IEEE Open Journal of

Vehicular Technology

Received 24 July 2025; accepted 9 August 2025. Date of publication 11 August 2025;
date of current version 27 August 2025. The review of this article was coordinated by Editor Jianbo Du.

Digital Object Identifier 10.1109/0JVT.2025.3598154

Energy Efficient and Resilient Task Offloading
in UAV-Assisted MEC Systems

MOHAMED EL-EMARY ©1, DIALA NABOULSI ©! (Member, IEEE), AND RAZVAN STANICA ©2

! Department of Software Engineering and IT, Ecole de Technologie Supérieure, Montréal, QC H3C1K3, Canada
2INSA Lyon, Inria, CITI, F-69621 Villeurbanne, France

CORRESPONDING AUTHOR: MOHAMED EL-EMARY (e-mail: mohamed-ibrahim-mahmoud.el-emary.1@ens.etsmtl.ca).

ABSTRACT Unmanned aerial vehicle (UAV)-assisted Mobile Edge Computing (MEC) presents a critical
trade-off between minimizing user equipment (UE) energy consumption and ensuring high task execution
reliability, especially for mission-critical applications.While many frameworks focus on either energy effi-
ciency or resiliency, few address both objectives simultaneously with a structured redundancy model. To
bridge this gap, this paper proposes a novel reinforcement learning (RL)-based framework that intelligently
distributes computational tasks among UAVs and base stations (BSs). We introduce an (k + 1)-server per-
mutation strategy that redundantly assigns tasks to multiple edge servers, guaranteeing execution continuity
even under partial system failures. An RL agent optimizes the offloading process by leveraging network
state information to balance energy consumption with system robustness. Extensive simulations demonstrate
the superiority of our approach over state-of-the-art benchmarks. Notably, our proposed framework sustains
average UE energy levels above 75% under high user densities, exceeds 95% efficiency with more base
stations, and maintains over 90% energy retention when 20 or more UAVs are deployed. Even under high
computational loads, it preserves more than 50% of UE energy, outperforming all benchmarks by a significant
margin—especially for mid-range task sizes where it leads by over 15-20% in energy efficiency. These
findings highlight the potential of our framework to support energy-efficient and failure-resilient services for
next-generation wireless networks.

INDEX TERMS Unmanned aerial vehicles, mobile edge computing, task offloading, reinforcement learning,

energy efficiency, system resiliency.

I. INTRODUCTION

The rapid growth of computationally intensive applications
and the proliferation of mobile devices have created signifi-
cant challenges for traditional cloud computing architectures.
Mobile edge computing (MEC) has emerged as a promising
paradigm to bring computation and storage resources closer
to end-users, thereby reducing latency and improving service
efficiency. By leveraging MEC, computational tasks can be
offloaded from user equipment (UE) to edge servers, which
enhances processing capabilities and conserves the limited
battery life of mobile devices.

The increasing adoption of artificial intelligence (Al), the
Internet of Things (IoT), and real-time data-driven applica-
tions further exacerbate the need for efficient edge computing
solutions. Smart cities, autonomous vehicles, augmented real-
ity (AR), and industrial automation generate vast amounts of

data that require real-time processing. Traditional cloud com-
puting infrastructures suffer from high latency and network
congestion when handling these applications, making MEC
an essential enabler for next-generation wireless networks.
Unmanned aerial vehicles (UAVs) have recently gained
attention as mobile edge nodes that can complement ter-
restrial base stations (BSs) by providing dynamic coverage
and computational resources [1]. UAV-assisted MEC net-
works enable flexible and scalable task offloading strategies,
allowing UEs to offload tasks to nearby UAVs, which in
turn relay them to MEC-enabled BSs. These networks have
a wide range of applications, including disaster response,
smart agriculture, surveillance, intelligent transportation sys-
tems, and remote healthcare. In disaster response scenarios,
UAVs provide real-time data processing and communica-
tion support in areas where infrastructure is damaged or
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unavailable [2]. In smart agriculture, UAVs assist in crop
monitoring and precision farming by processing data on-
site [3]. For surveillance and security, UAVs enhance situa-
tional awareness by analyzing video streams in real-time [4].
In intelligent transportation, UAV-assisted MEC networks op-
timize traffic monitoring and vehicular communication [5].
Furthermore, in remote healthcare, UAVs equipped with
edge computing capabilities can facilitate medical imaging
and telemedicine services by processing patient data on-site,
enabling timely and resource-efficient diagnosis and decision-
making [6].

Despite their advantages, UAV-assisted MEC systems face
several challenges, including UAV mobility constraints, lim-
ited energy resources, dynamic wireless channel conditions,
and task migration complexities. However, unlike static BSs,
UAVs can dynamically adjust their positions to ensure optimal
task allocation. In a number of scenarios, one of the most
critical challenges is minimizing the energy consumption of
UE, which directly affects device longevity and system sus-
tainability. Efficient offloading decisions must account for
the limited battery capacity of UEs, while also ensuring
reliable task execution. Managing computational resources
across a swarm of UAVs and BSs in a way that balances
UE energy efficiency and network resiliency remains a fun-
damental research problem. Additionally, task redundancy
and reliability become essential considerations, particularly in
mission-critical applications where failures in communication
or computing nodes can disrupt services.

To address these challenges, this study proposes an RL-
based task offloading framework that optimizes the energy
consumption of the UE while ensuring system resiliency.
Since UEs typically have limited battery capacities and are
more energy-constrained than infrastructure elements like
UAVs or BSs, our focus is specifically on minimizing the
energy consumption of the UEs rather than the UAVs them-
selves, which can be more easily recharged. This is particu-
larly critical as excessive energy consumption at the UE level
leads to faster battery depletion, negatively impacting user
experience and service continuity.

The proposed framework introduces a redundancy mecha-
nism based on an (k + 1)-server permutation strategy, where
tasks are redundantly assigned to multiple edge servers to
guarantee execution continuity in the event of server fail-
ures. By leveraging RL, the system dynamically adapts to
network conditions, balancing the trade-off between energy
efficiency and failure resilience. Unlike conventional opti-
mization techniques, RL-based approaches allow continuous
learning and adaptation to dynamic environments, making
them well-suited for UAV-assisted MEC networks.

While several studies have explored task offloading in
UAV-assisted MEC networks, existing approaches have either
focused on optimizing task distribution among UAVs and
BSs, improving UAV energy efficiency, or ensuring network
resiliency through redundancy mechanisms. However, to the
best of our knowledge, no prior work has specifically targeted
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simultaneous optimization of UE energy consumption and re-
siliency through an (4 + 1)-server permutation strategy. This
novel framework provides a unique solution by integrating
RL to dynamically balance UE energy consumption and task
execution reliability.

The key contributions of this work include:

® A novel UAV-assisted MEC framework enhancing UE
energy efficiency by optimizing task allocation using an
RL approach.

e An (h+ 1)-server permutation redundancy mechanism
to improve system resiliency and mitigate the impact of
task execution failures.

e A RL-based decision-making model that dynamically
adapts to network conditions to optimize task offloading
strategies.

e A discussion of real-world deployment challenges and
potential solutions for UAV-assisted MEC networks.

® A comprehensive performance evaluation demonstrat-
ing significant improvements in energy consumption and
system resiliency over a diverse set of state-of-the-art
learning-based and optimization-driven MEC offload-
ing strategies, validating the superiority and adaptabil-
ity of the proposed framework under varying network
conditions.

The remainder of this paper is organized as follows.
Section II reviews the related work on task offloading in MEC
and UAV-assisted networks. Section III describes the sys-
tem model. Section IV introduces the problem formulation.
Section V presents the proposed RL-based task offloading
framework. Section VI presents the simulation parameters and
scenarios used to evaluate the performance of the proposed ap-
proach. Section VII discusses the simulation results. Finally,
Section VIII concludes the paper.

Il. RELATED WORK

The existing research can be broadly classified into three
main categories. The first one focuses on task offloading and
resiliency in MEC networks, where studies have explored
optimization techniques such as multi-objective optimization,
heuristic algorithms, and machine learning to improve task
allocation, minimize latency, and maximize service reliability.
The second category addresses UAV-assisted MEC and fault-
tolerant offloading, investigating the role of UAVs as mobile
edge nodes to extend coverage and enhance task offloading ef-
ficiency. Finally, the third category focuses on energy-efficient
task offloading strategies in UAV-assisted MEC systems, pri-
marily aiming at optimizing energy consumption at different
network entities, such as UAVs or UEs.

