing layer min Google
Tag Manager.

Layer 2: Data Processing Layer
The Data Processing Layer is responsible for processing the data collected from

the Data Collection Layer. It evaluates conditions based on preconfigured triggers, pro-
cesses dynamic data (variables), and fire tags to send data to external analytics systems
(e.g., Google Analytics).

Figure 4. Layered software architecture of Google Tag Manager.

(4) Identification of the Functional Users

The following functional users send data across boundaries, triggering processes in
the analytics system.

• Website Users: Human users who interact with websites by performing actions such
as page views, button clicks, or form submissions. Their interactions trigger events
that are captured by Google Analytics.

• Client-Side Devices (browsers): Software (e.g., web browsers) through which users
access a website. These devices execute JavaScript tags and send data to Google
Analytics when events (e.g., page loads and button clicks) are triggered.

• Google Analytics: The external system receives data from the website and processes
them for analytics. This can be considered as a functional user in terms of its role in
receiving and storing analytical data.

(5) Identification of Software Boundaries

A boundary is the conceptual interface between the software being measured and its
functional users. The software interacts with its functional users across a boundary and
with persistent storage within this boundary [63]. Figure 5 illustrates the structure of the
software to be measured, as required by the COSMIC method, which is referred to as the
COSMIC Software Context Model.
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Figure 5. COSMIC Software Context Model for Google Tag Manager.

3.2. Mapping Phase

In the mapping phase, functional processes, objects of interest, and data groups are
identified to extract and measure the elements that contribute to functional size using the
COSMIC method.

(1) Identification of functional processes

In the Data Collection Layer of Google Tag Manager (GTM), the functional processes
are triggered by events that occur due to user interactions on the website or app. These
events were then captured and passed through the system.

Functional Process 1: JavaScript Snippet Capturing a User Interaction Event
A user’s action on a website or app, such as page view, button click, or form submis-

sion, acts as a triggering event. When a user clicks the “Submit” button on a form, the event
is captured by the dataLayer and includes the button ID, form-field values, and timestamp.
Event data (e.g., page URL, button ID, or form data) are captured by the dataLayer and
moved into the system through COSMIC Entry data movement. This data group contains
information about user interaction, such as which page was viewed, which button was
clicked, or what form was submitted. In the Data Processing Layer in Google Tag Manager
(GTM), the functional processes are responsible for evaluating, processing, and acting on
the data collected by the Data Collection Layer. This layer deals with deciding when to fire
tags, processing dynamic variables, and sending data to analytic systems.

Functional Process 2: Trigger Evaluation
Data from the Data Collection Layer (e.g., page view or button click) are passed to

GTM for trigger evaluation. GTM reads the conditions set in the Triggers (e.g., “If a button
is clicked” or “If the user scrolls 50% of the page”) and stores the result of the evaluation
temporarily (e.g., whether a tag should fire). These conditions were evaluated based on the
data received from the Data Collection Layer.

Functional Process 3: Variable Processing
When a tag or trigger requires dynamic data (e.g., button ID, product name, or user

action details), GTM retrieves this information from the variables stored in the system.
GTM reads dynamic data from the variables or dataLayer (e.g., button name or page URL).
The retrieved data are used to populate the tag or trigger conditions and store the dynamic
data before the final action (firing the tag).

Functional Process 4: Tag Firing
After evaluating the trigger conditions and processing the necessary dynamic data,

GTM decides whether to fire a tag. A triggering event is the result of a trigger evaluation
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process. GTM reads the outcome of the trigger evaluation and any dynamic data required
from the variables. The tag is fired, and the data are sent to an external analytics platform
(e.g., Google Analytics or Facebook Pixels). This constitutes an Exit in COSMIC terminology,
as the data leave the GTM system and are transmitted to an external functional user.

Reused Components: reused GTM components (e.g., variables) can be used in more than
one tag or trigger. Based on the COSMIC rules, the measurement is applied to Functional
User Requirements and their associated data movements, not on components per say.
Therefore, a single GTM component can appear in many functional requirements and
contribute to many data movements.

Layered logic: GTM may include layered logic, such as a tag that may not fire until a
certain user activity is met. For example, a tag will fire only if the user scrolls to 50% of
the page for logged in users. COSMIC guidelines treat this as separate data movements
under each functional process (one data movement for scrolling and one data movement of
the login condition in this example). The focus here should be on functional processes and
requirements rather than on the structure of the technical implementation in GTM, as the
layered logic does not determine the number of functional processes or data movements;
rather, it is the actual count of data movements—regardless of logic complexity—that
defines the functional size.

(2) Identification of objects of interest and data groups

After identifying the functional processes, Table 3 illustrates the objects of interest in
the functional process (e.g., software applications, humans, sensors, and other hardware)
and their data groups or attributes (e.g., employee ID for a given employee).

Table 3. Objects of interest and data groups.

Object of
Interest Description Related Data Groups Example

User
Interaction

Event

Represents any
interaction by a user

on the website or app,
such as clicks, page

views, form
submissions, etc.

