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ABSTRACT This paper proposes a novel Deep Reinforcement Learning (DRL) method for controlling
a 23-level Single DC Source Hybrid Packed U-Cell (HPUC) converter. The HPUC topology generates
a high number of voltage levels with minimal components but presents control challenges due to its
numerous switching states and dynamic charging behavior. Unlike conventional control methods, which
require accurate models and are sensitive to noise and parameter mismatches, DRL offers a model-free and
resilient approach to the non-linear control of such complex systems. A Deep Q-Network (DQN) agent
which is inherently model-free and suited for high-dimensional state spaces and discrete action spaces,
is employed to address these issues. To validate the proposed method, simulations were conducted in the
MATLAB/Simulink environment. The obtained results demonstrated the satisfactory performance of the
proposed DRL method, achieving a Total Harmonic Distortion (THD) of 2.71% in the output current under
steady-state, maintaining stable capacitor voltage balancing, and exhibiting rapid dynamic response (e.g.,
settling within approximately 40 ms for current step changes). Furthermore, its resilience was highlighted
by its ability to maintain control despite a 25dB SNR noise condition and up to 15% variations in capacitor
values.

INDEX TERMS Deep Reinforcement Learning (DRL), Hybrid PUC (H-PUC), Intelligent Control, Machine
Learning (ML), Multilevel Inverter (MLI), Packed U-Cell (PUC)

I. INTRODUCTION

POWER electronics converters play a crucial role in mod-
ern life due to their numerous applications in renewable

energies, smart grids, and electric vehicles. This necessitates
the implementation of advanced converter topologies requir-
ing more efficient and reliable control methods [1]–[4].

One of the prominent examples of such topologies is the
23-level Single DC Source Hybrid Packed U-cell (H-PUC)
Converter [5]. This converter generates a high number of
voltage levels with a reduced component count by combining
two Packed U-cell (PUC) [6], [7] converters. However, its
numerous switching states and the time-varying behavior of
the DC-link capacitors lead to high control complexity.

Linear control methods (e.g., PID) are straightforward but
struggle with the non-linearities of modern converters [8].

Non-linear schemes such as Feedback Linearization and Slid-
ing Mode Control improve robustness, but the former needs
an accurate model and the latter can require high switching
frequencies [9], [10]. Fuzzy Logic Control, while powerful
in handling uncertainties, depends heavily on the quality of
its rule base [11]. Genetic Algorithm-Based Control can opti-
mize effectively but is computationally expensive [12]. Other
advanced approaches, including H-Infinity Control [13], Pre-
dictive Functional Control [14], and Kalman Filter-Based
Control [15], also exhibit high computational costs and sensi-
tivity to parameter variations. Finally, Model Predictive Con-
trol (MPC) [16]–[18] predicts future behavior to choose op-
timal actions, but also requires significant computing power
and an accurate model, making it prone to degradation under
parameter variations, noise, and uncertainties.
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FIGURE 1. Topology of a 23-level Hybrid Packed U-cell (HPUC)
comprised of two cascaded PUC5 converters with capacitor voltages
VC1, VC2, and VC3 indicated.

TABLE 1. Switching states and capacitor charging directions of the upper
leg (PUC1) and the lower leg (PUC2). The upward arrow (↑) indicates
capacitor charging, while the downward arrow (↓) indicates capacitor
discharging and "–" indicates no change in capacitor charge.

Upper Leg (PUC1)
State S1 S2 S3 C1 VPUC1

1 0 0 0 – 0
2 0 0 1 ↓ −VC1
3 0 1 0 ↑ VC1 − Vdc
4 0 1 1 – −Vdc
5 1 0 0 – Vdc
6 1 0 1 ↑ Vdc − VC1
7 1 1 0 ↓ VC1
8 1 1 1 – 0

Lower Leg (PUC2)
State S4 S5 S6 C2 C3 VPUC2

1 0 0 0 – – 0
2 0 0 1 – ↓ −VC3
3 0 1 0 ↓ ↑ VC3 − VC2
4 0 1 1 ↑ – −VC2
5 1 0 0 – – VC2
6 1 0 1 ↑ – VC2 − VC3
7 1 1 0 ↓ – VC3
8 1 1 1 – – 0

Recent advancements in artificial intelligence, particularly
machine learning (ML), along with increased commercially
available computational power, have increased the popularity
of AI in power electronics research [19]. Some studies have
investigated machine learning for modeling [20]–[23] as well
as control [24]–[26] of power electronics.