Recent works in this area have leveraged techniques like
RL, distributed optimization, and cooperative UAV networks
to enhance the robustness of task execution in dynamic envi-
ronments. In the following, we review key contributions from
all these categories, analyzing their methodologies and limi-
tations in the context of resiliency and redundancy in MEC
systems. Table 1 summarizes the main differences between
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TABLE 1. Comparison of Proposed RTO Algorithm With Existing Work

Paper Objectives Methodology Redundancy & Resiliency
Support
Liu et al. [10] Tradeoff between latency and Heuristic algorithm, non-convex problem X
reliability, task offloading solution
efficiency
Chen et al. [11] Task delivery reliability, Minimum granularity decomposition, Branch X
minimize total delay and Bound algorithm
Hou et al. [13] Minimize latency, maximize Hybrid binary particle swarm optimization, X

reliability

expected latency definition

Hu et al. [14]

Build UAV network with
SDN, implement blockchain
technology

Distributed control plane, blockchain for

flexibility and survivability

v (blockchain-based survivability)

Liu et al. [7]

Maximize reliability,

minimize bandwidth usage

Multi-objective optimization, RETO and DETO

algorithms

Malik et al. [12]

Minimize task failures,

minimize energy consumption

Two-phase offloading algorithm, deferred
acceptance matching

v (VRU fallback matching)

Peng et al. [15]

Task reliability, enhance

energy efficiency

Reliability-aware offloading with shadowing

for fault tolerance

v (shadow backup scheme)

Wang et al. [8]

Resiliency to edge server

Online primal-dual algorithm, adaptive task

v (server availability aware)

failures, task offloading migration
efficiency

Yu et al. [16] Task load balancing, Iterative algorithm, generalized Benders X
minimize network latency decomposition

Zhang et al. [9] Minimize delay, maximize Logistic reliability model, alternative X
service reliability optimization method

Zhao et al. [17] Minimize energy Deep Q-learning based DNN partitioning X

consumption, ensure

reliability

Proposed RTO Algorithm

Minimize UE energy, ensure

resiliency via (h + 1)

Q-learning with policy iteration, (h + 1)-server

permutation for task redundancy and failure

v (full resiliency via structured

(h + 1)-server execution)

permutations recovery

the related works and our study in terms of objectives and
methodology.

A. TASK OFFLOADING AND RESILIENCY IN MEC
NETWORKS

Recent advances in the MEC field have led to significant
interest in resilient and efficient task offloading strategies,
particularly in dynamic and heterogeneous environments. One
line of research has explored how to maximize reliability
during offloading while minimizing resource consumption.
For instance, the work in [7] investigates a multi-edge cloud
scenario designed to serve loT applications. The authors
formulate a multi-objective optimization problem to simul-
taneously minimize bandwidth consumption and maximize
reliability, which they convert into a single-objective problem
and solve using two near-optimal algorithms (named RETO
and DETO).

In parallel, other studies have focused on the dynamic na-
ture of edge resources and their impact on resiliency. In [8],
a dynamic edge computing framework is presented, where
end devices not only create tasks but can also function as
edge servers. The edge server set is dynamic due to device
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mobility. To ensure reliability amid server failures, the authors
introduce adaptive task offloading mechanisms, utilizing both
offline batch scheduling and online primal-dual algorithms
that adjust based on server availability.

Service delay and reliability have also been addressed
through probabilistic modeling. In [9], the authors present a
logistic-based service reliability probability model for virtual
machine-based edge servers. By jointly optimizing compu-
tation resources and service quality ratios, they propose a
low-complexity heuristic algorithm to solve the average re-
liability maximization problem efficiently. To address the
trade-off between latency and reliability in distributed offload-
ing, [10] explores multi-edge server connectivity, where each
UE can offload its task to multiple edge nodes. A heuristic
algorithm is proposed to make near-optimal offloading de-
cisions that manage latency while enhancing task delivery
success rates.

Focusing on ultra-reliable low-latency communications
(URLLC), the authors in [11] develop a task offloading frame-
work that ensures high reliability through a joint optimization
model. They reformulate the problem as a mixed-integer pro-
gram and use a branch and bound (B&B) algorithm to obtain
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globally optimal solutions. Additionally, task reliability has
been enhanced using virtualization of computing resources.
The work in [12] introduces a two-phase offloading algo-
rithm for IoT-to-fog computing. The authors design virtual
resource units (VRUs) with variable sizes and apply a mod-
ified deferred acceptance algorithm for stable task-resource
matching, followed by redistribution of unmatched resources
to previously matched tasks.

A recent contribution in this domain is the work of [13],
which introduces a decentralized deep RL (DRL)-based
framework for task offloading and resource allocation in
MEC networks. The authors consider a user-centric archi-
tecture with limited central coordination, where UE makes
local decisions to minimize task execution delay and en-
ergy consumption under resource constraints. By formulating
the problem as a Markov Decision Process and training a
multi-agent DRL model with Proximal Policy Optimization
(PPO), they demonstrate improved scalability and adaptabil-
ity in dynamic environments. The proposed method also
accommodates wireless channel variability and multi-user
interference, yielding superior performance over centralized
baselines, particularly in scenarios with high mobility and
device heterogeneity.

Together, these studies provide valuable insight into task of-
floading under reliability constraints. However, most of them
either assume static network infrastructures or overlook the
constraints and energy limitations of UEs. Moreover, they
do not address the combination of energy efficiency and re-
siliency within an RL framework—an aspect central to our
proposed methodology.

B. UAV-ASSISTED MEC AND FAULT-TOLERANT OFFLOADING
Several studies have explored UAV-assisted MEC systems,
focusing on fault-tolerant task offloading and resiliency. The
work in [14] introduces a multi-UAV framework that ensures
latency and task delivery reliability through joint optimization
of communication, computation, and caching. Similarly, [15]
proposes an SDN- and blockchain-based UAV network to
enhance security and survivability in dynamic environments.

Other studies, such as [16], address reliability-aware com-
putation offloading for delay-sensitive applications, utilizing
a two-phase approach combining energy-efficient strategies
and shadowing schemes, where backup (shadow) copies of
tasks are assigned to secondary servers to ensure fault tol-
erance and minimize the impact of primary server failures.
Furthermore, [17] employs deep Q-learning for collaborative
inference among UAVs, optimizing energy consumption un-
der reliability constraints.

In [18], the authors present a UAV-aided network leverag-
ing mmWave backhaul to balance task load on edge servers
while minimizing network latency. Their approach integrates
trajectory optimization and resource allocation through iter-
ative algorithms. Additional research includes [19], which
provides a systematic mapping of UAV-assisted MEC sys-
tems, analyzing key offloading strategies and challenges. The
study in [20] proposes a deep RL approach to optimize task
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offloading while minimizing the age of information in UAV-
assisted MEC.

In [21], deep RL techniques are examined for their utility
in managing computation offloading and resource allocation
within UAV-assisted MEC environments, with a particular
focus on the gains achieved in system efficiency and reduced
energy usage. Similarly, [22] presents a systematic review on
computational offloading in UAV swarm networks, focusing
on local and global path planning. In [23], the authors investi-
gate resource allocation and 3D deployment in UAV-assisted
MEC networks with air-ground cooperation, proposing opti-
mization techniques to enhance reliability and performance.
Additionally, [24] discusses secure task offloading using
covert communication techniques, mitigating potential threats
in UAV-assisted MEC networks. In [25], the authors present
a dense MARL framework for UAV-assisted vehicular net-
works, employing a dual-layer decision model with critical
state detection to enhance convergence and coverage effi-
ciency. Their decentralized approach improves scalability and
responsiveness in dynamic environments with limited com-
munication overhead.

C. ENERGY EFFICIENCY IN TASK OFFLOADING
Energy-efficient task offloading in UAV-assisted MEC net-
works has been extensively studied, with most contributions
focusing on either minimizing UAV energy consumption or
UE energy consumption. The majority of works target UAV
energy consumption optimization. For instance, [26] proposes
an RL-based offloading strategy that dynamically allocates
tasks based on energy constraints and network conditions.
In addition, [27] introduces a multi-agent RL approach that
ensures fairness in computational task distribution while im-
proving overall UAV energy efficiency.

Beyond UAV energy optimization, some studies focus
on minimizing UE energy consumption. The work in [28]
provides a comprehensive review of energy-aware task par-
titioning, UAV trajectory optimization, and power-efficient
resource allocation. Additionally, [29] explores specific UAV-
MEC systems, where reconfigurable intelligent surfaces (RIS)
are leveraged to optimize signal reflection and improve
energy-aware offloading performance. Moreover, [30] pro-
poses a covert communication-based offloading strategy,
ensuring secure and energy-efficient execution of tasks in
UAV-assisted MEC systems through deep RL.

Further studies explore advanced resource allocation and
energy harvesting mechanisms. For example, [31] presents
a joint optimization framework for UAV-assisted MEC that
balances energy consumption and low-latency task execu-
tion. Finally, [32] investigates wireless-powered transmission
(WPT)-MEC networks, where energy harvesting techniques
are integrated to extend the operational lifetime of UAV-
assisted MEC systems.