Button ID, Timestamp
of interaction, Page

URL, Event type
(e.g., “click”,

“view”, “submit”).

A user clicks a button,
generating event

details like button ID,
time of click, and
page URL, which

GTM captures
and processes.

Tag

A snippet of JavaScript
that sends collected

data to external
analytics platforms

(e.g., Google
Analytics). A tag is

fired based on
trigger conditions.

Tag ID, Data sent by
the tag (e.g., page

URL, button name),
Trigger ID

(identifying which
condition led to the

tag firing).

A tag fires when a
page view occurs and
sends the page URL

and timestamp to
Google Analytics.

Trigger

Defines the conditions
under which a tag is
fired (e.g., a button

click, form submission,
or page view).

Trigger ID, Condition
(e.g., event type, scroll

depth, form ID),
Associated tag ID.

A trigger fires when a
user submits a form,
leading GTM to send

form data to an
analytics system.
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Table 3. Cont.

Object of
Interest Description Related Data Groups Example

Variable

A dynamic data
element that holds

specific information
(e.g., button name,

form value, or
user ID) used by tags

or triggers.

Variable name,
Variable value

(e.g., “Submit” button
name, form value, or
user ID), Reference to

the tag or trigger
using this variable.

A variable holds the
name of a clicked

button, which is used
by a tag to send the

correct button data to
Google Analytics.

dataLayer

A structured array
used by GTM to collect
and manage data from

user interactions,
acting as

an intermediary.

Event type (e.g., click,
submit), Data

attributes (e.g., button
name, form field

values), Associated
user ID.

The dataLayer stores
data about a form

submission, including
the user’s input and

the time of
submission, until
GTM processes it.

Analytics
System

Analytics systems
(e.g., Google Analytics)
that receive data from

GTM after the tags
are fired.

Data sent by tag
(e.g., page URL,
button name),

Analytics ID (e.g., the
property ID of Google
Analytics), Timestamp

of data transfer.

Google Analytics
receives data about a
page view, including

the URL and
timestamp, for

reporting purposes.

(3) Identification and classification of data movements

Table 4 illustrates the proposed mapping rules between the COSMIC—ISO 19761 con-
cepts and web analytics for sizing Functional User Requirements (FURs) of web analytics
implementations by identifying functional processes, data movements, the corresponding
rules based on COSMIC-ISO 19761, and descriptions and examples to clarify the mapping.
In Table 4, the rule numbers refer to the corresponding measurement rules in the COSMIC
Measurement Manual [63].

Table 4. Rules for identifying data movements in web analytics implementation.

Functional
Process

Data
Movement Classification Description Example

JavaScript
Snippet

Capturing a
User Interaction

Event

Entry Entry
(Rule 16)

User interaction data
(e.g., button click,
page view) enters

GTM from the
client-side via the

dataLayer.

User clicks
“Submit”, and the
event data (button

ID, timestamp)
enter GTM.

Trigger
Evaluation Read Read

(Rule 18)

GTM reads data (e.g.,
button ID, page URL)
from the dataLayer or
variables to evaluate

trigger conditions.

GTM reads the
button ID to check

if it meets the
condition for firing

a tag.

Variable
Processing Read Read

(Rule 18)

GTM retrieves a
dynamic variable
value (e.g., button

name) for use in tags
or triggers.

GTM reads a
variable value

(button name) to
use in trigger
evaluation or

tag firing.
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Table 4. Cont.

Functional
Process

Data
Movement Classification Description Example

Tag Firing Read + Exit

Read =
(Rule 18) +

Exit
(Rule 17)

GTM reads evaluated
conditions, and if
met, fires the tag,

sending data
(e.g., page URL,

button name) to an
external analytics

platform
(Google Analytics).

GTM reads trigger
results and then

fires the tag to send
data to

Google Analytics.

Setting a cookie
through

JavaScript
Read + Write

Read
(Rule 18) +

Write
(Rule 19)

GTM writes session
information to

browser cookies.

3.3. Measurement Phase

The measurement phase consists of the following steps.

1. Size of data movement: Based on Rule 21 of the COSMIC Measurement Manual [63],
“a unit of measurement, one CFP, shall be assigned to each data movement (Entry,
Exit, Read or Write) identified in each functional process.”
Size of a functional process: Based on Rule 22 of the COSMIC Measurement Man-
ual [63], “data movements within the identified functional process shall be aggregated
into a single functional size value for that functional process multiplied by the number
of data movements of each type by its unit size, and totaling the sizes for each of the
data movement types in the functional process.”

2. Functional size of the identified FUR of each piece of software to be measured: Based
on Rule 23 of the COSMIC Measurement Manual [63], “the size of each piece of
software to be measured within a layer is obtained by aggregating the size of the
functional processes within the identified FUR for each piece of software.”