Deep reinforcement Learning (DRL) [27], a subset of ma-
chine learning, is a modern control method that combines
the generalization power of deep neural networks [28] with
reinforcement learning. It shows excellent potential in com-
plex non-linear systems such as power systems with a notable

degree of uncertainty in the environment as well as parameter
variations [19]. DRL by learning directly from interaction
with the system, can overcome t,he need for precise math-
ematical models, a significant challenge for complex topolo-
gies like the HPUC. This model-free approach inhrenetly of-
fers better resilience to unmodeled dynamics, parameter mis-
match, and noise compared to model-dependent techniques
like MPC or feedback linearization. DRL works by learning
the optimal control policy through trial and error via interac-
tions with the system. Despite requiring large training data,
high computational power, and challenging reward function
procedure, DRL is used in many areas that require advanced
non-linear control such as robotics [29], [30], video games
[31], and electric vehicles [32]. Its applications in power sys-
tems and power electronics include but are not limited to the
optimization of power distribution [33], energy management
of distributed energy sources [34], dynamic loadmanagement
[35], Integrated Energy Systems (IES) management [36], and
smart-grid operations [37].
Only recently, DRL has been used as a method for control

of power electronics converters [38]. In [39], DRL is applied
as a solution to the shortcomings of conventional methods
for control of DC/DC buck converter when feeding constant
power load (CPL). For large dynamic changes in CPLs, con-
ventional control algorithms often do not demonstrate satis-
factory performance. Even though the DRLmethod proposed
in this study has mitigated this issue and can deliver satisfac-
tory performance, the DRL agent is utilized for gain tuning
in the feedback loop. Therefore, not only is auxiliary control
required, but also it does not take advantage of a significant
benefit of using DRL which is its model-free nature.
In [40], a model-free DRL control is proposed for a DC/DC

buck converter with CPL showing strong dynamic perfor-
mance despite significant CPL changes. However, its reliance
on precisemeasurements leads to sensitivity to noise and error
accumulation between the model and the actual converter.
In [41], DRL is used to control a DC/DC buck converter

to be resilient against uncertainties and parameter changes.
However, it relies on an offline pre-trained converter model
for an extended state observer (ESO) to adjust to variations by
observing differences between the model and the converter.
Research into applying DRL in power electronics is grow-

ing and gaining popularity. However, its advantages in control
of power electronics converters are still in the early stages
[19]. Some studies [42], focus on DRL control for simpler
converters. Others, such as [43], perform real-time simu-
lations as a safe substitute for experimental results under
harsh operational points. Some studies explore more complex
converters like theNeutral Point Clamped (NPC) converter, as
seen in [44], [45]). While [45] shows promising steady-state
performance, it lacks testing under dynamic changes, noise,
and uncertainties.
Based on the control and switching method proposed in

[45], a DRL-based control method for NPC is developed
in [46]. The method proposed in this paper is shown to
demonstrate satisfactory performance in steady-state as well
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FIGURE 2. Diagram of DRL agent aiming to obtain the optimal policy of
π(s, a) at the time step of t

as dynamic changes. Moreover, the proposed DRL method is
compared against MPC through simulation and experimental
results and it is proven that the DRL method is more resilient
against uncertainties, noise, and parameter variations. How-
ever, the proposed method does not explore implementation
on a fairly complex topology with demanding control consid-
erations such as HPUC. To explore this gap in the literature,
this paper proposes a similar implementation of DRL for the
23-level H-PUC converter, aiming to take advantage of DRL’s
adaptability and robustness to control an efficient converter
that demands a challenging control. Themain objective of this
research is to demonstrate the feasibility and effectiveness of
DRL in switching and controlling the complex 23-level H-
PUC converter.

This paper is structured as follows. Section II intro-
duces the modern 23-level HPUC topology, highlighting its
strengths and weaknesses, especially emphasizing its con-
trol challenges. In section III, the fundamentals of DRL
are discussed and the proposed control method is presented
in section IV. Moreover, Section V is dedicated to re-
sults. In this section, simulation results obtained from the
MATLAB/Simulink environment are presented and analyzed.
Lastly, the findings of this paper are discussed in section VI.