While these works effectively reduce UAV and UE energy
consumption, none explicitly consider resiliency in task of-
floading. Addressing this research gap, our study introduces
an RL-based resilient task offloading strategy, integrating
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FIGURE 1. Overview of the UAV-based MEC System Model.

an (h+ 1)-server permutation model to ensure execution
continuity under network failures. This dual focus on redun-
dancy and energy efficiency differentiates our approach from
existing solutions. Detailed evaluations demonstrate its effec-
tiveness in balancing UE power consumption, resiliency, and
execution reliability, making it a promising advancement in
UAV-assisted MEC networks.

IIl. SYSTEM MODEL
As illustrated in Fig. 1, our framework considers a service area
populated by a set of UEs. These UEs are served by multiple
BSs, each MEC server. A fleet of UAVSs further assists by of-
floading tasks from the UEs to the BS-based servers. Each UE
is equipped with a dedicated RL agent that decides whether to
process tasks locally or offload them to a nearby UAV or BS.
The key notations used in our model are listed in Table 2.
The system model is based on a set of computational tasks,
each with specific resource demands. These tasks originate
from user devices, which can offload them to a limited sub-
set of nearby MEC servers, each characterized by its own
computational capacity. The entire system operates in discrete
time slots. In each time slot #, UAVs are assumed to follow
a circular mobility pattern at a fixed altitude. Specifically,
each UAV moves along a predefined circular trajectory cen-
tered within the service area, ensuring that they periodically
revisit the same locations. This flight mode allows UAVs to
serve nearby UEs within their coverage radius as they move.
The circular motion model was selected to strike a balance
between persistent availability and reduced energy costs asso-
ciated with continuous repositioning, reflecting a realistic but
computationally manageable model for UAV-assisted offload-
ing as proposed in [33], [34].

A. COMMUNICATION MODEL
The communication model in our system is designed to effi-
ciently manage task offloading in a MEC environment, where

2240

Variable Description
A Height of base station antenna
Qn.t Angle of UAV n at time slot ¢
b;” Binary variable for offloading solution Ch,,
C Set of (h + 1)-server permutations
Cs Residual capacity of MEC server s
Cn .t Relative UE-Toad of UAV n at time slot ¢
Cy Switched capacitance of UE d
d Individual UE device
D Set of all UE devices
Dgctive Set of active UEs
r Set of UEs that offload tasks to UAV n at time slot ¢
dist!, Distance covered by UAV n at time slot ¢
Fy Total energy consumption for UE d
EY Energy level of UE d at time slot ¢
Eéoc“l Total UE energy used for locally executed tasks
E;’f fload Total UE energy used for offloaded tasks
BT Sum of UE reception energy
Eém Sum of UE transmission energy
E;i UE energy for local execution per task
Erecetve UE reception energy / Energy for task result reception
Etransmit UE transmission energy
Ein, Emaz | Minimum and maximum energy thresholds
Constant representing UAV height
J Set of indivisible tasks
Ja Set of tasks for device d
k;, fa CPU cycles and processing frequency of UE d
n Individual UAV
N Set of all UAVs
No Noise power spectrum density
P, Product of failure probabilities
precetve UE receive power
piransmit UE transmit power
piransmit UAV transmit power
plransmit BS transmit power
pr Maximum failure probability
Do Probability of server failure
T Resource demand of task j
% Task result size
Tdn Data rate between UE and UAV
Tds Data rate between UE and BS
T'nd Data rate between UAV and UE
Tns Data rate between UAV and BS
Tsd Data rate between BS and UE
Tsn Data rate between BS and UAV
s Individual base station (BS)
S Set of all BSs
S4q Set of accessible servers for device d
T Set of time instances
treturn Task return time
troute Task routing time
t;oute(dn) Transmission time from the UE to the UAV
groute(ds) Transmission time from the UE to the BS
t;oute("s) Transmission time from the UAV to the BS
“ Minimum distance between UAVs
wmar Maximum UAV coverage radius
Want Distance between UE d and UAV n at time slot ¢
Whon e Distance between UAV n and n” at time slot ¢
Wi ,s.t Distance between UAV n and BS s at time slot ¢
X4, Yy Coordinates of UE d
Xn.t, Yn,t Coordinates of UAV n at time slot ¢
Xs,Ys Coordinates of BS s
zé Offloading decision for UE d at time slot ¢
Bo Channel power gain at Im reference distance

multiple UEs interact with BSs and UAVs for resource alloca-
tion and task execution. The communication between these
entities is controlled by RL agents, one dedicated to each
UE, which make decisions based on real-time information
regarding the MEC environment.
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1) USER EQUIPMENTS (UES)

Each UE is considered to be a mobile device with compu-
tational tasks that may exceed its processing capability or
energy constraints. These UEs are equipped with a dedicated
RL agent that continuously monitors the UE energy level and
the total number of tasks being processed on all BSs. Based on
these parameters, the RL agent determines whether to offload
the task directly to a MEC server, use an offloading UAYV, or
to process it locally.

2) BASE STATIONS (BS)

BS are stationary nodes that provide computational resources
for UEs through co-localized MEC servers. They receive tasks
from UEs directly or via UAVs. Each BS has a computation
capacity and a number of tasks being processed on it. Com-
munication between UEs and BS, or between UAVs and BS,
occurs over a dedicated wireless link, and the BS are assumed
to have sufficient power to handle multiple offloaded tasks
simultaneously.

3) UNMANNED AERIAL VEHICLES (UAVS)

UAVs serve as intermediary nodes that assist in task of-
floading, especially in scenarios where direct communication
between UEs and BS is problematic due to distance or signal
propagation issues. UAVs can temporarily store and relay
computational tasks from UEs to BS. UAVs provide flexibility
and increase the coverage area for task offloading, ensuring
that UEs in remote or dynamic radio environments can still
offload tasks effectively.

4) DECISION-MAKING PROCESS

The RL agents utilize a reward-based mechanism to optimize
the task offloading process. Rewards are calculated based on
the UE energy efficiency. The goal of each RL agent is to
maximize cumulative rewards over time, ensuring that the
UE battery life is prolonged while maintaining high compu-
tational performance. This communication model is designed
to be adaptive, scalable, and resilient, providing an effective
solution for task offloading in dynamic and heterogeneous
MEC environments.

B. PLACEMENT MODEL
The distances between the entities in the system are defined
as follows:
1) Considering static UEs, the distance separating UE d
and UAV n in time slot ¢:

Wi =) Kt = Xa)? + (b — Ya)? + H?
VdeD,neN,teT (D

2) At time slot ¢, the distance between UAV n and BS s:

Wn,s,t = \/(Xn,t - Xs)z + (Yn,t - Ys)z + H2

VneN,seS, teT ()
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3) At time slot ¢, the distance between UAVs n and ' :

Wit =) Kt = X P - (g — Yo

VYn,n eN,teT 3)

4) Distance between UE d and BS s:

Was = vV ((I1Xg — Xs D2 + (1Ya — Ys1D?)
YdeD,seS 4

C. DELAY CONSIDERATIONS

The communication time for offloading a task j is given as:
1) When routed through an UAV n to reach the BS s:

route __  route(dn) route(ns)

J =
troute(dn) _ I_j
J Ydn '

ptransmit d
ran = B - log, <1+d—ﬂ°>,

B-Ny-W?

d,n,t
ti.‘oute(ns) — I_]
J Tns ’
Ptransmit . RN
rms =B -log, | 1 + ”—ﬁ% (5)
B-Ny- Wn,s,t

2) When directly offloaded to the BS:

route __ ,route(ds)
lj = tj s

route(ds) Ij
l‘j = —

Tds
plransmit ﬁg
rgs = B - log, (1 e e )
B-No-Wj,

3) Once a task is executed, if the result is returned via the
UAV, the result return delay is:

return __  return(sn) return(nd)
t; t. + tj

J - ’
treturn(sn) _ &
/ I'sn '

Ptransmit . As
rsn = B - log, <1+Y—ﬁ0),

B- Ny - an,s,t
t{’eturn(nd) _ &
J "'nd '
Ptransmit . /38
rmd =B -lo 1+ L2—" 7
nd g2 B'NO‘Wdznt ()
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4) If the result is returned via the BS directly to the UE, the
result return delay is:

tr_eturn — t(elurn(sd)

J J ’
t(eturn(sd) _ &
J T'sd '
Pslransmil /38
rg =B log, [1+—2+— 20 8
sd 22 B. NO ] Wdzs ( )
5) The end-to-end (E2E) delay is:

TjEZE — tj;joute + t]}jeturn (9)

D. ENERGY CONSIDERATIONS
The total energy consumed by a UE d is:

Eg = EJ/T1% 4 gl (10)
where,
E;fflaad — Z{x +Erx’
EY — Et.ransmit7
E'™ — Er_‘eceive,
E¢liowl — Z ZEd’
jedg teT
Ef =Cu-kj - fi.
E;ransmit — Péransmit i (tjr_oute(dn) + t;oute(dx))’
E;eceive — Pgeceive . (tjr_eturn(nd) + tjr}eturn(sd)) (11)

E. DECISION VARIABLES
We are using a binary decision variable for offloading :

Zii _ 1, iftask i.s offloaded (12)
0, otherwise.
For this variable, z/, = 1 when UE d chooses to offload the
task in time slot # and z/, = 0 when UE d decides to compute
the task locally.
This allows us to define the relative UE-load of an UAV at
time 7:

_ 2 dent, %

Cnt = . vVt € ]U
1D,

nenN (13)
where D! reflects the dynamic association due to UAV

mobility.