4. Examples of COSMIC Measurement in Web Analytics Implementation
This section presents two examples of the application of the mapping rules in

Table 4 and the measurement phase to measure the functional size of the web analyt-
ics implementation.

Example 1. An e-commerce company implements Google Analytics through Google Tag Manager
(GTM) to track essential user interactions related to their online stores. Key interactions include
tracking when users add products to a cart, removing products from the cart, viewing product
details, and making purchases. By implementing event tags using GTM, the company aims to gain
insights into customer behavior and optimize sales funnels. E-commerce business requirements
require five GTM tags to be implemented as follows.

1. JavaScript snippet to capture and collect data on user interaction.
2. Product view tags track when a user views the product. Triggers should be imple-

mented to evaluate whether a tag has to be fired.
3. Add a cart tag that tracks when a user adds a product to the cart. Triggers should be

implemented to evaluate whether a tag has to be fired.

Table 5 illustrates the application of the mapping phase of COSMIC and how each
functional process is mapped to COSMIC data movement types (Entry, Exit, Read, Write).
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Table 5. Application of the COSMIC mapping phase—Example 1.

Functional Process Data Movement Description

JavaScript snippet to
capture users’

interaction
Entry

A user landed on the website, and tracking
data enter GTM (tags, dataLayer,

Variables, triggers)

Product view tag
Read If the user views a product, then GTM will

read the conditions to fire the tag

Exit GTM sends the data of the product view to
Google Analytics

Add to cart tag
Read If the user adds a product to the cart, then

GTM will read the conditions to fire the tag

Exit GTM sends the data of the product added
to the cart to Google Analytics

Remove from cart tag
Read

If the user removes a product from the cart,
then GTM will read the conditions to fire

the tag

Exit GTM sends the data of the product
removed from the cart to Google Analytics

Purchase tag
Read If the user completes a purchase, then GTM

will read the conditions to fire the tag

Exit GTM sends the data of the purchase to
Google Analytics

1. Remove from the cart tag tracks when the user removes a product from the cart.
Triggers should be implemented to evaluate whether a tag has to be fired.

2. Purchase tags track when a user completes a purchase. Triggers should be imple-
mented to evaluate whether a tag has to be fired.

Table 6 illustrates the application of the COSMIC measurement phase and the calcula-
tion of the functional size of each functional process by counting the data movement types
(Entry, Exit, Read, Write).

Table 6. Application of the COSMIC measurement phase—Example 1.

Functional Process Data
Movements

Number of
Movements

Functional
Size (CFP)

JavaScript snippet to capture
users’ interaction Entry 1 1

Product view tag Read + Exit 2 2

Add to cart tag Read + Exit 2 2

Remove from cart tag Read + Exit 2 2

Purchase tag Read + Exit 2 2

The functional size of the Google
Analytics implementation Total = 9 CFP

Example 2. An insurance company implements Google Analytics using Google Tag Manager
(GTM) to track essential user interactions related to its website. Key interactions include tracking
when users view policy plan details, downloading documents, and submitting requests in quote
form. By implementing event tags using GTM, the company aims to gain insights into customer
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behavior and optimize its lead-generation funnel. Business requirements require the implementation
of the following four GTM tags:

1. JavaScript snippet to capture and collect data on user interaction.
2. The view policy plan details the tag that tracks when the user views the plan. Triggers

should be implemented to evaluate whether a tag has to be fired.
3. Download document tags that track when a user clicks on a document related to the

policy plan. Triggers should be implemented to evaluate whether a tag has to be fired.
4. Submit a form tag that tracks when a user submits a request for a quoted application.

Triggers should be implemented to evaluate whether a tag has to be fired.

Table 7 illustrates the application of the mapping phase of COSMIC and how each
functional process is mapped to COSMIC data movement types (Entry, Exit, Read, Write).

Table 7. Application of the COSMIC mapping phase—Example 2.

Functional Process Data Movement Description

JavaScript snippet
to capture users’

interaction
Entry

A user landed on the website, and tracking
data enters to GTM (tags, dataLayer,

Variables, triggers)

View policy tag
Read If the user views a policy plan, then GTM

will read the conditions to fire the tag

Exit GTM sends the data of the view policy to
Google Analytics

Download
documents tag

Read If the user downloads a document, then
GTM will read the conditions to fire the tag

Exit GTM sends the data of the download to
Google Analytics

Submit a form tag
Read If the user submits a form, then GTM will

read the conditions to fire the tag

Exit GTM sends the data of the form submission
to Google Analytics

Table 8 illustrates the application of the COSMIC measurement phase and the calcula-
tion of the functional size of each functional process by counting the data movement types
(Entry, Exit, Read, Write).

Table 8. Application of the COSMIC measurement phase—Example 2.