II. SINGLE DC SOURCE HYBRID PACKED U-CELL (HPUC)
The Hybrid Packed U-Cell also known as HPUC [5] as shown
in Fig. 1, is a modern topology based on two cascaded Packed
U-Cell (PUC) [6] converters in order to generate multiple
voltage levels in the output. Instead of a second DC source
for the lower leg PUC converter, a capacitor is used. The PUC
in the upper leg is responsible for generating low-frequency
voltage generation whereas the lower leg is mostly responsi-
ble for generating high-frequency voltages. This modification
enables HPUC to generate multiple voltage levels using a
single DC source despite making the control of the HPUC
significantly more complex compared to PUC.

Despite providing these advantages over other combina-
tions of PUC topology, voltage balancing in HPUC is rather
challenging. As seen in Table 1, each sub-module consists
of six switches and each switch has two states of ‘‘on’’ and
‘‘off’’. Thus the total number of combinations among the
switches is 23 = 8 per sub-module. Therefore, the whole

topology has a combination of 8×8 = 64 switching states as
shown in (1).

Si = Si =
{

1 if Si is on
0 if Si is off

i = 1, 2, . . . , 6 (1)

Where Si and Si are complementary switches that are never
on and off simultaneously to prevent short circuits and other
complications.
As shown in Table 1, depending on the instantaneous

voltages across each capacitor and corresponding to differ-
ent switching combinations, various currents will be drawn
from them. The arrows in Table 1 indicate the direction of
capacitor current: ↓ indicates discharging (current flowing out
of the positive terminal), and ↑ indicates charging (current
flowing into the positive terminal). Thus, the voltage of each
capacitor is dependent on the capacitor in its upper posi-
tion which makes voltage balancing relatively challenging.
Therefore, conventional linear control methods will struggle
to deliver satisfactory performance when handling such a
complex system let alone being resistant to uncertainties.
To mitigate this issue, a model predictive control (MPC)
capable of effectively regulating the capacitor voltages and
efficiently generating the output voltages is proposed in [5].
Using DRL the mathematical model of the HPUC converter
is not required. Similarly, voltage balancing equations are not
required to be obtained because the DRL agent spontaneously
discovers the optimal policy for voltage balancing based on
observations and reward functions. Therefore, the inherent
model-free characteristics of the DRL method can provide
advantages in scenarios where amodel of theHPUC converter
is either not readily accessible or obtaining one proves to be
challenging. In the next section, the DRLmethod is described
in detail.

III. FUNDAMENTALS OF DEEP REINFORCEMENT
LEARNING (DRL)
In this section initially the fundamentals of deep enforce-
ment learning will be introduced. Then the proposed control
method based on DRL for intelligent control of HPUC will
be discussed. Lastly, the advantages and limitations of the
proposed DRL method will be discussed.

A. REINFORCEMENT LEARNING
Deep Reinforcement Learning (DRL) combines deep neural
networks (DNN) with reinforcement learning (RL) to control
complex and non-linear systems. In DRL, as shown in Fig.
2, an agent interacts with the environment and selects ac-
tions based on the observed states and received rewards. The
objective is to update the policy of π(s, a) in each iteration
to achieve the optimal policy based on actions At applied
to the environment and inspecting the observations St and
calculating the instantaneous and accumulative rewards of Rt
where t is the time step of the experience episode.
Reinforcement learning can be expressed as a four-tuple

Markov Decision Process (MDP) of {s, a, pa, ra} to find an
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FIGURE 3. Block diagram of the proposed DRL method for model-free
control of a grid-connected 23-level single DC source HPUC

optimal policy of π∗, to maximize long-term rewards:

π∗ = argmax
π

E

[ ∞∑
t=0

γtrt | s0, π

]
(2)

Where π∗ is the optimal policy, t is the time step, γ is the
discount factor which is a number between 0 and 1 indicating
how actions affect the accumulative reward in the long term.
Ultimately, s0 is the initial state and rt is the instantaneous
reward at the time step of t .

There are various algorithms to achieve the aforementioned
optimal policy for a given RL agent. Themost prominent ones
in the literature are as follows:

• Value-basedwhich solves the Bellman optimality equa-
tion to find the best value function for selecting actions
in each state.

• Policy-based which alternates between estimating and
improving a policy based on its value function.

• Q-Learning which is a model-free and non-policy
method that estimates the value of state action pairs and
updates them based on its calculated rewards.

• Actor-Critic Methods which combines policy-based
(actor) and value-based (critic) methods, where the actor
chooses actions and the critic evaluates them.