IV. PROBLEM FORMULATION

Our main problem can be described as an Edge Server Redun-
dancy and Resiliency problem, that aims at maximizing the
UE task throughput on MEC servers by providing redundant
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and resilient solutions for task offloading while minimizing
the UE energy consumption.

A. EDGE SERVER REDUNDANCY AND RESILIENCY

System throughput is quantified by aggregating the compu-
tational demands, such as CPU cycles, of tasks promptly
executed on edge servers after successful assignment. A MEC
system is more prone to errors and failures than a classical
cloud. At the same time, there are many scenarios where task
execution can not cope with such computation failures. There-
fore, we introduce redundancy in the task-offloading process
by assigning a task j to multiple BS servers simultaneously.
If some of the servers fail, this mechanism ensures the task is
still executed by the functional ones. Task offloading remains,
of course, constrained by the capacity of the edge servers;
the total workload assigned to a server must not exceed its
available resources. To further enhance system resilience, we
introduce an additional constraint that ensures each assigned
task is guaranteed to execute successfully, even if up to & edge
servers experience failures (e.g., due to mobility or power
loss). Here, h represents a configurable parameter that dictates
the system’s tolerance to server failures.

In the event that & edge servers simultaneously fail, the
tasks originally assigned to them must be reassigned to the
remaining operational servers. It might initially seem suffi-
cient to simply ensure that the cumulative residual capacity
of the (m — h) operational servers exceeds the total demand
of the tasks from the failed servers. However, this overlooks
the constraint that tasks are indivisible; thus, it is not only
essential that the total available capacity is adequate, but also
that each individual task can be accommodated by the servers
still active in the system. Given the dynamic nature of edge
computing environments, it is crucial to guarantee the suc-
cessful execution of all tasks, even under the failure of up
to h edge servers. Let us consider the example where /& = 1.
Suppose an arbitrary task j is initially offloaded to an edge
server so € S. For task j to continue executing seamlessly
even if a server fails, it is essential to have sufficient residual
resource capacity. This means that the task must be assigned to
an additional edge server, running in parallel with the original
one.

Therefore, to achieve redundancy, our robust task offload-
ing strategy assigns a pair of edge servers, s, and s,,, to
ensure that task j remains executable even if one server fails.
Both servers execute the task simultaneously, allowing for
seamless failure recovery. To achieve resiliency, the system
extends this redundancy mechanism by ensuring that if up to
h servers fail, there remains at least one operational backup
server to execute the task. Specifically, if all prior A assigned
servers fail, the system must ensure that sufficient resources
are available on a backup server.

Thus, the offloading solution for task j involves assign-
ing it to (h+ 1) edge servers, forming what we refer to as
an (h + 1)-server permutation. This guarantees execution re-
silience despite multiple simultaneous failures, provided that
h+ 1 < |S]|, where |S| represents the total number of available

VOLUME 6, 2025



IEEE Open Journal of

Vehicular Technology

edge servers. By incorporating both redundancy (simulta-
neous execution on two servers) and resiliency (fallback to
an (h + 1)-server permutation), this approach ensures robust
task execution even in highly dynamic and failure-prone edge
computing environments.

To simplify the notation, let C = {C}, (5, ..., C|c|} repre-
sent the complete set of all possible (4 + 1)-server permuta-
tions. Each individual permutation within this set is denoted
as C,, C C. By way of illustration, if # = 1, tasks are initially
allocated to a permutation consisting of (4 + 1) = 2 servers.
This means that the task is simultaneously executed on two
servers, denoted as:

Cin = {50, 51}

where 5o and s; are both actively running the task to ensure
redundancy. In the event that one of these two servers fails,
the task execution continues uninterrupted on the remaining
operational server. However in this case, if both so and s; fail
simultaneously, the system escalates the redundancy mecha-
nism by reassigning the task to a new set of backup servers,
forming an (h+2)-server permutation:

C,, = {s2, 53, 54}

This reassignment guarantees that even in the worst-case sce-
nario where both primary servers fail, at least one of the newly
allocated backup servers will remain operational, thereby en-
suring task resiliency.

In another example, when & = 2, the initial task assignment
follows an (h + 1)-server permutation, meaning the task is
distributed across three servers:

Cin = {50, 51, 52}

In this scenario, 5o and s execute the task simultaneously for
redundancy, while s, is designated as a backup server, ready to
take over execution if either of the two primary servers fails.
The presence of this additional backup enhances fault toler-
ance by ensuring that the system remains functional even if
one of the actively executing servers fails. However, if all three
servers {so, 51, s2} fail simultaneously, the system further es-
calates its resiliency mechanism by dynamically reassigning
the task to a new (h+2)-server permutation:

C,, = {s3, 54, 55, 56}

This reassignment ensures that the task remains executable
even in the presence of multiple server failures, significantly
improving system reliability in highly dynamic and failure-
prone edge computing environments.

The binary variable b’;’ € {0, 1} indicates whether the (h +
1)-server permutation C,, is the offloading solution for j (b;f‘
= 1) or not:
vJ, Cp

C1: " € (0,1}, (14)
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Since all tasks are indivisible, each task j can only be assigned
to a single (4 + 1)-server permutation C,,, as shown :

C2: Y W <1, Vjel (15)

CpeC

Moreover, we introduce p; as the probability of failure of a
server s, where s € Cy,, and P, is the probability of failure of
all servers in Cy,, i.e. Py, = m4ec,, Ps- To guarantee that the task
is successfully assigned to MEC servers that are not expected
to go out of service, P,, should be bounded by pr. The failure
probability constraint is expressed as:

C3:Pm-b;7’§pr, VjelJ (16)

where pr is a user-defined value.

To indicate the feasibility of using a particular (2 4+ 1)-
server permutation, we introduce a binary variable [,,. This
variable is set to 0 if there exists an edge server s within the
permutation C,, such that s € C,, and p; > €, indicating that
all servers in the permutation meet the required operational
threshold. Conversely, [, is set to 1 if this condition is not
met. Consequently, if /,,= 0, the permutation C,, is deemed
unsuitable for task offloading, as at least one of its constituent
edge servers does not satisfy the specified failure probability
constraint for the end device generating task ;.

Since task j is executed simultaneously on two primary
servers in C,, under normal conditions (i.e., without failure),
we define the initial load distribution among the primary
servers. The task execution load on the first assigned server
s is given by:

DU ri =0 (17)
G

m

where Ag(< 1) represents the load ratio of server s, and c;
denotes its computational capacity. To maintain system equi-
librium and adhere to resource capacity limitations, the load
ratio on each edge server must be kept at or below 1. The
subsequent constraint ensures this condition is met:

C4:ZZb;'-’-rj§cs, VseS

jeJ CueC

(18)

B. MINIMIZATION PROBLEM

After discussing the above problem, we can now formulate the
main minimization problem as follows:

min» > - Eg

1
{zgh teT deD

st. Cl-C4 (19)

where:
® > iep 2y - Eq accounts for the total energy consumption
across all UEs participating in the offloading process.
® The objective function aims to minimize the UE energy
consumption by optimizing the allocation of tasks.
e Constraints C; to C4 enforce system-wide limits on ca-
pacity, task allocation, and failure recovery mechanisms.
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By solving this optimization problem, the system ensures
that:

1) Tasks are executed with redundancy on two primary
Servers.

2) In case of failure, tasks are reassigned to a resilient
server permutation.

3) UE energy consumption is minimized while maintain-
ing feasible computational constraints.

V. RL TASK OFFLOADING (RTO) ALGORITHM

While the use of reinforcement learning for resource alloca-
tion is established, the novelty of our RTO algorithm lies in
three key areas. First, we design an RL agent that operates
within the formal constraints of our (4 + 1)-server permuta-
tion strategy, a unique integration of learning and structured
resiliency. Second, our reward function is specifically en-
gineered to enforce this resiliency by heavily penalizing
decisions that fail to secure redundant servers. Finally, our
framework is implemented as a fully decentralized multi-
agent system, enhancing scalability and responsiveness com-
pared to centralized approaches.