Figure 1 Data
Movements

Number of
Movements

Functional
Size (CFP)

JavaScript snippet to capture users’
interaction Entry 1 1

View policy tag Read + Exit 2 2

Download documents tag Read + Exit 2 2

Submit a form tag Read + Exit 2 2

The functional size of the Google
Analytics implementation Total = 7 CFP

5. Empirical Study
This section presents an empirical study using the functional size of web analytics

projects based on the rules in Tables 3 and 4 for the project effort estimation. This study
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applied machine learning techniques to showcase the useful applications of measuring
web analytics projects in project effort estimation.

5.1. Machine Learning Concepts and Techniques

This section provides a brief overview of the machine learning techniques applied to
implement our empirical study.

1. Regression in Machine Learning: Regression is a fundamental concept in machine
learning used to predict continuous numerical values based on attributes [74]. Linear
Regression (LR) is one of the most widely used regression techniques. It captures
the linear relationship between data points in the data [75], particularly between
independent and dependent dimensions. This empirical study employed Linear
Regression to predict effort in hours on the dataset.

2. Extra Trees Regressor: Extra Trees are ensemble learning models based on a collection
of decision tree models for regression tasks [76]. The extra tree regressor aggregates
tree predictions by averaging them to generate a final prediction. This Regressor is
robust to overfitting and performs well with high-dimensional data. Capturing the
non-linear relationship between data features makes it a powerful model for complex
regression tasks.

3. AdaBoost Regressor: AdaBoost is a boosting regressor that sequentially combines more
than one learner to generate a strong predictive model [77]. AdaBoost can capture non-
linear relationships between data points, which demonstrates a powerful regressor
against complex and high-dimensional data.

4. Random Forest Regressor: Random Forest is an ensemble learning method constructed
using multiple decision trees combined by outputting the average prediction from
all individual trees [78]. This approach helps avoid overfitting and results in a more
robust model. The Random Forest model can be used for both classification and
regression (i.e., supervised learning tasks). Each tree in the forest is trained using
a random subset of data, which excels in handling large datasets and can capture
non-linear relationships between features and target variables.

5. Support Vector Machine: Support Vector Machine (SVM) can handle Linear and Non-
Linear Regression relationships between independent and dependent targets. SVM
can be used for regression or classification tasks. It starts by representing the data
points around a line called the hyperplane, and the points nearest to the line are called
support vectors. The SVM aims to maximize the margin between the vector points
through kernel functions to capture the relationships between features.

6. Decision Tree: A Decision tree is a supervised learning algorithm that can be used
for regression and classification. The algorithm generates a tree structure in which
nodes represent decisions and the leaves represent the prediction output [79]. The
model approach works recursively to split data based on a root node to minimize
the variance or error within each subset. The information Gain and Gini Index can
be used to determine the optimal node splitter as the root. The model can handle
numerical and categorical data to capture the complex relationships between the
data features.

7. K-Nearest Neighbors: K-Nearest Neighbors (KNN) is a supervised model that can
handle forecasting and prediction tasks [80]. Here, K represents several values. The
default value is five and represents a specific number of neighbors, which allows
the model to measure the distance between the data point and other data points and
determine the neighbors. The model then starts by taking the average prediction value
for the neighbors. Neighbors are determined based on a distance metric, typically
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Euclidean Distance. KNN can handle non-linear relationships between data features,
particularly when data are high-dimensional.

8. Gradient Boosting: Gradient Boosting is an ensemble-based model generated by sequen-
tially combining decision trees [81]. Unlike Random Forest, which is generated based
on a bagging ensemble, gradient boosting focuses on reducing the bias by optimizing
the model performance through the gradient descent approach. The gradient boosting
algorithm computes the loss function at each step to compare the actual and predicted
values and then optimizes the algorithm during training to achieve the minimum loss,
which represents the optimal generalization. It can handle numerical and categorical
data and is useful for non-linear relationships between data features.

9. Bagging Regressor: The bagging regressor is a model generated based on ensemble
learning that combines base models to improve model stability and reduce vari-
ance [82]. In this study, we applied a bagging regressor with Linear Regression as
the base model to enhance the model performance in forecasting. The model was
configured with ten estimators (ten individual Linear Regression models), every sin-
gle one trained on different subsets of training data samples using the bootstrapping
technique for sampling with replacement. Each independent model fitted a Linear
Regression model to a unique subset of data. The final prediction was obtained by
measuring the average of all the outputs. This approach reduces model overfitting
and leverages the diversity of the predictions from diverse models.

10. Ensemble Techniques: Ensemble learning combines the predictions of base models to
build a more robust and accurate model [83]. Ensemble techniques include several
methods such as Bagging, Boosting, and Stacking. These methods improve predictive
performance by averaging the prediction values or by using metamodels to combine
the predictions of the base models. In our empirical study, we propose the following
two ensemble techniques.

(1) The regressor models were then combined using a stacking ensemble. Stacking
involves training a new model that combines a list of base models with the
final estimator. The base model list includes an extra tree regressor, AdaBoost
Regressor, and the Linear Regression and then feeds these models into the final
estimator Linear Regression model, which learns how to combine them by
learning how to weigh the predictions of the base models. Stacking leverages
the strengths of each base model and achieves better performance.