B. Q-LEARNING
Both value iteration and policy iteration algorithms are
model-based. Unlike such algorithms, Q-learning [47] is an
off-policy model-free algorithm that learns the action-value
function directly from experience episodes without requiring
an accurate model of the environment. It approximates the
values i.e. ‘‘Q-values’’ corresponding to taking each action in
a given state. Q-learning uses (3) to update Q-values in each
iteration of interactions with the environment.

Q(s, a)← Q(s, a) + α
[
R(s, a)

+ γmax
a′

Q(s′, a′)− Q(s, a)
]

(3)

Where Q(s, a) is the Q-value for taking the action of a in
the state of s, while α is the learning rate, R(s, a) is the
instantaneous reward after taking action of a in the state of s,
γ is the discount factor and ultimately, a

′
and s

′
are the next

action and state after taking action a in the state of s. Using
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FIGURE 4. Block Diagram of the state space generation unit comprised
of observations (measurements) and pre-processing

this equation, the new value of Q(s, a) is updated after each
iteration.

C. DEEP REINFORCEMENT LEARNING
As stated earlier, conventional reinforcement learning algo-
rithms use numerical methods to find the optimal policies or
values. Despite being easier to implement and less demanding
in terms of computational burden, such algorithms are not
suited for fairly complex and high-dimensional applications.
To mitigate these limitations, deep neural networks (DNNs)
are integrated into reinforcement learning, giving rise to a
modern approach known as “Deep Reinforcement Learning”.
Taking advantage of neural networks not only enables DRL
to handle high-dimensional and complex problems but also
leverages the data-driven nature of neural networks. Being
data-driven empowers DRL algorithms to learn optimal con-
trol of various applications without acquiring an accurate
model of their corresponding systems. Additionally, neural
networks are excellent for generalization. Thus, these types
of control methods are well suited for non-linear control
schemes where unseen data is likely to degrade the perfor-
mance of conventional non-linear control methods.
In this paper, a DNN-based Q-learning method called Deep

Q-Network (DQN), is used due to its suitability for model-
free environments and discrete action spaces.

IV. THE PROPOSED CONTROL METHOD BASED ON
REINFORCEMENT LEARNING
Using an approach similar to [46], a control method based on
DRL is developed and proposed in this section.
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TABLE 2. Popular DRL Agent Types Supported by MATLAB.

Agent Type Action Space On/Off Policy
Q-Learning (Q) Agents Value-Based Discrete Off
SARSA Agents Value-Based Discrete On
Deep Q-Network (DQN) Agents Value-Based Discrete Off
Policy Gradient (PG) Agents Policy-Based Discrete or Continuous On
Actor-Critic (AC) Agents Actor-Critic Discrete or Continuous On
Deep Deterministic Policy Gradient (DDPG) Agents Actor-Critic Continuous Off
Twin-Delayed Deep Deterministic Policy Gradient (TD3) Agents Actor-Critic Continuous Off
Soft Actor-Critic (SAC) Agents Actor-Critic Continuous Off
Proximal Policy Optimization (PPO) Agents Actor-Critic Discrete or Continuous On
Trust Region Policy Optimization (TRPO) Agents Actor-Critic Discrete or Continuous On
Model-Based Policy Optimization (MBPO) Agents Actor-Critic Discrete or Continuous Off

A. INTRODUCTION
The overall diagram of the proposed method is shown in Fig.
3. As seen, the proposed method consists of a pre-processing
block that feeds the observation signals obtained via measure-
ments to the DRL agent. Using these signals that act as the
state space, the agent can estimate the model of the converter
and learn its dynamic behavior. This block is equal to the input
layer of the DNN block as shown in Fig. 2. The DRL the agent
finds the optimal control policy based on previous experience,
current observations, and the accumulated reward.

The part of the DRL agent block responsible for the gen-
eration of actions is equal to the output layer of the DNN. To
improve efficiency and to reduce training times of the agent.
Two actions are generated. One for the upper leg and one for
the lower leg of the HPUC. In the literature, this approach is
known as multi-dimensional action space. This enables the
agent to observe and learn the effect of switching states on
each corresponding leg, resulting in a faster convergence to
the optimal switching. Finally, the “actions to switch” block
takes the actions from the DRL agent which are discrete
values, usually integers. This block then maps these values
to their corresponding switching states for the upper leg and
lower leg of the HPUC using a look-up table.