The proposed RTO algorithm employs an RL approach to
optimize task offloading in a MEC network. This network
comprises UE, BS, and UAVs, each playing a crucial role
in minimizing UE energy consumption and optimizing task
distribution by providing UE with access to a pair of BS
for processing the offloaded task simultaneously (achieving
redundancy) and providing an (7 + 1) permutation set in case
of failure of both servers (achieving resiliency). The environ-
ment models the dynamic interactions among these elements,
providing a realistic setting for the RL agent to learn and make
decisions.

A. RL AGENT DEFINITION
In this work, each UE is equipped with a dedicated RL
agent. The primary responsibility of these agents is to make
decisions regarding task offloading to minimize UE energy
consumption while ensuring efficient task execution. The RL
agent interacts with the environment through the network
state to retrieve knowledge about the total number of tasks
being processed on BSs, as well as the energy level of the
corresponding UE. The RL agent aims to learn an optimal
policy through which it can maximize long-term rewards by
consistently selecting the most effective offloading strategy at
each decision epoch.

The proposed RTO framework can also be interpreted from
a Multi-Agent RL (MARL) perspective, where each UE oper-
ates as an independent learning agent within a shared MEC-
UAV environment. These agents interact indirectly through
the edge network and make decentralized offloading deci-
sions based solely on their local observations, such as the
UE’s residual energy. This design adheres to typical MARL
paradigms, where multiple agents learn and act simultane-
ously without requiring centralized coordination.

Unlike centralized MARL approaches that rely on global
state awareness or parameter sharing, our framework adopts
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a fully decentralized scheme. Each agent learns its policy
independently, which facilitates scalability and adaptability as
the number of UEs increases.

By embedding learning agents at the UE level, our RTO
framework combines low coordination overhead with high
responsiveness to real-time variations such as network con-
gestion or task failures. This enables the system to maintain
resilience while continuously optimizing energy efficiency
and offloading performance across heterogeneous and dy-
namic network topologies.

The environment is modeled as a Markov Decision Process
(MDP), where the state represents the current conditions of
the network, the actions correspond to offloading decisions,
and the rewards provide feedback on the effectiveness of those
actions. Each RL agent observes the state of its associated UE
and the available network resources, before deciding whether
to offload a task or process it locally. The agent updates its
knowledge based on the rewards received from its actions,
continually improving its policy to achieve better performance
over time. The interaction between the RL agent and the envi-
ronment can be summarized as follows: at each time step, the
agent observes the state, selects an action based on its policy,
receives a reward, and transitions to a new state. This process
is repeated for multiple episodes, allowing the agent to explore
different strategies and learn from their experience. By the
end of the training phase, the RL agent should have learned a
policy that effectively balances the trade-offs between energy
consumption and task completion efficiency.

B. STATE SPACE

In RL, the state represents the current condition of the envi-
ronment as perceived by the agent. The state space STATE
consists of all possible states that the system can experience.
At each time step ¢, the state of agent d is denoted as stateg ;,
which includes the UE’s remaining energy Ea(lt()remain) and the
total number of tasks currently being processed on all BSs
TTj. This formulation ensures that each UE observes a per-
sonalized state while being informed about the shared network
load. For our UAV-assisted MEC task offloading framework,
the state stategq ; is denoted as:

stateq ; = Ej¢omaimy T Tgs) (20)

where:
® Elemain): The remaining energy level of UE d at 7.
® TTj: The total number of computational tasks being

processed on all BSs at 7.

C. ACTION SPACE
Each UE agent chooses between two actions:

Local Execution,
Offload to UAV or BS,

ifz, =0,

21
ifz, =1, @h

actiong ; =

The two actions can be described as follows:
e Offload: The UE attempts to offload its task to either the
nearest UAV or BS. The role of the UAV is to act as an
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intermediary, collecting tasks from UEs and delivering
them to a BS for processing. If both a UAV and a BS are
available, the UE identifies the nearest UAV or BS and
chooses it to be the offloading destination.

® Local Execution: The UE processes the task locally, con-
suming its own energy.

D. REWARD FUNCTION

The reward function R is a critical component of the RL
agent’s decision-making process. It guides the agent towards
actions that minimize UE energy consumption and achieve
efficient task completion. The reward function is designed
to achieve three main objectives: i) encourage minimum UE
energy consumption during task offloading, ii) penalize situa-
tions where the RL agent fails to offload the task and processes
it locally, and iii) encourage assigning a pair of BS for the UE
offloading process while maintaining resiliency by preparing
an (h+ 1) permutation set for the UE in case the pair of
BSs fails simultaneously. The reward function R is defined as
follows:

exp (X —b)+c, if offloading succeeds,
R={—exp(X—b)+c,

—exp(lo0 —b)+c,

a

if processed locally, 22)

if offloading fails.

where:

® x = 100 — Ejemain represents the energy consumed since

the initial state.

® Eremain 1S the remaining energy of the UE after the cur-

rent task is processed.

® g, b, c are tunable parameters controlling reward scaling

and sensitivity.

The reward function in the proposed algorithm is de-
signed to balance energy consumption and task completion
efficiency, ensuring a trade-off between these factors. The
function assigns different reward values depending on the
outcome of the task execution process. If a task is success-
fully offloaded, the RL agent receives a positive reward,
encouraging it to continue utilizing offloading strategies when
beneficial. This reward is computed using an exponential
function, where the consumed energy relative to the remaining
one influences the magnitude of the reward.

When an RL agent chooses to execute a task locally, the
reward function applies a negative exponential term, discour-
aging local processing due to its higher energy cost. The
level of penalization is determined by the amount of energy
consumed, ensuring that local execution is used only when
necessary. The lowest reward is assigned when offloading
fails due to network congestion or when a pair of BSs is
not available, as the algorithm mandates that each task must
be assigned to two servers to guarantee execution reliability.
This strict penalization guides the learning process toward
selecting offloading strategies that prioritize redundancy and
system resiliency while optimizing energy efficiency.

The failure resiliency mechanism within the reward func-
tion incorporates an (h + 1)-server redundancy strategy. If

VOLUME 6, 2025

the primary offloading servers fail, the task is automatically
reassigned to an alternative set of servers, ensuring uninter-
rupted execution. This constraint reinforces system robustness
by penalizing offloading strategies that increase failure risks
while rewarding those that maintain execution continuity.

E. ALGORITHM DESCRIPTION

The proposed algorithm follows an RL framework that dy-
namically adjusts task allocation between local execution,
UAV offloading, and resilient (k4 1)-server permutations.
The different steps are presented in Algorithm 1.

1) INITIALIZATION

At the start, the algorithm establishes several key input param-
eters, notably D, which represents the number of UEs, and N,
which denotes the count of UAVs functioning as edge relay
nodes, and the maximum number of server failures 4. The RL
parameters (o, y, €) are also initialized, where o represents
the learning rate, y is the discount factor that determines
how future rewards influence learning, and € controls the
balance between exploration and exploitation. The Q-tables
QO(statey 1, actiong 1), which store state-action values for each
UE, are initialized to enable learning-based decision-making.

2) TRAINING EPISODES

The algorithm runs for E,,,, episodes, with each episode rep-
resenting an independent training cycle. At the start of each
episode, the environment is reset, and the system initializes to
its starting state.

3) TASK EXECUTION (LINES 4-6)

For every time step within 7., the algorithm gives each UE’s
RL agent the autonomy to assess prevailing network condi-
tions and independently choose between local processing and
task offloading.

4) UE ACTION SELECTION (LINE 7)

Each UE selects an action action, ; using an e-greedy policy.
This policy ensures that the RL agent selects the action with
the highest known Q-value most of the time, while occasion-
ally exploring alternative actions with probability €. The de-
cision is based on the current state state = {Eé(remam), TTis}
(Line 6), which provides information about the remaining UE
energy and the total number of tasks being processed by all
BSs.

5) TASK EXECUTION AND REDUNDANCY MECHANISM
(LINES 8-24)

Once the action actiong; is selected, the UE proceeds to
execute the task accordingly. If the chosen action is to offload,
the UE first identifies all available UAVs and BSs within com-
munication range. From this set, the two closest edge servers,
denoted as s and s, are selected. The task is then offloaded
to both servers simultaneously to ensure redundancy. That is,
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Algorithm 1: Resilient Task Offloading (RTO) Algorithm
with (h 4 1)-Server Redundancy.