(2) The second ensemble technique combines the prediction models with Voting
Regressors. The Voting method aggregates the predictions of the multiple indi-
vidual models. A voting regressor was used to enhance the effort estimation.
The predictions of the three individual models (extra-tree, linear, and AdaBoost
regressors) were aggregated. The Voting Regressor combines predictions using
an averaging mechanism. The final prediction was the mean of each model’s
predictions. This approach leverages the strength of the individual models
and reduces the impact of errors on each model.

5.2. Evaluation Metrics

We use a wide range of performance metrics in our empirical study to assess the
prediction accuracy of the model. By offering distinct perspectives on model performance,
each of these metrics guarantees a thorough evaluation of predictive power. To assess the
accuracy of the model, the root-mean-square error (RMSE) is particularly helpful, because
it measures the size of the prediction errors. The model’s ability to explain the variance in
the target variable was measured using the coefficient of determination (R2).
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By calculating the average magnitude of the errors, the Mean Absolute Error (MAE)
provides information regarding the difference between the expected and actual values. The
Mean Balanced Relative Error MBRE (Equation (5)) and Mean Inverted Balanced Relative
Error (MIBRE, Equation (6)) are less susceptible to bias than other similar approaches, such
as MMRE, which are occasionally criticized for their bias toward underestimation [84–88].

In addition to these widely used metrics, we also included the Standardized Accu-
racy (SA, Equation (8)) introduced by [89], which assesses the consistency of the model
over time and is derived from MAE. The SA determines whether a given estimation
method outperforms a random guessing baseline (P0) and overcomes interpretability is-
sues (e.g., understanding how good the model is). A higher SA value indicates significant
improvement over random guessing, whereas values approaching zero or negative suggest
poor performance.

In addition, we used the logarithmic standard deviation (LSD; Equation (7)), which
measures the deviation from the optimal least-squares solution and has been used as a
robust evaluation metric that accounts for the distribution of residual errors [88].

The significance of these metrics is further supported by the findings of a systematic
literature review [90] and other studies on predicting software development and assessing
machine learning techniques in software development effort estimation (SDEE) [88,91].
By integrating a diverse set of accuracy measures, our study ensures a comprehensive
evaluation of model performance, mitigates potential biases, and enhances the reliability of
the prediction assessments.

Root Mean Square Error Formula (RMSE) =

√
1
n∑n

i=1(yi − ŷi)
2 (2)

R − Squared (R2) = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

Mean Absolute Error (MAE) =
1
n∑n

i=1|yi − ŷi| (4)

Mean Bias Relative Error (MBRE) =
1
n∑n

i=1
|yi − ŷi|
|yi|

(5)

Mean Impact Bias Relative Error (MIBRE) =
1
n∑n

i=1
|yi − ŷi|
|yi|

× |ŷi| (6)

Least Square Deviation (LSD) = ∑n
i=1(yi − ŷi)

2 (7)

Standardized Accuracy (SA) = 1 − ∑
∣∣ytest − ytest

∣∣
∑
∣∣∣ytest − ypred

∣∣∣ (8)

5.3. Data Collection

Table 9 presents a dataset of the 50 web analytics projects used in this study, including
their number of functional processes, number of data movements, COSMIC size in CFP, and
effort in hours. This dataset was collected by web analytics practitioners who underwent
formal training using the COSMIC FSM method. These practitioners were assigned the task
of implementing the COSMIC method across 50 web analytics projects, and the actual effort
required to complete the implementation was recorded. As there is no publicly accessible
dataset that specifically applies the COSMIC method to web analytics implementations,
this data collection approach was chosen.
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Table 9. Dataset of the 50 web analytics projects.

Project ENTRY
Movements

READ
Movements

WRITE
Movements

EXIT
Movements

COSMIC
Functional
Size (CFP)

Actual
Effort

(Hours)

Functional
Processes

P1 1 3 1 2 7 13.6 3

P2 1 4 2 3 10 19.5 4

P3 2 5 1 4 12 22.4 5

P4 1 3 2 2 8 15.6 4

P5 2 2 1 3 8 16.0 3

P6 1 4 2 4 11 21.9 4

P7 1 3 1 2 7 13.8 3

P8 1 5 2 4 12 23.8 5

P9 2 3 2 3 10 19.1 4

P10 1 4 1 2 8 15.7 3

P11 1 5 2 4 12 23.6 5

P12 2 3 1 3 9 17.0 4

P13 1 4 2 2 9 18.2 4

P14 2 5 1 4 12 22.9 5

P15 1 3 2 3 9 17.6 4

P16 1 4 1 4 10 20.4 5

P17 1 5 2 3 11 21.8 4

P18 2 3 1 2 8 16.3 3

P19 1 4 2 4 11 22.1 5

P20 2 3 2 3 10 19.5 4

P21 1 5 1 2 9 17.8 4

P22 1 3 2 4 10 20.7 5

P23 2 4 1 3 10 19.2 4

P24 1 3 2 2 8 15.8 3

P25 1 5 2 4 12 24.1 5

P26 2 4 1 3 10 19.4 4

P27 1 3 2 3 9 17.9 4

P28 1 4 1 4 10 20.5 5

P29 2 5 2 4 13 25.8 5

P30 1 3 1 2 7 14.0 3

P31 1 4 2 3 10 19.6 4

P32 2 5 1 4 12 24.3 5

P33 1 3 1 2 7 14.2 3

P34 1 4 1 3 9 18.2 4

P35 2 3 2 3 10 20.5 4

P36 1 5 2 4 12 24.1 5

P37 2 4 1 3 10 19.4 4
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Table 9. Cont.