In the following subsections, initially, the agent type is
selected and justified. Moreover, observations ( signals mea-
sured ) are selected to generate the state space, and the
idea behind choosing each one is discussed. Furthermore,
to effectively achieve the optimal control policy the reward
functions specific to this application are designed. Lastly, the
action space and themethod ofmapping the numerical actions
generated by the proposed DRL agent to the switching gates
of the HPUC converter are introduced.

B. CHOOSING THE AGENT TYPE
The most popular agent types supported by MATLAB [48]
with their characteristics are described in Table 2 An off-
policy agent is well-suited for the model-free approach pro-
posed in this paper. Q-learning-based agents are preferred in
comparison to actor-critic-based agents due to the sensitivity
of the actor-critic approach towards hyper-parameters. In this
paper, Deep Q-Network (DQN), a form of Q-learning algo-

rithm is used for training the DRL agent. The DQN agent
type is not only model-free but also is excellent for handling
high-dimensional state spaces in which, action space is dis-
crete. These characteristics make it meet the requirements
for model-free control of a complex converter with discrete
action space (i.e. switching states) such as HPUC.

C. CREATING THE STATE SPACE (OBSERVATIONS)
Different measurements are required to be applied to the
DRL agent to effectively capture the dynamic behavior of
the converter. These measurements are called observations
in the literature. The following equation demonstrates the
observation array of the DRL agent:

Ot =
[
id , vg, vo,VDC , idref , vc1, vc2, vc3

]T
(4)

WhereOt is the observations array, id is the output current, vg
is the grid voltage, vo is the output voltage of the converter,
VDC is the input DC voltage, idref is the reference current, and
finally vc1, vc2, and vc3 are the voltages across capacitors c1,
c2 and c3, respectively.
As illustrated in Fig. 4, the pre-processing unit manipulates

the measurements provided by the observations unit to form
the ultimate state space of the controller. The generated state
space of the controller, marked as St is shown in (5):

St =
[
id , vg, vo, vc1, vc2, vc3,

iderr ,
∫
iderr , idref , ωt, vc1err , vc2err , vc3err ,∫

vc1err ,
∫
vc2err ,

∫
vc3err

]T (5)

Where iderr is the instantaneous error between the reference
current id and actual output current ig while

∫
iderr is its

accumulative error. Similarly vc1err , vc2err , and vc3err are the
errors between actual and reference voltages of capacitors, c1,
c2, and c3 respectively while

∫
vc1err ,

∫
vc2err , and

∫
vc3err are

their accumulative counterparts. Ultimately ωt is the angular
speed of the grid voltage equal to 2πf where f is the line
frequency of vg.
The diagram of the observations and pre-processing block

is depicted in Fig. 4. As illustrated, in order to capture the
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accumulative effect of the regulated parameters (i.e. id , vc1,
vc2, and vc3) their accumulative errors are also calculated
and added as state parameters. Principally, only six signal
measurements and two variables are needed for this control
scheme. However, the state array connected to the DRL agent
has 16 elements as shown in Fig. 4. Although raw measure-
ment signals can be likewise utilized as state space, the pre-
processing unit provides more insight into the dynamics of
the converter for the DRL agent and improves its efficiency
and reduces the training times significantly.

D. REWARD FUNCTION

The most challenging part of a DRL application is to design
a reward function. The challenge arises from the fact that the
optimal operation may seem intuitive to humans with greater
insight but the DRL agent may struggle to find an optimal
policy through mathematical equations of its reward function.
On the other hand, a poorly designed reward function can
result in a policy that leads to the optimal reward by exploit-
ing the system in ways that are not desirable or sometimes
even hazardous. For instance, let’s consider a DRL agent is
used to control a Buck converter, and its reward function is
designed to aim for minimizing loss and puts significantly
high emphasis on achieving this goal. Therefore, there is a
chance that the DRL agent may find out that there is a hefty
penalty for power loss thus it may opt to avoid turning on
its switch(es) to achieve the highest reward possible. This
example demonstrates the importance of designing carefully
curated reward functions as the most important step in imple-
mentingDRL for the control of various applications including
power electronics.

In this paper, a reward function is designed that empowers
the DRL agent to achieve four objectives efficiently while
prioritizing each objective based on its importance.