Input : Set of UEs D, UAVs N, max failures h,
learning parameters («, 7, €)
Output: Optimized task offloading decisions
ensuring failure resilience
1 Initialize Q-tables Q(stateq,,, actiong,) for all UEs;
2 for episode e =1 to Eppq, do

3 Reset environment and initialize state state;
4 for time step t =1 to Typq, do
5 for each UE d € D do
6 Observe state
Statedat = {Et(iiz"emain)V TTét;}’
7 Select action actiong; using e-greedy
policy;
8 if Offload then
9 Identify nearest available UAV or BS;
10 if UAVs or BS available then
11 Assign task to two servers
{s0,51};
12 if s or sy fails (h = 1) then
13 Reassign to (h + 1)
permutation
C':n = {52, veey Sh,+1};
14 else
15 if h = 2 then
16 Reassign to (h+2)
permutation
C':n = {337 ) 5h+2};
17 Compute offload energy and
update state stateq (41 using
(10);
18 Compute reward using Eq. (22);
19 else
20 Offloading failed; execute locally;
21 Update energy and compute
reward;
22 else
23 Execute task locally;
24 Update energy and compute reward;
25 Update Q-values using Eq. (24);
26 Store cumulative reward for the episode;

both so and sy execute the task in parallel, providing fault tol-
erance in case one of the servers fails or becomes unreachable
during execution.

This parallel execution ensures that the task completes suc-
cessfully as long as at least one of the two servers finishes
processing it. Once the first result is received, the redundant
output from the second server can be discarded or ignored,
depending on system policy.

If no UAVs or BSs are available at the current time step—
either due to range limitations or lack of computational
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capacity—the UE executes the task locally. While this con-
sumes more energy, it guarantees task completion when
offloading is not feasible.

If either of these servers fails (i.e. # = 1), the system reas-
signs the task to an (h + 1)-server permutation. The new set
of servers is defined as:

(23)

Chy= 152, o i1}

Once the task is offloaded, the UE computes the of-
floading energy consumption using (10). At the next time
step, the UE observes the updated state stateg ;i1 =
{Eyﬂ)(remain), TTé;l}, which reflects the remaining en-
ergy and system load after action execution. The reward is
then computed using (22) to provide feedback on the effec-
tiveness of the decision.

If both servers {sg, s1} failed (i.e. h = 2), the task must be
reassigned to an (h+2)-server permutation, ensuring execution
resilience. The system updates the state accordingly and com-
putes the corresponding reward.

If offloading fails completely, the UE processes the task
locally, updating its energy consumption using (10). The new
state is recorded, and the reward function penalizes local exe-
cution due to the high energy cost.

6) Q-VALUE UPDATE AND STATE TRANSITION (LINES 25-26)
After task execution, the Q-values are updated using the Bell-
man equation:

Qu(statey s, actiong ;) <— Qq(stateg s, actiong ;) + o [Rd,,

+y max Qq(stateg i1,
actiong 141

actiong ;41) — Qq(stateq

, actiond,t)] (24)

The environment then transitions to the next state, incorpo-
rating the impact of the latest action on the system status.

After each episode, cumulative rewards are stored, allowing
the RL agent to improve its offloading decisions over succes-
sive training cycles.

To summarize, the proposed algorithm ensures failure-
resilient offloading by enforcing task allocation to at least two
servers. The state-aware RL framework dynamically adjusts
decisions based on UE energy levels and system load. The re-
ward function penalizes failed offloading and local execution
while reinforcing energy-efficient and resilient task offloading
to MEC servers, directly or through UAVs. The framework is
scalable and adaptable to any network deployment.

F. COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the proposed RTO frame-
work can be analyzed in two parts: the RL agent’s internal
decision-making process and the complexity of executing an
action within the environment, which includes the core re-
siliency logic.

VOLUME 6, 2025



IEEE Open Journal of

Vehicular Technology

1) RL AGENT COMPLEXITY (DECISION-MAKING)
The RTO algorithm is designed to be lightweight at the agent
level. For each of the |D| agents, the core operations are
computationally efficient:
® Action Selection: In the execution phase, an agent selects
the best action by comparing the Q-values for its cur-
rent state. This requires a simple lookup and comparison
across the |A| possible actions, resulting in a complexity
of O(JA)]).
® (-Value Update: During training, the Bellman update
also requires finding the maximum Q-value for the next
state, which has a complexity of O(|A]).
Since the action space in our work is binary (|A| = 2), the
agent’s internal complexity is constant, O(1), per step.

2) ACTION EXECUTION COMPLEXITY (RESILIENCY LOGIC)
The primary computational cost of our framework lies in ex-
ecuting an offload action. When an agent chooses to offload,
the system must find the optimal path for the task, which can
be either a direct connection to a BS-hosted server or a relayed
path through a UAV.

e [nitial Path Selection: To ensure redundancy, the strat-
egy requires identifying the two best initial connection
points. For a single UE, this involves a search across all
potential first hops: the |S| Base Stations (for a direct
path) and the |[N| UAVs (for a relayed path). Finding the
two closest points from this combined pool of |[N| 4 |S]
entities has a linear search complexity of O(|N| + |S]).

e Failure Recovery: In the event of a server failure, the
resiliency mechanism is triggered. The algorithm must
then re-search the pool of available entities to form a new
(h+ 1) or (h+ 2) permutation, which incurs a similar
complexity of O(|N| + [S]).

3) OVERALL SYSTEM COMPLEXITY
The complexity of the RL agent itself is negligible. The dom-
inant cost is the path selection process that must be executed
for each of the |D| UEs that choose to offload in a given time
step. Therefore, the overall computational complexity of the
RTO framework per decision cycle is:
O(D[ - (INI+151)) (25
This shows that the algorithm’s runtime scales linearly with
the number of UEs and the total number of potential connec-

tion points (UAVs and BSs). This linear scalability makes the
RTO framework efficient and practical for deployment.

VI. SIMULATION PARAMETERS AND SCENARIOS

We conduct simulations using a custom-developed envi-
ronment written in Python, which models the interactions
between UEs, BSs, and UAVs. The following parameters and
configurations were used throughout the simulations to evalu-
ate the system performance.
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TABLE 3. Simulation Parameters

Parameter Value

Network Layout

Simulation Area
Number of UEs (|D|)
Number of BSs (]S|)
Number of UAVs (| N|)

2 x 2 Km grid

20 (varied in Fig. 12)
10 (varied in Fig. 13)
5 (varied in Fig. 14)

UAV Height (H) 50 m
BS Capacity (Cs) 5 tasks

Task and UE Parameters
Task Size (I;) 4(0.1,1.0) MB
Task Result Size (R;) 4(0.01,0.02) MB
Initial UE Energy 100 units
CPU Cycles per bit (ké) 1000 cycles/bit
Switched Capacitance (Cy) 10-28 F
UE CPU Frequency (fq) 1.0 GHz

Wireless Channel Parameters

Bandwidth (B) 1 MHz
Noise Power Density (No) -174 dBm/Hz
Channel Gain @ 1m (Bp) -30 dB
UE Transmit Power (Piransmit) 0.5 W
UE Receive Power (P;'“”"”e) 0.1 W
UAV Transmit Power (P{ransmity | 0.5 W
BS Transmit Power (Pfransmit) 1.0W

RL Agent Parameters

Learning Rate () 0.1
Discount Factor () 0.9
Exploration Rate (€) 1.0

Exploration Decay 0.999999

A. SIMULATION PARAMETERS

We evaluate the performance of our offloading framework by
simulating a MEC environment with UEs, BSs, and UAVs.
The simulation takes place in a 2 x 2 km grid, where UEs
generate computational tasks that may either be processed
locally or offloaded to nearby UAVs or BSs. The environ-
ment is designed to capture realistic constraints, including
energy consumption, bandwidth limitations, and processing
capacities of the MEC infrastructure. Additionally, RL agents
control the offloading decisions based on predefined param-
eters that influence learning behavior and convergence. The
detailed simulation parameters are presented in Table 3.

The parameters in Table 3 are selected to represent a
realistic operational scenario. The network layout and en-
tity counts model a moderately dense suburban environment,
and their impact is further explored in our sensitivity anal-
ysis (Section VII-E). Hardware-specific values, such as UE
CPU frequency and transmit power, are set to typical val-
ues for modern mobile devices. Key wireless parameters are
grounded in established literature; for instance, the 1 MHz
channel bandwidth and —174 dBm/Hz noise power density
are standard choices aligned with foundational UAV-MEC
studies like [35]. This comprehensive and justified parameter
set ensures the validity and reproducibility of our results.