Project ENTRY
Movements

READ
Movements

WRITE
Movements

EXIT
Movements

COSMIC
Functional
Size (CFP)

Actual
Effort

(Hours)

Functional
Processes

P38 1 3 1 2 7 14.7 3

P39 1 5 2 4 12 24.2 5

P40 2 4 1 3 10 19.6 4

P41 1 3 2 2 8 15.8 3

P42 1 5 1 4 11 22.8 5

P43 2 4 2 3 11 22.0 4

P44 1 3 2 4 10 20.3 5

P45 1 4 1 2 8 16.3 4

P46 2 5 2 4 13 25.4 5

P47 1 4 1 3 9 18.4 4

P48 1 3 1 2 7 14.6 3

P49 2 5 2 3 12 24.6 5

P50 1 4 2 4 11 22.3 4

A pre-check was performed to ensure that practitioners understood the COSMIC
method correctly before beginning the measurements, to guarantee the correctness of the
data gathered. We adopted the factual pre-check check (FMC) reported by [92]. The FMC
proposes objective questions about the key elements of the experiment to identify practition-
ers’ attentiveness to experimental information. In this study, we adopted FMC to identify
whether practitioners focused on, comprehended, and correctly applied COSMIC concepts.

The questions included the following: What are the types of data movement in COS-
MIC? How is functional size measured in the COSMIC? Using a software example, the
functional size was calculated using a software example. The tasks for these checks include
applying COSMIC measurement rules to predefined scenarios, correctly identifying Func-
tional User Requirements in sample cases, and proving consistency in their computations
across several test cases. The data collection process included 30 practitioners who passed
the pre-check. This ensured that the functional size measurements were precisely calculated
according to the COSMIC guidelines.

5.4. Empirical Study Setup

The empirical experiment split the dataset into 80% training and 20% testing to
run the predictions. This study employs several regression models with default and
explicit parameters.

• We applied a Linear Regression model with its default parameters, where fit_intercept = True,
to ensure that the model calculated the intercept.

• Other parameters at their default include n_estimators = 100 and bootstrap = True for
Random Forest.

• The Support Vector Machine was employed with default settings, such as Kernel = ‘rbf’,
c = 1.0, and epsilon = 0.1.

• The Decision Tree Regressor had random_state = 42, with default values for the
criterion = ‘squared_error’ and splitter = ‘best’.

• The K-nearest neighbor regressor was used with default n_neighbors = 5 and
weights = “uniform”.
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• The Gradient Boosting Regressor utilized AdaBoost Regressor was set with n_estimators = 50,
keeping its default learning_rate = 1.0 and loss = ‘linear’.

• The Bagging regressor was applied using the following default values: estimator = Linear
Regression (), n_estimator = 10, and random_state = 42.

• The Voting Regressor combines the ExtraTreesRegressor, AdaBoost Regressor, and
Linear Regression. All individual models were run at their default settings.

• Stacking-employed base models (ExtraTreesRegressor, AdaBoost, and Linear Regres-
sion) used Linear Regression as the final estimator.

5.5. Performance of the ML Effort Estimation Models

The performance of the ML effort estimation models is presented in Tables 10 and 11.
Table 10 presents the training RMSE, test RMSE, Training Accuracy, Testing Accuracy, and
MAE values, whereas Table 11 presents MBRE, MIBRE, LSD, SA, MdAt, MDBRE, and
MDIRE. For instance, Linear Regression, Extra Trees, and Random Forest performed well
in terms of low RMSE, high Testing Accuracy, and strong SA scores.

Table 10. Empirical study results (train RMSE, test RMSE, Training Accuracy, Testing Accuracy, and
MAE) (n = 50).

Model Train
RMSE

Test
RMSE

Train
Accuracy

Testing
Accuracy MAE

Linear Regression 0.41 0.51 0.98 0.97 0.35

Random Forest 0.32 0.50 0.99 0.97 0.39

Support Vector Machine 0.70 0.69 0.95 0.95 0.50

Decision Tree 0.27 0.59 0.99 0.96 0.49

KNN 0.72 0.89 0.95 0.927 0.71

Gradient Boosting 0.27 0.57 0.99 0.97 0.41

AdaBoost 0.39 0.51 0.98 0.97 0.43

Extra Trees 0.27 0.46 0.99 0.980755 0.41

Bagging 0.42 0.52 0.98 0.97 0.34

Voting 0.32 0.46 0.99 0.980522 0.35

Stacking 0.39 0.49 0.98 0.97 0.34

Table 11. Empirical study results (MBRE, MIBRE, LSD, SA, MdAt, MDBRE, MDIRE) (n = 50).