There are four objectives. For ∀i ∈ {1, 2, 3, 4} let Ri be
an objective and ∆(i) be its corresponding error, aiming to
minimize the errors between the reference values and the
actual values of id , vc1, vc2, and vc3, respectively. A composite
reward function is designed to address these multi-objective
requirements. Considering∆j as the error for objective j. The
reward component Rj for each objective j ∈ {id , vc1, vc2, vc3}
is defined as:

Rj(∆j) =


1− log10

(
1 + K1|∆j|

)
, if ϵth < |∆j| < ∆large

1− K2

√
|∆j|, if |∆j| ≥ ∆large

Rmax , if |∆j| ≤ ϵth
(6)

where:

• ∆j = (actualj − referencej).
• K1,K2 are positive scaling factors (e.g., K1 = 10,K2 =

1 used in this study).
• ϵth is a small threshold defining near-perfect tracking

(e.g., 10−4).
• ∆large is a threshold distinguishing small/medium errors

from large errors (e.g., 1).
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• Rmax is the maximum reward component for achieving
very low error (e.g., 1 − log10(1 + K1ϵth) or a similiar
fixed high value).

The logarithmic term for small to medium errors provides a
steep gradient, encouraging fine-tuning. The square root term
for large errors offers a less aggressive penalty than linear or
quadratic, preventing conservative approach when the agent
is far from the target. The constant high reward for negligible
errors stabilizes training. The total instantaneous reward Rt is
a weighted sum of these components:

Rt = widRid (∆id ) +

3∑
k=1

wvckRvck (∆vck ) (7)

wherewid andwvck are weighting factors reflecting the relative
importance of each objective. In this paper, these coefficients
were selected empirically through an iterative tuning process,
prioritizing current control (wid = 10) as the primary ob-
jective, followed by the voltage balancing of the capacitors
with decreasing priority (wvc1 = 5, wvc2 = 3, and wvc3 = 2).
This prioritization scheme was found to yield a good balance
between fast current response and stable capacitor voltage
regulation during training explorations.

To demonstrate the exploration environment of the agent,
a heat map for a combination of R1 and R3 is illustrated in
Fig. 5. As seen, the agent gives higher priority to achieving
the minimum error for id which is represented by R1 and vc3
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FIGURE 7. Diagram of a 23-level single DC source HPUC, controlled by the proposed DRL method

which is represented byR3. It is evident from the heatmap that
the DRL agent puts a higher priority on regulating the output
current id in comparison to balancing the voltage of vc3.

Ultimately, since depicting a four-dimensional diagram is
not feasible, to visualize the reward exploration environment
that the DRL agent can explore, it is illustrated as a three-
dimensional map of exploration between the reward functions
R1, R2, and R3 as shown in Fig. 6. The figure shows that
the agent explores the reward function with a low reward
variation for medium and large errors resulting in a plateau
of rewards when all objectives deviate too far from their ref-
erence values. Once the agent reaches areas that correspond to
minimal errors, it receives higher rewards. The overall reward
of “R” peaks when all objectives have near-zero errors. This
configuration not only encourages the agent to stay in near-
zero error areas but also allows it to fine-tune the policy
to achieve the smallest error possible while respecting the
priority of accomplishing each objective.

E. ACTION SPACE

In order to generate the action space, consider the topology
of the HPUC converter as shown in Fig. 1. As stated earlier,
the HPUC converter is comprised of 12 switches, 6 on each
submodule. Since each switch and its complimentary pair
have two states of On and Off. Therefore, there are 23 = 8
combinations at each submodule (PUC1 and PUC2) of the
converter. However, only 8 distinct voltage levels are gener-
ated by different combinations of the switching states as is
listed in Table 1. Thus, the total number of permitted switch-
ing states (i.e. 8×8 = 64) is considered for creating the action
space At . Since these switching states are incomprehensible
for the DRL agent, an integer number is used to represent each
combination. Thus, the discrete two-dimensional action space

TABLE 3. Simulation Parameters

Parameter Value Unit
Peak Grid Voltage 170 V
Grid Frequency 60 Hz
Grid Resistance (per phase) 0.1 Ω
Grid Inductance (per phase) 5 mH
DC-link Capacitors 2000 µF
Simulation Time Step (Ts) 50 µs
DC-link Voltage 160 V

in this method would be a matrix as shown in (8).