2247



EL-EMARY ET AL.: ENERGY EFFICIENT AND RESILIENT TASK OFFLOADING IN UAV-ASSISTED MEC SYSTEMS

B. SCENARIOS FOR COMPARISON

To evaluate the proposed system, which leverages UAVs for
task offloading, we compared its performance against three
alternative benchmarks: i) no UAVs scenario, ii) no local ex-
ecution scenario, and iii) No Offload scenario. The details of
each scenario are as follows:

1) PROPOSED RTO ALGORITHM SCENARIO

In this UAV-assisted scenario, |[N| > 0 UAVs are available to
assist UEs by offloading tasks. UAVs dynamically move in a
predefined circular motion and deliver the tasks to the nearest
two available BSs to achieve redundancy. The offloading deci-
sion is made by an RL agent attached to each UE based on the
trade-off between local processing and offloading to UAVs or
BSs. We aim to minimize the energy consumed by UEs while
ensuring tasks are completed efficiently.

2) NO UAV SCENARIO

This baseline represents the system without UAV support, i.e.,
N = 0. In this scenario, tasks can only be offloaded to BSs or
processed locally.

3) NO LOCAL PROCESSING SCENARIO

In this benchmark, local processing is disabled, and all tasks
must be offloaded. UEs rely entirely on BSs and UAVs for
task execution. This scenario evaluates the system perfor-
mance when local processing is not an option, highlighting
the dependency on the availability of UAVs and BSs for
task completion. If a task fails due to network congestion
or unavailability of computational resources, it is considered
a failed task and not rescheduled for future time slots. This
ensures that the evaluation reflects the ability of the system to
complete tasks under constrained offloading conditions with-
out retrying delayed tasks.

4) NO OFFLOAD SCENARIO

In this scenario, UEs are restricted from offloading their tasks
and must process them locally. Without any offloading capa-
bility, UEs rely solely on their own computational resources
to execute tasks. This scenario evaluates the system perfor-
mance under conditions where offloading is not an option,
emphasizing the impact of local execution constraints. If a
task cannot be completed within the current time slot due to
limited computational resources, it is delayed to the next time
slot instead of being considered a failed task. This models
real-world scenarios where tasks accumulate when processing
capacity is insufficient.

The simulations compare these scenarios across multiple
metrics, including average UE energy levels, cumulative re-
wards, and task completion efficiency. Sensitivity analysis is
performed by varying key parameters, such as the number of
UEs, BSs, UAVs, and task sizes, to evaluate the robustness of
the proposed system under different operational conditions.
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FIGURE 2. Convergence of the RTO algorithm across episodes.

The simulations span a total of 2000 episodes, with task of-
floading decisions made based on the learned Q-values of the
RL agents. These parameters are used to analyze the impact
of UAVs, offloading strategies, and various system configura-
tions on energy consumption and task completion efficiency.

VIl. SIMULATION RESULTS

This section details the outcomes of our simulation experi-
ments, analyzed using metrics such as energy consumption,
cumulative rewards, and task processing success. The dis-
cussion is organized as follows: we first demonstrate the
convergence of the proposed RTO algorithm to validate its
learning stability. Next, to address the role of multi-agent
collaboration, we introduce a cooperative MARL baseline
(C-RTO) and compare its performance against our proposed
RTO framework. We then evaluate our RTO algorithm against
several other baseline scenarios. Finally, we conduct a com-
prehensive sensitivity analysis, measuring our framework’s
performance against state-of-the-art benchmarks under vari-
ous network conditions.

A. CONVERGENCE OF THE RTO ALGORITHM

The foundation of our proposed framework is a multi-agent
system where each agent must learn to navigate a complex,
non-convex decision space. Therefore, it is essential to first
validate the collective convergence of the learning process.
Fig. 2 presents the empirical training performance, plotting
the maximum Q-value found across all agents at each episode.
This training curve illustrates that the agents’ policies rapidly
improve during an initial learning phase of approximately
500 episodes, after which the system-wide maximum Q-value
stabilizes. This demonstrates that the exploratory learning
process successfully converges to a set of stable and effective
policies, which provides the foundation for the robust results
presented in the subsequent sections.
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B. PERFORMANCE VS. COOPERATIVE MARL: THE
RESILIENCY-ENERGY TRADE-OFF

To evaluate the impact of different multi-agent learning strate-
gies as suggested by modern MARL literature, we conducted
a comparative analysis of our proposed RTO algorithm against
a cooperative baseline (C-RTO). The results, presented in
Figs. 3 and 4, reveal that while cooperative learning can offer
marginal gains in energy preservation, it does so by failing to
address the primary challenge of resilient task offloading.

Fig. 3 shows that the average energy level of UEs under
the RTO algorithm is only slightly lower than under C-RTO,
demonstrating that our approach remains highly competi-
tive in energy efficiency. However, this marginal difference
is decisively outweighed by RTO’s superior performance in
achieving its primary goal of task resiliency, as shown in
Fig. 4.

Fig. 4 illustrates that RTO achieves nearly double the num-
ber of successful offloads compared to C-RTO. This metric
is critical, as it directly reflects the algorithm’s success in
navigating the complex constraints of our (4 + 1)-server per-
mutation strategy to guarantee task resiliency. In contrast,
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FIGURE 5. Average UE energy levels across episodes for the RTO and No
UAVs scenarios.

the C-RTO baseline exhibits a clear drawback: it avoids the
complexity of resilient offloading by defaulting to local ex-
ecution far more frequently. This strategy, while simple and
energy-conserving, fails to meet the reliability demands of
mission-critical applications.

Therefore, the results validate the effectiveness of our RTO
framework. The slightly higher energy expenditure is the nec-
essary cost for achieving a far more resilient and reliable
system, proving RTO’s superior ability to jointly optimize for
the dual objectives central to our work.

C. TESTING RTO VS NO UAV-ASSISTED SYSTEM

Here we illustrate the value of using the UAVs in serving UEs
carrying out their offloaded tasks and aiming to preserve their
energy versus a system that lacks UAVs involvement.

1) AVERAGE UE ENERGY LEVELS ACROSS EPISODES

Fig. 5 shows the comparison of average UE energy levels over
2000 episodes for two scenarios: RTO and No UAVs. In the
RTO scenario, UAVs assist UEs by offloading computational
tasks, which leads to a significantly slower energy depletion
over time. On the other hand, in the No UAVs scenario, UEs
are forced to handle tasks either locally or offload them to
BSs, resulting in faster energy consumption due to the higher
energy cost of local processing. The absence of UAVs in this
scenario leads to more energy-intensive operations, causing
the UEs to drain their energy reserves much quicker than in the
UAV-assisted scenario. This trend demonstrates the advantage
of using UAVs to offload tasks and reduce the energy burden
on UEs.

2) TASK OUTCOMES ACROSS EPISODES

Fig. 6 presents a comparative analysis of task execution out-
comes across 2000 episodes. The bars illustrate three distinct
categories of task execution: successfully offloaded tasks,
failed offloading attempts, and locally processed tasks. In
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the RTO scenario, the RL agent efficiently learns to conduct
task allocation, resulting in a substantial increase in success-
ful offloads while reducing the number of failed offloading
attempts and local executions. The presence of UAVs en-
hances system flexibility by enabling dynamic task delivery
to nearby BSs, thereby reducing the energy burden on UEs
and ensuring higher offloading success rates. Conversely, in
the No UAVs scenario, UEs rely exclusively on static BS for
offloading, leading to a noticeable increase in failed offloads
due to limited server availability and network congestion. The
lack of UAV-assisted task distribution forces a greater propor-
tion of tasks to be processed locally, significantly increasing
the energy expenditure of UEs and reducing overall system
efficiency.

3) NORMALIZED CUMULATIVE REWARDS

Fig. 7 illustrates the normalized cumulative rewards of UEs
across simulation episodes, comparing the RTO and No UAVs
scenarios. The RTO approach exhibits a consistent upward
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FIGURE 8. Comparison of UE average energy level for RTO with 3
benchmark algorithms (No UAVs, No Local Execution, and No Offload).

trend in cumulative rewards, indicating an effective learning
process that improves task offloading efficiency over time.
The RL agent adapts its policy by considering energy con-
straints, available offloading options, and system congestion,
leading to optimal task allocation decisions. As a result, UEs
in the RTO scenario experience lower energy consumption,
increased successful task offloads, and reduced reliance on
local execution. In contrast, the No UAVs scenario demon-
strates significantly lower cumulative rewards, highlighting
the inefficiencies associated with the absence of UAV sup-
port. Without UAVs acting as task relays, UEs struggle to
offload tasks effectively, leading to higher failure rates and in-
creased local execution, which ultimately drains their energy
resources at a faster rate.

D. TESTING RTO VS SCENARIOS

Here we simulate the outcomes of testing RTO vs. multiple
scenarios like No UAVs, No Offload, and No local processing.
To ensure statistical consistency, each experimental scenario
was simulated over 10 independent trials, and the results pre-
sented are averaged across these trials. The main purpose is to
highlight the performance of our proposed RL-base solution,
excelling over the other benchmark approaches with respect
to the UE energy degradation along the different episodes and
for different task sizes, the average energy level of UEs at
episode 2000 (considered as a sufficient time span to achieve
a stationary behavior), and the illustration of the first UE
reaching zero energy.