Model MBRE MIBRE LSD SA MdAt MDBRE MDIRE

Linear Regression 1.75 0.92 0.02 0.86 0.15 0.92 0.92

Random Forest 1.97 1.62 0.02 0.84 0.30 1.62 1.65

Support Vector Machine 2.45 1.75 0.03 0.80 0.34 1.75 1.78

Decision Tree 2.47 2.00 0.02 0.81 0.4 2.00 2.00

KNN 3.55 3.67 0.04 0.72 0.82 3.67 3.81

Gradient Boosting 2.08 1.08 0.02 0.84 0.20 1.08 1.09

AdaBoost 2.15 1.92 0.02 0.83 0.37 1.92 1.89

Extra Trees 2.10 1.70 0.02 0.83 0.36 1.70 1.72

Bagging 1.72 0.83 0.02 0.86 0.13 0.83 0.84
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Table 11. Cont.

Model MBRE MIBRE LSD SA MdAt MDBRE MDIRE

Boosting 2.15 1.92 0.02 0.83 0.37 1.92 1.89

Voting 1.74 1.13 0.02 0.86 0.25 1.13 1.12

Stacking 1.70 0.91 0.02 0.86 0.16 0.91 0.91

The authors in [88] reported that Standard Accuracy (SA) can be used as the main
metric to evaluate software effort estimation models. SA provides a more reliable evaluation
of estimation accuracy than conventional error metrics, such as Mean Relative Error (MRE)
and Mean Magnitude of Relative Error (MMRE), which have been criticized for being
biased toward underestimates.

In addition, Table 10 includes Testing Accuracy, which is a machine learning met-
ric used to evaluate the capability of the models for generalization by quantifying the
percentage of accurate predictions.

The following key comparisons from Tables 10 and 11 highlight the strong performance
of the Linear Regression, extra stress, and Voting Regressor ML techniques while using our
dataset to predict the web analytics effort based on COSMIC.

1. Comparison based on the prediction accuracy and generalization:

• Extra Trees had the best test RMSE (0.46) and highest accuracy (98%), making it
the most accurate predictor.

• Voting Regressor also achieved a strong performance (RMSE = 0.46, accuracy = 98%),
demonstrating robust generalization.

• Linear Regression had the lowest MAE (0.35), indicating that it provided more
stable predictions, on average.

2. Comparison based on the error analysis (MBRE, MIBRE, MDBRE)

• Linear Regression consistently had the lowest error values, making it a highly
reliable model.

• The Voting Regressor has a moderate MBRE (1.74) and MIBRE (1.13), showing a
good balance between precision and generalization.

• Extra Trees had slightly higher MBRE (2.10) and MDBRE (1.70) but compensated
for lower RMSE and high Testing Accuracy.

3. Comparison based on the Standard Accuracy (SA):

• Linear Regression (0.86) had the highest SA, indicating that it provided correct
predictions more frequently.

• Voting Regressor (0.86) matched Linear Regression in SA, reinforcing its reliability.
• Extra Trees (0.83) is slightly behind but remains effective.

Figures 6–8 present examples of the performance of the Extra Trees, Linear Regression,
and Random Forest models because these models performed well in terms of SA and
Testing Accuracy. These figures illustrate the actual effort (in green) and predicted effort
values (in blue) and visualize the variations between them.
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Figure 6. Predicted vs. Actual Values—Extra Trees Regressor for 20% testing data.

Figure 7. Predicted vs. Actual values—Linear Regression for 20% testing data.

Figure 8. Predicted vs. Actual values—Voting Regressor for 20% testing data.
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6. Discussion
This analysis does not imply that practitioners should only use these ML models.

Rather, this study is the first to investigate web analytics and COSMIC, and we believe that
these results demonstrate both the feasibility of applying functional size for web analytics
and its usefulness in predicting web analytics project efforts.

Based on the empirical results, we offer the following practical contributions for web
analytics practitioners.

1. Feasibility of applying COSMIC to web analytics: COSMIC functional size measure-
ment is feasible and effective for web analytics. Practitioners who use Google Tag
Manager in web analytics implementations can use COSMIC across diverse web ana-
lytics projects to measure their software functional size and plan projects accordingly.

2. Effort prediction using functional size measurements: The results illustrate that the
effort of web analytics implementation can be predicted using the COSMIC-based
functional size. This supports practitioners with data-driven decisions rather than ad
hoc decisions.