At =
[
0 1 . . . 6 7
0 1 . . . 6 7

]
(8)

A lookup table linked to the DRL agent’s output is utilized
to map each action, represented as an integer as shown in
(8), into its corresponding switching state. This process is
illustrated in Fig. 3. As seen, the “Action to Switch” block
enables the mapping of actions to switching signals.

F. FINALIZING THE DRL CONTROLLER
Fig. 7. depicts the schematic of the proposed DRL controller
connected to the 23-level single DC source HPUC. The ac-
tions generated by the DRL agent remain unchanged until
the following sampling period of the agent, which may be
different from the simulation’s sampling time. Therefore,
the DRL agent’s sampling period can be considered as the
switching frequency (fsw) of the converter.

V. SIMULATION RESULTS
In order to assess the performance of the proposed approach
in controlling a 23-level HPUC converter, it is implemented
in the Matlab/Simulink simulation environment. Different
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TABLE 4. Training Parameters

Parameter Value
Parameter Value
Layer Size of the State Path [224,224]
Layer Size of the Action Path 124
Learning Rate 0.01
Gradient Threshold 1
Normalization None
Bias Learn Rate Factor 0
Double DQN No
Target Smooth Factor 0.001
Experience Buffer Length 105

Mini Batch Size 640
Discount Factor 0.9
Score Averaging Window Length 5
Epsilon Greedy Exploration Epsilon 1
Epsilon Decay 0.05
Epsilon Min 0.01
Agent Sampling Time 100µs

operation modes, dynamic changes, noise in measurements,
parameter changes, and uncertainties are studied.

Table 3 and Table 4 illustrate the simulation parameters and
the training parameters, respectively. By applying these val-
ues along with the previously obtained reward function, the
following results are obtained in various operation conditions.

1) Steady-state operation
To evaluate the steady-state operation, the performance of
the proposed DRL method is examined. Fig. 8. illustrates the
steady-state operation of theHPUC converter usingDRL. The
system demonstrates satisfactory steady-state performance.
The steady-state error for the output current id tracking is
maintained within±0.2A of the reference. The capacitor volt-
age balancing is also effective, with voltage errors for VC1,
VC2, and VC3 kept within ±5V of their respective setpoints
(e.g., VC1 around VDC/2 = 80V ). The system exhibits a
relatively small rise time, reaching 90% of the target current
in approximately 30 ms from startup. The Total Harmonic
Distortion (THD) of the output current is measured as 2.71%
ensuring that THD remains within the acceptable range of
standards.

2) Dynamic response
Additionally, in order to assess the dynamic response of the
DRL method, step changes in the active and reactive power
delivered to the grid using the HPUC converter are studied.
As shown in Fig. 9, a step change from id = 10A, iq = 0A to
id = 8A, iq = 0A at t = 200ms and another one to id = 10A,
iq = 0.4A at t = 300ms are applied to the HPUC converter
controlled by the DRL agent. As observed in Fig. 9, the DRL
agent effectively tracks the step changes in id and iq. For the
step change in id from 10A to 8A at t=200ms, the output
current settles to the new reference within approximately 40
ms with minimal overshoot. A similar responsive behavior
is observed for the subsequent change at t=300ms, demon-

strating the agent’s ability to quickly adapt to varying power
demands while maintaining capacitor voltage stability. The
results demonstrated good performance when facing these
dynamic changes.

3) Noise, parameter variations, and uncertainty
The main objectives of utilizing DRL for the control of
power electronic converters, such as HPUC, are its model-
free approach, and the generalization characteristics of this
control method. In the previous sub-sections, the satisfactory
performance of the DRL agent without prior knowledge of the
topology under steady-state as well as the dynamic changes
of the aforementioned converter are demonstrated. In this
section, the converter is utilized under various non-regular
operational points to assess the resilience of the DRL method
under uncertain conditions.
The HPUC converter is set to deliver a current of id = 6A

to the grid using the DRL agent as shown in Fig. 10. At
t = 100ms, an active power increase of id = 10A is
administrated. As seen, the DRL agent followed this dynamic
change closely. Moreover, a reactive power increase from
iq = 0A to iq = 0.2A is added at t = 200ms, and the agent
displayed a favorable response to this step change.
Moreover, a white Gaussian noise (WGN) is added to the

output current (ig) signal. The magnitude of the added WGN
is calculated using (V-3) and (V-3) to achieve a signal-to-
noise (SNR) ratio of 25dB. Where P is the power and A is
the amplitude of the signal or the added noise.