1) COMPARISON OF AVERAGE ENERGY LEVEL OF UES

Fig. 8 illustrates the average UE energy levels over 2000
episodes for the four considered scenarios. The RTO al-
gorithm exhibits a significant advantage over all baseline
approaches, maintaining a higher average energy level across
episodes. The UAV-assisted offloading mechanism ensures
an optimal distribution of computational tasks, reducing the
reliance on local execution and thereby preserving the energy
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of UEs. In contrast, the No UAVs and No local processing sce-
narios show a much steeper decline in energy levels, as UEs
either struggle with local execution or are forced to offload
to BS directly, sometimes in poor communication channel
conditions, increasing transmission power consumption. The
No Offload scenario performs the worst, as UEs must process
all tasks locally, leading to the fastest depletion of energy
reserves.

2) COMPARISON OF UE AVERAGE ENERGY LEVEL AT
EPISODE 2000

Fig. 9 provides a snapshot of the average energy levels of UEs
at the final episode of our simulation (episode 2000) for each
scenario. The RTO approach achieves the highest remaining
energy, confirming its effectiveness in balancing offloading
decisions and conserving UE power. The No UAVs and No
local processing scenarios show significantly lower final en-
ergy levels, as UEs expend more energy due to inefficient
task allocation. Meanwhile, in the No Offload case, all UEs
reach complete energy depletion by the end of the simulation,
emphasizing the impracticality of purely local execution in an
energy-constrained environment.

3) TIME TO TOTAL DEPLETION

Fig. 10 highlights the comparative energy depletion behavior
in case of aggressive task offloading via increasing the task
sizes, demonstrating how quickly each scenario forces UEs
to consume their energy reserves. The No Offload scenario
reaches zero energy for all UEs the fastest, confirming the
severe inefficiency of pure local execution. The No local
processing and No UAVs scenarios also show rapid energy
depletion, as offloading limitations result in increased energy
consumption. The RTO algorithm significantly outperforms
all benchmarks, enabling UEs to sustain their energy for a
longer period due to the optimal offloading strategy enabled
by RL and UAV assistance.
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4) FIRST DEPLETED UE

Finally, Fig. 11 presents a comparative analysis of the first
UEs reaching zero energy across different scenarios. More
precisely, we show the episode number in which the first UE
reaches zero energy for each approach. The results empha-
size that UEs in the No Local Execution scenario experience
the fastest energy depletion, followed by No Offload and No
UAVs. The RTO algorithm extends UE operational longevity
by dynamically optimizing task allocation, significantly de-
laying the first instance of energy depletion among UEs.

E. SENSITIVITY MEASUREMENTS VS BENCHMARKS

In this part, we evaluate the performance of the proposed RTO
algorithm under varying system conditions, such as increasing
the number of UEs, UAVs, BSs, and task sizes. To provide
a comprehensive performance assessment, we compare RTO
with three benchmark algorithms: (1) RAT (RL-based Tra-
jectory control), which applies actor-critic Deep Q-Networks
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FIGURE 12. Comparison of average UE energy level at episode 2000 for
RTO, CAT, RAT, and OMADRL under increasing number of UEs.

with prioritized experience replay to make real-time trajec-
tory decisions in dynamic F-MEC environments [35]; (2)
CAT (Convex optimization-based Trajectory control), which
iteratively optimizes user association, resource allocation,
and UAV trajectories using block coordinate descent meth-
ods [35]; and (3) OMADRL (Optimization-embedding Multi-
Agent Deep Reinforcement Learning), a hybrid framework
that integrates multi-agent DRL for UAV trajectory learning
with embedded optimization for offloading decisions, aiming
to improve convergence and energy efficiency while ensuring
service fairness [36].

These particular benchmarks were selected to ensure a
comprehensive comparison against a diverse set of state-
of-the-art methodologies. They represent three distinct and
highly relevant solution categories:

e CAT was chosen as a representative of traditional, non-
learning optimization techniques, providing a baseline
from classical methods.

e RAT allows for a direct comparison against another pure
deep reinforcement learning approach to highlight the
specific advantages of our RTO framework.

® OMADRL serves as a state-of-the-art benchmark rep-
resenting modern hybrid methods that combine both
optimization and reinforcement learning.

Evaluating RTO against this varied set of algorithms pro-

vides a robust validation of its performance and adaptability.

1) VARYING NUMBER OF USERS

Fig. 12 analyzes the impact of increasing the number of UEs
on the average UE energy level at episode 2000. As the
number of UEs increases from 10 to 50, all algorithms ex-
hibit a general downward trend in energy retention, indicating
higher competition for limited offloading and communication
resources. However, the proposed RTO algorithm consistently
outperforms the benchmark methods across all user densities.
Notably, while CAT and OMADRL show a marked decline
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in energy levels—especially beyond 30 UEs—RTO main-
tains energy levels above 75% even under maximum UE
load. RAT demonstrates relatively stable but moderate per-
formance, while OMADRL suffers from early performance
degradation. These results highlight the superior adaptability
and robustness of RTO in managing energy-efficient task of-
floading and trajectory control under increased user demand.

2) VARYING NUMBER OF BSS

Fig. 13 evaluates the average UE energy level in response to
increasing the number of BSs. As the BS count grows from
10 to 50, the RTO algorithm shows a clear and consistent
improvement in energy efficiency, with energy levels rising
from approximately 75% to over 95%. This demonstrates
RTO’s superior ability to leverage the expanded offloading
infrastructure. In contrast, the benchmark algorithms—CAT,
RAT, and OMADRL—exhibit relatively flat performance, in-
dicating limited scalability and suboptimal BS utilization.
RAT experiences an initial advantage at low BS counts but
quickly plateaus, while CAT and OMADRL remain consis-
tently below RTO across all scenarios. These results confirm
that RTO can efficiently adapt to increased infrastructure ca-
pacity, achieving better energy distribution across UEs under
higher BS availability.

3) VARYING NUMBER OF UAVS

Fig. 14 highlights the effect of increasing the number of
UAVs on the average UE energy level at episode 2000. As the
number of UAVs grows from 5 to 25, all algorithms demon-
strate improvements in energy efficiency due to enhanced
spatial coverage and reduced offloading congestion. However,
RTO consistently maintains a significant performance mar-
gin, achieving energy levels above 90% when 20 or more
UAVs are deployed. The steep improvement between 5 and 15
UAVs for RTO indicates the framework’s ability to scale and
coordinate task offloading effectively as aerial resources in-
crease. In comparison, CAT and RAT follow similar but more
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modest trends, and OMADRL lags slightly behind at lower
UAV densities. These results confirm that RTO leverages UAV
mobility and availability more efficiently than the benchmark
algorithms, resulting in superior energy conservation for user
devices.

4) VARIATION IN TASK SIZE

Fig. 15 explores the impact of increasing computational task
sizes on the average UE energy level at episode 2000. As
task size grows from 0.01 to 1.0, all algorithms experience
a steady decline in energy levels, reflecting the heavier energy
burden required to process or offload larger tasks. Among the
evaluated methods, RTO consistently preserves higher energy
levels across the entire task size range. For instance, at high
task loads (e.g., task size > 0.8), RTO maintains over 50%
energy on average, while CAT and OMADRL drop to the
30-40% range. RAT performs moderately well but still lags
behind RTO. The performance gap is most noticeable for mid-
range task sizes (0.4-0.6), where RTO achieves a significant
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energy efficiency advantage of more than 15-20% over the
nearest competitor. These results emphasize the effectiveness
of RTO’s adaptive decision-making in sustaining energy effi-
ciency under increasing computational demand.

VIIl. CONCLUSION

This paper introduced an RL framework that integrates an
(h + 1)-server permutation strategy to jointly optimize for
UE energy efficiency and task resiliency in UAV-assisted
MEC networks. Our simulation results validated this ap-
proach, demonstrating that the RTO algorithm consistently
outperforms diverse state-of-the-art benchmarks. Key find-
ings show that our framework’s performance scales effec-
tively with more infrastructure, achieving over 95% energy
efficiency with added base stations where other methods
plateau. Furthermore, by preserving over 50% of UE energy
under heavy computational loads—a 15-20% margin over
competitors—this work provides a key insight: integrating
structured resiliency with intelligent offloading is most critical
and effective under network stress. These results confirm the
framework’s potential to deliver robust and energy-efficient
services for next-generation networks.

As a natural extension, future research will investigate more
realistic mobility models for both UAVs and UEs, including
adaptive trajectory planning based on real-time network dy-
namics. We also aim to explore mobility-induced changes in
user association to further improve system responsiveness.
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