3. Benchmarking and comparison between projects: The COSMIC functional size mea-
surement allows practitioners to compare web analytics projects based on their func-
tional sizes. This supports informed decisions by identifying which projects require
more effort and justifies budget and staffing decisions. Stakeholders can understand
the reasons for allocating more time and budget to certain projects.

4. Guidance on model selection for effort estimation: Using COSMIC as inputs, the
evaluation of the machine learning models provides insights into the most suitable
model for predicting web analytics implementation efforts:

• Practitioners interested in stable and interpretable models can use Linear Regres-
sion, as the empirical results show that it has the lowest error rate and highest
Standard Accuracy (SA = 0.86).

• Practitioners interested in high accuracy can use Extra Trees and the Voting
Regressors because the empirical results show 98% accuracy, offering strong
predictive performance on unseen data.

This study also offers theoretical contributions, as follows:

5. Extends the application of COSMIC to emerging domains: This study contributes
to the software engineering body of knowledge by demonstrating a feasible adop-
tion of COSMIC in web analytics, an unaddressed domain in COSMIC literature.
While COSMIC has been widely applied in software projects, its application in
tag-based, configurable systems, such as Google Tag Manager (GTM), has not been
previously explored.

6. Offers conceptual mapping between COSMIC and GTM concepts: This study provides
a clear mapping between GTM concepts (tags, triggers, variables, and dataLayer) and
COSMIC concepts (functional processes, Entry, Exit, Write and Read). This offers a
novel theoretical mapping, not addressed previously in the literature, that models
web analytics setups as measurable software components.

7. Offers interdisciplinary research that integrates software engineering, software mea-
surement theories, and web analytics.

8. Offers a COSMIC-based framework for measurement and effort estimation in web
analytics. This can serve as a reference and reusable framework for other analytics
systems (e.g., Adobe Analytics).
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7. Conclusions
Web analytics is a multidisciplinary field that includes the implementation of

JavaScript code to collect, measure, analyze, and report digital data to gain insights into the
behavior of website visitors. These insights allow organizations to enhance their business,
including improving website usability, engagement, and conversion rates, by making data-
driven recommendations. However, Google Analytics requires both standard and custom
implementation. Standard implementation is performed by adding JavaScript snippet code
to a website, and custom implementation requires tagging the website with JavaScript
snippet code using Google Tag Manager. This implementation requires time and budget to
implement tracking codes that collect data based on the Functional User Requirements.

In the software engineering research area, the literature reports that estimating soft-
ware development effort is an important activity in software project management because it
helps deliver the expected software functionality on time and budget. COSMIC functional
size measurement is the standard choice of objective independent variable for estimating
software project development efforts and budgets. It supports effort estimation by provid-
ing a standardized measure of software functionality that is independent of the technology
and programming languages. To the best of our knowledge, no study has applied COSMIC
to web analytics software implementation. Therefore, web analytics organizations may
face a challenge in measuring the functional size of their development projects and are
unable to gather reliable measures to estimate future development projects. Therefore, this
study adopted the COSMIC functional size measurement, including mapping COSMIC
concepts and rules, to measure the function size of web analytics implementation, and
illustrated it with two examples. Next, a set of 50 web analytics projects were sized using
the COSMIC FSM method, and their functional sizes were used as inputs to various ML
models to predict the development effort.

The evaluation measurements of these ML models using the COSMIC Function Points
in web analytics implementations indicate that Linear Regression, Extra Trees, and Random
Forest performed well in terms of low RMSE, high Testing Accuracy, and strong SA scores.

Since this study is the first on web analytics and COSMIC, we believe that these results
demonstrate the feasibility of applying functional size for web analytics and for using
functional size in predicting web analytics efforts. In future work, we plan to extend the
COSMIC-based framework proposed in this study to address the following limitations.

• The proposed COSMIC-based framework focuses on web analytics implementation
through client-side tagging in GTM. In future work, we aim to extend this framework
to address web analytics implementation through server-side tagging in GTM.

• The proposed COSMIC-based framework focuses on the implementation of Google
Analytics. In future work, we aim to extend this framework to address other analytics
platforms, such as Adobe Analytics.

• The proposed COSMIC-based framework is applied to 50 projects. In future studies,
we aim to extend this application to a larger dataset to evaluate its generalizability
and external validity.

• The proposed COSMIC-based framework is based on expert-driven steps depending
on the COSMIC manual documentation. In future work, we aim to extend this
application to reduce manual work (e.g., automating data movement classification
and mapping to E, W, R, X, and their counts) to increase its scalability and consistency
across projects.

• It was not within the scope of the current study to conduct a comparative analysis
between COSMIC and multi-criteria decision-making methods such as the Analytic
Hierarchy Process (AHP). In future work, we aim to extend this study by comparing
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the effectiveness and accuracy of the COSMIC-based framework with those of AHP-
based approaches.

• The proposed COSMIC-based framework can be developed further to encompass
additional areas of investigation. This includes automating the application of COSMIC
in web analytics and proposing reusable templates across different projects to minimize
manual mapping and identification of functional processes or data movements.
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