SNR =
Psignal

Pnoise
=

(Asignal

Anoise

)2

(9)

SNRdB = 10 log10

(Psignal

Pnoise

)
(10)

The aforementioned noise is added at t = 300ms to the
HPUC converter when it is controlled by the DRL agent as
shown in Fig. 10. As depicted, the introduction of WGN
(SNR = 25dB) at t = 300ms causes a slight increase in the
output current ripple, but the THD remains below 5%, and the
DRLmethodmaintains stable control. This verifies the robust
performance and superior capability of the DRL method in
resisting performance degradation in noisy environments.
Additionally, to evaluate the performance of the DRL

methodwhen facing parameter variations, a degradationman-
ifested as a reduction of 15% in the capacity of all three DC
link capacitors of the HPUC converter is administrated at
t = 400ms. As shown in Fig. 10, following the 15% reduction
in capacitance at t = 400ms, the peak-to-peak voltage ripple
on the DC-link capacitors increased by approximately±20V
initially, but the DRL agent adapted, and the system remained
stable, with the output voltage distortion being minor. These
ripples become less pronounced in a short period. The output
voltage becomes slightly distorted as well.

At t = 500ms, a 5% increase in the grid voltage is applied
to the HPUC. As seen in Fig. 10, this change results in slightly
higher voltage ripples in the capacitors.
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FIGURE 8. Waveforms of the output current(A), output voltage(V), errors of the DC-link capacitors(V) and voltages across submodules PUC1 and PUC2
in steady state operation controlled by the DRL agent
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FIGURE 10. Waveforms of the output current(A), output voltage(V), errors of the DC-link capacitors(V) and voltages across submodules PUC1 and PUC2
controlled by the DRL agent under accumulate effect of active power changes at t = 100ms, reactive power changes at t = 200ms, noise in measurements
at t = 300ms, capacitor degradation at t = 400ms, grid voltage changes at t = 500ms and line impedence changes at t = 600ms

On top of all the previouslymentioned changes, an increase
of 28% is applied to the line impedance at t = 600ms.
The cumulative effect of all these changes imposes severe
challenges to traditional control methods. However, the DRL
method only exhibits a moderate distortion when all the pre-
vious conditions impact its performance at t = 600ms. The
cumulative effect at t = 600ms shows a moderate increase
in output voltage distortion and capacitor voltage ripple (e.g.,
peak errors temporarily reaching±15V ), but the system does
not lose stability, underscoring the DRL agent’s robustness.

Considering the results obtained in this section, it can be
concluded that the DRL agent, despite requiring prior training
with relatively long training times, not only can obtain the
optimal switching and control policy of the HPUC converter
in a model-free approach but also demonstrates relatively
high resilience towards uncertainties, parameter variations,
noise, and dynamic responses.

VI. CONCLUSION
Based on the results obtained in this paper, it is shown that
the implementation of Deep Reinforcement Learning (DRL)
for controlling the 23-level Single DC source Hybrid Packed
U-Cell (HPUC) converter offers significant advantages over
traditional methods that face challenges such as requiring an
accurate model of the converter as well as sensitivity to pa-
rameter variations, noise, and other uncertainties, leading to
performance degradation or even instability. In contrast, DRL
provides a modern approach to nonlinear control of power
electronics. Without a prior model of the converter and only

by training its neural network layers and acquiring optimal
control policy through interactions with the converter, DRL
demonstrates higher resilience towards uncertainties, param-
eter variations, noise, and dynamic changes. The model-free
nature of DRL, powered by its interactive training procedure
and the implementation of deep neural networks improve
their adaptability and effectiveness in addressing the control
challenges of complex power electronics converters such as
HPUC. Simulations in MATLAB/Simulink confirmed the
satisfactory performance of the proposed method, achieving
a low THD of 2.71% for the output current, demonstrat-
ing effective capacitor voltage balancing with errors kept
within ±5V under nominal conditions, and showcasing ro-
bust dynamic responses (e.g., settling times around 40 ms
for significant load changes). The DRL agent’s resilience
was particularly evident when subjected to a 25dB SNR
noise environment and 15% capacitor degradation, where it
maintained operational stability and acceptable performance.
Therefore, a promising approach is introduced that empowers
further studies on advanced and intelligent control of com-
plex power electronics converters. Future work will focus
on experimental validation of the proposed DRL controller
to further assess its real-world performance and practical
implementation challenges.
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